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1 Glivenko–Cantelli classes of functions

The reader is referred to Chapter 1.6 of Wellner’s Torgnon notes, Chapter ??? of VDVW and

Chapter 8.3 of Kosorok. First, a theorem using bracketing entropy. Let (F , ‖ ‖) be a subset of a

normed space of real functions f : X → R. Given real functions l and u on X (but not necessarily

in F), the bracket [l, u] is defined as the set of all functions f ∈ F satisfying l ≤ f ≤ u. The

functions l, u are assumed to have finite norms. An ε-bracket is a bracket with ‖u − l‖ ≤ ε. The

bracketing number N[] (ε,F ‖ ‖) is the minimum number of ε-brackets with which F can be covered

and the bracketing entropy is the log of this number.

Theorem 1.1 Let F be a class of measurable functions with N[] (ε,F ‖ ‖) <∞ for all ε > 0. Then

F is P -Glivenko-Cantelli, i.e.

‖Pn − P‖?F →a.s 0 .

Brief sketch: For any ε > 0 choose finitely many ε-brackets {li, ui}mi=1 (which can be arranged,

by assumption) and argue, by finding a bound on |(Pn − P )f | (for each f) in terms of the [li, ui]

that contains it, that:

sup
f∈F
|(Pn − P )f | ≤

{
max

1≤i≤m
(Pn − P )ui ∨ max

1≤i≤m
(P − Pn) li

}
+ ε ,

and conclude, using the strong law for random variables, that the right side of the above display

is almost surely less than 2 ε eventually. 2

GC theorem for a continuous distribution function on the line: Let F be a continuous

cdf and P the corresponding measure. By uniform continuity of F on the line, for every ε > 0,
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we can find −∞ = t0 < t1 < t2 < . . . < tk < tk+1 = ∞, with k a positive integer, such that the

union of the brackets [1(x ≤ ti), 1(x ≤ ti+1)] for i = 0, 1, . . . , k contains {1(x ≤ t : t ∈ R} and

satisfy F (ti+1) − F (ti) ≤ ε. The above theorem now applies directly. Note that the continuity of

the distribution function F was used crucially. The GC theorem on the line holds for arbitrary

distribution functions though. This more general result will be seen to be a corollary of a

subsequent GC theorem.

The next lemma provides a setting which guarantees a finite bracketing number for appropriate

classes of functions and finds a ready application in inference in parametric statistical models.

Lemma 1.1 Suppose that F = {f(·, t) : t ∈ T}, where T is a compact subset of a metric space

(D, d) and the functions f : X × T → R are continuous in t for P–almost x ∈ X . Assume that the

envelope function F defined by F (x) = supt∈T |f(x, t)| satisfies P ?F <∞. Then N[ ](ε,F , L1(P )) <

∞, for each ε > 0.

The proof is given in Chapter 1.6 of Wellner’s Torgnon notes. We skip it but show next how the

above result is helpful for deducing consistency in parametric statistical models.

Consistency in parametric models: Let {p(x, θ) : θ ∈ Θ} with Θ ⊂ Rd be a class of

parametric densities and consider X1, X2, . . . , generated from some p(x, θ0). Also assume that Θ

is compact and that p(x, θ) is continuous in θ for Pθ0-almost x. Define M(θ) = Eθ0 l(X1, θ) where

l(x, θ) = log p(x, θ). Finally assume that supθ∈Θ |l(x, θ)| ≤ B(x) for some B with Eθ0 B(X1) <∞.

Then, note that M(θ) if finite for all θ and moreover, continuous on Θ. If P0 denotes the measure

corresponding to θ0, M(θ) = Pθ0 l(·, θ). The MLE of θ is given by θ̂n = argmaxθ Mn(θ) where

Mn(θ) = Pn l(·, θ). Under the assumption that the model is identifiable (i.e. the probability

distributions corresponding to different θ’s are different), it is easily seen that M(θ) is uniquely

minimized at θ0. Finally, note that θ0 is a well-separated maximizer in the sense that for any

η > 0, supθ∈Θ∩Bη(θ0)cM(θ) < M(θ0), with Bη(θ0) being the open ball of radius η centered at θ0.

Let ψ(η) = M(θ0)− supθ∈Θ∩Bη(θ0)cM(θ). Then ψ(η) > 0.

Our goal is to show that θ̂n →P
?
θ0
θ0. So, given ε > 0, consider P ?(θ̂n ∈ Bε(θ0)c. Now,

θ̂n ∈ Bε(θ0)c ⇒ M(θ̂n) ≤ sup
θ∈Θ∩Bη(θ0)c

M(θ)

⇔ M(θ̂n)−M(θ0) ≤ −ψ(ε)

⇒ M(θ̂n)−M(θ0) + Mn(θ0)−Mn(θ̂n) ≤ −ψ(ε)

2



⇒ 2 sup
θ∈Θ
|Mn(θ)−M(θ)| ≥ ψ(ε) .

Thus,

P ?(θ̂n ∈ Bε(θ0)c) ≤ P ?(sup
θ∈Θ
|Mn(θ)−M(θ)| ≥ ψ(ε)/2) ≡ P ?(sup

θ∈Θ
|(Pn − Pθ0) l(·, θ)| ≥ ψ(ε)/2) ,

and this goes to 0, owing to the fact that (supθ∈Θ |(Pn − Pθ0) l(·, θ)|)? →a.s. 0 (since

under our assumptions on the parametric model, we can conclude from Lemma 1.1 that

N[ ](η,{l(·, θ) : θ ∈ Θ}, L1(Pθ0)) <∞ for every η > 0 and then invoke Theorem 1.1).

We next state (and partly prove) a result that provides necessary and sufficient conditions

for a class of functions F to be Glivenko-Cantelli in terms of covering numbers.

Theorem 1.2 Let F be a P -measurable class of measurable functions bounded in L1(P ). Then F
is P -Glivenko Cantelli if and only if:

(a) P ?F <∞,

(b)

lim
n→∞

E? log N(ε,FM , L2(Pn))
n

= 0 ,

for all M <∞ and ε > 0. Here FM = {f 1(F ≤M) : f ∈ F}.

Discussion: We will only consider the ‘if’ part of the proof. This will be provided later. First,

we note that L2 can be replaced by any Lr, r ≥ 1. At least for the if part, this will be obvious

from the proof. Secondly, for the ‘if’ part, the second condition can be replaced by the weaker

condition that log N(ε,FM , L2(Pn))/n→P ? 0. Thirdly, since N(ε,FM , L2(Pn)) ≤ N(ε,F , L2(Pn))

for all M > 0, condition (b) in the theorem can be replaced by the alternative condition that

E?(log N(ε,F , L2(Pn)/n) → 0 (or a condition involving convergence in probability for the ‘if’

part). Finally, if F has a measurable and integrable envelope, F , then Pn F is finite almost surely

(simple strong law) and it is readily argued that:

∀ε > 0, (log N(ε,F , L1(Pn)))? = op(n)⇔ ∀ε > 0, (log N(ε ‖F‖Pn,1,F , L1(Pn)))? = op(n) .

To see this quickly, use the characterization of in-probability convergence in terms of almost sure

convergence along subsequences. It turns out that there is a large class of functions, called VC

classes of functions, for which the quantity log N(ε ‖F‖Pn,1,F , L1(Pn)) is bounded, uniformly in n

and ω; in fact, for such a class F of functions, for:

sup
Q

N(ε ‖F‖Q,r,F , Lr(Q)) ≤ K1

(
1
εr

)M
,
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for an integer M ≥ 1 that depends solely on F , a constant K1 that depends only on F , and

the supremum is taken over all probability measures for which ‖F‖Q,r > 0. Thus, a VC class of

functions with integrable envelope F is easily Glivenko-Cantelli for any probability measure on

the corresponding sample space. The fortunate thing is that functions formed by combining VC

classes of functions via various mathematical operations often satisfy similar entropy bounds as in

the above display, so that such (more) complex classes continue to remain Glivenko-Cantelli under

integrability hypotheses.

As a special case, consider F = {ft(x) = 1−∞,t] (x) : t ∈ Rd}. Thus ft(x) is simply the

indicator of the infinite rectangle to the ‘south-west’ of the point t. For all probability measures Q

on d-dimensional Euclidean space:

N(ε, F, L1(Q)) ≤Md

(
K

ε

)d
,

which immediately implies the classical Glivenko-Cantelli theorem in Rd.

Proof of Theorem 1.2: We prove the ‘if’ part. By P -measurability of the class F and Corollary

1.1 of the symmetrization notes applied with Φ being the identity,

E? ‖Pn − P‖F ≤ 2E

∥∥∥∥∥ 1
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
F

= 2EX Eε

∥∥∥∥∥ 1
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
F

≤ 2EX Eε

∥∥∥∥∥ 1
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
FM

+ 2P ?(F 1(F > M)) .

Given any ε > 0, an appropriate choice of M ensures that the second term is no larger than ε. It

suffices to show that for this choice of M , the first term is eventually smaller than ε. To this end,

first fix X1, X2, . . . , Xn. An ε-net G (assumed to be of minimal size) over FM in L2(Pn) is also an

ε-net in L1(Pn). It follows that:

Eε

∥∥∥∥∥ 1
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
FM

≤ Eε

∥∥∥∥∥ 1
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
G

+ ε .

Before going further, note that each g ∈ G can be assumed to be uniformly bounded (in absolute

value) by M . This can be achieved since each f in FM is bounded (in absolute value) by M . So,
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given an arbitrary ε-net G, perturb each g to a g̃ which coincides with g whenever |g| ≤M and on

the complement of this set equals (g) ×M . These perturbed functions continue to constitute an

ε-net over FM .

Consider the first term on the right of the above display. Since the L1 norm is bounded (up to a

constant) by the ψ1 Orlicz norm, which is bounded upto a constant by the ψ2 Orlicz norm, we can

use Lemma 1.1 in the chaining notes to bound the first term, up to a constant, by:

Bn =
√

1 + logN(ε,FM , L2(Pn)) max
f∈G

∥∥∥∥∥ 1
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
ψ2|X

.

As a consequence of Hoeffding’s inequality (see the first page of the symmetrization notes):∥∥∥∥∥ 1
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
ψ2|X

≤
√

6
1√
n

(Pn f2)1/2 ≤
√

6
1√
n
M ,

and thus

Bn ≤
√

6M

√
1 + logN(ε,FM , L2(Pn))

n
→ 0 ,

by Condition (b) of the theorem. Conclude that:

Eε

∥∥∥∥∥ 1
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
FM

→P 0 .

Since the above random variable is bounded, conclude that:

EX Eε

∥∥∥∥∥ 1
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
FM

→ 0 .

It follows that E? (‖Pn − P‖F → 0. Our goal is however to show almost sure convergence. This

is deduced by a submartingale argument, a simplified version of which is presented at the end of

these notes. The idea here is to show that ‖Pn − P‖?F is a reverse submartingale with respect to

a (decreasing) filtration that converges to the symmetric sigma-field and therefore has an almost

sure limit. This almost sure limit, being measurable with respect to the symmetric sigma field,

must be a non-negative constant almost surely. The fact that the expectation converges to 0 then

forces this constant to be 0. The full undiluted version of the argument is presented in Lemma

2.4.5 of VDVW. 2

Uniform and universal GC classes: If F is P -Glivenko-Cantelli for all probability measures
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P on (X ,A), it is called a universal Glivenko-Cantell class. For example, VC classes of functions

(that appear in the discussion preceding the proof of Theorem 1.2) are universal GC-classes

provided they are uniformly bounded (so that there is an integrable envelope for every probability

measure P ).

A stronger GC property can be formulated in terms of the uniformity of the convergence of

the empirical measure to the true measure over all probability measures on (X ,A). Say that F is

a strong uniform GC class if, for all ε > 0,

sup
P∈P(X ,A)

Pr?P

(
sup
m≥n

‖Pm − P‖F > ε

)
→ 0 .

Note that the almost sure convergence of ‖Pn − P‖
? to 0 for a fixed P is equivalent to the condition: For every ε > 0,

Pr?P

(
sup
m≥n

‖Pm − P‖F > ε

)
→ 0 .

Uniform Glivenko Cantelli classes are sometimes useful in statistical applications, for example

in situations where the parent distribution from which a statistical model is generated is

allowed to vary with the sample size n, or situations where there are two indices m,n that

go to infinity, with n being the sample size, and m an index that labels the statistical model.

Consistency arguments for such situations can be constructed via the notion of uniform GC

classes of functions. A compelling application is presented in the paper by Sen, Banerjee and

Michailidis (2010) (available on Banerjee’s webpage) where the problem is one of estimating the

minimum effective dose in a dose–response setting (the largest dose beyond which the response

is positive) and n is the number of distinct doses with each dose administered to a distinct

set of m individuals. Consistency of a least squares estimate of the minimum effective dose

is established as m,n → ∞ and the notion of uniform GC classes is heavily used. Section

2.8.1 of VDVW deals with these ideas; see Theorem 2.8.1 which can be used to deduce that

V C classes of functions are uniformly Glivenko-Cantelli under appropriate integrability restrictions.

GC preservation: Preservation of GC properties are important from the perspective of

applications. Often, in a statistical application, it becomes necessary to show the GC property for

a class of functions with complex functional forms to which tailor-made GC theorems are difficult

to apply. However, if such classes can be built up from simple GC classes of functions via simple

6



mathematical operations, the GC property often translates to the complex classes of interest.

Section 1.6 of Wellner’s notes has a discussion of preservation properties as does Section 9.3 of

Kosorok.

Some discussion from Kosorok:

An example: Suppose that X = R and that X ∼ P .

(i) For 0 < M <∞ and a ∈ R, let f(x, t) = |x− t| and F = Fa,M = {f(x, t) : |t− a| ≤M}. Show

that if E(|X|) <∞, N[ ](ε,F , L1(P )) <∞.

Derivation: Chop the interval [a −M,a + M ] into an evenly spaced (finite) grid of points {si}
including the end-points such that successive points on the grid are separated by a distance no larger

than ε̃ < ε. Construct a set of brackets {lj , uj} where lj(x) = |x−sj |1(x ≤ sj)+|x−sj+1| 1(x ≥ sj+1)

and uj(x) = |x− sj | ∨ |x− sj+1|. Each lj , uj has finite norm since EP (|X|) <∞. A simple picture

should now convince you that uj − lj is non-negative and no larger than ε̃ pointwise and hence in

the L1(P ) norm. Every point t in [a −M,a + M ] lies in some [sj , sj+1] and the function f(x, t)

then belongs to the bracket [lj , uj ], showing that N[ ](ε,F , L1(P )) <∞.

(ii) Same as before but let f(x, t) = |x − t| − |x − a|. Show that N[ ](ε,F , L1(P )) < ∞ but

without the assumption that EP (|X|) <∞. 2

Derivation: Take the lj , uj ’s constructed above and define ũj = uj − |x− a| and ũj = lj − |x− a|.
Consider {l̃j , ũj}. It is easy to show, using the fact that | |x− t|− |x− t′|| ≤ |t− t′| that each ũj and

each l̃j is bounded and therefore integrable, irrespective of whether E(|X|) < ∞. If t ∈ [sj , sj+1],

f(x, t) lies in the bracket [l̃j , ũj ]. 2
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