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Introdunction of least square regression

Application of GC theorem

Consistency of least square regression
Yi=go(z) + W, fori=172,...,n

@ Y; € R is the observed response variable.
@ z; € Z is a covariate and W, is the unobserved error.

@ Wi, is assumed to be independent random variables with EW; = 0
and Var(W;) < 0 < c0.

@ The covariates zi, ..., z, are fixed.
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Introdunction of least square regression

@ The function gy : Z — R is unknown, but we assume that gy € G,
where G is a given class of regression functions.

@ The unknown regression function can be estimated by the least
squares estimator (LSE) g,, which is defined by

n
o — argmin S (Y, g(2)?
&n argggg;( g(z))

When can we say that ||g, — gol|, 507
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Introdunction of least square regression

o Q,:= %Z:’zl 0, denote the empirical measure of the design points.

@ We shall need to control the entropy of subclasses G,(R), which are
defined as

Go(R)={g€G:lg—goll, <R}

o For g: Z — R, we write ||g]|? := 137 | &2 (2),

n

n

Y=gl = 7 > (V- g(@)* (Wighoi= - > Wiglz).

i=1

o Y=gl <IY-gl, = & —sl,<2(W.&n—g0), (1)
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Theorem 3.20 and relative proof

Theorem 3.20 Suppose that

lim lim sup %ZE (Wi21{|W;\>K}) =0
=1

K—ro0 n— o0

and
log N(8,Gn(R), L1 (Qn)) N
n

0, foralld>0,R>0

Then, [|&, — &ol|, 2> 0.
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Theorem 3.20 and relative proof

Proof Theorem 3.20 :

Let 7,6 > 0 be given. We will show that P (||g, — gol|,, > 0) can be
made arbitrarily small, for all n sufficiently large.

Note that for any R > §, we have

P(ll&gn — goll, > 0) <P (6 < [|18n — &oll, < R) + P (l|gn — &ll, > R)
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Theorem 3.20 and relative proof

We will first prove the second term. From (1), using Cauchy-Schwarz
inequality (g, — gol|* < 2(W. & — g0), < 2[|Wlls - & — golln
Hence, it follows that

L& 1/2
Ign — goll, < 2 (n Z W2>
=

Thus, using Markov's inequality,

P (llgn — goll, > R) <P | 2

7N
S|

i=1
n

N 1/2
> V|/,2> >R
4

g

o

[=]\]

EW? <

I

IN
S|

4
2

Il
—

where R* := 403 /n.



Application of GC theorem Bounded differences inequality - a simple concentration inequality Supremum of the emperical process for a bounded class of func
00000000 0000000000 000000
Theorem 3.20 and relative proof

Then we will prove the first term. Now, using (1) again,

P(5<|&n—goll,<R) <P sup 2(W,g— go), >
g€Gn(R)
2 2

5
<P| sup (Wigws<k), 8~ 80),> 7 | +P| sup (Wigwsky,8—80),>
g€Gn(R) 8€Gn(R)
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Theorem 3.20 and relative proof

In this part we will prove P (Sngegn(R) <W1{‘W‘>K},g— g0>n > %) <n
Using cauchy-Schwarz inequality

sup (Wlgwsky, 8 —80), < sup [[Wigwskylla- llg — golln
g€Gn(R) 8€Gn(R)

Lo 1/2
= <nZW?1{|W,->K}> R
i=1

Using Markov's inequality:

n 1/2
52 1 52
P( sup <W1{\W|>K}ag*g0>,, > 4> <P <n ;_1 VVi21{|W,->K}> > iR

g€Gn(R)
AR\ (1<
hS (57) E (n ; VV:'21{W,->K}> <n

by choosing K = K(d,n) sufficiently large and using

A

lim lim sup 1 ZE (V‘/?l{|w,-\>K}) =0
—1

K—oo n—soo N <
=
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Theorem 3.20 and relative proof

g

This part we will prove P (supgeg <W1{|W|<K} g— g0> > %) <
Using Markov's inequality

2

4
P sup (Wigw<ky, &~ 8), > < B Wwi<k), 8~ &0),,|

L < Ga(R
g€Gn(R) 4 "

Next proof will mimic to proof of Theoroem 3.5, and get

4
Bl (Wiiw<ky 8= 80), g, <1
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Bounded differences inequality and relative proof

Bounded differences inequality

We are interested in bounding the random fluctuations of functions of
many independent random variables.

Let Xi,...,X, be independent random variables taking values in X.

Let f: X" - R, and let Z= f(Xi,...,X,) be the random variable of
interest.

We seek upper bounds for

P(Z>EZ+t) and P(Z<EZ-1t) fort>0
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Bounded differences inequality and relative proof

Recall :

Lemma 3.9 (Hoeffding's inequality). Let Xi,..., X, be independent
,ounded random variables such that X; € [a;, b;] with probability 1.
Z:=5, = Zi:l Xi. Then, we obtain,

P (S, —ES, > t) < e 2/ i (b=a)’

and .
P (S, —ES, < —t) < e 26/ Zia(bi-a)’
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Bounded differences inequality and relative proof

Theorem 3.24 (Bounded differences inequality or McDiarmid's
inequality). Suppose that Z= f(Xi,...,X,) and fis a function with
bounded differences, then

P(1Z-E(2)| > t) < 2¢72/ Ela e

Definition 3.23 (Functions with bounded differences). We say that a
function f: X" — R has the bounded difference property if for some
nonnegative constants cj, ..., Cp,

sup [F(x1, ey Xn) — F(X1, ooy Xie1, Xy Xig 1, -+ Xn)| <6y, 1<i<n

!
X1yeeesXn, XL EX
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Bounded differences inequality and relative proof

Proof Theorem 3.24 :

Here we try to express Z— E(Z) as a sum of variables.

Let Xi,..., X, be independent random variables taking values in X’. Let
f: X" — R and
Z="f(X,...,X)

be the random variable of interest.

Martingale

Given a sequence {Yx},—, of random variables adapted to a filtration
{Fi}e, (e, Fi= o (Xi,...,Xk)), the pair { Yy, Fi} o, is a
martingale if, for all k> 1,

E [lYk” < 00, and E [Yk+1 ‘ .Fk] =Y
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Bounded differences inequality and relative proof

Note that if we define
Yi:=E[Z| Xy,..., X, fork=1,...,n

then {Yi},_, is a martingale adapted to a filtration generated by
{Xk}2=1-

Denote by E;[-] :=E[- | X1,...,Xj]. Thus, Eo(2) =E(2), Ex(2) = Yk
and E,(2) = Z, for k=1,...,n. Writing

we have

ZfEZ:iA,-
i=1
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Bounded differences inequality and relative proof

Lemma 3.23 (Azuma-Hoeffding inequality) Let {Yp, Yi,---} be a
martingale with respect to filtration {Fo, F1,--- }.

Assume there are predictable processes {Ag, Ay,---} and {By, By,...}
with respect to {Fo, F1,--- }, i.e. for all i, A;, B; are F;_1-measurable,
and constants 0 < ¢, ¢a, - -+ < 0.

Such that A; < Y;—Y; .+ < Bjand B; — A; </c;/almost surely. Then for
all e > 0,

P (Y, Y>)<ep( 2
n— YoZ€)SexXp| —=5 3
X G

We use Lemma 3.23 to prove Theorem 3.24
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Bounded differences inequality and relative proof

We define
A,:lnfE[Z| Xl,...,X,'_l,X] —E[Z| Xl,...,X,'_l]

:i{(lf/f(xl,...7X;,1,X,X,'+17...,Xn) dP(X;+1)-~-dP(X,-,) —E,',l[']
Bi = SupE[Z| Xla"'vxifl?X] _E[Z| Xla"'vxifl}

:Sup/f(Xl;---aXi—laX7Xi+17--~7Xn) dP (xiy1) -+ dP(xp) — Ei_1[]
then we have

A,'SA,'SB,’ a.s.Vi:17...7n
We need to bound the quantity B; — A;. By independence of the X; and
the bounded difference assumption

B,'—A,':SHpE[Zl Xl,...,X,;hX] —infE[Z| Xl,...,X,',l,X]

= sup/ (f(Xl7 ey Xim 1y X Xip 1y -+ - 3 Xn)

X,

— f(Xl, e ,X,',l,){,X,'le, e 7X,-,) )dP(X,'+1) e dP(X,,)

7

< ¢
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Application of Theorem 3.24

Application of Theorem 3.24

Kernel density estimation
Let Xi,..., X, are i.i.d from a distribution P on R with density ¢.

We want to estimate ¢ nonparametrically using the kernel density
estimator (KDE) ¢, : R — [0, 00) defined as

~ 1 " X—X,'
¢,,(x):nhn;K< hn ), for xe R

@ h, > 0 is the smoothing bandwidth.
e Kis a nonnegative kernel (i.e., K> 0 and [ K(x)dx=1).
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Application of Theorem 3.24

The Li-error of the estimator qAS,, is

Z=f(Xi,.... X,) ;:/

Dn(x) — d(x)| dx

@ The random variable Z provides a measure of the difference between

¢n and ¢.

@ Z also captures the difference between P, and P in the total
variation distance. (Z = 2supy |Pn(A) — P(A)|)
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Application of Theorem 3.24

We now use Theorem 3.24 to get exponential tail bounds for Z.

For xi,...,xn, X, € X

‘f Xl,...,X)—f(Xl,... X,'_1,)(i,X;+1,...,X,-,)‘

]/wﬂ 6091~ [ 62~ 60

4ﬂ%m—mww

<ot /11 (57) -+ (55)
nh, n hn

Thus, using Theorem 3.24 with ¢;=2/n, forall i=1,...,n

2
dx < —
n

P(|Z-E(Z)| > 1) <2 /2 = PHnZ-E2)|>t)<2e /2

Z concentrates around its expectation E[Z] at the rate n—1/2.
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Use bounded differences inequality into emperical process

Supremum of the emperical process for a bounded class of
functions

n

1
Z:= Sféljlr) - ; f(Xi) —E[f(X1)]

@ Xi,...,X, are i.i.d. random objects taking values in X
@ F is a collection of real-valued functions on X

@ F is assumed that all functions in F are bounded by a positive
constant B, i.e.,

sup |(x)| < B forall fe F
x€X



Application of GC theorem Bounded differences inequality - a simple concentration inequality Supremum of the emperical process for a bounded class of funci

000000000 0000000000 0@0000
Use bounded differences inequality into emperical process

Let

n

g(x1,. . xn) = %Z f(x;) —E[f(X1)]

Next, find the bound of effect of i, variable on function g.

g(Xla...,Xi—la)(i,XH-l,...’Xn) — %Zf(xi)Jr f(;(,) s
#i
- |
- 1 f(x) — E[F(X0)] + f<j> ~ f(:»‘
= Ly f(x) — E[f(X1)] 4 2B
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Use bounded differences inequality into emperical process

Then, use Theorem 3.24 with ¢c; =2B/nfori=1,...,n

nt?

P(|Z-EZ >t) <2 -
(I |>1) < exp( 5B

) , foreveryt>0

Setting & := exp (7%)’ we can deduce that

2 1
Z—E[Z| < By/ - log =
Z-E[Z] < B/~ log 5

holds with probability at least 1 — 24 for every § > 0. This inequality
implies that E[Z] is usually the dominating term for understanding the
behavior of Z
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Classical Glivenko-Cantelli poblem

Theorem 3.26 Suppose that Xi,..., X, are i.i.d. random variables on R
with distribution P and c.d.f. F. Let [F, be the empirical d.f. of the data.
Then,

log(n+1)

PIF, — Flo > 8
n

Tt| <e "2 forall t> 0.

Hence, ||F, — F|l, = 0.
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Classical Glivenko-Cantelli poblem

Proof :

e The function class is F := {1(_ g(-) : t € R}.

o Z:=|Py—P|z=|F,— Fll, (Fn= %Z?:l L(— o0, (Xi))-

@ We have to bound upper bound E[Z] via symmetrization,
i.e., E[Z] < 2Ex [E. [supgr ‘% POy 5,-f(X,-)H], where €1, ..., ¢, are
i.i.d. Rademachers independent of the X; 's.
(Rademachers random varibale ¢ take values +1 with equal
probability 1/2)

@ For a fixed (x1,...,x,) € R", define

An(Fixi, ..oy xa) = {(f(x1),...,f(xn)) : fe F}



Application of GC theorem Bounded differences inequality - a simple concentration inequality Supremum of the emperical process for a bounded class of funci
000000000 0000000000 [e]eJo]e]e] )
Classical Glivenko-Cantelli poblem

Observe that although F has uncountable many functions, for every
(X1y...yxp) €R", Ap(F;x1,...,x%,) can take at most n+ 1 distinct
values.

Thus, supger |2 307 €if(x;)| is at most the supremum of n+ 1 such
variables, and we can apply Lemma 3.16 to show that

o [log(n+1)
su eif (X <A\ —7"
feJE ,zz: B n
This can show
1 1
|, — Fl, > 8 log(n + 1) +t| <e ™2 forall t> 0.
n
This implies ||F, — F| . %3 0.



