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17.1 Sub Gaussian Processes, Metric Entropy and Chaining

17.1.1 Overview

In this class and the next few classes we will look at techniques to control collection of random variables
indexed by sets with infinite number of elements. This collection of random variables is called a stochastic
process. To be more specific, given random variables {Xθ, θ ∈ T} indexed by T, we are interested in bounding

E
[
sup
θ∈T

Xθ

]
, (17.1)

where T ⊆ Rn. Lets now look at two important stochastic processes that we often come across:

• When Xθ = 〈θ,X〉, X is rademacher (i.e., X1, X2 . . . Xn are i.i.d rademacher random variables) then
the expression in (17.1) is called the Rademacher Complexity of T.

Note that, we came across Rademacher Complexity when we discussed Uniform Law of Large Numbers.
When T = F(Zn1 ) = {(f(z1), f(z2), . . . f(zn)) ∈ Rn, f ∈ F} and Xθ is as defined above then (17.1) is
the conditional Rademacher Complexity of F given Zn1 .

• If Xθ = 〈θ,X〉 and X ∼ N (0, I) is gaussian, then the expression in (17.1) is called the Gaussian
Complexity of T.

Example 17.1 Let T be the unit euclidean ball in Rn. And let Rn(T) be the Rademacher Complexity of T
and Gn(T) be its Gaussian Complexity. Then

Rn(T) =
√
n, Gn(T) ≤

√
n. (17.2)

Example 17.2 Let T = {θ ∈ Rn, ‖θ‖1 ≤ 1}. Then

sup
θ∈T
〈θ,X〉 = ‖X‖∞ = max

i
|Xi|.

Then Rn(T) = 1, Gn(T) ≤ 2
√

log n.
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17.1.2 Sub-Gaussian Stocahstic Process

Definition 17.3 A zero mean stochastic process {Xθ, θ ∈ T} is a sub-gaussian process w.r.t d, a metric on
T, if for every λ ∈ R, the following is true:

E [expλ(Xθ −Xθ′)] ≤ exp
λ2d2(θ, θ′)

2
∀θ, θ′ ∈ T.

or equivalently (Xθ −Xθ′) ∈ SG(d2(θ, θ′)).

Note that in many cases d(θ, θ′) = Θ(‖θ−θ′‖). This is the case with Rademacher and Gaussian complexities.
When d2(θ, θ′) = E[(Xθ −Xθ′)

2], then d is called the canonical distance.

17.1.3 1-Step Discretization Method

We now present the 1-step discretization method to bound (17.1) when {Xθ, θ ∈ T} is a sub-gaussian process.
This method uses the metric entropy of a set, which is a measure of the size of a set with infinitely many
elements. Before we present the theorem, we review the definition of covering number.

Definition 17.4 (Covering Number) A δ-cover of a set T w.r.t metric d is a set {θ1, θ2 . . . θN} ⊆ T such
that for each θ ∈ T, there exists some i ∈ {1, 2, . . . N} such that d(θ, θi) ≤ δ. The δ-covering number N(δ,T)
is the cardinality of the smallest δ-cover.

Theorem 17.5 Let {Xθ, θ ∈ T} be a sub-gaussian stochastic process w.r.t metric d. Let D = sup
θ,θ′∈T

d(θ, θ′)

be the diameter of T w.r.t d (assume D <∞). Then ∀δ ∈ [0, D]

E

[
sup
θ,θ′∈T

Xθ −Xθ′

]
≤ 2E

[
sup

γ,γ′∈T,d(γ,γ′)≤δ
Xγ −Xγ′

]
+ 4D

√
logN(δ,T). (17.3)

Proof: Fix δ ∈ [0, D]. Let {θ1, θ2, . . . θN} be a δ-covering of T where N = N(δ,T). For any θ ∈ T, let θi be
a point in δ−covering such that d(θ, θi) ≤ δ. Then:

Xθ −Xθ1 = Xθ −Xθi +Xθi −Xθ1 ≤

[
sup

γ,γ′∈T,d(γ,γ′)≤δ
Xγ −Xγ′

]
+

[
max
i∈[N ]

|Xθi −Xθ1 |
]
.

For any other point θ′ ∈ T, the same bound applies to Xθ1 −Xθ′ . Adding these two, we get:

sup
θ,θ′∈T

Xθ −Xθ′ ≤ 2

[
sup

γ,γ′∈T,d(γ,γ′)≤δ
Xγ −Xγ′

]
+ 2 max

i∈[N ]
|Xθi −Xθ1 |.

To complete the proof we take expectations on both sides of the above equation and use the fact that
{Xθ, θ ∈ T} is a sub-gaussian process:

E

[
sup
θ,θ′∈T

Xθ −Xθ′

]
≤ 2E

[
sup

γ,γ′∈T,d(γ,γ′)≤δ
Xγ −Xγ′

]
+ 4D

√
logN(δ,T).
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Remark 17.6 Note that (17.3) also gives a bound for E
[
sup
θ∈T

Xθ

]
:

E
[
sup
θ∈T

Xθ

]
= E

[
sup
θ∈T

Xθ −Xθ0

]
for any θ0 ∈ T

≤ E

[
sup
θ,θ′∈T

Xθ −Xθ′

]

Remark 17.7 This is the same discretization bound we derived before in the class when we talked about
covering and packing numbers.

Example 17.8 (Gaussian and Rademacher complexities)

Let T ⊂ Rn be bounded and let Xθ = 〈θ,X〉 where X is a rademacher or gaussian random vector. Note that
Xθ is a sub-gaussian stochastic process w.r.t ‖.‖2. We now apply the 1-step discretization theorem to get an
upper bound for Gaussian and Rademacher complexities of T. From to (17.2) we have:

E

[
sup

γ,γ′∈T,d(γ,γ′)≤δ
Xγ −Xγ′

]
≤ δ
√
n.

Then the 1-step discretization bound gives us:

E
[
sup
θ∈T

Xθ

]
≤ min
δ∈[0,D]

2δ
√
n+ 4D

√
logN(δ,T).

Example 17.9 (Random Matrices)

Let W ∈ Rn×d be a matrix with i.i.d SG(1) entries. We are interested in bounding ‖W‖op = sup
v∈Sd−1

‖Wv‖2.

We can write ‖W‖op as
‖W‖op = sup

Θ∈Mn,d(1)

XΘ,

where Mn,d(1) is the set of all n × d matrices of rank 1 and frobenius norm 1, XΘ = 〈W,Θ〉F . Note that
XΘ is a zero-mean, SG process w.r.t frobenius distance. So applying 1-step discretization bound we get:

E [‖W‖op] ≤ 2E

[
sup

Γ,Γ′∈Mn,d(1),‖Γ−Γ′‖F≤δ
XΓ −XΓ′

]
+ 6
√

logN(δ,Mn,d(1))

≤ 2
√

2δE[‖W‖op] + 6

√
(n+ d) log

(
1 +

2

δ

)
.

Setting δ = 1
4
√

2
, we get 1√

n
E [‖W‖op] ≤ c

(
1 +

√
d
n

)
where c > 0 is a universal constant.

Example 17.10 (Non-parametric Regression)

Let FL be the set of lipschitz functions on [0, 1] defined as:

FL = {f : [0, 1]→ R, |f(x)− f(y)| ≤ L|x− y|, x, y ∈ [0, 1]} .
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Consider the ‖.‖∞ metric on FL defined as : ‖f − g‖∞ = sup
x
|f(x) − g(x)|. Then we have the following

bound on covering number of FL using ‖.‖∞ metric: logN∞(δ,FL) � L
δ , ∀δ < δ0.

In non-parametric settings we usually work with
FL(Xn

1 )√
n

because in this case ‖.‖2 on FL(Xn
1 ) corresponds

to empirical L2 distance: ‖f − g‖n = 1√
n

√∑
i(f(xi)− g(xi))2. It is easy to see that ‖f − g‖n ≤ ‖f − g‖∞.

So logN2

(
δ, FL√

n

)
≤ logN∞(δ,FL). So if we are interested in Gaussian complexity of

FL(Xn
1 )

n , we get the

following upper bound from 1-step discretization method:

Gn
(
FL(Xn

1 )

n

)
≤ 1√

n
inf

δ∈(0,δ0)
δ
√
n+ c

√
L

δ
.

Setting δ = n−1/3 we get Gn
(FL

n

)
≤ cn−1/3, where c > 0 is a constant.

17.1.4 Chaining Method

In the next class we will look at chaining technique (by Dudley) that provides a better bound for E
[
sup
θ∈T

Xθ

]
.

Specifically, chaining gives a better bound for max
i∈[N ]

|Xθi −Xθ1 | of the form:

∫ D

δ/4

√
logN(µ,T)dµ.

If we let δ → 0, we will recover Dudley’s result.
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