Theoretical Statistics. Lecture 12.
Peter Bartlett

Uniform laws of large numbers: Bounding Rademacher coniylex

1. Metric entropy.

2. Canonical Rademacher and Gaussian processes




Recall: Covering numbers.

A pseudometricis like a metric, but we don'’t insist tha{(z, y) = 0
impliesz = y.

Definition: An e-cover of a subséf’ of a pseudometric spagé, d) is a set
T c T such that for each € T there is & € T such thatd(t,?) < e. The

e-covering number of ' is

N(e, T,d) = min{|T| : T is ane-cover ofT'}.

A setT' is totally bounded if, for all e > 0, N(¢, T, d) < oo.
The functione — log N (¢, T, d) is themetric entropy of 7.
If lim._,o log N (€)/log(1/¢) exists, it is called thenetric dimension.




Covering numbers'

Intuition: A d-dimensional set has metric dimensi@n(N (¢) = ©(1/¢%).)

Example:([0, 1]9, 1) hasN (¢) = ©(1/€9).




Packing numbers.

Definition:

An e-packing of a subsét’ of a pseudometric spagé, d) is

a subsetl’ c T such that each pais,t € T satisfiesd(s,t) > e. The
e-packing number of’ is

M (e, T,d) = max{|T| : T is ane-packing ofT'}.




‘Covering and packing numberEI

Theorem: Foralle > 0, M (2¢) < N(e) < M(e).

Thus, the scaling of the covering and packing numbers isahees




Covering and packing numbers: ProofI

For the first inequality, consider a minimatoverZ'. Any two elements of
a 2e-packing ofT’ cannot be withire of the same element df. (Otherwise,
the triangle inequality shows that they are witBinof each other.) Thus,
there can be no more than one element 2§ packing for each of théV ()
elements of". That is,M (2¢) < N(e).

For the second inequality, considerapacking? of size M (¢). Since it is
maximal, no other point € T can be added for which some= T has
d(s,t) > €. Thus,T is ane-cover. So the minimal-cover has size

N(e) < M(e).




‘Covering and packing numbers: Examplﬂ

Theorem: Let| - || be a norm oR? and letB be the unit ball. Then




‘Covering and packing numbers of a norm ball: Proof'

Lower bound: Consider astcover{zy,...,xzn} of size N = N(¢, B), and
notice that

N
U (x; +€eB),
i=1

so  vol(B) < N(e, B)vol(eB) = N (e, B)e“vol(B),

and henceV (e, B) > 1/¢4.




‘Covering and packing numbers of a norm ball: Proof'

Upper bound: Consider a maximapacking{x1, ...,z } of size
M = M (e, B). Since it's a packing, the balls + (¢/2) B are disjoint.
Each of these balls is contained(in+ ¢/2) B. Thus,

M

U (:L’z + §B> C(1+¢€/2)B,

1=1

so  Mvol((¢/2)B) < vol((1 + ¢/2) B)

M <§)dvol(B) < (1 n %)dvol(B).

and henceV (e, B) < M (e, B) < (2/e + 1)“.




‘ Example: smoothly parameterized functioni

Let ' be a parameterized class of functions,
F=A{f(,-):0c 06}

Let|| - || be anorm or® and let|| - || » be a norm onF". Suppose that the
mappingd — f(0,-) is L-Lipschitz, that is,

1f(0,-) = f(¢', )l < LI — 6o

ThenN(e, I, || - |r) < N(e/L, 0, - |le).
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‘ Example: smoothly parameterized functionj

A Lipschitz parameterization allows us to translates a co¥¢he
parameter space into a cover of the function space.

Example: IfF' is smoothly parameterized by a (compact setiof)
parameters, theV (e, F') = O(1 /).
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‘ Example: 1-dimensional Lipschitz functions'

Let F' be the set of.-Lipschitz functions mapping front, 1] to [0, 1]. Then
In the infinity norm|| f||. = SUD,¢[0,1] f(x)],

logN(e, F, H ' Hoo) — @(L/€)°

Proof idea: form anr grid of the y-axis, and an/L grid of the x-axis, and
consider all functions that are piecewise linear on thid,guhere all pieces
have slopes-L or — L. There ard /¢ starting points, and for each starting
point there ar@”/¢ slope choices. It's easy to show that this set i€xn)
packing and a@(¢) cover.
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‘ Example: d-dimensional Lipschitz functions'

Let F; be the set of_-Lipschitz functions (wrt| - ||« ) mapping from[0, 1]¢
to [0, 1]. Then

log N(e. Fa || - ) = © ((L/e)")

Note theexponential dependence on the dimension.
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\ Canonical Rademacher and Gaussian Processrs

Definition: Fix a setl’ C R".

1. Thecanonical Gaussian process the stochastic process

G9 — <ga (9> — Zgzeza
=1

whereg; ~ N(0,1) i.i.d.
2. Thecanonical Rademacher process the stochastic process

n

R@ — <€, 9> — 261‘92‘,

1=1

where the:; are i.i.d. and uniform og+1}.

14




\ Canonical Rademacher and Gaussian Processrs

Definition: A stochastic proces8 — Xy with indexing setl’ is sub-
Gaussian with respect to a metdon 7' if, for all 6,6’ € T and all\ € R,

>\2d(0,9’)2> |

2

Eexp (A(Xp — Xg)) < exp (

The canonical Rademacher and Gaussian processes are gsfiaBanrt
the Euclidean metric.
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\ Canonical Rademacher and Gaussian Procesirs

Indeed:

G@ — G@’ — <979 _ 0/>7

which isN(0, ||@ — ¢’||?), and hence its moment generating function is

equal to the upper bound.
Rg — Ry = (6,0 — 0'),

which, by the bounded differences property, is sub-Gansgith parameter
16 —6"|I°.
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\An aside: Orlicz norms'

Definition: Forl < a < 2, thea-Orlicz norm of a random variabl¥ is

| X[ ., :inf{C > (0: Eexp (péc‘x ) < 2}.

Theorem: There are constants, co such that, for allX and allt > 1,

tOé
Pr(|X| >¢) <2exp | —c; & |
XI5,

and converselyr(|X| > t) < cexp(—t*/K“) implies| X]||y, < c2K.

Sub-Gaussian meafisy — X, ||y, < Ld(6,6").
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Canonical Gaussian and Rademacher process's

Theorem: ForT C R",

Esup Ry < WgESUpG@ < cy/lognE sup Ry.

ocT ocT ocT
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Canonical Gaussian and Rademacher process's

Proof of first inequality:

Esup Gy = Esup g

= EsupZez\gzw

9€T
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Canonical Gaussian and Rademacher processes: Examml

For © thel;-ball InR",

Esup(e, 0) = E|l¢]| = 1.
0

[where we've used the duality éf and/., (equivalently, that Blder’s
Inequality is tight).] Also,

Esup(g,0) = E||g|lcc < V2Inn.
0

The Gaussian and Rademacher complexities grég n factor apart in
this case.
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Canonical Gaussian and Rademacher processes: Examﬁl

To see the last inequality, we generalize the Finite Lemniheo
sub-Gaussian case:

Lemma: For g with independent sub-Gaussian components,

Emax(g, ) < max |al|\/2log |Al.
acA

In this caseA = {e; : 1 <i < n}, SOmax,c4 ||a]| = 1 and|A| = n.
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Canonical Gaussian and Rademacher processes: Examml

exp ()\E rgleaidg, a)) < Eexp (A max(g, a))

acA

= Emaxexp (Mg, a))

< ) Eexp(\g,a))

acA
< |Alexp (A\*R?/2),

sinceg; is sub-gaussian (her&? = max,c 4 ||a/|3). Picking
\? = 2log |A|/R? gives the result.
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