
C H A P T E R 2 1

Basic tail and concentration bounds 2

In a variety of settings, it is of interest to obtain bounds on the tails of a random 3

variable, or two-sided inequalities that guarantee that a random variable is close to its 4

mean or median. In this chapter, we explore a number of elementary techniques for 5

obtaining both deviation and concentration inequalities. It is an entrypoint to more 6

advanced literature on large deviation bounds and concentration of measure. 7

� 2.1 Classical bounds 8

One way in which to control a tail probability P[X ≥ t] is by controlling the moments of 9

the random variable X. Gaining control of higher-order moments leads to correspond- 10

ingly sharper bounds on tail probabilities, ranging from Markov’s inequality (which 11

requires only existence of the first moment) to the Chernoff bound (which requires 12

existence of the moment generating function). 13

� 2.1.1 From Markov to Chernoff 14

The most elementary tail bound is Markov’s inequality : given a non-negative random

variable X with finite mean, we have

P[X ≥ t] ≤ E[X]

t
for all t > 0. (2.1)

For a random variable X that also has a finite variance, we have Chebyshev’s inequality :

P
[
|X − µ| ≥ t

]
≤ var(X)

t2
for all t > 0. (2.2)

Note that this is a simple form of concentration inequality, guaranteeing that X is 15

close to its mean µ whenever its variance is small. Chebyshev’s inequality follows by 16

applying Markov’s inequality to the non-negative random variable Y = (X − E[X])2. 17

Both Markov’s and Chebyshev’s inequality are sharp, meaning that they cannot be 18

improved in general (see Exercise 2.1). 19

There are various extensions of Markov’s inequality applicable to random variables
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12 CHAPTER 2. BASIC TAIL AND CONCENTRATION BOUNDS

with higher-order moments. For instance, whenever X has a central moment of order

k, an application of Markov’s inequality to the random variable |X − µ|k yields that

P[|X − µ| ≥ t] ≤ E[|X − µ|k]
tk

for all t > 0. (2.3)

Of course, the same procedure can be applied to functions other than polynomials

|X − µ|k. For instance, suppose that the random variable X has a moment generating

function in a neighborhood of zero, meaning that that there is some constant b > 0

such that the function ϕ(λ) = E[eλ(X−µ)] exists for all λ ≤ |b|. In this case, for any

λ ∈ [0, b], we may apply Markov’s inequality to the random variable Y = eλ(X−µ),
thereby obtaining the upper bound

P[(X − µ) ≥ t] = P[eλ(X−µ) ≥ eλt] ≤ E[eλ(X−µ)]
eλt

. (2.4)

Optimizing our choice of λ so as to obtain the tightest result yields the Chernoff bound—

namely, the inequality

logP[(X − µ) ≥ t] ≤ − sup
λ∈[0,b]

{
λt− logE[eλ(X−µ)]

}
. (2.5)

As we explore in Exercise 2.3, the moment bound (2.3) with the optimal choice of k is1

never worse than the bound (2.5) based on the moment-generating function. Nonethe-2

less, the Chernoff bound is most widely used in practice, possibly due to the ease of3

manipulating moment generating functions. Indeed, a variety of important tail bounds4

can be obtained as particular cases of inequality (2.5), as we discuss in examples to5

follow.6

� 2.1.2 Sub-Gaussian variables and Hoeffding bounds7

The form of tail bound obtained via the the Chernoff approach depends on the growth8

rate of the moment generating function. Accordingly, in the study of tail bounds, it9

is natural to classify random variables in terms of their moment generating functions.10

For reasons to become clear in the sequel, the simplest type of behavior is known as11

sub-Gaussian. In order to motivate this notion, let us illustrate the use of the Chernoff12

bound (2.5) in deriving tail bounds for a Gaussian variable.13

Example 2.1 (Gaussian tail bounds). Let X ∼ N (µ, σ2) be a Gaussian random vari-

able with mean µ and variance σ2. By a straightforward calculation, we find that X

has the moment generating function

E[eλX ] = eµλ+σ
2λ2/2, valid for all λ ∈ R. (2.6)
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SECTION 2.1. CLASSICAL BOUNDS 13

Substituting this expression into the optimization problem defining the optimized Cher-

noff bound (2.5), we obtain

sup
λ∈R

{
λt− logE[eλ(X−µ)]

}
= sup

λ∈R

{
λt− λ2σ2

2

}
=

t2

2σ2
,

where we have taken derivatives in order to find the optimum of this quadratic function.

Returning to the Chernoff bound (2.5), we conclude that any N (µ, σ2) random variable

satisfies the upper deviation inequality

P[X ≥ µ+ t] ≤ e−
t2

2σ2 for all t ≥ 0. (2.7)

In fact, this bound is sharp up to polynomial-factor corrections, as shown by the result 1

of Exercise 2.2. ♣ 2

Motivated by the structure of this example, we are led to introduce the following defi- 3

nition. 4

5

Definition 2.1. A random variable X with mean µ = E[X] is sub-Gaussian if there

is a positive number σ such that

E[eλ(X−µ)] ≤ eσ
2λ2/2 for all λ ∈ R. (2.8)

6

7

The constant σ is referred to as the sub-Gaussian parameter ; for instance, we say 8

that X is sub-Gaussian with parameter σ when the condition (2.8) holds. Naturally, 9

any Gaussian variable with variance σ2 is sub-Gaussian with parameter σ, as should 10

be clear from the calculation described in Example 2.1. In addition, as we will see in 11

the examples and exercises to follow, a large number of non-Gaussian random variables 12

also satisfy the condition (2.8). 13

14

The condition (2.8), when combined with the Chernoff bound as in Example 2.1,

shows that if X is sub-Gaussian with parameter σ, then it satisfies the upper deviation

inequality (2.7). Moreover, by the symmetry of the definition, the variable −X is sub-

Gaussian if and only if X is sub-Gaussian, so that we also have the lower deviation

inequality P[X ≤ µ− t] ≤ e−
t2

2σ2 , valid for all t ≥ 0. Combining the pieces, we conclude

that any sub-Gaussian variable satisfies the concentration inequality

P[|X − µ| ≥ t] ≤ 2 e−
t2

2σ2 for all t ∈ R. (2.9)

15

Let us consider some examples of sub-Gaussian variables that are non-Gaussian. 16
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14 CHAPTER 2. BASIC TAIL AND CONCENTRATION BOUNDS

Example 2.2 (Rademacher variables). A Rademacher random variable ε takes the

values {−1,+1} equiprobably. We claim that it is sub-Gaussian with parameter σ = 1.

By taking expectations and using the power series expansion for the exponential, we

obtain

E[eλε] =
1

2

{
e−λ + eλ

}

=
1

2

{ ∞∑

k=0

(−λ)k
k!

+
∞∑

k=0

(λ)k

k!

}

=
∞∑

k=0

λ2k

(2k)!

≤ 1 +

∞∑

k=1

λ2k

2k k!

= eλ
2/2,

which shows that ε is sub-Gaussian with parameter σ = 1 as claimed. ♣1

We now generalize the preceding example to show that any bounded random variable2

is also sub-Gaussian.3

Example 2.3 (Bounded random variables). Let X be zero-mean, and supported on

some interval [a, b]. Letting X ′ be an independent copy, for any λ ∈ R, we have

EX [e
λX ] = EX

[
eλ(X−EX′ [X′])]

≤ EX,X′
[
eλ(X−X′)],

where the inequality follows the convexity of the exponential, and Jensen’s inequality.

Letting ε be an independent Rademacher variable, note that the distribution of (X−X ′)
is the same as that of ε(X −X ′), so that we have

EX,X′
[
eλ(X−X′)] = EX,X′

[
Eε

[
eλε(X−X′)]] (i)

≤ EX,X′
[
e

λ2(X−X′)2
2

]
,

where step (i) follows from the result of Example 2.2, applied conditionally with (X,X ′)
held fixed. Since |X −X ′| ≤ b− a, we are guaranteed that

EX,X′
[
e

λ2(X−X′)2
2

]
≤ e

λ2 (b−a)2

2 .

Putting together the pieces, we have shown that X is sub-Gaussian with parameter at4

most σ = b − a. This result is useful but can be sharpened. In Exercise 2.4, we work5

through a more involved argument to show that X is sub-Gaussian with parameter at6

ROUGH DRAFT: DO NOT DISTRIBUTE!! – M. Wainwright – January 22, 2015



SECTION 2.1. CLASSICAL BOUNDS 15

most σ = b−a
2 . 1

Remark: The technique used in Example 2.3 is a simple example of a symmetrization 2

argument, in which we first introduce an independent copy X ′, and then symmetrize 3

the problem with a Rademacher variable. Such symmetrization arguments are useful 4

in a variety of contexts, as will be seen in later chapters. 5

6

Just as the property of Gaussianity is preserved by linear operations so is the prop- 7

erty of sub-Gaussianity. For instance, if X1, X2 are independent sub-Gaussian variables 8

with parameters σ21 and σ22, then X1+X2 is sub-Gaussian with parameter σ21 +σ
2
2. See 9

Exercise 2.13 for verification of this fact, and related properties. As a consequence of 10

this fact and the basic sub-Gaussian tail bound (2.7), we obtain an important result, 11

applicable to sums of independent sub-Gaussian random variables, and known as the 12

Hoeffding bound : 13

14

Proposition 2.1 (Hoeffding bound). Suppose that the variables Xi, i = 1, . . . , n are

independent, and Xi has mean µi and sub-Gaussian parameter σi. Then for all t ≥ 0,

we have

P

[ n∑

i=1

(Xi − µi) ≥ t

]
≤ exp

{
− t2

2
∑n

i=1 σ
2
i

}
. (2.10)

15

16

The Hoeffding bound is often stated only for the special case of bounded random vari-

ables. In particular, if Xi ∈ [a, b] for all i = 1, 2, . . . , n, then from the result of Exer-

cise 2.4, it is sub-Gaussian with parameter σ = b−a
2 , so that we obtain the bound

P

[ n∑

i=1

(Xi − µi) ≥ t

]
≤ e

− 2t2

n (b−a)2 .

Although the Hoeffding bound is often stated in this form, the basic idea applies some- 17

what more generally to sub-Gaussian variables, as we have given here. 18

19

We conclude our discussion of sub-Gaussianity with a result that provides three dif- 20

ferent characterizations of sub-Gaussian variables. First, the most direct way in which 21

to establish sub-Gaussianity is by computing or bounding the moment generating func- 22

tion, as we have done in Example 2.1. A second intuition is that any sub-Gaussian 23

variable is dominated in a certain sense by a Gaussian variable. Third, sub-Gaussianity 24

also follows by having suitably tight control on the moments of the random variable. 25

The following result shows that all three notions are equivalent in a precise sense. 26

27
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16 CHAPTER 2. BASIC TAIL AND CONCENTRATION BOUNDS

Theorem 2.1 (Equivalent characterizations of sub-Gaussian variables). Given any

zero-mean random variable X, the following properties are equivalent:

(I) There is a constant σ such that E[eλX ] ≤ e
λ2σ2

2 for all λ ∈ R.

(II) There is a constant c ≥ 1 and Gaussian random variable Z ∼ N (0, τ2) such that

P[|X| ≥ s] ≤ c P[|Z| ≥ s] for all s ≥ 0. (2.11)

(III) There exists a number θ ≥ 0 such that

E[X2k] ≤ (2k)!

2kk!
θ2k for all k = 1, 2, . . .. (2.12)

(IV) We have

E[e
λX2

2σ2 ] ≤ 1√
1− λ

for all λ ∈ [0, 1). (2.13)

1

2

See Appendix A for the proof of these equivalences.3

4

� 2.1.3 Sub-exponential variables and Bernstein bounds5

The notion of sub-Gaussianity is fairly restrictive, so that it is natural to consider vari-6

ous relaxations of it. Accordingly, we now turn to the class of sub-exponential variables,7

which are defined by a slightly milder condition on the moment generating function:8

9

Definition 2.2. A random variable X with mean µ = E[X] is sub-exponential if there

are non-negative parameters (ν, b) such that

E[eλ(X−µ)] ≤ e
ν2λ2

2 for all |λ| < 1
b . (2.14)

10

11

It follows immediately from this definition that that any sub-Gaussian variable is also12

sub-exponential—in particular, with ν = σ and b = 0, where we interpret 1/0 as being13

the same as +∞. However, the converse statement is not true, as shown by the following14

calculation:15

Example 2.4 (Sub-exponential but not sub-Gaussian). Let Z ∼ N (0, 1), and consider
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SECTION 2.1. CLASSICAL BOUNDS 17

the random variable X = Z2. For λ < 1
2 , we have

E[eλ(X−1)] =
1√
2π

∫ +∞

−∞
eλ(z

2−1)e−z
2/2dz

=
e−λ√
1− 2λ

.

For λ > 1/2, the moment generating function does not exist, showing that X is not 1

sub-Gaussian. 2

As will be seen momentarily, the existence of the moment generating function in a

neighborhood of zero is actually an equivalent definition of a sub-exponential variable.

Let us verify directly that condition (2.14) is satisfied. Following some calculus, it can

be verified that

e−λ√
1− 2λ

≤ e2λ
2
= e4λ

2/2, for all |λ| < 1/4, (2.15)

which shows that X is sub-exponential with parameters (ν, b) = (2, 4). ♣ 3

As with sub-Gaussianity, the control (2.14) on the moment generating function, 4

when combined with the Chernoff technique, yields deviation and concentration in- 5

equalities for sub-exponential variables. When t is small enough, these bounds are 6

sub-Gaussian in nature (i.e. with the exponent quadratic in t), whereas for larger t, the 7

exponential component of the bound scales linearly in t. We summarize in the following: 8

9

Proposition 2.2 (Sub-exponential tail bound). Suppose that X is sub-exponential

with parameters (ν, b). Then

P[X ≥ µ+ t] ≤




e−

t2

2ν2 if 0 ≤ t ≤ ν2

b , and

e−
t
2b for t > ν2

b .

10

11

As with the Hoeffding inequality, similar bounds apply to the left-sided event X ≤ µ−t, 12

as well as the two-sided event |X−µ| ≥ t, with an additional factor of two in the latter 13

case. 14

15

Proof. By re-centering as needed, we may assume without loss of generality that µ = 0.

We follow the usual Chernoff-type approach: combining it with the definition (2.14) of
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18 CHAPTER 2. BASIC TAIL AND CONCENTRATION BOUNDS

a sub-exponential variable yields the upper bound

P[X ≥ t] ≤ e−λt E[eλX ] ≤ exp
(
− λt+

λ2ν2

2

)

︸ ︷︷ ︸
g(λ,t)

, valid for all λ ∈ [0, b−1).

In order to complete the proof, it remains to compute, for each fixed t ≥ 0, the quantity1

g∗(t) : = infλ∈[0,b−1) g(λ, t). For each fixed t > 0, the unconstrained minimum of the2

function g(·, t) occurs at λ∗ = t/ν2. If 0 ≤ t < ν2

b , then this unconstrained optimum3

corresponds to the constrained minimum as well, so that g∗(t) = − t2

2ν2
over this interval.4

Otherwise, we may assume that t ≥ ν2

b . In this case, since the function g(·, t) is

monotonically decreasing in the interval [0, λ∗), the constrained minimum is achieved

at the boundary point λ† = b−1, and we have

g∗(t) = g(λ†, t) = − t
b
+

1

2b

ν2

b

(i)

≤ − t

2b
,

where inequality (i) uses the fact that ν2

b ≤ t.5

As shown in Example 2.4, the sub-exponential property can be verified by explicitly

computing or bounding the moment-generating function. This direct calculation may

be impractical in many settings, so it is natural to seek alternative approaches. One

such method is provided by control on the polynomial moments of X. Given a random

variable X with mean µ = E[X] and variance σ2 = E[X2]− µ2, we say that Bernstein’s

condition with parameter b holds if

|E[(X − µ)k]| ≤ 1

2
k! σ2 bk−2 for k = 3, 4, . . .. (2.16)

One sufficient condition for Bernstein’s condition to hold is that X be bounded; in par-6

ticular, if |X − µ| ≤ b, then it is straightforward to verify that condition (2.16) holds.7

Even for bounded variables, our next result will show that the Bernstein condition can8

be used to obtain tail bounds that can be tighter than the Hoeffding bound. Moreover,9

Bernstein’s condition is also satisfied by various unbounded variables, which gives it10

much broader applicability.11

12

WhenX satisfies the Bernstein condition, then it is sub-exponential with parameters

determined by σ2 and b. Indeed, by the power series expansion of the exponential, we
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SECTION 2.1. CLASSICAL BOUNDS 19

have

E[eλ(X−µ)] = 1 +
λ2σ2

2
+

∞∑

k=3

λk
E[(X − µ)k]

k!

(i)

≤ 1 +
λ2σ2

2
+
λ2σ2

2

∞∑

k=3

(
|λ| b

)k−2
.

where the inequality (i) makes use of the Bernstein condition (2.16). For any |λ| < 1/b,

we can sum the geometric series to obtain

E[eλ(X−µ)] ≤ 1 +
λ2σ2/2

1− b|λ|
(ii)

≤ e
λ2σ2/2
1−b|λ| , (2.17)

where inequality (ii) follows from the bound 1+ t ≤ exp(t). Consequently, we conclude

that

E[eλ(X−µ)] ≤ e
λ2(

√
2σ)2

2 for all |λ| < 1
2b ,

showing that X is sub-exponential with parameters (
√
2σ, 2b). 1

2

As a consequence, an application of Proposition 2.2 directly leads to tail bounds on 3

a random variable satisfying the Bernstein condition (2.16). However, the resulting tail 4

bound can be sharpened slightly, at least in terms of constant factors, by making direct 5

use of the upper bound (2.17). We summarize in the following: 6

7

Proposition 2.3 (Bernstein-type bound). For any random variable satisfying the

Bernstein condition (2.16), we have

E[eλ(X−µ)] ≤ e
λ2σ2/2
1−b|λ| for all |λ| < 1

b , (2.18)

and moreover, the concentration inequality

P[|X − µ| ≥ t] ≤ 2e
− t2

2 (σ2+bt) for all t ≥ 0. (2.19)

8

9

10

We proved inequality (2.18) in the discussion preceding this proposition. Using this 11

bound on the MGF, the tail bound (2.19) follows by setting λ = t
bt+σ2 ∈ [0, 1b ) in the 12

Chernoff bound, and then simplifying the resulting expression. 13

14

Remark: Proposition 2.3 has an important consequence even for bounded random vari- 15

ables (i.e., those satisfying |X − µ| ≤ b). The most straightforward way to control such 16
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20 CHAPTER 2. BASIC TAIL AND CONCENTRATION BOUNDS

variables is by exploiting the boundedness to show that (X − µ) is sub-Gaussian with1

parameter b (see Exercise 2.4), and then applying a Hoeffding-type inequality (see2

Proposition 2.1). Alternatively, using the fact that any bounded variable satisfies the3

Bernstein condition (2.17), we can also apply Proposition 2.3, thereby obtaining the4

tail bound (2.19), that involves both the variance σ2 and the bound b. This tail bound5

shows that for suitably small t, the variable X has sub-Gaussian behavior with parame-6

ter σ, as opposed to the parameter b that would arise from a Hoeffding approach. Since7

σ2 = E[(X − µ)2] ≤ b2, this bound is never worse; moreover, it is substantially better8

when σ2 ≪ b2, as would be the case for a random variable that occasionally takes on9

large values, but has relatively small variance. Such variance-based control frequently10

plays a key role in obtaining optimal rates in statistical problems, as will be seen in later11

chapters. For bounded random variables, Bennett’s inequality can be used to provide12

sharper control on the tails (see Exercise 2.7).13

14

Like the sub-Gaussian property, the sub-exponential property is preserved under

summation for independent random variables, and the parameters (σ, b) transform in

a simple way. In particular, suppose that Xk, k = 1, . . . , n are independent, and that

variable Xk is subexponential with parameters (νk, bk), and has mean µk = E[Xk]. We

compute the moment generating function

E[eλ
∑n

k=1(Xk−µk)]
(i)
=

n∏

k=1

E[eλXk ]
(ii)

≤
n∏

k=1

eλ
2ν2k/2, valid for all |λ| <

(
max

k=1,...,n
bk
)−1

,

where the equality (i) follows from independence, and inequality (ii) follows since

Xk is sub-exponential with parameters (νk, bk). Thus, we conclude that the variable∑n
k=1(Xk − µk) is sub-exponential with the parameters (ν∗, b∗), where

b∗ : = max
k=1,...,n

bk, and ν∗ : =

√√√√
n∑

k=1

ν2k/n.

Using the same argument as in Proposition 2.2, this observation leads directly to the

upper tail bound

P
[ 1
n

n∑

i=1

(Xk − µk) ≥ t
]
≤




e
−nt2

2ν2∗ for 0 ≤ t ≤ ν2∗
b∗

e−
nt
2b∗ for t > ν2∗

b∗
.

(2.20)

along with similar two-sided tail bounds. Let us illustrate our development thus far15

with some examples.16

Example 2.5 (χ2-variables). A chi-squared random variable with n degrees of freedom,

denoted by Y ∼ χ2
n, can be represented as the sum Y =

∑n
k=1 Z

2
k where Zk ∼ N (0, 1)
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SECTION 2.1. CLASSICAL BOUNDS 21

are i.i.d. variates. As discussed in Example 2.4, the variable Z2
k is sub-exponential with

parameters (2, 4). Consequently, since the variables Zk, k = 1, 2, . . . , n are independent,

the χ2-variate Y is sub-exponential with parameters (σ, b) = (2
√
n, 4), and the preceding

discussion yields the two-sided tail bound

P

[∣∣ 1
n

n∑

k=1

Z2
k − 1

∣∣ ≥ t

]
≤ 2e−nt

2/8, for all t ∈ (0, 1). (2.21)

♣ 1

The concentration of χ2-variables plays an important role in the analysis of procedures 2

based on taking random projections. A classical instance of the random projection 3

method is the Johnson-Lindenstrauss analysis of metric embedding. 4

5

Example 2.6 (Johnson-Lindenstrauss embedding). As one application of χ2-concentration,

consider the following problem. Suppose that we are given m data points {u1, . . . , um}
lying in R

d. If the data dimension d is large, then it might be too expensive to store

the data set. This challenge motivates the design of a mapping F : R
d → R

n with

n≪ d that preserves some “essential” features of the data set, and then store only the

projected data set {F (u1), . . . , F (um)}. For example, since many algorithms are based

on pairwise distances, we might be interested in a mapping F with the guarantee that

for all pairs (ui, uj), we have

(1− δ) ‖ui − uj‖22 ≤ ‖F (ui)− F (uj)‖22 ≤ (1 + δ)‖ui − uj‖22, (2.22)

for some tolerance δ ∈ (0, 1). Of course, this is always possible if the projected dimension 6

n is large enough, but the goal is to do it with relatively small n. 7

Constructing such a mapping that satisfies the condition (2.22) with high prob- 8

ability turns out to be straightforward as long as the projected dimension satisfies 9

n = Ω( 1
δ2

logm). Observe that the projected dimension is independent of the ambient 10

dimension d, and scales only logarithmically with the number of data points m. 11

The construction is probabilistic: first form a random matrix X ∈ R
n×d filled with

independent N (0, 1) entries, which defines a linear mapping F : R
d → R

n via u 7→
Xu/

√
n. We now verify that F satisfies condition (2.22) with high probability. Let

Xi ∈ R
d denote the ith row of X, and consider some fixed u 6= 0. Since Xi is a standard

normal vector, the variable 〈Xi, u/‖u‖2〉 follows a N (0, 1) distribution, and hence the

quantity

Y : =
‖Xu‖22
‖u‖22

=
n∑

i=1

〈Xi, u/‖u‖2〉2,

follows a chi-squared distribution with n degrees of freedom, using the independence of

ROUGH DRAFT: DO NOT DISTRIBUTE! – M. Wainwright – January 22, 2015
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the rows. Therefore, applying the tail bound (2.21), we find that

P

[∣∣‖Xu‖
2
2

n ‖u‖22
− 1

∣∣ ≥ δ

]
≤ 2e−nδ

2/8 for all δ ∈ (0, 1).

Re-arranging and recalling the definition of F yields the bound

P

[‖F (u)‖22
‖u‖22

/∈ [(1− δ), (1 + δ)]

]
≤ 2e−nδ

2/8, for any fixed 0 6= u ∈ R
d.

Noting that there are at most
(
m
2

)
distinct pairs of data points, we apply the union

bound to conclude that

P

[‖F (ui − uj)‖22
‖ui − uj‖22

/∈ [(1− δ), (1 + δ)] for some ui 6= uj
]
≤ 2

(
m

2

)
e−nδ

2/8.

For any ǫ ∈ (0, 1) and m ≥ 2, this probability can be driven below ǫ by choosing1

n > 16
δ2

log(m/ǫ). ♣2

As a useful summary, the following theorem provides several equivalent characteri-3

zations of sub-exponential variables:4

5

Theorem 2.2 (Equivalent characterizations of sub-exponential variables). For a zero-

mean random variable X, the following statements are equivalent:

(I) There are non-negative numbers (ν, b) such that

E[eλX ] ≤ e
ν2λ2

2 for all |λ| < 1
b . (2.23)

(II) There is a positive number c0 > 0 such that E[eλX ] <∞ for all |λ| ≤ c0.

(III) There are constants c1, c2 > 0 such that

P[|X| ≥ t] ≤ c1 e
−c2 t for all t > 0. (2.24)

(IV) The quantity γ : = sup
k≥2

[
E[Xk]
k!

]1/k
is finite.

6

7

8

See Appendix B for the proof of this claim.9
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� 2.1.4 Some one-sided results 1

Up to this point, we have focused on two-sided forms of Bernstein’s condition, which 2

then yields to bounds on both the upper and lower tails. As we have seen, one sufficient 3

condition for Bernstein’s condition to hold is an absolute bound, say |X| ≤ b almost 4

surely. Of course, if such a bound only holds in a one-sided way, it is still possible to 5

derive one-sided bounds. In this section, we state and prove one such result. 6

7

Proposition 2.4 (One-sided Bernstein’s inequality). If X ≤ b almost surely, then

E[eλ(X−E[X])] ≤ exp
( λ2

2 E[X2]

1− bλ
3

)
for all λ ∈ [0, 3/b). (2.25)

Consequently, given n independent random variables with Xi ≤ b almost surely, we

have

P
[ n∑

i=1

(Xi − E[Xi]) ≥ nδ
]
≤ exp

(
− nδ2

1
n

∑n
i=1 E[X2

i ] +
bδ
3

)
. (2.26)

8

9

10

Of course, if a random variable is bounded from below, then the same result can be

used to derive bounds on its lower tail; we simply apply the bound (2.26) to the random

variable −X. In the special case of independent non-negative random variables Yi ≥ 0,

we find that

P
[ n∑

i=1

(Yi − E[Yi]) ≤ nδ
]
≤ exp

(
− nδ2

2
n

∑n
i=1 E[Y 2

i ]

)
. (2.27)

Thus, we see that the lower tail of any non-negative random variable satisfies a bound 11

of the sub-Gaussian type, albeit with the second moment instead of the variance. 12

13

The proof of Proposition 2.4 is quite straightforward given our development thus far. 14

Proof. Let us write E[eλX ] = 1 + λE[X] + 1
2λ

2
E[X2h(λX)], where we have defined the

function h(u) = 2 e
u−u−1
u2

= 2
∑∞

k=2
uk−2

k! . Observe that for all x < 0 and x′ ∈ [0, b] and

λ > 0, we have

h(λx) ≤ h(0) ≤ h(λx′) ≤ h(λb).

Consequently, since X ≤ b almost surely, we have E[X2h(λX)] ≤ E[X2]h(λb), and
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hence

E[eλ(X−E[X])] ≤ 1 +
1

2
λ2E[X2]h(λb) ≤ exp

{λ2E[X2]

2
h(λb)

}
.

Consequently, the bound (2.25) will follow if we can show that h(λb) ≤ (1 − λb
3 )

−1 for

λb < 3. By applying the inequality k! ≥ 2 (3k−2), valid for all k ≥ 2, we find that

h(λb) = 2
∞∑

k=2

(λb)k−2

k!
≤

∞∑

k=2

(λb
3

)k−2
=

1

1− λb
3

,

where the final step uses the condition λb ∈ [0, 3).1

In order to prove the upper tail bound (2.26), we apply the Chernoff bound, ex-

ploiting independence to apply the MGF bound (2.25) separately, and thereby find

that

P
[ n∑

i=1

(Xi − E[Xi]) ≥ nδ] ≤ exp
(
− λnδ +

λ2

2

∑n
i=1 E[X2

i ]

1− bλ
3

)
, valid for bλ ∈ [0, 3).

Substituting λ = nδ∑n
i=1 E[X

2
i ]+

nδb
3

∈ [0, 3/b) and simplifying yields the bound.2

� 2.2 Martingale-based methods3

Up until this point, our techniques have provided various types of bounds on sums of in-4

dependent random variables. Many problems require bounds on more general functions5

of random variables, and one classical approach is based on martingale decompositions.6

In this section, we describe some of the results in this area along with some examples.7

Our treatment is quite brief, so we refer the reader to the bibliographic section for8

additional references.9

� 2.2.1 Background10

Let us begin by introducing a particular case of a martingale sequence that is especially

relevant for obtaining tail bounds. Let {Xk}nk=1 be a sequence of independent random

variables, and consider the random variable f(X) = f(X1 . . . , Xn), for some function

f : R
n → R. Suppose that our goal is to obtain bounds the deviations of f from

its mean. In order to do so, we consider the sequence of random variables given by

Y0 = E[f(X)], Yn = f(X), and

Yk = E[f(X) | X1, . . . , Xk] for k = 1, . . . , n− 1, (2.28)

where we assume that all conditional expectations exist. Note that Y0 is a constant, and

the random variables Yk will exhibit more fluctuations as we move along the sequence
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from Y0 to Yn. Based on the intuition, the martingale approach to tail bounds is based

on the telescoping decomposition

Yn − Y0 =
n∑

k=1

(
Yk − Yk−1

)
︸ ︷︷ ︸

Dk

in which the deviation f(X)−E[f(X)] is written as a sum of increments {Dk}nk=1. As we 1

will see, the sequence {Yk}nk=1 is a particular example of a martingale sequence, known 2

as the Doob martingale, whereas the sequence {Dk}nk=1 is an example of a martingale 3

difference sequence. 4

With this example in mind, we now turn to the general definition of a martingale se- 5

quence. Let {Fk}∞k=1 be a sequence of σ-fields that are nested, meaning that Fk ⊆ Fk+1 6

for all k ≥ 1; such a sequence is known as a filtration. In the Doob martingale described 7

above, the σ-field σ(X1, . . . , Xk) generated by the first k variables plays the role of Fk. 8

Let {Yk}∞k=1 be a sequence of random variables such that Yk is measurable with re- 9

spect to the σ-field Fk. In this case, we say that {Yk}∞k=1 is adapted to the filtration 10

{Fk}∞k=1. In the Doob martingale, the random variable Yk is a measurable function of 11

(X1, . . . , Xk), and hence the sequence is adapted to the filtration defined by the σ-fields. 12

We are now ready to define a general martingale: 13

14

Definition 2.3. Given a sequence {Yk}∞k=1 of random variables adapted to a filtration

{Fk}∞k=1, the pair {(Yk,Fk)}∞k=1 is a martingale if for all k ≥ 1,

E[|Yk|] <∞, and E
[
Yk+1 | Fk

]
= Yk. (2.29)

15

16

17

It is frequently the case that the filtration is defined by a second sequence of random 18

variables {Xk}∞k=1 via the canonical σ-fields Fk : = σ(X1, . . . , Xk). In this case, we say 19

that {Yk}∞k=1 is a martingale sequence with respect to {Xk}∞k=1. The Doob construction 20

is an instance of such a martingale sequence. If a sequence is martingale with respect 21

to itself (i.e., with Fk = σ(Y1, . . . , Yk)), then we say simply that {Yk}∞k=1 forms a mar- 22

tingale sequence. 23

24

Let us consider some examples to illustrate: 25

Example 2.7 (Partial sums as martingales). Perhaps the simplest instance of a mar-

tingale is provided by considering partial sums of an i.i.d. sequence. Let {Xk}∞k=1

be a sequence of i.i.d. random variables with mean µ, and define the partial sums

Sk : =
∑k

j=1Xj . Defining Fk = σ(X1, . . . , Xk), the random variable Sk is measurable
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with respect to Fk, and moreover, we have

E[Sk+1 | Fk] = E[Xk+1 + Sk | X1, . . . Xk]

= E[Xk+1] + Sk = µ+ Sk.

Here we have used the facts that Xk+1 is independent of Xk
1 : = (X1, . . . , Xk), and that1

Sk is a function of Xk
1 . Thus, while the sequence {Sk}∞k=1 itself is not a martingale2

unless µ = 0, the recentered variables Yk : = Sk − kµ for k ≥ 1 define a martingale3

sequence with respect to {Xk}∞k=1. ♣4

Let us now show that the Doob construction does lead to a martingale, as long as the5

underlying function f is absolutely integrable.6

Example 2.8 (Doob construction). Recall the sequence Yk = E[f(X) | X1, . . . , Xk]

previously defined, and suppose that E[|f(X)|] <∞. We claim that {Yk}nk=0 is a mar-

tingale with respect to {Xk}nk=1. Indeed, using the shorthand Xk
1 = (X1, X2, . . . , Xk),

we have

E[|Yk|] = E
[∣∣E[f(X) | Xk

1 |] ≤ E[|f(X)|] <∞,

where the bound follows from Jensen’s inequality. Turning to the second property, we

have

E[Yk+1 | Xk
1 ] = E

[
E[f(X) | Xk+1

1 ] | Xk
1

]
(i)
= E[f(X) | Xk

1 ] = Yk,

where we have used the tower property of conditional expectation in step (i). ♣7

The following martingale plays an important role in analyzing stopping rules for se-8

quential hypothesis tests:9

Example 2.9 (Likelihood ratio). Let f and g be two mutually continuous densities,

and let {Xk}∞k=1 be a sequence of random variables drawn i.i.d. according to f . If we

let Yn : =
∏n
k=1 g(Xk)/f(Xk) be the likelihood ratio based on the first n samples, then

sequence {Yk}∞k=1 is a martingale with respect to {Xk}∞k=1. Indeed, we have

E[Yn+1 | X1, . . . , Xn] = E

[
g(Xn+1)

f(Xn+1)

] n∏

k=1

g(Xk)

f(Xk)
= Yn,

using the fact that E[ g(Xn+1)
f(Xn+1)

] = 1. ♣10

A closely related notion is that ofmartingale difference sequence, meaning an adapted

sequence {(Dk,Fk)}∞k=1 such that for all k ≥ 1,

E[|Dk|] <∞, and E[Dk+1 | Fk] = 0. (2.30)
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As suggested by their name, such difference sequences arise in a natural way from mar-

tingales. In particular, given a martingale {(Yk,Fk)}∞k=0, let us define Dk = Yk − Yk−1

for k ≥ 1. We then have

E[Dk+1 | Fk] = E[Yk+1 | Fk]− E[Yk | Fk]
= E[Yk+1 | Fk]− Yk = 0,

using the martingale property (2.29) and the fact that Yk is measurable with respect to 1

Fk. Thus, for any martingale sequence {Yk}∞k=0, we have the telescoping decomposition 2

Yn−Y0 =
∑n

k=1Dk where {Dk}∞k=1 is martingale difference sequence. This decomposi- 3

tion plays an important role in our development of concentration inequalities to follow. 4

5

� 2.2.2 Concentration bounds for martingale difference sequences 6

We now turn to the derivation of concentration inequalities for martingales. These 7

inequalities can be viewed in one of two ways: either as bounds for the difference 8

Yn − Y0, or as bounds for the sum
∑n

k=1Dk of the associated martingale difference 9

sequence (MDS). Throughout this section, we present results mainly in terms of mar- 10

tingale differences, with the understanding that such bounds have direct consequences 11

for martingale sequences. Of particular interest to us is the Doob martingale described 12

in Example 2.8, which can be used to control the deviations of a function from its ex- 13

pectation. 14

15

We begin by stating and proving a general Bernstein-type bound for a MDS, based 16

on imposing a sub-exponential condition on the martingale differences. 17

18

Theorem 2.3. Let {(Dk,Fk)}∞k=1 be a martingale difference sequence, and suppose

that for any |λ| < 1/bk, we have E[eλDk | Fk−1] ≤ eλ
2ν2k/2 almost surely. Then

(a) The sum
∑n

k=1Dk is sub-exponential with parameters (
√∑n

k=1 ν
2
k , b∗) where

b∗ : = max
k=1,...,n

bk.

(b) Consequently, for all t ≥ 0,

P
[
|
n∑

k=1

Dk| ≥ t
]
≤




2 e

− t2

2
∑n

k=1
ν2
k if 0 ≤ t ≤

∑n
k=1 ν

2
k

b∗
, and

2 e−
t

2 b∗ if t >
∑n

k=1 ν
2
k

b∗
.

(2.31)

19

20

Proof. We follow the standard approach of controlling the moment generating function

of
∑n

k=1Dk, and then applying the Chernoff bound. Letting λ ∈ (−1/b∗, 1/b∗) be
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arbitrary, conditioning on Fn−1 and applying iterated expectation yields

E
[
eλ
(∑n

k=1Dk

)]
= E

[
eλ
(∑n−1

k=1 Dk

)]
E[eλDn | Fn−1]

]

≤ E
[
eλ

∑n−1
k=1 Dk

]
eλ

2ν2n/2, (2.32)

where the inequality follows from the stated assumption on Dn. Iterating this procedure1

yields the bound E
[
eλ

∑n
k=1Dk

]
≤ eλ

2
∑n

k=1 ν
2
k/2, valid for all |λ| < 1

b∗
. By definition, we2

conclude that
∑n

k=1Dk is sub-exponential with parameters (
√∑n

k=1 ν
2
k , b∗), as claimed.3

The tail bound (2.31) follows by applying Proposition 2.2.4

In order for Theorem 2.3 to be useful in practice, we need to isolate sufficient and5

easily checkable conditions for the differences Dk to be almost surely sub-exponential6

(or sub-Gaussian when b = +∞). As discussed previously, bounded random variables7

are sub-Gaussian, which leads to the following corollary:8

9

Corollary 2.1 (Azuma-Hoeffding). Let ({(Dk,Fk)}∞k=1) be a martingale difference

sequence, and suppose that |Dk| ≤ bk almost surely for all k ≥ 1. Then for all t ≥ 0,

P

[
|
n∑

k=1

Dk| ≥ t

]
≤ 2e

− 2t2∑n
k=1

b2
k . (2.33)

10

11

Proof. Recall the decomposition (2.32) in the proof of Theorem 2.3; from the struc-12

ture of this argument, it suffices to show that E[eλDk | Fk−1] ≤ eλ
2b2k/2 a.s. for each13

k = 1, 2, . . . , n. But since |Dk| ≤ bk almost surely, the conditioned variable (Dk | Fk−1)14

is also bounded almost surely, and hence from the result of Exercise 2.4, it is sub-15

Gaussian with parameter at most σ = bk.16

An important application of Corollary 2.1 concerns functions that satisfy a bounded

difference property. In particular, we say that f : R
n → R satisfies the bounded

difference inequality with parameters (L1, . . . , Ln) if for each k = 1, 2, . . . , n,

|f(x1, . . . , xn)− f(x1, . . . , xk−1, x
′
k, xk+1, . . . , xn)| ≤ Lk for all x, x′ ∈ R

n. (2.34)

For instance, if the function f is L-Lipschitz with respect to the Hamming norm17

dH(x, y) =
∑n

i=1 I[xi 6= yi], which counts the number of positions in which x and y18

differ, then the bounded difference inequality holds with parameter L uniformly across19

all co-ordinates.20

21
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Corollary 2.2 (Bounded differences inequality). Suppose that f satisfies the bounded

difference property (2.34) with parameters (L1, . . . , Ln) and that the random vector

X = (X1, X2, . . . , Xn) has independent components. Then

P
[
|f(X)− E[f(X)]| ≥ t

]
≤ 2e

− 2t2∑n
k=1

L2
k for all t ≥ 0. (2.35)

1

2

3

Proof. Recalling the Doob martingale introduced in Example 2.8, consider the associ-

ated martingale difference sequence

Dk = E[f(X) | X1, . . . , Xk]− E[f(X) | X1, . . . , Xk−1]. (2.36)

If we define the function g : R
k → R via g(x1, . . . , xk) : = E[f(X) | x1, . . . , xk], the

independence assumption means that we can write

Dk = g(X1, . . . , Xk)− EX′
k

[
g(X1, . . . , X

′
k)
]
= EX′

k

[
g(X1, . . . , Xk)− g(X1, . . . , X

′
k)
]
,

where X ′
k is an independent copy of Xk. Thus, if we can show that g satisfies the

bounded difference property with parameter Lk in co-ordinate k, then Corollary 2.1

yields the claim. But by independence and the definition of g, for any pair of k-tuples

(x1, . . . , xk) and (x1, . . . , x
′
k), we can write

g(x1, . . . , xk)− g(x1, . . . , x
′
k) = EXn

k+1

[
f(x1, . . . , xk, Xk+1, . . . , Xn)− f(x1, . . . , x

′
k, Xk+1, . . . , Xn)

]

≤ Lk,

using the bounded differences inequality for f . 4

Remark: In the special case when f is L-Lipschitz with respect to the Hamming norm,

Corollary 2.2 implies that

P
[
|f(X)− E[f(X)]| ≥ t

]
≤ 2e−

2t2

nL2 for all t ≥ 0. (2.37)

Let us consider some examples to illustrate. 5

Example 2.10 (U-statistics). Let g : R
2 → R be a symmetric function of its arguments.

Given an i.i.d. sequence Xk, k ≥ 1 of random variables, the quantity

U : =
1(
n
2

)
∑

j 6=k
g(Xj , Xk) (2.38)
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is known as a pairwise U-statistic. For instance, if g(s, t) = |s − t|, then U is an

unbiased estimator of the mean absolute deviation E[|X1 −X2|]. Note that while U is

not a sum of independent random variables, the dependence is relatively weak, and this

is revealed by a martingale analysis. If g is bounded (say ‖g‖∞ ≤ b), then Corollary 2.2

can be used to establish concentration of U around its mean. Viewing U as a function

f(X1, . . . , Xn), for any given co-ordinate k, we have

|f(x1, . . . , xn)− f(x1, . . . , xk−1, x
′
k, xk+1, . . . , xn)| ≤

1(
n
2

)
∑

j 6=k
|g(xj , xk)− g(xj , x

′
k)|

≤ (n− 1) (2b)(
n
2

) =
4b

n
,

so that the bounded differences property holds with parameter Lk = 4b
n in each co-

ordinate. Thus, we conclude that

P
[
|U − E[U ]| ≥ t

]
≤ 2e−

nt2

8b2 .

This tail inequality implies that U is a consistent estimate of E[U ], and also yields finite1

sample bounds on its quality as an estimator. Similar techniques can be used to obtain2

tail bounds on U -statistics of higher order, involving sums over k tuples of variables. ♣3

Example 2.11 (Rademacher complexity). Let εk, k ≥ 1 be an i.i.d. sequence of

Rademacher variables (i.e., taking the values {−1,+1} equiprobably, as in Example 2.2).

Given a collection of vectors A ⊂ R
n, define the random variable1

Z : = sup
a∈A

[ n∑

k=1

akεk

]
= sup

a∈A

[
〈a, ε〉

]
. (2.39)

The random variable Z measures the size of A in a certain sense, and its expectation4

R(A) : = E[Z(A)] is known as the Rademacher complexity of the set A.5

Corollary 2.2 can be used to show that Z(A) is sub-Gaussian. Viewing Z(A) as a

function f(ε1, . . . , εn), we need to bound the maximum change when co-ordinate k is

changed. Let ε′ be an n-vector with ε′j = εj for all j 6= k, and let a ∈ A be arbitrary.

Since f(ε′) ≥ 〈a, ε′〉 for any a ∈ A, we have

〈a, ε〉 − f(ε′) ≤ 〈a, ε− ε′〉 = ak (εk − ε′k) ≤ 2|ak|.

Taking the supremum over A on both sides, we obtain the inequality

f(ε)− f(ε′) ≤ 2 sup
a∈A

|ak|.

1For the reader concerned about measurability, see the bibliographic discussion in Chapter 4
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Since the same argument applies with the roles of ε and ε′ reversed, we conclude that f 1

satisfies the bounded difference inequality in co-ordinate k with parameter 2 supa∈A |ak|. 2

Consequently, Corollary 2.2 implies that the the random variable Z(A) is sub-Gaussian 3

with parameter at most 4
∑n

k=1 sup
a∈A

a2k. This sub-Gaussian parameter can be reduced 4

to 4 sup
a∈A

∑n
k=1 a

2
k using alternative techniques (see Example 3.2 in Chapter 3). ♣ 5

� 2.3 Lipschitz functions of Gaussian variables 6

We conclude this chapter with a classical result on the concentration properties of Lip-

schitz functions of Gaussian variables. These functions exhibit a particularly attractive

form of dimension-free concentration. Let us say that function f : R
n → R is L-Lipschitz

with respect to the Euclidean norm ‖ · ‖2 if

|f(x)− f(y)| ≤ L ‖x− y‖2 for all x, y ∈ R
n. (2.40)

7

The following result guarantees that any such function is sub-Gaussian with parameter 8

at most L: 9

10

Theorem 2.4. Let (X1, . . . , Xn) be a vector of i.i.d. standard Gaussian variables,

and let f : R
n → R be L-Lipschitz with respect to the Euclidean norm. Then the

variable f(X)− E[f(X)] is sub-Gaussian with parameter at most L, and hence

P

[∣∣f(X)− E[f(X)]
∣∣ ≥ t

]
≤ 2e−

t2

2L2 for all t ≥ 0. (2.41)

11

12

Note that this result is truly remarkable: it guarantees that any L-Lipschitz function of 13

a standard Gaussian random vector, regardless of the dimension, exhibits concentration 14

like a scalar Gaussian variable with variance L2. 15

Proof. With the aim of keeping the proof as simple as possible, let us prove a version of 16

the concentration bound (2.41) with a weaker constant in the exponent. (See the bibli- 17

ographic notes for references to proofs of the sharpest results.) We also prove the result 18

for a function that is both Lipschitz and differentiable; since any Lipschitz function is 19

differentiable almost everywhere2, it is then straightforward to extend this result to the 20

general setting. In order to prove this version of the theorem, we begin by stating an 21

auxiliary technical lemma: 22

23

2This fact is a consequence of Rademacher’s theorem.
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Lemma 2.1. Suppose that f : R
n → R is differentiable. Then for any convex function

φ : R → R, we have

E

[
φ
(
f(X)− E[f(X)]

)]
≤ E

[
φ
(π
2
〈∇f(X), Y 〉

)]
(2.42)

where X,Y ∼ N (0, In) are standard multivariate Gaussian, and independent.

1

2

We now prove the theorem using this lemma. For any fixed λ ∈ R, applying in-

equality (2.42) to the convex function t 7→ exp(λt) yields

E

[
exp

(
λ
{
f(X)− E[f(X)]

})]
≤ E

[
exp

(λπ
2

n∑

k=1

Yk
∂f

∂xk
(X)

)]

= EX

[
EY

[
exp

(λπ
2

n∑

k=1

Yk
∂f

∂xk
(X)

)]]

= EX

[ n∏

k=1

EYk

[
exp

(λπ
2
Yk

∂f

∂xk
(X)

)]]
,

where we have used the independence of X and Y , and the i.i.d. nature of the compo-

nents of Y . Since Yk ∼ N (0, 1), we have

EYk

[
exp

(λπ
2
Yk

∂f

∂xk
(X)

)]
= exp

(
λ2 π2

8

( ∂f
∂xk

(X)
)2
)
,

and hence

E
[
eλ
{
f(X)−E[f(X)]

}]
≤ E

[
e

λ2π2

8
‖∇f(X)‖22

]
≤ e

1
8
λ2π2 L2

,

where the final inequality follows from the fact that ‖∇f(X)‖2 ≤ L, due to the Lips-

chitz condition on f . We have thus shown that f(X) − E[f(X)] is sub-Gaussian with

parameter at most πL
2 , from which the tail bound

P

[∣∣f(X)− E[f(X)]
∣∣ ≥ t

]
≤ 2 exp

(
− 2 t2

π2L2

)
for all t ≥ 0

follows from Proposition 2.1.3

4

It remains to prove Lemma 2.1, and we do so via an interpolation method that

exploits the rotation invariance of the Gaussian distribution. For each θ ∈ [0, π/2],

consider the random vector Z(θ) ∈ R
n with components

Zk(θ) : = Xk sin θ + Yk cos θ for k = 1, 2, . . . , n.
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By the rotation invariance of the Gaussian distribution, we observe that for all θ ∈ [0, π/2],

the pair (Zk(θ), Z
′
k(θ)) is a jointly Gaussian vector, with zero mean and identity covari-

ance I2. By convexity of φ, we have

EX

[
φ
(
f(X)− EY [f(Y )]

)]
≤ EX,Y

[
φ
(
f(X)− f(Y )

)]
. (2.43)

Now since Zk(0) = Yk and Zk(π/2) = Xk for all k = 1, . . . , n, we have

f(X)− f(Y ) =

∫ π/2

0

d

dθ
f(Z(θ))dθ =

∫ π/2

0
〈∇f(Z(θ)), Z ′(θ)〉dθ,

and hence

EX

[
φ
(
f(X)− EY [f(Y )]

)]
≤ EX,Y

[
φ
( ∫ π/2

0
〈∇f(Z(θ)), Z ′(θ)〉dθ

)]

= EX,Y

[
φ
( 1

π/2

∫ π/2

0

π

2
〈∇f(Z(θ)), Z ′(θ)〉dθ

)]

≤ 1

π/2

∫ π/2

0
EX,Y

[
φ
(π
2
〈∇f(Z(θ)), Z ′(θ)〉

)]
dθ,

where the final step again uses convexity of φ. But since (Zk(θ), Z
′
k(θ)) ∼ N (0, I2) for

all θ, the expectation does not depend on θ, and so we have

1

π/2

∫ π/2

0
EX,Y

[
φ
(π
2
〈∇f(Z(θ)), Z ′(θ)〉

)]
dθ = E

[
φ
(π
2
〈∇f(X̃), Ỹ 〉

)]

where (X̃, Ỹ ) are independent standard Gaussian n-vectors. This completes the proof 1

of the bound (2.42). 2

3

Note that the proof makes essential use of various properties specific to the stan- 4

dard Gaussian distribution. However, similar concentration results hold for other non- 5

Gaussian distributions, including the uniform distribution on the sphere and any strictly 6

log-concave distribution (see Chapter 3 for further discussion of such distributions). 7

Without additional structure of the function f (such as convexity), dimension-free con- 8

centration for Lipschitz functions need not hold for an arbitrary sub-Gaussian distribu- 9

tion; see the bibliographic section for further discussion of this fact. 10

Theorem 2.4 is useful for a broad range of problems; let us consider some examples to 11

illustrate. 12

Example 2.12 (χ2 concentration). If Zk ∼ N (0, 1) are i.i.d. standard normal variates,

then Y : =
∑n

k=1 Z
2
k is a chi-squared variate with n degrees of freedom. The most
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direct way to obtain tail bounds for Y is by noting that Z2
k is sub-exponential, and

exploiting independence (see Example 2.5). In this example, we pursue an alternative

approach—namely, via concentration for Lipschitz functions of Gaussian variates. In-

deed, defining the variable V =
√
Y /

√
n, we can write V = ‖(Z1, . . . , Zn)‖2/

√
n, and

since the Euclidean norm is a 1-Lipschitz function, Theorem 2.4 implies that

P[V ≥ E[V ] + δ] ≤ exp(−nδ2/2) for all δ ≥ 0.

Using concavity of the square root function and Jensen’s inequality, we have

E[V ] ≤
√

E[V 2] =
{ 1

n

n∑

i=1

E[Z2
k ]
}1/2

= 1.

Recalling that V =
√
Y /

√
n and putting together the pieces yields

P[
Y

n
≥ (1 + δ)2] ≤ exp(−nδ2/2) for all δ ≥ 0.

Since (1 + δ)2 = 1 + 2δ + δ2 ≤ 1 + 3δ for all δ ∈ [0, 1], we conclude that

P
[
Y ≥ n (1 + t)

]
≤ exp(−nt2/18) for all t ∈ [0, 3], (2.44)

where we have made the substitution t = 3δ. It is worthwhile comparing this tail1

bound to those that can be obtained by using the fact that each Z2
k is sub-exponential,2

as discussed in Example 2.5. ♣3

Example 2.13 (Order statistics). Given a random vector (X1, X2, . . . , Xn), its order

statistics are obtained by re-ordering the samples in a non-increasing manner—namely

as

X(1) ≥ X(2) ≥ . . . ≥ X(n−1) ≥ X(n). (2.45)

As particular cases, we have X(1) = maxk=1,...,nXk and X(n) = mink=1,...,nXk. Given

another random vector (Y1, . . . , Yn), it can be shown that |X(k) − Y(k)| ≤ ‖X − Y ‖2 for

all k = 1, . . . , n, so that each order statistic is a 1-Lipschitz function. (We leave the

verification of this inequality as an exercise for the reader.) Consequently, when X is a

Gaussian random vector, Theorem 2.4 implies that

P[|X(k) − E[X(k)]| ≥ δ] ≤ 2e−
δ2

2 for all δ ≥ 0.

♣4

Example 2.14 (Gaussian complexity). This example is closely related to our earlier

discussion of Rademacher complexity in Example 2.11. Let {wk}nk=1 be an i.i.d. sequence
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of N (0, 1) variables. Given a collection of vectors A ⊂ R
n, define the random variable3

Z : = sup
a∈A

[ n∑

k=1

akwk

]
= sup

a∈A
〈a, w〉. (2.46)

As with the Rademacher complexity, the variable Z = Z(A) is one way of measuring

the size of the set A, and will play an important role in later chapters. Viewing Z as

a function f(w1, . . . , wn), let us verify that f is Lipschitz (with respect to Euclidean

norm) with parameter supa∈A ‖a‖2. Let w,w′ ∈ R
n be arbitrary, and let a∗ ∈ A be

any vector that achieves the maximum defining f(w). Following the same argument as

Example 2.11, we have the upper bound

f(w)− f(w′) ≤ 〈a∗, w − w′〉 ≤ W(A) ‖w − w′‖2.

where W(A) = supa∈A ‖a‖2 is the Euclidean width of the set. The same argument

holds with the roles of w and w′ reversed, and hence |f(w)− f(w′)| ≤ W(A) ‖w − w′‖2.
Consequently, Theorem 2.4 implies that

P
[
|Z − E[Z]| ≥ δ] ≤ 2 exp

(
− δ2

2W2(A)

)
. (2.47)

♣ 1

Example 2.15 (Gaussian chaos variables). As a generalization of the previous example,

let Q ∈ R
n×n be a symmetric matrix, and let w, w̃ be independent zero-mean Gaussian

random vectors with covariance matrix In. The random variable

Z : =
n∑

i,j=1

Qijwiw̃j

is known as a (decoupled) Gaussian chaos. By the independence of w and w̃, we have 2

E[Z] = 0, so it is natural to seek on a tail bound on the event {|Z| ≥ t}. 3

Conditioned on w̃, the variable (Z | w̃) is a zero-mean Gaussian variable with

variance w̃TQ2w̃, and consequently, we have the tail bound

P[|Z| ≥ δ | w̃] ≤ 2e
− δ2

2w̃TQ2w̃ . (2.48)

Let us now bound the random variable Y = ‖Qw̃‖2. It is a Lipschitz function of the

Gaussian vector w̃, with Lipschitz constant given by the operator norm |||Q|||op = sup
‖u‖2=1

‖Qu‖2.

Moreover, by Jensen’s inequality, we have E[Y ] ≤
√

E[w̃TQ2w̃] = |||Q|||F. Putting to-

3For measurability concerns, see the bibliographic discussion in Chapter 4.
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gether the pieces yields the tail bound

P
[
‖Qw̃‖2 ≥ |||Q|||F + t

]
≤ 2 exp

(
− t2

2|||Q|||2op
)
.

Setting t2 = 4δ|||Q|||op and simplifying yields

P
[
w̃TQT w̃ ≥ 2|||Q|||2F + 2δ|||Q|||op

]
≤ 2 exp

(
− 2δ

|||Q|||op
)
.

Putting together the pieces, we find that

P[|Z| ≥ δ] ≤ 2 exp
(
− δ2

4 |||Q|||2F + 4δ|||Q|||op
)
+ 2 exp

(
− 2δ

|||Q|||op
)

≤ 4 exp
(
− δ2

4 |||Q|||2F + 4δ|||Q|||op
)
.

We have thus shown that the Gaussian chaos variable satisfies a sub-exponential tail1

bound. ♣2

Example 2.16 (Singular values of Gaussian random matrices). For integers n > d, let

X ∈ R
n×d be a random matrix with i.i.d. N (0, 1) entries, and let

γ1(X) ≥ γ2(X) ≥ . . . ≥ γd(X) ≥ 0

denote its ordered singular values. By Wielandt’s theorem (see Exercise 8.3), given

another matrix Y ∈ R
n×d, we have

max
k=1,...,d

|γk(X)− γk(Y)| ≤ |||X−Y|||op ≤ |||X−Y|||F. (2.49)

where ||| · |||F denotes the Frobenius norm on matrices—that is, the Euclidean norm on

the matrix viewed as a vector in R
nd. The inequality (2.49) shows that each singular

value γk(X) is a 1-Lipschitz function of the random matrix, so that Theorem 2.4 implies

that for each k = 1, . . . , d, we have

P
[∣∣γk(X)− E[γk(X)]

∣∣ ≥ √
nδ

]
≤ 2e−

nδ2

2 for all δ ≥ 0. (2.50)

Consequently, even though our techniques are not yet powerful enough to characterize3

the expected value of these random singular values, we are guaranteed that the expec-4

tations are representative of the typical behavior. See Chapter 6 for a more detailed5

discussion of the singular values of random matrices. ♣6
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Appendix A: Equivalent versions of sub-Gaussian variables 1

We establish the equivalence by proving the circle of implications (I) ⇒ (II) ⇒ (III) ⇒ (I), 2

followed by the equivalence (I) ⇐⇒ (IV). 3

4

Implication (I) ⇒ (II): If X is zero-mean and sub-Gaussian with parameter σ, then we

claim that for Z ∼ N (0, 2σ2),

P[X ≥ t]

P[Z ≥ t]
≤

√
8 e for all t ≥ 0,

showing that X is majorized by Z with constant c =
√
8 e. On one hand, by the sub-

Gaussianity of X, we have P[X ≥ t] ≤ exp(− t2

2σ2 ) for all t ≥ 0. On the other hand, by

the Mill’s ratio for Gaussian tails, if Z ∼ N (0, 2σ2), then we have

P[Z ≥ t] ≥
(√2σ

t
− (

√
2σ)3

t3
)
e−

t2

4σ2 for all t > 0. (2.51)

(See Exercise 2.2 for a derivation of this inequality.) We split the remainder of our 5

analysis into two cases. 6

Case 1: First, suppose that t ∈ [0, 2σ]. Since the function Φ(t) = P[Z ≥ t] is decreas-

ing, for all t in this interval,

P[Z ≥ t] ≥ P[Z ≥ 2σ] ≥
( 1√

2
− 1

2
√
2

)
e−1 =

1√
8 e

Since P[X ≥ t] ≤ 1, we conclude that P[X≥t]
P[Z≥t] ≤

√
8 e for all t ∈ [0, 2σ]. 7

Case 2: Otherwise, we may assume that t > 2σ. In this case, by combining the Mill’s

ratio (2.51) and the sub-Gaussian tail bound and making the substitution s = t/σ, we

find that

sup
t>2σ

P[X ≥ t]

P[Z ≥ t]
≤ sup

s>2

e−
s2

4

(√
2
s − (

√
2)3

s3

)

≤ sup
s>2

s3 e−
s2

4

≤
√
8e,

where the last step follows from a numerical calculation. 8

9

Implication (II) ⇒ (III): Suppose that X is majorized by a zero-mean Gaussian with
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variance τ2. Since X2k is a non-negative random variable, we have

E[X2k] =

∫ ∞

0
P[X2k > s]ds =

∫ ∞

0
P[|X| > s1/(2k)] ds.

Under the majorization assumption, there is some constant c ≥ 1 such that

∫ ∞

0
P[|X| > s1/(2k)]ds ≤ c

∫ ∞

0
P[|Z| > s1/(2k)]ds = cE[Z2k],

where Z ∼ N (0, τ2). The polynomial moments of this centered Gaussian variable take

the form,

E[Z2k] =
(2k)!

2kk!
τ2k, for k = 1, 2, . . ., (2.52)

whence

E[X2k] ≤ cE[Z2k] = c
(2k)!

2kk!
τ2k ≤ (2k)!

2kk!
(c τ)2k, for all k = 1, 2, . . .,

which establishes the moment bound (2.12) with θ = c τ .1

2

Implication (III) ⇒ (I): For each λ ∈ R, we have

E[eλX ] ≤ 1 +
∞∑

k=2

|λ|kE[|X|k]
k!

, (2.53)

where we have used the fact E[X] = 0 to elminate the term involving k = 1. If X

is symmetric around zero, then all of its odd moments vanish, and by applying our

assumption on θ(X), we obtain

E[eλX ] ≤ 1 +
∞∑

k=1

λ2k

(2k)!

(2k)! θ2k

2kk!
= e

λ2θ2

2 ,

which shows that X is sub-Gaussian with parameter θ.3

When X is not symmetric, we can bound the odd moments in terms of the even

ones as

E[|λX|2k+1]
(i)

≤
(
E[|λX|2k] E[|λX|2k+2]

)1/2 (ii)

≤ 1

2

(
λ2kE[X2k] + λ2k+2

E[X2k+2]
)
, (2.54)

where step (i) follows from the Cauchy-Schwarz inequality; and step (ii) follows from

the arithmetic-geometric mean inequality. Applying this bound to the power series
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expansion (2.53), we obtain

E[eλX ] ≤ 1 +
(1
2
+

1

2 · 3!
)
λ2E[X2] +

∞∑

k=2

( 1

(2k)!
+

1

2

[ 1

(2k − 1)!
+

1

(2k + 1)!

])
λ2kE[X2k]

≤
∞∑

k=0

2k
λ2kE[X2k]

(2k)!

≤ e
(
√
2λθ)2

2 ,

which establishes the claim. 1

2

(I) ⇒ (IV) : This result is obvious for s = 0. For s ∈ (0, 1), we begin with the

sub-Gaussian inequality E[eλX ] ≤ e
λ2σ2

2 , and multiply both sides by e−
λ2σ2

2s , thereby

obtaining

E
[
eλX−λ2σ2

2s
]
≤ e

λ2σ2 (s−1)
2s .

Since this inequality holds for all λ ∈ R, we may integrate both sides over λ ∈ R, using

Fubini’s theorem to justify exchanging the order of integration. On the right-hand side,

we have

∫ ∞

−∞
exp

(
λ2σ2 (s− 1)

2s

)
dλ =

1

σ

√
2πs

1− s
.

Turning to the left-hand side, for each fixed x ∈ R, we have

∫ ∞

−∞
exp

(
λx− λ2σ2

2s

)
dλ =

√
2πs

σ
e

sx2

2σ2 .

Taking expectations with respect to X, we conclude that

E
[
e

sX2

2σ2
]
≤ σ√

2πs

1

σ

√
2πs

1− s
=

1√
1− s

,

which establishes the claim. 3

4

(IV) ⇒ (I): From the bound ex ≤ x+ e9x
2/16, we have

E[eλX ] ≤ E[λX] + E

[
e

9λ2X2

16

]
(i)

≤ e
9λ2σ2

16 , (2.55)

where inequality (i) is valid for |λ| ≤ 4
3σ . 5
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It remains to establish a similar upper bound for |λ| > 4
3σ . Noting that for any

c > 0, the functions f(u) = u2

2c and f∗(v) = cv2

2 are conjugate duals, the Fenchel-Young

inequality implies that

uv ≤ u2

2c
+
cv2

2
, valid for all u, v ∈ R and c > 0.

Applying this inequality with u = λ and v = X yields

E[eλX ] ≤ E
[
e

λ2σ2

2c
+ cX2

2σ2
]

= e
λ2σ2

2c E
[
e

cX2

2σ2
]

(ii)

≤ e
λ2σ2

2c ec/2, (2.56)

where the final inequality follows by Jensen’s inequality, convexity of the exponential,

and the fact that E[X2] = σ2. Taking c = 4/3, then for all |λ| ≥ 4
3σ , we have

3λ2σ2

8
=

λ2σ2

2c
=

3λ2σ2

8
≥ 2

3
=
c

2
,

so that equation (2.56) implies that

E[eλX ] ≤ e
λ2σ2

c = e
3λ2σ2

4 for all |λ| ≥ 4
3σ .

This inequality, combined with the bound (2.55), completes the proof.1

Appendix B: Proof of Theorem 2.22

(II) ⇒ (I): The existence of the moment generating function for |λ| < c0 implies that3

E[eλX ] = 1 + λ2E[X2]
2 + o(λ2) as λ→ 0. Moreover, an ordinary Taylor series expansion4

implies that e
σ2λ2

2 = 1+ σ2λ2

2 + o(λ2) as λ→ 0. Therefore, as long as σ2 > E[X2], there5

exists some b ≥ 0 such that E[eλX ] ≤ e
σ2λ2

2 for all |λ| ≤ 1
b .6

7

(I) ⇒ (II): This implication is immediate.8

9

(III) ⇒ (II): For an exponent a > 0 and truncation level T > 0 to be chosen, we have

E
[
ea|X|

I[|X| ≤ T ]
]
≤

∫ T

0
P[ea|X| ≥ t]dt

≤ 1 +

∫ T

1
P[|X| ≥ log t

a
]dt.
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Applying the assumed tail bound, we obtain

E
[
ea|X|

I[|X| ≤ T ]
]
≤ 1 + c1

∫ T

1
e−

c2 log t
a dt

= 1 + c1

∫ T

1
t−c2/adt.

For any a ∈ [0, c22 ], we have E
[
ea|X|

I[|X| ≤ T ]
]
≤ 1 + c1

2

(
1− 1

T

)
, showing that E[ea|X|] 1

is finite for all a ∈ [0, c22 ]. Since both eaX and e−aX are upper bounded by e|a| |X|, we 2

conclude that E[eaX ] is finite for all |a| ≤ c2
2 . 3

4

(II) ⇒ (III): By the Chernoff bound with λ = c0/2, we have

P[X ≥ t] ≤ E[e
c0X
2 ] e−

c0t
2

Applying a similar argument to −X, we conclude that P[|X| ≥ t] ≤ c1e
−c2t with 5

c1 = E[ec0X/2] + E[e−c0X/2] and c2 = c0/2. 6

7

(II) ⇐⇒ (IV): Since the moment generating function exists in an open interval around

zero, we can consider the power series expansion

E[eλX ] = 1 +
∞∑

k=2

λkE[Xk]

k!
for all |λ| < a. (2.57)

By definition, the quantity γ(X) is the radius of convergence of this power series, from 8

which the equivalence between (II) and (IV) follows. 9

� 2.4 Bibliographic details and background 10

Further background and details on tail bounds can be found in various books (e.g., [BK00, 11

Pet95, BLM13, SS91]). Classic papers on tail bounds include those of Bernstein [Ber37], 12

Chernoff [Che52], Bahadur and Ranga [BR60], Bennett [Ben62], Hoeffding [Hoe63] and 13

Azuma [Azu67]. The idea of using the cumulant function to bound the tails of a 14

random variable was first introduced by Bernstein [Ber37], and further developed by 15

Chernoff [Che52], whose name is now frequently associated with the method. The 16

book [SS91] provides a number of more refined results that can be established using 17

cumulant-based techniques. The original work of Hoeffding [Hoe63] gives results both 18

for sums of independent random variables, assumed to be bounded from above, as well 19

as certain types of dependent random variables, including U -statistics. The work of 20

Azuma [Azu67] applies to general martingales that are sub-Gaussian in a conditional 21

sense, as in Theorem 2.3. 22

ROUGH DRAFT: DO NOT DISTRIBUTE! – M. Wainwright – January 22, 2015



42 CHAPTER 2. BASIC TAIL AND CONCENTRATION BOUNDS

The book by Buldygin and Kozachenko [BK00] provides a range of results on sub-1

Gaussian and sub-exponential variates. In particular, Theorems 2.1 and 2.2 are based2

on results from this book. The Orlicz norms, discussed briefly in Exercises 2.18 and 2.19,3

provide an elegant generalization of the sub-exponential and sub-Gaussian families. See4

Section 5.7 and the books [BK00, LT91] for further background on Orlicz norms.5

The Johnson-Lindenstrauss lemma, discussed in Example 2.6, was originally proved6

in the paper [JL84] as an intermediate step in a more general result about Lipschitz7

embeddings. The original proof of lemma was based on random matrices with orthonor-8

mal rows, as opposed to the standard Gaussian random matrix used here. The use of9

random projection for dimension reduction and algorithmic speed-ups has a wide range10

of applications; see the book by Vempala [Vem04] for an overview.11

Tail bounds for U -statistics, as sketched out in Example 2.10, were derived by12

Hoeffding [Hoe63]. The book by de la Peña and Giné [dLPG99] provides more advanced13

results, including extensions to uniform laws for U -processes and decoupling results.14

The bounded differences inequality (Corollary 2.2) and extensions thereof have many15

applications in the study of randomized algorithms as well as random graphs and other16

combinatorial objects. A number of such applications can be found in the survey by17

McDiarmid [McD89], and the book by Boucheron et al. [BLM13].18

Milman and Schechtman [MS86] provide the short proof of Gaussian concentration19

for Lipschitz functions, on which Theorem 2.4 is based. Ledoux [Led01] provides an20

example of a Lipschitz function of i.i.d sequence of Rademacher variables, i.e., taking21

values {−1,+1} equiprobably) for which sub-Gaussian concentration fails to hold (c.f.22

p. 128). However, sub-Gaussian concentration does hold for Lipschitz functions of23

bounded random variables with an additional convexity condition; see Section 3.3.5 for24

further details.25

The kernel density estimation problem from Exercise 2.15 is a particular form of26

non-parametric estimation; we return to such problems in Chapters 13 and 14. Al-27

though we have focused exclusively on tail bounds for real-valued random variables,28

there are many generalizations to random variables taking values in Hilbert and other29

function spaces, as considered in Exercise 2.16. The books [LT91, Yur95] contain fur-30

ther background on such results. We also return to consider some versions of these31

bounds in Chapter 14. The Hanson-Wright inequality discussed in Exercise 2.17 was32

proved in the papers [HW71, Wri73]; see the papers [HKZ12, RV13] for more mod-33

ern treatments. The moment-based tail bound from Exercise 2.20 relies on a classi-34

cal inequality due to Rosenthal [Ros70]. Exercise 2.21 outlines the proof of the rate-35

distortion theorem for the Bernoulli source. It is a particular instance of more general36

information-theoretic results that are proved using probabilistic techniques: see the37

book by Cover and Thomas [CT91] for further reading. The Ising model (11.3) dis-38

cussed in Exercise 2.22 has a lengthy history dating back to Ising [Isi25]. The book39

by Talagrand [Tal03] contains a wealth of information on spin glass models and their40
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mathematical properties. 1

� 2.5 Exercises 2

Exercise 2.1 (Tightness of inequalities). The Markov and Chebyshev inequalities can- 3

not be improved in general. 4

(a) Provide a random variable X ≥ 0 for which Markov’s inequality (2.1) is met with 5

equality. 6

(b) Provide a random variable Y for which Chebyshev’s inequality (2.2) is met with 7

equality. 8

Exercise 2.2. Let φ(z) = 1√
2π
e−z

2/2 be the density function of a standard normal 9

Z ∼ N (0, 1) variate. 10

(a) Show that φ′(z) + zφ(z) = 0. 11

(b) Use part (a) to show that

φ(z)

(
1

z
− 1

z3

)
≤ P[Z ≥ z] ≤ φ(z)

(
1

z
− 1

z3
+

3

z5

)
for all z > 0. (2.58)

Exercise 2.3. Suppose that X ≥ 0, and that the moment generating function of X

exists in an interval around zero. Given some δ > 0 and integer k = 1, 2, . . ., show that

inf
k=0,1,2,...

E[|X|k]
δk

≤ inf
λ>0

E[eλX ]

eλδ
. (2.59)

Consequently, an optimized bound based on polynomial moments is always at least as 12

good as the Chernoff upper bound. 13

Exercise 2.4. Consider a random variable X with mean µ = E[X], and such that 14

a ≤ X ≤ b almost surely. 15

(a) Defining the function ψ(λ) = logE[eλX ], show that ψ(0) = 0 and ψ′(0) = µ. 16

(b) Show that ψ′′(λ) = Eλ[X
2] − (Eλ[X])2, where we define Eλ[f(X)] : = E[f(X)eλX ]

E[eλX ]
. 17

Use this fact to obtain an upper bound on supλ∈R |ψ′′(λ)|. 18

(c) Use parts (a) and (b) to establish that X is sub-Gaussian with parameter at most 19

σ = b−a
2 . 20
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Exercise 2.5 (Sub-Gaussian bounds and means/variances). Consider a random vari-

able X such that

E[eλX ] ≤ e
λ2σ2

2
+λµ (2.60)

for all λ ∈ R.1

(a) Show that E[X] = µ.2

(b) Show that var(X) ≤ σ2.3

(c) Suppose that the smallest possible σ satisfying the inequality (2.60) is chosen. Is4

it then true that var(X) = σ2? Prove or disprove.5

Exercise 2.6 (Lower bounds on squared sub-Gaussians). Letting {Xi}ni=1 be an i.i.d.

sequence of zero-mean sub-Gaussian variables with parameter σ, consider the normal-

ized sum Zn : = 1
n

∑n
i=1X

2
i . Prove that

P
[
Zn − E[Zn] ≤ σ2δ

]
≤ e−nδ

2/16 for all δ ≥ 0.

This result shows that the lower tail of a sum of squared sub-Gaussian variables behaves6

in a sub-Gaussian way.7

Exercise 2.7 (Bennett’s inequality). (a) Consider a zero-mean random variable such

that |Xi| ≤ b. Prove that

logE[eλXi ] ≤ σ2i λ
2
{eλb − 1− λb

(λb)2
}

for all λ ∈ R,

where σ2i = var(Xi).8

(b) Given independent random variables X1, . . . , Xn satisfying the condition of part

(a), let σ2 : = 1
n

∑n
i=1 σ

2
i be the average variance. Prove Bennett’s inequality

P
[ n∑

i=1

Xi ≥ nδ
]
≤ exp

{
− nσ2

b2
h
( bδ
σ2

)}
, (2.61)

where h(t) : = (1 + t) log(1 + t)− t for t ≥ 0.9

(c) Show that Bennett’s inequality is at least as good as Bernstein’s inequality.10

Exercise 2.8 (Bernstein and expectations). Consider a non-negative random variable

that satisfies a concentration inequality of the form

P[Z ≥ t] ≤ C e
− t2

2(ν2+Bt) (2.62)

ROUGH DRAFT: DO NOT DISTRIBUTE!! – M. Wainwright – January 22, 2015



SECTION 2.5. EXERCISES 45

for positive constants (ν, b) and C ≥ 1. 1

(a) Show that E[Z] ≤ 2ν(
√
π +

√
logC) + 4B(1 + logC). 2

(b) Let {Xi}ni=1 be an i.i.d. sequence of zero-mean variables satisfying the Bernstein

condition (2.16). Use part (a) to show that

E
[
| 1
n

n∑

i=1

Xi|
]
≤ 2σ√

n

(√
π +

√
log 2

)
+

4b

n

(
1 + log 2

)
,

Exercise 2.9 (Sharp upper bounds on binomial tails). Let {Xi}ni=1 be an i.i.d. sequence 3

of Bernoulli variables with parameter α ∈ (0, 1/2], and consider the binomial random 4

variable Zn =
∑n

i=1Xi. The goal of this exercise is to prove, for any δ ∈ (0, α), a sharp 5

upper bound on the tail probability P[Zn ≤ δn]. 6

(a) Show that P[Zn ≤ δn] ≤ e−nD(δ ‖α), where the quantity

D(δ ‖α) : = δ log
δ

α
+ (1− δ) log

(1− δ)

(1− α)
(2.63)

is the Kullback-Leibler divergence between the Bernoulli distributions with pa- 7

rameters δ and α respectively. 8

(b) Show that the bound from part (a) is strictly better than the Hoeffding bound 9

for all δ ∈ (0, α). 10

Exercise 2.10 (Lower bounds on binomial tails). Let {Xi}ni=1 be a sequence of i.i.d. 11

Bernoulli variables with parameter α ∈ (0, 1/2], and consider the binomial random 12

variable Zn =
∑n

i=1Xi. In this exercise, we establish a lower bound on the probability 13

P[Zn ≤ δn] for some fixed δ ∈ (0, α), thereby establishing that the upper bound from 14

Exercise 2.9 is tight up to a polynomial pre-factor. Throughout the analysis, we define 15

m = ⌊nδ⌋, the largest integer less than or equal to nδ, and set δ̃ = m
n . 16

(a) Prove 1
n logP[Zn ≤ δn] ≥ 1

n log
(
n
m

)
+ δ̃ logα+ (1− δ̃) log(1− α). 17

(b) Show that

1

n
log

(
n

m

)
≥ φ(δ̃)− log(n+ 1)

n
(2.64)

where φ(δ̃) = −δ̃ log(δ̃) − (1 − δ̃) log(1 − δ̃) is the binary entropy. (Hint: Let Y 18

be binomial random variable with parameters (n, δ̃) and show that P[Y = ℓ] is 19

maximized when ℓ = m = δ̃n.) 20
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(c) Show that

P[Zn ≤ δn] ≥ 1

n+ 1
e−nD(δ ‖α), (2.65)

where the Kullback-Leibler divergence D(δ ‖α) was previously defined (2.63).1

Exercise 2.11 (Gaussian maxima). Let {Xi}ni=1 be an i.i.d. sequence of N (0, σ2) vari-2

ables, and consider the random variable Zn : = max
i=1,...,n

|Xi|.3

(a) Prove that

E[Zn] ≤
√
2σ2 log n+

4σ√
2 log n

for all n ≥ 2.

(Hint: You may use the tail bound P[U ≥ δ] ≤
√

2
π

1
δ e

−δ2/2, valid for any standard4

normal variate. )5

(b) Prove that

E[Zn] ≥ (1− 1/e)
√
2σ2 log n for all n ≥ 5.

(c) Prove that E[Zn]√
2σ2 logn

→ 1 as n→ +∞.6

Exercise 2.12 (Sharp upper bounds for sub-Gaussian maxima). Let {Xi}ni=1 be a

sequence of zero-mean random variables, each sub-Gaussian with parameter σ. (No

independence assumptions are needed.) Prove that

E
[

max
i=1,...,n

Xi

]
≤

√
2σ2 log n for all n ≥ 1. (2.66)

(Hint: The exponential is a convex function.)7

Exercise 2.13 (Operations on sub-Gaussian variables). Suppose that X1 and X2 are8

zero-mean and sub-Gaussian with parameters σ1 and σ2 respectively.9

(a) If X1 and X2 are independent, show that X1+X2 is sub-Gaussian with parameter10 √
σ21 + σ22.11

(b) Show that in general (without assuming independence), the random variable12

X1 +X2 is sub-Gaussian with parameter at most 2
√
σ21 + σ22.13

(c) IfX1 andX2 are independent, show thatX1X2 is sub-exponential with parameters14

(ν, b) = (
√
2σ1σ2,

1√
2σ1σ2

).15
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Exercise 2.14 (Concentration around medians and means). Given a scalar random

variable X, suppose that there are positive constants c1, c2 such that

P
[
|X − E[X]| ≥ t] ≤ c1e

−c2t2 for all t ≥ 0. (2.67)

(a) Prove that var(X) ≤ c1
c2
. 1

(b) A median mX is any number such that P[X ≥ mX ] ≥ 1/2 and P[X ≤ mX ] ≥ 1/2. 2

Show by example that the median need not be unique. 3

(c) Show that whenever the mean concentration bound (2.67) holds, then for any

median mX ,

P
[
|X −mX | ≥ t

]
≤ c3e

−c4t2 for all t ≥ 0, (2.68)

where c3 : = 4c1 and c4 : =
c2
8 . 4

(d) Conversely, show that whenever the median concentration bound (2.68) holds, 5

then mean concentration (2.67) holds with c1 = 2c3 and c2 =
c4
4 . 6

Exercise 2.15 (Concentration and kernel density estimation). Let X1, X2, . . . , Xn be

i.i.d. samples of random variable with density f on the real line. A standard estimate

of f is the kernel density estimate

fn(x) : =
1

nh

n∑

i=1

K
(x−Xi

h

)
,

where K : R → [0,∞) is a kernel function satisfying
∫∞
−∞K(t)dt = 1, and h > 0 is

a bandwidth parameter. Suppose that we assess the quality of f̂n using the L1 norm

‖f̂n − f‖1 : =
∫∞
−∞ |f̂n(t)− f(t)|dt. Prove that

P
[
‖f̂n − f‖1 ≥ E[‖f̂n − f‖1] + δ

]
≤ e−

nδ2

8 .

Exercise 2.16 (Deviation inequalities in a Hilbert space). Let {Xi}ni=1 be a sequence 7

of independent random variables taking values in a Hilbert space H, and suppose that 8

‖Xi‖H ≤ bi almost surely. Consider the real-valued random variable Sn = ‖∑n
i=1Xi‖H . 9

(a) Show that for all δ ≥ 0,

P
[
|Sn − E[Sn]| ≥ nδ] ≤ 2e−

nδ2

8b2 , where b2 = 1
n

∑n
i=1 b

2
i .
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(b) Show that P
[
Sn
n ≥ a+ δ] ≤ e−

nδ2

8b2 , where a : =
√

1
n2

∑n
i=1 E[‖Xi‖2H ].1

Exercise 2.17 (Hanson-Wright inequality). Given a positive semidefinite matrixQ ∈ R
n×n,

consider the random variable Z =
∑n

i=1

∑n
j=1QijXiXj . The Hanson-Wright inequality

guarantees that whenever the random variables {Xi}ni=1 are i.i.d. variables with mean

zero, variance 1 and σ-sub-Gaussian, then there are universal constants (c1, c2) such

that

P
[
Z ≥ trace(Q) + σt

]
≤ 2e

−min
{

c1t
|||Q|||op ,

c2t
2

|||Q|||2
F

}
, (2.69)

where |||Q|||op and |||Q|||F denote the operator and Frobenius norms, respectively. Prove2

this inequality in the special case Xi ∼ N(0, 1). (Hint: The rotation-invariance of the3

Gaussian distribution and sub-exponential nature of χ2-variates could be useful.)4

Exercise 2.18 (Orlicz norms). Let ψ : R+ → R+ be a strictly increasing convex

function that satisfies ψ(0) = 0. The ψ-Orlicz norm of a random variable X is defined

as

‖X‖ψ : = inf
{
t > 0 | E

[
ψ
(
t−1|X|

)]
≤ 1

}
, (2.70)

where ‖X‖ψ is infinite if there is no finite t for which the expectation E[ψ(t−1|X|)]5

exists. For the functions u 7→ uq for some q ∈ [1,∞], then the Orlicz norm is simply6

the usual ℓq-norm ‖X‖q =
(
E[|X|q]

)1/q
. In this exercise, we consider the Orlicz norms7

‖ · ‖ψq defined by the convex functions ψq(u) = exp(uq)− 1, for q ≥ 1.8

(a) If ‖X‖ψq < +∞, show that there exist positive constants c1, c2 such that

P[|X| > t] ≤ c1 exp(−c2tq) for all t > 0. (2.71)

(In particular, you should be able to show that this bound holds with c1 = 2 and9

c2 = ‖X‖−qψq
.)10

(b) Suppose that a random variable Z satisfies the tail bound (2.71). Show that11

‖X‖ψq is finite.12

Exercise 2.19 (Maxima of Orlicz variables). Recall the definition of Orlicz norm from

Exercise 2.18. Let {Xi}ni=1 be an i.i.d. sequence of zero-mean random variables with

finite Orlicz norm σ = ‖Xi‖ψ. Show that

E[ max
i=1,...,n

|Xi|] ≤ σψ−1(n).

13
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Exercise 2.20 (Tail bounds under moment conditions). Suppose that {Xi}ni=1 are

zero-mean and independent random variables such that, for some fixed integer m ≥ 1,

they satisfy the moment bound ‖Xi‖2m : = (E[X2m
i ])

1
2m ≤ Cm

P
[
| 1
n

n∑

i=1

Xi| ≥ δ
]
≤ Bm

( 1√
nδ

)2m
for all δ > 0,

where Bm is a universal constant depending only on Cm and m.

Hint: You may find the following form of Rosenthal’s inequality to be useful: under

the stated conditions, there is a universal constant Rm such that

E
[( n∑

i=1

Xi

)2m] ≤ Rm

{ n∑

i=1

E[X2m
i ] +

( n∑

i=1

E[X2
i ]
)m

}
.

1

Exercise 2.21 (Concentration and data compression). Let X = (X1, X2, . . . , Xn) be

a vector of i.i.d. Bernoulli variables with parameter 1/2. The goal of lossy data com-

pression is to represent X using a codebook of binary vectors, say {z1, . . . , zN}, such
that the rescaled Hamming distortion

δ : = E
[

min
j=1,...,N

ρH(X, z
j)
]
= E

[
min

j=1,...,N

1

n

n∑

i=1

I[Xi 6= zji ]
]

is as small as possible. Of course, one can always achieve zero distortion using a 2

codebook with N = 2n codewords, so the goal is to use N = 2Rn codewords for some 3

rate R < 1. In this exercise, we use tail bounds to study the trade-off between the rate 4

R and the distortion δ. 5

(a) Suppose that the rate R is upper bounded as

R < D2(δ ‖ 1/2) = δ log2
δ

1/2
+ (1− δ) log2

1− δ

1/2
.

Show that for any codebook {z1, . . . , zN}, the probability of achieving distortion 6

δ goes to zero as n goes to infinity. (Hint: Let V j be an 0-1-valued indicator 7

variable for the event ρH(X, z
j) ≤ δ, and define V =

∑N
j=1 V

j . The tail bounds 8

from Exercise 2.9 could be useful in bounding the probability P[V ≥ 1].) 9

(b) We now show that if ∆R : = R − D2(δ ‖ 1/2) > 0, then there exists a code- 10

book that achieves distortion δ. In order to do so, consider a random codebook 11

{Z1, . . . , ZN}, formed by generating each codeword Zj independently, and with 12

all i.i.d. Ber(1/2) entries. Let V j be an indicator for the event ρH(X,Z
j) ≤ δ, 13

and define V =
∑N

j=1 V
j . 14
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(i) Show that P[V ≥ 1] ≥ (E[V ])2

E[V 2]
.1

(ii) Use part (i) to show that P[V ≥ 1] → +∞ as n → +∞. (Hint: The tail2

bounds from Exercise 2.10 could be useful.)3

Exercise 2.22 (Concentration for spin glasses). For some positive integer d ≥ 2, con-

sider a collection {θjk}j 6=k of weights, one for each distinct pair j 6= k of indices in

{1, 2, . . . , d}. We can then define a probability distribution over the Boolean hypercube

{−1,+1}d via the mass function

Pθ(x1, . . . , xd) = exp
{ 1√

d

∑

i 6=j
θjkxjxk − Fd(θ)

}
, (2.72)

where the function Fd : R
(d2) → R, known as the free energy, is given by

Fd(θ) : = log

( ∑

x∈{−1,+1}d
exp

{ 1√
d

∑

j 6=k
θjkxjxk

})
(2.73)

serves to normalize the distribution. The probability distribution (2.72) was originally4

used to describe the behavior of magnets in statistical physics, in which context it5

is known as the Ising model. Suppose that the weights are chosen as i.i.d. random6

variables, so that equation (2.72) now describes a random family of probability dis-7

tributions. This family is known as the Sherrington-Kirkpatrick model in statistical8

physics.9

(a) Show that Fd is a convex function.10

(b) For any two vectors θ, θ′ ∈ R
(d2), show that ‖Fd(θ)− Fd(θ

′)‖2 ≤
√
d ‖θ − θ′‖2.11

(c) Suppose that the weights are chosen in an i.i.d. manner as θjk ∼ N (0, β2) for

each j 6= k. Use the previous parts and Jensen’s inequality to show that

P

[
Fd(θ)

d
≥ log 2 +

β2

4
+ t

]
≤ 2e−βdt

2/2 for all t > 0. (2.74)

Remark: Interestingly, it is known that for any β ∈ [0, 1), this tail bound captures the12

behavior of Fd(θ)/d accurately, in that Fd(θ)
d

a.s.−→ log 2 + β2/4. In contrast, for β ≥ 1,13

the behavior of this spin glass model is much more subtle; we refer the reader to the14

bibliographic section for additional reading.15
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