- Application of GC theorem
 - Introdunction of least square regression
 - Theorem 3.20 and relative proof
- Bounded differences inequality a simple concentration inequality
 - Bounded differences inequality and relative proof
 - Application of Theorem 3.24
- 3 Supremum of the emperical process for a bounded class of functions
 - Use bounded differences inequality into emperical process
 - Classical Glivenko-Cantelli poblem

Consistency of least square regression

$$Y_i = g_0(z_i) + W_i$$
 for $i = 1, 2, ..., n$

- $Y_i \in \mathbb{R}$ is the observed response variable.
- $z_i \in \mathcal{Z}$ is a covariate and W_i is the unobserved error.
- W_i is assumed to be independent random variables with $\mathbb{E}W_i = 0$ and $Var(W_i) \le \sigma_0^2 < \infty$.
- The covariates $z_1, ..., z_n$ are fixed.

- The function $g_0: \mathcal{Z} \to \mathbb{R}$ is unknown, but we assume that $g_0 \in \mathcal{G}$, where \mathcal{G} is a given class of regression functions.
- The unknown regression function can be estimated by the least squares estimator (LSE) \hat{g}_n , which is defined by

$$\hat{g}_n = \arg\min_{g \in \mathcal{G}} \sum_{i=1}^n (Y_i - g(z_i))^2$$

When can we say that $\|\hat{g}_n - g_0\|_n \stackrel{\mathbb{P}}{\to} 0$?

- $Q_n := \frac{1}{n} \sum_{i=1}^n \delta_{z_i}$ denote the empirical measure of the design points.
- We shall need to control the entropy of subclasses $\mathcal{G}_n(R)$, which are defined as

$$\mathcal{G}_n(R) = \{ g \in \mathcal{G} : \|g - g_0\|_n \le R \}$$

• For $g: \mathbb{Z} \to \mathbb{R}$, we write $||g||_g^2 := \frac{1}{2} \sum_{i=1}^n g^2(z_i)$,

$$\|Y-g\|_n^2 := \frac{1}{n} \sum_{i=1}^n \left(Y_i - g\left(z_i\right)\right)^2, \langle W, g \rangle_n := \frac{1}{n} \sum_{i=1}^n W_i g\left(z_i\right).$$

•
$$\|Y - \hat{g}_n\|_p^2 \le \|Y - g_0\|_p^2 \implies \|\hat{g}_n - g_0\|_p^2 \le 2 \langle W, \hat{g}_n - g_0 \rangle_p$$
 (1)

Theorem 3.20 Suppose that

$$\lim_{\kappa \to \infty} \lim \sup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(W_i^2 1_{\{|W_i| > \kappa\}}\right) = 0$$

and

$$\frac{\log \textit{N}\left(\delta,\mathcal{G}_{\textit{n}}(\textit{R}),\textit{L}_{1}\left(\textit{Q}_{\textit{n}}\right)\right)}{\textit{n}}\rightarrow0,\quad\text{ for all }\delta>0,\textit{R}>0$$

Then,
$$\|\hat{\mathbf{g}}_n - \mathbf{g}_0\|_n \stackrel{p}{\to} 0$$
.

Proof Theorem 3.20:

Let $\eta, \delta > 0$ be given. We will show that $\mathbb{P}\left(\|\hat{g}_n - g_0\|_n > \delta\right)$ can be made arbitrarily small, for all n sufficiently large.

Note that for any $R > \delta$, we have

$$\mathbb{P}\left(\|\hat{g}_{n}-g_{0}\|_{n}>\delta\right)\leq\mathbb{P}\left(\delta<\|\hat{g}_{n}-g_{0}\|_{n}< R\right)+\mathbb{P}\left(\|\hat{g}_{n}-g_{0}\|_{n}> R\right)$$

We will first prove the second term. From (1), using Cauchy-Schwarz inequality $\|\hat{g}_n - g_0\|^2 \le 2 \langle W, \hat{g}_n - g_0 \rangle_n \le 2 \|W\|_n \cdot \|\hat{g}_n - g_0\|_n$ Hence, it follows that $\left\| \underbrace{\mathcal{L}_{W,V} > \left| \le \|W\|_r \|V\|}_{\|\hat{g}_n - g_0\|_n} \le 2 \left(\frac{1}{n} \sum_{i=1}^n W_i^2 \right)^{1/2}$

Thus, using Markov's inequality,

$$\mathbb{P}(\|\hat{g}_{n} - g_{0}\|_{n} > R) \leq \mathbb{P}\left(2\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}^{2}\right)^{1/2} > R\right) \\
\leq \frac{4}{R^{2}}\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}W_{i}^{2} \leq \frac{4\sigma_{0}^{2}}{R^{2}} = \eta$$

where $R^2 := 4\sigma_0^2/\eta$.

Then we will prove the first term. Now, using (1) again,

$$\begin{split} & \mathbb{P}\left(\delta < \|\hat{\mathbf{g}}_{n} - \mathbf{g}_{0}\|_{n} < R\right) \leq \mathbb{P}\left(\sup_{\mathbf{g} \in \mathcal{G}_{n}(R)} 2 \left\langle W, \mathbf{g} - \mathbf{g}_{0} \right\rangle_{n} \geq \delta^{2}\right) \\ \leq & \mathbb{P}\left(\sup_{\mathbf{g} \in \mathcal{G}_{n}(R)} \left\langle W1_{\{|W| \leq K\}}, \mathbf{g} - \mathbf{g}_{0} \right\rangle_{n} \geq \frac{\delta^{2}}{4}\right) + \mathbb{P}\left(\sup_{\mathbf{g} \in \mathcal{G}_{n}(R)} \left\langle W1_{\{|W| > K\}}, \mathbf{g} - \mathbf{g}_{0} \right\rangle_{n} \geq \frac{\delta^{2}}{4}\right) \end{split}$$

In this part we will prove
$$\mathbb{P}\left(\sup_{g\in\mathcal{G}_n(R)}\left\langle W1_{\{|W|>K\}},g-g_0
ight
angle_n\geq rac{\delta^2}{4}
ight)\leq \eta$$

Using cauchy-Schwarz inequality

$$\begin{split} \sup_{g \in \mathcal{G}_n(R)} \left\langle W 1_{\{|W| > K\}}, g - g_0 \right\rangle_n &\leq \sup_{g \in \mathcal{G}_n(R)} \|W 1_{\{|W| > K\}}\|_n \cdot \|g - g_0\|_n \\ &= \left(\frac{1}{n} \sum_{i=1}^n W_i^2 1_{\{|W_i| > K\}}\right)^{1/2} \cdot R \end{split}$$

Using Markov's inequality:

$$\begin{split} \mathbb{P}\left(\sup_{g\in\mathcal{G}_n(R)}\left\langle W1_{\{|W|>K\}},g-g_0\right\rangle_n \geq \frac{\delta^2}{4}\right) \leq \mathbb{P}\left(\left(\frac{1}{n}\sum_{i=1}^n W_i^21_{\{|W_i|>K\}}\right)^{1/2} \geq \frac{\delta^2}{4R}\right) \\ \leq \left(\frac{4R}{\delta^2}\right)^2 \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^n W_i^21_{\{|W_i|>K\}}\right) \leq \eta \end{split}$$

by choosing $K = K(\delta, \eta)$ sufficiently large and using

$$\lim_{K \to \infty} \lim \sup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(W_i^2 \mathbb{1}_{\{|W_i| > K\}}\right) = 0$$

This part we will prove $\mathbb{P}\left(\sup_{g\in\mathcal{G}_n(R)}\left\langle W1_{\{|W|\leq K\}},g-g_0\right\rangle_n\geq \frac{\delta^2}{4}\right)\leq \frac{4\eta}{\delta^2}$ Using Markov's inequality

$$\mathbb{P}\left(\sup_{\mathbf{g}\in\mathcal{G}_n(R)}\left\langle W1_{\{|W|\leq K\}},\mathbf{g}-\mathbf{g}_0\right\rangle_n\geq \frac{\delta^2}{4}\right)\leq \frac{4}{\delta^2}\mathbb{E}\|\left\langle W1_{\{|W|\leq K\}},\mathbf{g}-\mathbf{g}_0\right\rangle_n\|_{\mathcal{G}_n(R)}$$

Next proof will mimic to proof of Theoroem 3.5, and get

$$\frac{4}{\delta^2} \mathbb{E} \| \left\langle W1_{\{|W| \le K\}}, g - g_0 \right\rangle_n \|_{\mathcal{G}_n(R)} \le \eta$$

Bounded differences inequality

We are interested in bounding the random fluctuations of functions of many independent random variables.

Let X_1, \ldots, X_n be independent random variables taking values in \mathcal{X} .

Let $f: \mathcal{X}^n \to \mathbb{R}$, and let $Z \neq f(X_1, \dots, X_n)$ be the random variable of interest.

We seek upper bounds for

$$\mathbb{P}(Z > \mathbb{E}Z + t)$$
 and $\mathbb{P}(Z < \mathbb{E}Z - t)$ for $t > 0$

Recall:

Lemma 3.9 (Hoeffding's inequality). Let X_1, \ldots, X_n be independent bounded random variables such that $X_i \in [a_i, b_i]$ with probability 1. $Z := S_n = \sum_{i=1}^n X_i$. Then, we obtain,

$$\mathbb{P}\left(S_n - \mathbb{E}S_n \ge t\right) \le e^{-2t^2/\sum_{i=1}^n (b_i - a_i)^2}$$

and

$$\mathbb{P}\left(S_n - \mathbb{E}S_n \le -t\right) \le e^{-2t^2/\sum_{i=1}^n (b_i - a_i)^2}$$

Theorem 3.24 (Bounded differences inequality or McDiarmid's inequality). Suppose that $Z = f(X_1, ..., X_n)$ and f is a function with bounded differences, then

$$\mathbb{P}(|Z - \mathbb{E}(Z)| > t) \le 2e^{-2t^2/\sum_{i=1}^n c_i^2}$$

Definition 3.23 (Functions with bounded differences). We say that a function $f: \mathcal{X}^n \to \mathbb{R}$ has the bounded difference property if for some nonnegative constants c_1, \ldots, c_n ,

$$\sup_{x_1,...,x_n,x_i \in \mathcal{X}} |f(x_1,...,x_n) - f(x_1,...,x_{i-1},x_i',x_{i+1},...,x_n)| \le c_i, \quad 1 \le i \le n$$

Proof Theorem 3.24:

Here we try to express $Z - \mathbb{E}(Z)$ as a sum of variables.

Let X_1, \ldots, X_n be independent random variables taking values in \mathcal{X} . Let $f: \mathcal{X}^n \to \mathbb{R}$ and

$$Z = f(X_1, \ldots, X_n)$$

be the random variable of interest.

Martingale

Given a sequence $\{Y_k\}_{k=1}^{\infty}$ of random variables adapted to a filtration $\{\mathcal{F}_k\}_{k=1}^{\infty}$ (e.g., $\mathcal{F}_k = \sigma(X_1, \ldots, X_k)$), the pair $\{Y_k, \mathcal{F}_k\}_{k=1}^{\infty}$ is a martingale if, for all k > 1,

$$\mathbb{E}\left[|Y_k|\right] < \infty$$
, and $\mathbb{E}\left[Y_{k+1} \mid \mathcal{F}_k\right] = Y_k$.

Note that if we define

$$Y_k := \mathbb{E}\left[Z \mid X_1, \dots, X_k\right], \quad \text{for } k = 1, \dots, n$$

then $\{Y_k\}_{k=0}^n$ is a martingale adapted to a filtration generated by $\{X_k\}_{k=1}^n$.

Denote by $\mathbb{E}_i[\cdot] := \mathbb{E}\left[\cdot \mid X_1, \dots, X_i\right]$. Thus, $\mathbb{E}_0(Z) = \mathbb{E}(Z)$, $\mathbb{E}_k(Z) = Y_k$ and $\mathbb{E}_n(Z) = Z$, for $k = 1, \dots, n$. Writing

$$\Delta_i := \mathbb{E}_i[Z] - \mathbb{E}_{i-1}[Z]$$

we have

$$Z - \mathbb{E}Z = \sum_{i=1}^{n} \Delta_{i}$$

Lemma 3.23 (Azuma-Hoeffding inequality) Let $\{Y_0, Y_1, \dots\}$ be a martingale with respect to filtration $\{\mathcal{F}_0, \mathcal{F}_1, \dots\}$.

Assume there are predictable processes $\{A_0, A_1, \cdots\}$ and $\{B_0, B_1, \ldots\}$ with respect to $\{\mathcal{F}_0, \mathcal{F}_1, \cdots\}$, i.e. for all i, A_i, B_i are \mathcal{F}_{i-1} -measurable, and constants $0 < c_1, c_2, \cdots < \infty$.

Such that $A_i \leq \underbrace{Y_i - Y_{i-1}} \leq B_i$ and $B_i - A_i \leq c_i$ almost surely. Then for all $\epsilon > 0$, $P\left(Y_n - Y_0 \geq \epsilon\right) \leq \exp\left(-\frac{2\epsilon^2}{\sum_{t=1}^n c_i^2}\right)$

We use Lemma 3.23 to prove Theorem 3.24

We define

we define
$$A_{i} = \inf_{x} \mathbb{E} \left[Z \mid X_{1}, \dots, X_{i-1}, x \right] - \mathbb{E} \left[Z \mid X_{1}, \dots, X_{i-1} \right]$$

$$= \inf_{x} \int f(X_{1}, \dots, X_{i-1}, x, \underbrace{x_{i+1}, \dots, x_{n}}) dP(x_{i+1}) \cdots dP(x_{n}) - \mathbb{E}_{i-1}[\cdot]$$

$$B_{i} = \sup_{x} \mathbb{E} \left[Z \mid X_{1}, \dots, X_{i-1}, x \right] - \mathbb{E} \left[Z \mid X_{1}, \dots, X_{i-1} \right]$$

$$= \sup_{x} \int f(X_{1}, \dots, X_{i-1}, x, x_{i+1}, \dots, x_{n}) dP(x_{i+1}) \cdots dP(x_{n}) - \mathbb{E}_{i-1}[\cdot]$$

then we have

$$A_i \leq \Delta_i \leq B_i$$
 a.s. $\forall i = 1, \ldots, n$

We need to bound the quantity $B_i - A_i$. By independence of the X_i and the bounded difference assumption

$$B_{i} - A_{i} = \sup_{x} \mathbb{E} \left[Z \mid X_{1}, \dots, X_{i-1}, x \right] - \inf_{x} \mathbb{E} \left[Z \mid X_{1}, \dots, X_{i-1}, x \right]$$

$$= \sup_{x, x'} \int \left(f(X_{1}, \dots, X_{i-1}, x, x_{i+1}, \dots, x_{n}) - f(X_{1}, \dots, X_{i-1}, x', x_{i+1}, \dots, x_{n}) \right) dP(x_{i+1}) \cdots dP(x_{n})$$

Application of Theorem 3.24

Kernel density estimation

Let X_1, \ldots, X_n are i.i.d from a distribution P on \mathbb{R} with density ϕ .

We want to estimate ϕ nonparametrically using the kernel density estimator (KDE) $\hat{\phi}_n:\mathbb{R}\to[0,\infty)$ defined as

$$\hat{\phi}_n(x) = \frac{1}{nh_n} \sum_{i=1}^n K\left(\frac{x - X_i}{h_n}\right), \quad \text{ for } x \in \mathbb{R}$$

- $h_n > 0$ is the smoothing bandwidth.
- K is a nonnegative kernel (i.e., $K \ge 0$ and $\int K(x) dx = 1$).

The L_1 -error of the estimator $\hat{\phi}_n$ is

$$Z \equiv f(X_1, \dots, X_n) := \int \left| \hat{\phi}_n(x) - \phi(x) \right| dx$$

- The random variable Z provides a measure of the difference between $\hat{\phi}_n$ and ϕ .
- Z also captures the difference between P_n and P in the total variation distance. $(Z = 2 \sup_A |P_n(A) P(A)|)$

We now use Theorem 3.24 to get exponential tail bounds for Z.

For
$$x_1, \ldots, x_n, x_i \in \mathcal{X}$$

$$|f(x_{1},...,x_{n}) - f(x_{1},...,x_{i-1},x'_{i},x_{i+1},...,x_{n})|$$

$$= \left| \int |\hat{\phi}_{n1}(x) - \phi(x)| dx - \int |\hat{\phi}_{n2}(x) - \phi(x)| dx \right|$$

$$\leq \left| \int |\hat{\phi}_{n1}(x) - \hat{\phi}_{n2}(x)| dx \right|$$

$$\leq \frac{1}{nh_{n}} \int \left| K\left(\frac{x - x_{i}}{h_{n}}\right) - K\left(\frac{x - x'_{i}}{h_{n}}\right) \right| dx \leq \frac{2}{n}$$

$$\downarrow (\chi) \text{ Mixing } \chi$$

Thus, using Theorem 3.24 with $c_i = 2/n$, for all i = 1, ..., n.

$$\mathbb{P}(|Z - \mathbb{E}(Z)| > t) \le 2e^{-nt^2/2} \quad \Rightarrow \quad \mathbb{P}(\sqrt{n}|Z - \mathbb{E}(Z)| > t) \le 2e^{-t^2/2}$$

Z concentrates around its expectation $\mathbb{E}[Z]$ at the rate $n^{-1/2}$.

Supremum of the emperical process for a bounded class of functions

$$Z := \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} f(X_i) - \mathbb{E}\left[f(X_1) \right] \right|$$

- X_1, \ldots, X_n are i.i.d. random objects taking values in \mathcal{X}
- ullet \mathcal{F} is a collection of real-valued functions on \mathcal{X} .
- \mathcal{F} is assumed that all functions in \mathcal{F} are bounded by a positive constant B, i.e.,

$$\sup_{x \in \mathcal{X}} |f(x)| \le B \quad \text{ for all } f \in \mathcal{F}$$

Let

$$g(x_1,\ldots,x_n) := \left| \frac{1}{n} \sum_{i=1}^n f(x_i) - \mathbb{E}\left[f(X_1) \right] \right|$$

Next, find the bound of effect of i_{th} variable on function g.

$$g(x_1, \dots, x_{i-1}, x_i', x_{i+1}, \dots, x_n) = \left| \frac{1}{n} \sum_{j \neq i} f(x_i) + \frac{f(x_i')}{n} - \mathbb{E}\left[f(X_1)\right] \right|$$

$$= \left| \frac{1}{n} \sum_{j=1}^n f(x_j) - \mathbb{E}\left[f(X_1)\right] + \frac{f(x_i')}{n} - \frac{f(x_i)}{n} \right|$$

$$\leq \left| \frac{1}{n} \sum_{j=1}^n f(x_j) - \mathbb{E}\left[f(X_1)\right] \right| + \frac{2B}{n}$$

$$\leq g(x_1, \dots, x_n) + \frac{2B}{n}$$

Then, use **Theorem 3.24** with $c_i = 2B/n$ for i = 1, ..., n

$$\mathbb{P}(|\textit{Z} - \mathbb{E}\textit{Z}| > \textit{t}) \leq 2 \exp\left(-\frac{\textit{nt}^2}{2\textit{B}^2}\right), \quad \text{ for every } \textit{t} \geq 0$$

Setting $\delta := \exp\left(-\frac{nt^2}{2B^2}\right)$, we can deduce that

$$|Z - \mathbb{E}[Z]| \le B\sqrt{\frac{2}{n}\log\frac{1}{\delta}}$$

holds with probability at least $1-2\delta$ for every $\delta>0$. This inequality implies that $\mathbb{E}[Z]$ is usually the dominating term for understanding the behavior of Z.

Theorem 3.26 Suppose that X_1, \ldots, X_n are *i.i.*d. random variables on \mathbb{R} with distribution P and c.d.f. F. Let \mathbb{F}_n be the empirical d.f. of the data. Then.

$$\mathbb{P}\left[\left\|\mathbb{F}_n - F\right\|_{\infty} \ge 8\sqrt{\frac{\log(n+1)}{n}} + t\right] \le e^{-nt^2/2}, \quad \text{ forall } t > 0.$$

Hence,
$$\|\mathbb{F}_n - F\|_{\infty} \stackrel{\text{a.s.}}{\to} 0$$
.

Proof:

- The function class is $\mathcal{F} := \{1_{(-\infty,t]}(\cdot) : t \in \mathbb{R}\}.$
- $Z := \|\mathbb{P}_n P\|_{\mathcal{F}} = \|\mathbb{F}_n F\|_{\infty} \left(\mathbb{F}_n = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{(-\infty, x]}(X_i)\right)$.
- We have to bound upper bound $\mathbb{E}[Z]$ via symmetrization, i.e., $\mathbb{E}[Z] \leq 2\mathbb{E}_X\left[\mathbb{E}_{\varepsilon}\left[\sup_{f \in \mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^n \varepsilon_i f(X_i)\right|\right]\right]$, where $\varepsilon_1,\ldots,\varepsilon_n$ are i.i.d. Rademachers independent of the X_i 's. (Rademachers random varibale ε take values ± 1 with equal probability 1/2)
- For a fixed $(x_1, \ldots, x_n) \in \mathbb{R}^n$, define

$$\Delta_n\left(\mathcal{F}; x_1, \dots, x_n\right) := \left\{ \left(f(x_1), \dots, f(x_n) \right) : f \in \mathcal{F} \right\}$$

Observe that although \mathcal{F} has uncountable many functions, for every $(x_1,\ldots,x_n)\in\mathbb{R}^n$, $\Delta_n\left(\mathcal{F};x_1,\ldots,x_n\right)$ can take at most n+1 distinct values.

Thus, $\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i f(x_i) \right|$ is at most the supremum of n+1 such variables, and we can apply Lemma 3.16 to show that

This can show

$$\mathbb{P}\left[\left\|\mathbb{F}_n - F\right\|_{\infty} \ge 8\sqrt{\frac{\log(n+1)}{n}} + t\right] \le e^{-nt^2/2}, \quad \text{ for all } t > 0.$$

This implies $\|\mathbb{F}_n - F\|_{\infty} \stackrel{\text{a.s.}}{\to} 0$.