STAT 598Y STATISTICAL LEARNING THEORY INSTRUCTOR: JIAN ZHANG

LECTURE 7: GLIVENKO-CANTELLI THEOREM

Recall that if we use empirical minimization to obtain our predictor

hn, = arg hmelﬁ Rn(h),

then in order to bound the quantity R(ﬁn) — infpep R(h), it suffices to bound the quantity

sup |R(h) — Ra(h)].
heH

Thus the uniform bound plays an important role in statistical learning theory. The Glivenko-Cantelli class
is defined such that the above property holds as n — cc.

Definition. H is a Glivenko-Cantelli class with respect to a probability measure P if for all e > 0,
P(lim sup |Pf — P, f] :O> =1,
N0 heH

i.e. suppecy |[Pf — Pnf| converges to zero almost surely (with proability 1). H is said to be a uniformly GC
Class if the convergence is uniformly over all probability measures P.

Note that Vapnik and Chervonenkis have shown that a function class is a uniformly GC class if and only if
it is a VC class.

Given a set of iid real-valued random variables Z1,...,Z, and any z € R, we know that the quantity
I(Z; < z) is a Bernoulli random variable with mean P(Z < z) = F(z), where F(.) is the CDF. Furthermore,
by strong law of large numbers, we know that

n

% S I(Zi < 2) = F(2)

i=1

almost surely. The following theorem is one of the most fundamental theorems in mathematical statistics,
which generalizes the strong law of large numbers: the empirical distribution function uniformly almost
surely converges to the true distribution function.

Theorem (Glivenko-Cantelli). Let Z1,...,Z, be iid real-valued random variables with distribution func-
tion F(z) = P(Z; < z). Denote the standard empirical distribution function by

Fo(z) = %anl(Zi < 2).

Then )
P (sup IF(2) — Fa(2)| > e) < 8(n+1)exp (7 = > :

z€R 3_2

and in particular, by the Borel-Cantelli lemma, we have

lim sup |F(z) — F,,(2)| =0 almost surely.

n—oo ZER
PRrOOF.
We use the notation v(A) := P(Z € A) and v,(A) = 1 3" | I(Z; € A) for any measurable set A C R. If we

let A denote the class of sets of the form (—o0, z] for all z € R, then we have

sup [F'(2) — Fu(2)| = sup [v(A) — vn(4)].
z€R AcA



We assume ne? > 2 since otherwise the result holds trivially. The proof consists of several key steps.

(1) SYMMETRIZATION BY A GHOST SAMPLE: Introduce a ghost sample Z1, ..., Z/ which are iid together
with the original sample, and denote by v}, the empirical measure with respect to the ghost sample. Then
for ne? > 2 we have (by the symmetrization lemma)

P <iléa|un(A) — (A)| > e) <2p (fféﬁ vn(A) — v (A)] > e/2> .

(2) SYMMETRIZATION BY RADEMACHER VARIABLES: Let 01, ..., 0, be iid random variables, independent of
21y s Zny 2y, ..., Z), with P(o; = 1) = P(o; = —1) = 1/2. Such random variables are called Rademacher
random variables. Observe that the distribution of

n

su I(Z;e A)—I(Zl € A
o Do € )1zt € )

is the same as

sup
AcA

by the definition of 71, ..., Z,; 21, .. .,Zn and 01,.-.,0,. Thus we have

P (iléa vn(A) — v(A)] > e>

Zaz (Zi € A)—I1(Z € A)

< 27 (sup [na(4) — V()] > ¢/2)
AeA
= su oi(I(Z; € A)—I(Z] € A)| > <
(Aegl nz 1 ) 2)
1| & €
< 2P| sup — o l(Z; € A + 2P | sup — ol(Z, € A)| > =
(Aean Z )= 4) (Aean Z ( ) 4)
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Zaz (Zie A)| >

=1
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(3) CONDITIONING: To bound the proability

P | sup — o l(Z; € A su o l(Z; < 2) —

(Aea" Z ' > 4) (26%” Z ' 4)

we condition on Z1,...,Zy,. Fix z1,...,2, € R and note that the vector [I(z1 < 2),...,1(z, < z)] can take
at most (n+ 1) possible values for any z. Thus conditioned on Z1, ..., Z,, the supremum is just a maximum

over at most n + 1 random variables. Applying union bound we obtain

1 -~ €
P sup = o (7 € A >—‘Z,...,Z
(Aegln ; ( ) 4 ' ”)

where the sup is outside of the probability. The next step is to find an exponential bound for the RHS.

n

ZUiI(Zi € A)

=1

1
>E ’ Zl,...,Z,,L> <(n+1) supP(—
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(4) HOEFFDING’S INEQUALITY: With zq,..., 2, fixed, > ;' ; 0;I(z; € A) is a sum of n independent zero
mean random variables between [—1,1]. Thus, by Hoeffding’s inequality we have

1| & €
P - I(Z € A —‘Z .7
<ilé€1n ;U’L ( i € ) >4 1, 5 n)
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< m4+D)supP| =[S 0il(ZcA >—‘Z,...,Zn
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Taking expectation on both side we obtain the claimed result

P <,§25 vn(A) — v(A)] > e> < 8(n+1)exp (’;—622) .



