
STAT 598Y Statistical Learning Theory Instructor: Jian Zhang

Lecture 7: Glivenko-Cantelli Theorem

Recall that if we use empirical minimization to obtain our predictor

ĥn = arg min
h∈H

R̂n(h),

then in order to bound the quantity R(ĥn) − infh∈H R(h), it suffices to bound the quantity

sup
h∈H

|R(h) − R̂n(h)|.

Thus the uniform bound plays an important role in statistical learning theory. The Glivenko-Cantelli class
is defined such that the above property holds as n → ∞.

Definition. H is a Glivenko-Cantelli class with respect to a probability measure P if for all ε > 0,

P

(

lim
n→∞

sup
h∈H

|Pf − Pnf | = 0

)

= 1,

i.e. suph∈H |Pf − Pnf | converges to zero almost surely (with proability 1). H is said to be a uniformly GC
Class if the convergence is uniformly over all probability measures P .

Note that Vapnik and Chervonenkis have shown that a function class is a uniformly GC class if and only if
it is a VC class.

Given a set of iid real-valued random variables Z1, . . . , Zn and any z ∈ R, we know that the quantity
I(Zi ≤ z) is a Bernoulli random variable with mean P (Z ≤ z) = F (z), where F (.) is the CDF. Furthermore,
by strong law of large numbers, we know that

1

n

n
∑

i=1

I(Zi ≤ z) → F (z)

almost surely. The following theorem is one of the most fundamental theorems in mathematical statistics,
which generalizes the strong law of large numbers: the empirical distribution function uniformly almost
surely converges to the true distribution function.

Theorem (Glivenko-Cantelli). Let Z1, . . . , Zn be iid real-valued random variables with distribution func-
tion F (z) = P (Zi ≤ z). Denote the standard empirical distribution function by

Fn(z) =
1

n

n
∑

i=1

I(Zi ≤ z).

Then

P

(

sup
z∈R

|F (z) − Fn(z)| > ε

)

≤ 8(n + 1) exp

(

−
nε2

32

)

,

and in particular, by the Borel-Cantelli lemma, we have

lim
n→∞

sup
z∈R

|F (z) − Fn(z)| = 0 almost surely.

Proof.

We use the notation ν(A) := P (Z ∈ A) and νn(A) = 1

n

∑n

i=1
I(Zi ∈ A) for any measurable set A ⊂ R. If we

let A denote the class of sets of the form (−∞, z] for all z ∈ R, then we have

sup
z∈R

|F (z) − Fn(z)| = sup
A∈A

|ν(A) − νn(A)|.
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We assume nε2 > 2 since otherwise the result holds trivially. The proof consists of several key steps.

(1) Symmetrization by a ghost sample: Introduce a ghost sample Z ′
1, . . . , Z

′
n which are iid together

with the original sample, and denote by ν′
n the empirical measure with respect to the ghost sample. Then

for nε2 > 2 we have (by the symmetrization lemma)

P

(

sup
A∈A

|νn(A) − ν(A)| > ε

)

≤ 2P

(

sup
A∈A

|νn(A) − ν′
n(A)| > ε/2

)

.

(2) Symmetrization by Rademacher Variables: Let σ1, . . . , σn be iid random variables, independent of
Z1, . . . , Zn, Z ′

1, . . . , Z
′
n, with P (σi = 1) = P (σi = −1) = 1/2. Such random variables are called Rademacher

random variables. Observe that the distribution of

sup
A∈A
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n
∑

i=1

(I(Zi ∈ A) − I(Z ′
i ∈ A)
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∣

is the same as

sup
A∈A
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n
∑

i=1

σi(I(Zi ∈ A) − I(Z ′
i ∈ A)
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∣

by the definition of Z1, . . . , Zn; Z ′
1, . . . , Z

′
n and σ1, . . . , σn. Thus we have

P

(

sup
A∈A

|νn(A) − ν(A)| > ε

)

≤ 2P

(

sup
A∈A

|νn(A) − ν′
n(A)| > ε/2

)

= 2P

(

sup
A∈A
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n
∑

i=1

σi(I(Zi ∈ A) − I(Z ′
i ∈ A)
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>
ε

2

)

≤ 2P

(

sup
A∈A

1
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n
∑

i=1

σiI(Zi ∈ A)
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(

sup
A∈A
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= 4P

(

sup
A∈A
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.

(3) Conditioning: To bound the proability

P

(

sup
A∈A
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i=1

σiI(Zi ∈ A)
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>
ε

4

)

= P

(

sup
z∈R

1

n
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∣

∣

n
∑

i=1

σiI(Zi ≤ z)
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∣

>
ε

4

)

we condition on Z1, . . . , Zn. Fix z1, . . . , zn ∈ R and note that the vector [I(z1 ≤ z), . . . , I(zn ≤ z)] can take
at most (n+1) possible values for any z. Thus conditioned on Z1, . . . , Zn, the supremum is just a maximum
over at most n + 1 random variables. Applying union bound we obtain

P

(

sup
A∈A
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≤ (n + 1) sup
A∈A

P

(

1

n

∣

∣

∣

∣

∣

n
∑

i=1

σiI(Zi ∈ A)

∣

∣

∣

∣

∣

>
ε

4

∣

∣

∣
Z1, . . . , Zn

)

where the sup is outside of the probability. The next step is to find an exponential bound for the RHS.

(4) Hoeffding’s Inequality: With z1, . . . , zn fixed,
∑n

i=1
σiI(zi ∈ A) is a sum of n independent zero

mean random variables between [−1, 1]. Thus, by Hoeffding’s inequality we have
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≤ 2(n + 1) exp

(

−
nε2

32

)

.
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Taking expectation on both side we obtain the claimed result

P

(

sup
A∈A

|νn(A) − ν(A)| > ε

)

≤ 8(n + 1) exp

(

−
nε2

32

)

.
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