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1 Application of GC theorem
Introdunction of least square regression
Theorem 3.20 and relative proof

2 Bounded differences inequality - a simple concentration inequality
Bounded differences inequality and relative proof
Application of Theorem 3.24

3 Supremum of the emperical process for a bounded class of functions
Use bounded differences inequality into emperical process
Classical Glivenko-Cantelli poblem
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Introdunction of least square regression

Application of GC theorem

Consistency of least square regression

Yi = g0(zi) + Wi for i = 1,2,...,n

Yi ∈ R is the observed response variable.

zi ∈ Z is a covariate and Wi is the unobserved error.

Wi is assumed to be independent random variables with EWi = 0
and Var(Wi) ≤ σ2

0 < ∞.

The covariates z1, ..., zn are fixed.
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Introdunction of least square regression

The function g0 : Z → R is unknown, but we assume that g0 ∈ G,
where G is a given class of regression functions.

The unknown regression function can be estimated by the least
squares estimator (LSE) ĝn, which is defined by

ĝn = arg min
g∈G

n∑

i=1

(Yi − g (zi))
2

When can we say that ‖ĝn − g0‖n
P→ 0?
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Introdunction of least square regression

Qn := 1
n
∑n

i=1 δzi denote the empirical measure of the design points.

We shall need to control the entropy of subclasses Gn(R), which are
defined as

Gn(R) = {g ∈ G : ‖g − g0‖n ≤ R}

For g : Z → R, we write ‖g‖2n := 1
n
∑n

i=1 g2 (zi) ,

‖Y − g‖2n :=
1

n

n∑

i=1

(Yi − g (zi))
2 , 〈W, g〉n :=

1

n

n∑

i=1

Wig (zi) .

‖Y − ĝn‖2n ≤ ‖Y − g0‖2n ⇒ ‖ĝn − g0‖2n ≤ 2 〈W, ĝn − g0〉n (1)

wgNGG.nl12) ,炒

𠥔"不.cn
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Theorem 3.20 and relative proof

Theorem 3.20 Suppose that

lim
K→∞

lim sup
n→∞

1

n

n∑

i=1

E
(
W2

i 1{|Wi|>K}
)
= 0

and
log N (δ,Gn(R), L1 (Qn))

n → 0, for all δ > 0,R > 0

Then, ‖ĝn − g0‖n
p→ 0.
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Theorem 3.20 and relative proof

Proof Theorem 3.20 :

Let η, δ > 0 be given. We will show that P (‖ĝn − g0‖n > δ) can be
made arbitrarily small, for all n sufficiently large.

Note that for any R > δ, we have

P (‖ĝn − g0‖n > δ) ≤ P (δ < ‖ĝn − g0‖n < R) + P (‖ĝn − g0‖n > R)
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Theorem 3.20 and relative proof

We will first prove the second term. From (1), using Cauchy-Schwarz
inequality ‖ĝn − g0‖2 ≤ 2 〈W, ĝn − g0〉n ≤ 2‖W‖n · ‖ĝn − g0‖n
Hence, it follows that

‖ĝn − g0‖n ≤ 2

(
1
n

n∑

i=1

W2
i

)1/2

Thus, using Markov’s inequality,

P (‖ĝn − g0‖n > R) ≤ P



2

(
1

n

n∑

i=1

W2
i

)1/2

> R





≤ 4

R2

1

n

n∑

i=1

EW2
i ≤ 4σ2

0

R2
= η

where R2 := 4σ2
0/η.

ku.rs/Ellull.llVll
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Theorem 3.20 and relative proof

Then we will prove the first term. Now, using (1) again,

P
(
δ < ‖ĝn − g0‖n < R

)
≤ P

(
sup

g∈Gn(R)
2 〈W, g − g0〉n ≥ δ2

)

≤P
(

sup
g∈Gn(R)

〈
W1{|W|≤K}, g − g0

〉
n ≥ δ2

4

)
+ P

(
sup

g∈Gn(R)

〈
W1{|W|>K}, g − g0

〉
n ≥ δ2

4

)
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Theorem 3.20 and relative proof

In this part we will prove P
(

supg∈Gn(R)
〈
W1{|W|>K}, g − g0

〉
n ≥ δ2

4

)
≤ η

Using cauchy-Schwarz inequality
sup

g∈Gn(R)

〈
W1{|W|>K}, g − g0

〉
n ≤ sup

g∈Gn(R)
‖W1{|W|>K}‖n · ‖g − g0‖n

=

(
1
n

n∑

i=1

W2
i 1{|Wi|>K}

)1/2

· R

Using Markov’s inequality:

P
(

sup
g∈Gn(R)

〈
W1{|W|>K}, g − g0

〉
n ≥ δ2

4

)
≤ P




(
1
n

n∑

i=1

W2
i 1{|Wi|>K}

)1/2

≥ δ2

4R





≤
(
4R
δ2

)2

E
(
1
n

n∑

i=1

W2
i 1{|Wi|>K}

)
≤ η

by choosing K = K(δ, η) sufficiently large and using

lim
K→∞

lim sup
n→∞

1
n

n∑

i=1

E
(
W2

i 1{|Wi|>K}
)
= 0
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Theorem 3.20 and relative proof

This part we will prove P
(

supg∈Gn(R)
〈
W1{|W|≤K}, g − g0

〉
n ≥ δ2

4

)
≤ 4η

δ2

Using Markov’s inequality

P
(

sup
g∈Gn(R)

〈
W1{|W|≤K}, g − g0

〉
n ≥ δ2

4

)
≤ 4

δ2
E‖
〈
W1{|W|≤K}, g − g0

〉
n ‖Gn(R)

Next proof will mimic to proof of Theoroem 3.5, and get

4

δ2
E‖
〈
W1{|W|≤K}, g − g0

〉
n ‖Gn(R) ≤ η
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Bounded differences inequality and relative proof

Bounded differences inequality

We are interested in bounding the random fluctuations of functions of
many independent random variables.

Let X1, . . . ,Xn be independent random variables taking values in X .

Let f : X n → R, and let Z = f (X1, . . . ,Xn) be the random variable of
interest.

We seek upper bounds for

P(Z > EZ + t) and P(Z < EZ − t) for t > 0

o



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Application of GC theorem Bounded differences inequality - a simple concentration inequality Supremum of the emperical process for a bounded class of functions

Bounded differences inequality and relative proof

Recall :

Lemma 3.9 (Hoeffding’s inequality). Let X1, . . . ,Xn be independent
bounded random variables such that Xi ∈ [ai, bi] with probability 1.
Z := Sn =

∑n
i=1 Xi. Then, we obtain,

P (Sn − ESn ≥ t) ≤ e−2t2/∑n
i=1(bi−ai)

2

and
P (Sn − ESn ≤ −t) ≤ e−2t2/∑n

i=1(bi−ai)
2

。
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Bounded differences inequality and relative proof

Theorem 3.24 (Bounded differences inequality or McDiarmid’s
inequality). Suppose that Z = f (X1, . . . ,Xn) and f is a function with
bounded differences, then

P(|Z − E(Z)| > t) ≤ 2e−2t2/∑n
i=1 c2i

Definition 3.23 (Functions with bounded differences). We say that a
function f : X n → R has the bounded difference property if for some
nonnegative constants c1, . . . , cn,

sup
x1,...,xn,x′i ∈X

|f (x1, . . . , xn)− f (x1, . . . , xi−1, x′i , xi+1, . . . , xn)| ≤ ci, 1 ≤ i ≤ n

巬

-
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Bounded differences inequality and relative proof

Proof Theorem 3.24 :
Here we try to express Z − E(Z) as a sum of variables.

Let X1, . . . ,Xn be independent random variables taking values in X . Let
f : X n → R and

Z = f (X1, . . . ,Xn)

be the random variable of interest.

Martingale
Given a sequence {Yk}∞k=1 of random variables adapted to a filtration
{Fk}∞k=1 (e.g., Fk = σ (X1, . . . ,Xk)), the pair {Yk,Fk}∞k=1 is a
martingale if, for all k ≥ 1,

E [|Yk|] < ∞, and E [Yk+1 | Fk] = Yk.
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Bounded differences inequality and relative proof

Note that if we define

Yk := E [Z | X1, . . . ,Xk] , for k = 1, . . . , n

then {Yk}n
k=0 is a martingale adapted to a filtration generated by

{Xk}n
k=1.

Denote by Ei[·] := E [· | X1, . . . ,Xi]. Thus, E0(Z) = E(Z), Ek(Z) = Yk
and En(Z) = Z, for k = 1, . . . , n. Writing

∆i := Ei[Z]− Ei−1[Z]

we have
Z − EZ =

n∑

i=1

∆i
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Bounded differences inequality and relative proof

Lemma 3.23 (Azuma-Hoeffding inequality) Let {Y0,Y1, · · · } be a
martingale with respect to filtration {F0,F1, · · · }.

Assume there are predictable processes {A0,A1, · · · } and {B0,B1, . . .}
with respect to {F0,F1, · · · }, i.e. for all i,Ai,Bi are Fi−1-measurable,
and constants 0 < c1, c2, · · · < ∞.

Such that Ai ≤ Yi − Yi−1 ≤ Bi and Bi − Ai ≤ ci almost surely. Then for
all ε > 0,

P (Yn − Y0 ≥ ε) ≤ exp
(
− 2ε2∑n

t=1 c2i

)

We use Lemma 3.23 to prove Theorem 3.24

-
e

ezleetg
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Bounded differences inequality and relative proof

We define
Ai = inf

x
E [Z | X1, . . . ,Xi−1, x]− E [Z | X1, . . . ,Xi−1]

= inf
x

∫
f (X1, . . . ,Xi−1, x, xi+1, . . . , xn) dP (xi+1) · · · dP (xn)− Ei−1[·]

Bi = sup
x

E [Z | X1, . . . ,Xi−1, x]− E [Z | X1, . . . ,Xi−1]

= sup
x

∫
f (X1, . . . ,Xi−1, x, xi+1, . . . , xn) dP (xi+1) · · · dP (xn)− Ei−1[·]

then we have
Ai ≤ ∆i ≤ Bi a.s. ∀i = 1, . . . , n

We need to bound the quantity Bi − Ai. By independence of the Xi and
the bounded difference assumption

Bi − Ai = sup
x

E [Z | X1, . . . ,Xi−1, x]− inf
x
E [Z | X1, . . . ,Xi−1, x]

= sup
x,x′

∫ (
f (X1, . . . ,Xi−1, x, xi+1, . . . , xn)

− f (X1, . . . ,Xi−1, x′, xi+1, . . . , xn)
)

dP (xi+1) · · · dP (xn)

≤ ci
-
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Application of Theorem 3.24

Application of Theorem 3.24
Kernel density estimation

Let X1, . . . ,Xn are i.i.d from a distribution P on R with density φ.

We want to estimate φ nonparametrically using the kernel density
estimator (KDE) φ̂n : R → [0,∞) defined as

φ̂n(x) =
1

nhn

n∑

i=1

K
(x − Xi

hn

)
, for x ∈ R

hn > 0 is the smoothing bandwidth.
K is a nonnegative kernel (i.e., K ≥ 0 and

∫
K(x)dx = 1 ).
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Application of Theorem 3.24

The L1-error of the estimator φ̂n is

Z ≡ f (X1, . . . ,Xn) :=

∫ ∣∣∣φ̂n(x)− φ(x)
∣∣∣ dx

The random variable Z provides a measure of the difference between
φ̂n and φ.
Z also captures the difference between Pn and P in the total
variation distance. (Z = 2 supA |Pn(A)− P(A)|)
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Application of Theorem 3.24

We now use Theorem 3.24 to get exponential tail bounds for Z.

For x1, . . . , xn, x′i ∈ X

|f (x1, . . . , xn)− f (x1, . . . , xi−1, x′i , xi+1, . . . , xn)|

=

∣∣∣∣
∫

|φ̂n1(x)− φ(x)|dx −
∫

|φ̂n2(x)− φ(x)|dx
∣∣∣∣

≤
∣∣∣∣
∫

|φ̂n1(x)− φ̂n2(x)|dx
∣∣∣∣

≤ 1

nhn

∫ ∣∣∣∣K
(x − xi

hn

)
− K

(x − x′i
hn

)∣∣∣∣ dx ≤ 2

n

Thus, using Theorem 3.24 with ci = 2/n, for all i = 1, . . . , n.

P(|Z − E(Z)| > t) ≤ 2e−nt2/2 ⇒ P(
√

n|Z − E(Z)| > t) ≤ 2e−t2/2

Z concentrates around its expectation E[Z] at the rate n−1/2.

(

al-lb.IE/a-blfklx)dx=lY----Tn



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Application of GC theorem Bounded differences inequality - a simple concentration inequality Supremum of the emperical process for a bounded class of functions

Use bounded differences inequality into emperical process

Supremum of the emperical process for a bounded class of
functions

Z := sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f (Xi)− E [f (X1)]

∣∣∣∣∣

X1, . . . ,Xn are i.i.d. random objects taking values in X
F is a collection of real-valued functions on X .
F is assumed that all functions in F are bounded by a positive
constant B, i.e.,

sup
x∈X

|f(x)| ≤ B for all f ∈ F
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Use bounded differences inequality into emperical process

Let
g (x1, . . . , xn) :=

∣∣∣∣∣
1

n

n∑

i=1

f (xi)− E [f (X1)]

∣∣∣∣∣

Next, find the bound of effect of ith variable on function g.

g (x1, . . . , xi−1, x′i , xi+1, . . . , xn) =

∣∣∣∣∣∣
1

n
∑

j'=i
f (xi) +

f (x′i)
n − E [f (X1)]

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

n

n∑

j=1

f (xj)− E [f (X1)] +
f (x′i)

n − f (xi)

n

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
1

n

n∑

j=1

f (xj)− E [f (X1)]

∣∣∣∣∣∣
+

2B
n

≤ g (x1, . . . , xn) +
2B
n

䢲
○
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Use bounded differences inequality into emperical process

Then, use Theorem 3.24 with ci = 2B/n for i = 1, . . . , n

P(|Z − EZ| > t) ≤ 2 exp
(
− nt2
2B2

)
, for every t ≥ 0

Setting δ := exp
(
− nt2

2B2

)
, we can deduce that

|Z − E[Z]| ≤ B
√

2

n log 1

δ

holds with probability at least 1− 2δ for every δ > 0. This inequality
implies that E[Z] is usually the dominating term for understanding the
behavior of Z.
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Classical Glivenko-Cantelli poblem

Theorem 3.26 Suppose that X1, . . . ,Xn are i.i.d. random variables on R
with distribution P and c.d.f. F. Let Fn be the empirical d.f. of the data.
Then,

P
[
‖Fn − F‖∞ ≥ 8

√
log(n + 1)

n + t
]
≤ e−nt2/2, forall t > 0.

Hence, ‖Fn − F‖∞
a.s.→ 0.
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Application of GC theorem Bounded differences inequality - a simple concentration inequality Supremum of the emperical process for a bounded class of functions

Classical Glivenko-Cantelli poblem

Proof :
The function class is F :=

{
1(−∞,t](·) : t ∈ R

}
.

Z := ‖Pn − P‖F = ‖Fn − F‖∞ (Fn = 1
n
∑n

i=1 1(−∞,x](Xi)).
We have to bound upper bound E[Z] via symmetrization,
i.e., E[Z] ≤ 2EX

[
Eε

[
supf∈F

∣∣ 1
n
∑n

i=1 εif (Xi)
∣∣]], where ε1, . . . , εn are

i.i.d. Rademachers independent of the Xi ’s.
(Rademachers random varibale ε take values ±1 with equal
probability 1/2)
For a fixed (x1, . . . , xn) ∈ Rn, define

∆n (F ; x1, . . . , xn) := {(f (x1) , . . . , f (xn)) : f ∈ F}
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Application of GC theorem Bounded differences inequality - a simple concentration inequality Supremum of the emperical process for a bounded class of functions

Classical Glivenko-Cantelli poblem

Observe that although F has uncountable many functions, for every
(x1, . . . , xn) ∈ Rn, ∆n (F ; x1, . . . , xn) can take at most n + 1 distinct
values.

Thus, supf∈F
∣∣ 1

n
∑n

i=1 εif (xi)
∣∣ is at most the supremum of n + 1 such

variables, and we can apply Lemma 3.16 to show that

E
[

sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

εif (Xi)

∣∣∣∣∣

]
≤ 4

√
log(n + 1)

n

This can show

P
[
‖Fn − F‖∞ ≥ 8

√
log(n + 1)

n + t
]
≤ e−nt2/2, forall t > 0.

This implies ‖Fn − F‖∞
a.s.→ 0.

zx 8

陋 - Ez ≥+7


