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In this note we will study upper bounds of random variables of the type

sup
A∈A

|νn(A)− ν(A)| ,

where A is a class of sets that needs to ful�ll certain assumptions. These bounds are important
tools in the analysis of learning processes and probabilistic theories of pattern recognition.
The presentation given here is based on [DGL96].

1 Hoe�dings inequality
Lemma 1 (Chebyshev inequality). Let ε > 0 and X ∈ L2 then

P {|X − EX| ≥ ε} ≤ VX

ε2
.

Theorem 2 (Hoe�dings inequality). Let X1, . . . , Xn, be independent bounded random vari-
ables such that Xi fall in the interval [ai, bi] with probability one. Denote their sum by
Sn =

∑n
i=1 Xi. Then for any ε > 0 we have

P {Sn − ESn ≥ ε} ≤ e−2ε2/
Pn

i=1(bi−ai)
2

and

P {Sn − ESn ≤ −ε} ≤ e−2ε2/
Pn

i=1(bi−ai)
2

Proof. Use convexity of the exponential function to prove that for a random variable X with
EX = 0 and a ≤ X ≤ b for any s > 0 we have

E
{
esX

} ≤ es2(b−a)2/8.

The proof is now based on Cherno�'s bounding method : Use the Markov inequality to see
that for a nonnegative random variable X and ε > 0 we have

P {X ≥ ε} ≤ EX

ε

Therefore if s > 0 and X an arbitrary random variable

P {X ≥ ε} = P
{
esX ≥ esε

} ≤ EesX

esε
.
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Cherno�'s method now is to �nd an s > 0 that minimizes the upper bound or at least makes
it small. In our case we have

P {Sn − ESn ≥ ε} ≤ e−sεE

{
exp

(
s

n∑

i=1

(Xi − EXi)

)}

= e−sε
n∏

i=1

E
{

es(Xi−EXi)
}

by independence

≤ e−sε
n∏

i=1

es2(bi−ai)
2/8 by �rst line of proof

= e−sεes2Pn
i=1(bi−ai)

2/8

= e−2ε2/
Pn

i=1(bi−ai)
2 choose s = 4ε/

n∑

i=1

(bi − ai)2

The second inequality is proved analogously.

2 The Glivenko Cantelli Theorem
As a �rst step we study an alternative proof of the well known theorem

Theorem 3 (Glivenko-Cantelli). Let Z1, . . . , Zn be i.i.d. real valued random variables with
distribution function F (z) = P(Z1 ≤ z). Let

Fn(z) =
1
n

n∑

i=1

1{Zi≤z}

be the standard empirical distribution function. Then

P
{

sup
z∈R

|F (z)− Fn(z)| > ε

}
≤ 8 (n + 1) e−nε2/32,

and in particular by the Borel-Cantelli lemma

lim
n→∞

sup
z∈R

|F (z)− Fn(z)| = 0 with probability one.

The proof we will give is not the simplest one possible, but it contains the ideas of the
generalization we will consider later. The argument given here is due to symmetrization ideas
of Dudley [Dud78] and Pollard [Pol84].

Proof. Assume nε2 > 2, otherwise the bound is trivial. Introduce the following notation
ν(A) = P {Z1 ∈ A} and νn(A) = 1

n

∑n
j=1 1{Zj∈A} where A ⊆ R is a measurable set. Denote

by A the class of sets of the form (−∞, z], z ∈ R. Then we have

sup
z∈R

|F (z)− Fn(z)| = sup
A∈A

|νn(A)− ν(A)| .

Step 1. First symmetrization by a ghost sample
De�ne random variables Z ′1, . . . , Z

′
n ∈ R such that Z1, . . . , Zn, Z ′1, . . . , Z

′
n are all i.i.d. Denote

by ν′n the empirical measure of the primed variables. For nε2 ≥ 2 we have

P
{

sup
A∈A

|νn(A)− ν(A)| > ε

}
≤ 2P

{
sup
A∈A

|νn(A)− ν′n(A)| ≥ ε

2

}
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2 THE GLIVENKO CANTELLI THEOREM 3

To see this let A∗ be a set for which |νn(A∗)− ν(A∗)| > ε if existent or a �xed set in A
otherwise. The measurability of such a choice needs to be checked, using the technique of
step 3 of the proof, showing that its actually a choice from �nitely many sets only. Then

P
{

sup
A∈A

|νn(A)− ν′n(A)| > ε

2

}
≥ P

{
|νn(A∗)− ν′n(A∗)| > ε

2

}

≥ P
{
|νn(A∗)− ν(A∗)| > ε, |ν′n(A∗)− ν(A∗)| < ε

2

}

= E
{
1{|νn(A∗)−ν(A∗)|>ε}P

{
|ν′n(A∗)− ν(A∗)| < ε

2
|Z1, . . . , Zn

}}
.

The conditional probability inside the expectation may be bounded by Chebyshev's inequality
as follows:

P
{
|ν′n(A∗)− ν(A∗)| < ε

2
|Z1, . . . , Zn

}
≥ 1− ν(A∗) (1− ν(A∗))

nε2/4

≥ 1− 1
nε2

≥ 1
2
,

because the variance of the random variable νn(A)−ν(A) equals 1
nν(A) (1− ν(A)). Altogether

we �nd

P
{

sup
A∈A

|νn(A)− ν′n(A)| > ε

2

}
≥ 1

2
P {|νn(A∗)− ν(A∗)| > ε}

≥ 1
2
P

{
sup
A∈A

|νn(A)− ν(A)| > ε

}
.

Step 2. Second Symmetrization by random signs
Let σ1, . . . , σn be i.i.d. sign variables that are also independent of all Zi, Z

′
i and satisfy

P {σ = 1} = P {σ = −1} = 1
2 . Then using step 1

P
{

sup
A∈A

|νn(A)− ν(A)| > ε

}
≤ 2P

{
sup
A∈A

1
n

∣∣∣∣∣
n∑

i=1

(
1{A}(Zi)− 1{A}(Z ′i)

)
∣∣∣∣∣ >

ε

2

}

= 2P

{
sup
A∈A

1
n

∣∣∣∣∣
n∑

i=1

σi

(
1{A}(Zi)− 1{A}(Z ′i)

)
∣∣∣∣∣ >

ε

2

}
.

We now apply the union bound to remove the auxiliary random variables Z ′1, . . . , Z
′
n.

P

{
sup
A∈A

1
n

∣∣∣∣∣
n∑

i=1

σi

(
1{A}(Zi)− 1{A}(Z ′i)

)
∣∣∣∣∣ >

ε

2

}

≤ P
{

sup
A∈A

1
n

∣∣∣∣∣
n∑

i=1

σi1{A}(Zi)

∣∣∣∣∣ >
ε

4

}
+ P

{
sup
A∈A

1
n

∣∣∣∣∣
n∑

i=1

σi1{A}(Z ′i)

∣∣∣∣∣ >
ε

4

}

= 2P

{
sup
A∈A

1
n

∣∣∣∣∣
n∑

i=1

σi1{A}(Zi)

∣∣∣∣∣ >
ε

4

}
.

Step 3. Conditioning To �nd a bound on the probability

P

{
sup
A∈A

1
n

∣∣∣∣∣
n∑

i=1

σi1{A}(Zi)

∣∣∣∣∣ >
ε

4

}
= P

{
sup
z∈R

1
n

∣∣∣∣∣
n∑

i=1

σi1{Zi≤z}

∣∣∣∣∣ >
ε

4

}

we will condition on Z1, . . . , Zn. The conditional probability can be bounded and afterwards
we will remove the conditioning by just taking the expectation value.



We observe that, having z1, . . . , zn ∈ R �xed, as z ranges over R the number of di�erent
vectors

(
1{z1≤z}, . . . ,1{zn≤z}

)
is at most n + 1. Therefore conditioned on Z1, . . . , Zn the

supremum in the probability above is just a maximum taken over the at most n + 1 random
variables. We apply the union bound to �nd

P

{
sup
A∈A

1
n

∣∣∣∣∣
n∑

i=1

σi1{A}(Zi)

∣∣∣∣∣ >
ε

4
| Z1, . . . , Zn

}

≤ (n + 1) sup
A∈A

P

{
1
n

∣∣∣∣∣
n∑

i=1

σi1{A}(Zi)

∣∣∣∣∣ >
ε

4
| Z1, . . . , Zn

}
.

Having the supremum outside the probability we are left with �nding an exponential bound
on the probability

P

{
1
n

∣∣∣∣∣
n∑

i=1

σi1{A}(Zi)

∣∣∣∣∣ >
ε

4
| Z1, . . . , Zn

}
.

Step 4. Hoeffdings inequality As we have conditioned on the values of the Z1, . . . , Zn

we can regard z1, . . . , zn as �xed. Then
∑n

i=1 σi1{A}(zi) is the sum of n independent zero
mean random variables between −1 and 1. We can therefore apply Hoe�dings inequality:

P

{
1
n

∣∣∣∣∣
n∑

i=1

σi1{A}(Zi)

∣∣∣∣∣ >
ε

4
| Z1, . . . , Zn

}
≤ 2e−nε2/32.

Thus we �nd

P

{
sup
A∈A

1
n

∣∣∣∣∣
n∑

i=1

σi1{A}(Zi)

∣∣∣∣∣ >
ε

4
| Z1, . . . , Zn

}
≤ 2(n + 1)e−nε2/32.

Take the expectation value on both sides to �nd

P

{
sup
A∈A

1
n

∣∣∣∣∣
n∑

i=1

σi1{A}(Zi)

∣∣∣∣∣ >
ε

4

}
≤ 2(n + 1)e−nε2/32.

Altogether we have

P
{

sup
A∈A

|νn(A)− ν(A)| > ε

}
≤ 8(n + 1)e−nε2/32.

which �nishes the proof.

3 Generalizations
Next we want to prove the Vapnik Chervonenkis inequality, which is a mighty generalization
of the Glivenko Cantelli Theorem. The proof we just studied is after a slight adjustment
already proof of the stronger theorem.
The aim of the generalization is to give the statement for arbitrary classes of measurable sets
A. We then need to re�ne the argument in the proof were the sup is identi�ed as a maximum.

De�nition 4. Let A be a collection of measurable sets in Rd. For z1, . . . , zn ∈ Rd we call

NA(z1, . . . , zn) := |{{z1, . . . , zn} ∩A : A ∈ A}|
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3 GENERALIZATIONS 5

the index of the points z1, . . . , zn. Further we de�ne

s(A, n) := max
z1,...,zn∈Rd

NA(z1, . . . , zn)

to be the n-th shatter coe�cient of the class A.
The index is the number of di�erent subsets of given n points that can be identi�ed by
intersecting with sets in A. Then obviously the shatter coe�cient is the maximal number
of di�erent subsets that can be picked out. It measures the diversity of the class. Clearly
s(A, n) ≤ 2n as there are only 2n subsets of n points. The largest integer h for which
s(A, h) = 2h is called the vc-dimension of the class A. It plays a crucial role in the statistical
learning theory (see [Vap00]).

Theorem 5 (Vapnik-Chervonenkis). For any probability measure ν and class of sets A, and
for any n and ε > 0,

P
{

sup
A∈A

|ν(A)− νn(A)| > ε

}
≤ 8s(A, n)e−nε2/32,

Proof. We modify the proof of Theorem 3: In step 3 we now argue that the supremum is
actually a maximum over at most s(A, n) sets.

Remark (Measurability). The supremum in the theorem is not always measurable. In fact
this must be checked for every family A.
Remark (Optimal Exponent). For the sake of brevity we followed Pollards([Pol84]) proof
instead of the original one by Vapnik ([VC71]). In particular the exponent −nε2/32 is worse
than the −nε2/8 in the original paper. The best known exponent for the Glivenko Cantelli
Theorem is −2nε2 ([Mas90]). For the Vapnik Chervonenkis inequality several re�nements
exist that play with the prefactor and the exponent. See for instance [Dev82].
In fact it should be clear that the statement could also be given in a probabilistic manner:

Theorem 6.

P
{

sup
A∈A

|ν(A)− νn(A)| > ε

}
≤ 8E {NA(Z1, . . . , Zn)} e−nε2/32,

For real world applications this statement is more di�cult to handle, but it is of great theo-
retical interest. We say that a uniform law of large numbers holds if

sup
A∈A

|νn(A)− ν(A)| → 0 in probability

It follows from the theorem that this is the case if
logE {(NA(Z1, . . . , Zn))}

n
→ 0

Vapnik and Chervonenkis showed is [VC71, Vap98] that this condition is also necessary for the
uniform law of large numbers. Another characterization is given by Talagrand [Tal87], who
showed that the uniform law of large numbers holds if and only if there does not exist a set
A ⊆ Rd with ν(A) > 0 such that, with probability one, the set {Z1, . . . , Zn} ∩A is shattered
by A.
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