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e-ENTROPY OF CONVEX SETS AND FUNCTIONS

E. M. Bronshtein UDC 513.873.1

Definition 1 [1]. Suppose that a minimal e-net of a precompact metric set K contains Ni(e) points.
The e~-entropy of the set K is defined by the quantity (s} =log:¥x(e).

Definition 2, Let M and N be closed subsets of the Euclidean space EP, The Hausdorff distance be~
tween M and N is defined by the formula p (4, ) = max {Sup dim. N}, sup d(zz,j[}}. where d{m.\)= inl|n—m|;

[EE=N1 Y n=N
|*| is the Fuclidean norm,

According to a well-known theorem of Hausdorff, the set of all closed subsets of a compact set in EIL
is compact in a Hausdorff metric,

In §1 we shall prove the auxiliary Theorem 1.

In §2 we shall prove that the e~entropy of a compact set of convex closed subsets of the unit sphere in
Euclidean space EN increases as £(1-1)/2, The same problem has been considered by Dudley 2], but he ob-
tained a somewhat weaker result,

In §3 we shall prove that the e~entropy of a compact set of uniformly bounded and uniformly Lipschit-
zian convex functions with a metric C defined on a cube in E? increases as g1/2,

§1

Let us denote by M, the class of convex closed subsets of the unit ball 7y<E* Let MNeMt,; ¢>0.
Let us introdace the notation
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R (M) = {N=R,.p(M, N)<e},
R (M) = {NeM,:p(M, N) <e; MN}).
By My we shall denote an exterior set that is parallel to M at a distance r, It is evident that p(M, N) = p(Mp,
Nyp)., I N€ R(M), then M; < Ny4g; p(My, Njyg) = p(Mi,}\ﬁ1+a) +p(Mj+g, Ny+g) = 28, Thus, the mapping ¢y4¢:

N — Ny4¢ will be an isometry of the space R.(HM) onto Ru.(M)), i.e., in the space % (M) the number of points
in 2 minimal 6-net will not be larger than in the space R.(M).

By S(y, r) for T(y, r}] we shall denote a sphere (or ball) of the space E@ of radius r centered at the
point y€EI,

Let us take a point x€M. Since M — Ty, it follows that M <= T (x,2), Thus, T (x,1) c My = T x, 3).
Moreover, we shall require that for vyegM, there exists a point o €E" such that I'(x, )i, y=S(a, 1).
Without loss of generality it can be assumed that x = 0.

In ED' (n = 2) let us construct a cube S centered at the point 0 and having a side 2/vn. Each of the 2n
faces of the cube will be partitioned into small cubes with a side c-vVe/n {c =10-%/Vn@—1)]. The number of
vertices thus obtained on each face will not exceed 25(1"“)/2/0, Afterthat each small cube will be divided in
a simplicial manner in such a way that no new vertices are adjoined. Thus the boundary 68 of the cube S will
be divided into simplexes with a diameter not exceeding cve, and a number of vertices not larger than

d=—’1n8(l”")/2/c. (1)

Let us denote the verticeg_of the simplexes by zy, ..., zN, and the ray originating at the point 0 and-
passing through a point z€E™ by 0z .

The aim of §1 is to prove the following theorem.

THEOREM 1. Let N'<%.(M,), N being a polyhedron with vertices N’ [}0z,. For ¢ = 10~12/(n—1)
we hence obtain

o(V, N)y<<ef2 (nz=2).
The proof is preceded by several lemmas.
LEMMA 1, If d(z, My) = 4e; z€M,, then Iz—x(z)|= 12e. Here x(z) = 0z N oM;.

Proof. Let us denote by v(x) (x€9M) a unit vector of the outer normal to the convex set M at the point x.
Through the ray 0z let us draw a two-dimensional plane parallel to the vector v [x(z)]. Since MyD T(0, 1), it
follows that any reference plane to the set M; does not intersect the ball T(0,1). Thus (Fig.1) we have lI] =1,
Ix(z)| = 3. Evidently, |z-z; = 4e. Hence follows that Ix(z)-zl = Ix(z)| X|z-z41/1l] = 12¢,

In just as elementary a manner we can prove

LEMMA 2, Let x€0M;, T(a,1) C My, x€S(@,1). Then any two-dimensional plane that passes through
the points 0 and x will intersect T(x, 1) along a circle of radius not smaller than 1/3.

Let us partition the space EP into simplicial cones with a common vertex 0 and bases constructed by
the simplexes of partition of the boundary 8S of the cube S. These cones will be denoted by Kj.

LEMMA 3. Suppose that the points z; and z, lie in the same cone K; of partition of the space EY; p(zi,
M) = 4e, z{€M; (i =1,2). Then |z;-2,] < 19mevive for & = 1072/@—1) fc = 10-*/Vn@~—1)].

Proof, Let us project the points z; and z, onto a sphere S(0, 1/vn) that lies in the cube S, Let zj' =
S(0, 1/vn) N0z, zi" = 8S NO0zi (i =1, 2). By virtue of our condition we have |z;"—z,"| = cve. Since zi' is the
projection of the point z;" onto the sphere 5(0, 1/V1n), and since projection onto a convex set does not increase
the distances in an internal and (all_ghe more so0) an external metric ([3], p.91), it follows that zy'—zy'l = cVe.
Thus the angle 0 between the rays 0z; and 0z, will satisfy the inequality
<< ncynye. (2)
Now let us construct the points xj = 0—z>i N8M; (i =1, 2), By virtue of Lemma 1,
f2y—25] << | 20— |+ | 22— 22 4 | 21— < 24e+4|z1—x2]|. (3)

Let I be a straight line that passes through the points x; and x,. It is easy to show that for e = 1072/(n—1) <
1/9nc? the straight line I does not intersect the ball T(0, 1/2). Let us denote by d the base of the perpendicular
dropped from the point 0 onto the straight line I. There can be two possibilities:
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a) x;€][d, xs] (z4 and z; can be exchanged);
b) d€lxy, x5].
Here [a,b] is a segment with ends 2 and b.
Case {g). sin < 0x,d =ldVIx,] =1/6, since |di =1/2; Ix,| = 3. The length
Ty —zs] = | 22| -sin L 2102a/5in L Opzy < {8sin 0.
From (2) we find that |x;—x,! = 18mcVnve.
Case (b). Ix;—x,l =Ixy—dl +xy—dl. From (2) we obtain
jz.—d} = |z, -sin£z0d<3sin << 3ncynye.
Hence |xy—x,| = 6mcVnVe.

Finally we find from (3) that |z;—z,| = 24¢ + 187cVnVe = 19mcvn/e for e = 10-*%/(-~1). This com-
pletes the proof of Lemma 3,

The following two lemmas refer to the case of the plane E% in them, n = 2 serves as a parameter.

LEMMA 4. In the Euclidean plane E? let the set M and the points g and b be such that T(0,1) « M < T
{0, 3); 0EME My; dia, M) = 4e; a§M; bEOM; AS = £ alb = mevnVe. Suppose also that there exists a point o €M
such that T{x, 1/3) < M; b€S(a, 1/3). Then dfz, T(a, 1/3)] = 3(5 +450n%c)e; 2 aab = 57n%eVave for ¢ < 1078/
(n—1) fc =10~4Vn@m—1)].

Proof. Let us select a coordinate system in EZ in such a way that the origin coincides with the point 0
and the x axis is parallel to the reference line I} to the set M at the point b, Suppose that the point o hag in
this system the coordinates (x,, vo). Let us denote by B the angle formed by the ray 0b with the x axis,
Similarly to the proof of Lemma 1 we find that |sin 8] =1/3, i.e., for 0 = A < arcsin 1/3 we have 0 < 8+
AB < w. It is easy to see that for such values of ¢ this constraint on Ap is satisfied, Let us denote by e the
point 0z (1 I},", where Ip' denotes a straight line parallel to I}, at a distance 4e from the latter and located
outside the set M. Since dia, M) = 4¢, it follows that dfg, T(a, 1/3)] = dfe, T{w, 1/3)]. The point e has the co-
ordinates xe = (yo + 1/3 + 4¢) cot (B 2AB); ye =yo + 1/3 + 4¢.

Let us transform the formula for the coordinates xe. Xe = (yo +1/3 + 4&) {1 =tan Stan AB)/(tan B +tan
AB). Since tanp = (yo +1/3)/xg, we obtain xg = (yo +1/3 + 4e)(xg Fyq tan AB Flitan AB)/ (v, + 1/3 £X, tan Af).
Now let us estimate |xg-xqy .

7, — 20 ; < (tg AB [(Ya + Yy -+ 48) (Yo + V) + xﬂ =+ e i*l'a‘ } Yo + Y — iff/.l tg Ap).

Since Ixy 1 = 3, lygl = 3 and for & = (20cvn) "% we have 0 = AS = 7/20, so that 0 =< tan A < 248 < 1/18, we
cbtain

[ Zo—2,] <<30ncynYe. {4)

Now let us estimate dfe, T(w, 1/3)] = le—a | —1/3, By virtue of (4) we obtain le—a| = [(xe———xa)z +
Fe~¥a)4t/2 = 1/3 + 3(4 + 450n%c’n)e +24e? = 1/3 + 3(5+450m%c™n)e. Hence follows that dfa, T (o, 1/3)] = dfe, T
(o, 1/3)] = 3(5 +4507%c’)e, Since la—bi = 197cvnVe (Lemma 3), we obtain by projecting the points ¢ and b
onto S{w, 1/3} the formula
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Zaab<<3-19ncynye.

LEMMA 5, Let T(0,1/3) be a circle on the Euclidean plane E% d[aj, T(0,1/3)] = 3(5 + 4507%cn)e;
a1€T(0,1/3) (i =1,2); taila, = 57n%cVnVe; laj—ayl = 19rcvnve. Let also S ©T(0,1/3) be a convex set
such that ;€88 (i =1,2)., For & = 1/30, we then have p(S(1K, ;) = e/2(n—1). (Here 8, is a triangle with
vertices 0, a4, and ay; K is an acute angle with vertex 0 whose sides contain the points ¢y and a, fc = 10-%/

Vn (a—1)].)

Proof, It follows from Definition 2 that since S; = S{1K, it suffices to show that if zg€ S K, then
d(zg, fa,b]) = e/2(0—1),

It is evident that the point z, lies in the triangle aja;m (Fig.2). 0Oaq = 1/3 + 3(5 + 450m°c’n)e, whence
follows that & tj0aj < 7-3V3(5 +450m2cn)-ve/2 (i = 1, 2), 2 t;0t, = (3m/3(5+4507%c?n) + 577%cvT) VE. Fromele-
mentary considerations we can see that 2maya, + L mayy = £t,0t;, For € = 1/30 we have £ majas + £ maqy
= /2, i.e.,d(zy 2y, a5)) = dim, lay,a5)). :

Let £ maa, = 2 max;. Then d(m, [ay,a,]) <laj—a,l sin 2 majay = 19mcvn. (31V3(450m2can +5) + 57n%evn)e /2 <
e/2m—1), since ¢ = 10~¢/Vu(n—1). :

Proof of Theorem 1. It suffices to show that for any cone K;j of partition of the space E® we have
p(N'[1Kj, NKj)= /2, since it is evident that if for any i we have p(Aj, Bj) =a, then p ( UAj, U Bj) =a.

Let us fix a cone K, Let us denote by K(8) (s =1,2,...,n) an s-dimensional hull of a simplicial cone K. Let
us prove by induction on s that if z€K(S) (I N, then

d(z, Ny <<e(s—1)/2(n—1). : (5)
Since N —N!, we obtain for s =n the assertion of the theorem.

For s =1, the assertion (5) is evident, since we selected in this way the vertices of the polyhedron N,
Suppose that it holds for s. Let us take a point z€EN' K& +1) Let x = 0% (] 9N', There exists a point o €ED
such that T(x, 1) =M, x€S(a,1). Let us denote by mg4 the (s+1)-dimensional face of the cone K containing
the point z. Through the points 0 and z let us construct a two-dimensional plane n, such that 7y —mg4 is an
angle whose outer rays lie in K(S). Suppose that these rays intersect ON' at the points @ and b. The radius
of the circle my(1T(a, 1) is not smaller than 1/3, With the aid of Lemmas 4 and 5 we obtain d(z, [a,b]) =e/2-
(n—1). But d{e, N} and d(b, N} do not exceed e(s—2)/2{n—1) by virtue of the induction hypothesis. Since N is
a convex set, it follows that d(z, N} < e(s—1)/2n—1). Thus we have proved the inequality (5), and hence also
Theorem 1.

§2
At first let us prove a theorem on the number of points in an e-net of a 2e-neighborhood of a set ME M,.
THEOREM 2. Let M€M.. Then ve= 10-12/(n—1) in the space %, (M) there exists an e-net containing
not more than 12Y(&)I™® points, y = 4-10%.n5/2,

Proof. The analysis presented at the beginning of § 1 shows that it suffices to obtain an upper bound
for the number of points in an e-net of the space R (M). As before, let the zj be vertices of simplexes in the
case of a simplicial partition of the boundary 8S of the cube S. Let us construct the rays O?i. Let N€R. (M),
yi = 0N(0zj. It then follows from Theorem 1 that p(N,m = £/2 (A being the convex hull of the set A). If

the points yi' are such that yj—yi'l = €/2, then p(Jvyi, Uyi') = &/2. Hence we can see that an e-net of the

space % (M) can be constructed as follows: We divide the sections of the rays 0zi of length 12¢, beginning
with the points of intersection with the boundary 8M; (Lemma 1), into segments of length ¢; after that we form
all possible collections of division points, one from each ray 0zi, and then we construct the convex hull of each
collection. The total number of collections of division points does not exceed 12P, where p is the number of
rays 0zj. It follows from (1) that p can be taken equal to 4-10%.n%2(/e)!", This completes the proof of
Theorem 2.

THEQREM 3. For any positive ¢ = 10~12/;n—1) = g, there exists in M, (@ = 2) an e-net containing not
more than g@)- 12870V M1 points (v = 4-104-n5/2),

Proof. Let us express the number set (0, g] in the form (0, )] = U Ak, Ay = (g9/2K, gp/2k71]. The

theorem will be proved by induction on k, i.e., for all e€Ay.
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For k =1 it suffices to select the value of f{n). Suppose that the assertion of the theorem is true for
any e€Ag. Let us prove that it is true also for any e €Ay, If e€Ag4y, then 2e €Ay, By the induction hypoth-
esis, there exists in . a 2e-net with a number of points not exceeding B{n)-12 4y(V2E-1 1t follows from
Theorem 2 that Vi<W, there exists in the space %, ()W) an £-net containing not more than 127(“/5)1'n
points, An e-net of the space M, can be obtained from any of its 2e-nets by replacing each of its elements by
an £-net of its 2e-neighborhood. By taking the above-mentioned Ze-net of the space M,, we obtain an g-net
containing not more than

wis)i oo LTy ien
ﬁ(n)-'lz*"“ %) (1% <]3(n)~‘12"’“ )

points. This completes the proof of Theorem 3.
Now let us obtain a lower bound for the number of points of a minimal e-net.

Definition 3 [1]. Let K be a compact metric set, We shall say that the points a4, ...,aN€K form an
e~distinguishable set in K if p (@i, aj) =& (i =j).

It was proved in [1] that the number of points in any e-distinguishable compact set does not exceed the
number of points in any of its e-nets,

THEOREM 4, Inthe space M. there exists for any positive ¢ = 1/64 an e~distinguishable set contain-

An—1

2m(1/5)”" points, %p-4q being the measure of the {(n—1)~dimensional unit ball,

ing not less than

Proof, Let us consider the unit sphere S = {x€EM:Ixl = 1} and let K =S be a 2V e~distinguishable subset
of the latter in an external Euclidean metric. Let x€K., Let us denote by (S)x the tangent plane of the sphere
at the point x. Now we construct a plane that is parallel to (S)x at a distance & < 1/64 from the latier and that
intersects the sphere S, It is easy to see that this plane separates the point x and the set K\{x}, i,e,, the
polyhedra with vertices belonging to K form an e-distinguishable set in ,. It contains 2K points, where k is
the number of points in the finite set K. Now let us estimate the number of points k.

Let us project the set K onto an (n—1)-dimensional plane. The projection operator will be dencted by
P. Since the operator P does not increase distances if the set PK] is e-distinguishable, it follows that a sub~
set K of the sphere will do likewise. Thus it suffices to find a lower bound for the number of points in a 2vVe-
distinguishable set of the unit ball in ER~1, From Mikhlin's result {[4], p.300) it follows that for & < 1/64
there exists a set with the required properties and with a number of points not smaller than %y..,(ve)!™?/gn~1-
(n—1), This completes the proof of Theorem 4.

By comparing Theorems 3 and 4, we obtain the principal resulf of this paper,

THEOREM 5. The e-entropy of the space M, satisfies for ¢ =< 1071%/(u—1) the inequalities

Sn——,:n(_i 1) (Ve) ™ <o g ,(e)<10°-n5/2 log 12.(Ve)' ™"
-

or, in the notation of {1},

n—1

% 02 () T -

Remark 1. Let us denote by $.(R) the totality of convex closed subsets of an n-dimensional ball of
radius R. It then follows directly from Theorem 5 that

R \{n—1)/2
%mn(m%(}_) .

Remark 2. For n =2, more exact estimates were obtained by Yu. G. Reshetnyak and A, P, Orlov
(not published).

§3

Let us denote by Fy(M, C) a compact set (endowed with a uniform metric) of all convex functions defined
on a cube S with a side 2 in ER such that |f (x)| = M; If x) ~f &) = C Ix—y [ (M, C >0).

THEOREM 6. #r,ar.0 R (%)nl

387



Proof, Letf(x)€éFy(M,C). To the function f (x) let us assign a convex closed set V(f) < ER* accord-
ing to the following rule: V(f) =1{xq, v+ s Xn+1): Kgs o0 er %) €83 F (Xgs oo vr Xp) < Xt S M}, Byvirtue of the fact that
through any point of the boundary of the set V(f) of the form [y, ..., Xn, f (X1, ..., Xn)] it is possible to con-
struct for the set V(f) a reference plane that forms with the base vector en+ an angle not exceeding arctanC,
it is easy to see that

If—glVI+C<p(V (), V(g)) <If—gl. (6)

Here [Ifll is the uniform norm of the function f.

All the sets V{f) lie in an (n+1)-dimensional ball of radius vn +M?, From (6) we can see that the num-
ber of points in @ minimal e-net of the space Fy(M, C) is not larger than the number of points in a minimal

£/2V1+C%net of the space M., (Yn-+M2). By using Theorem 5 and Remark 1, we hence obtain an upper bound

Hry,0)(8) < (—i—)"/ ? (the notation has been adopted from [1]).

As we can see from (6), a lower bound can be obtained by estimating the number of points in an e-dis-
tinguishable set of the space of all sets of the form V(f), where f€Fy(M,C). For this purpose it is possible
to use a construction like the one used in the proof of Theorem 4, In ER*!let us construct a sphere of radius
R centered at the point (0, ..., 0,6). The numbers R and 6 can be selected in such a way that in the cube
{Ixjl =1 (i =n); Xn+i = 0} part of the sphere serves as a plot of the function f € Fp (M, C). By constructing a
2V Re~-distinguishable set on this part of the sphere, we can obtain (similarly to the proof of Theorem 4) an
e-distinguishable set in a space of sets of the form V(f) [f €Fp(M, C)]. Hence follows that #r,a,cp= (1/)1/2,

The author expresses his gratitude to Yu. G. Reshetnyak for posing the problem and for his interest,
to L. D. Ivanov for valuable advice, and to V, M. Tikhomirov (who reviewed this paper) for useful remarks
and for drawing the author's attention to the paper [2].
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