
2 Size/complexity of a function class

Let F be a class of measurable real-valued functions defined on X . Whether a given class

of function F is “Glivenko-Cantelli” or “Donsker” depends on the size (or complexity) of

the class. A finite class of square integrable functions is always Donsker, while at the other

extreme the class of all square integrable, uniformly bounded functions is almost never

Donsker.

2.1 Covering numbers

A relatively simple way to measure the size of any set is to use covering numbers. Let (⇥, d)

be an arbitrary semi-metric space23; we will assume that ⇥ ⇢ ⌅ and that d(·, ·) is defined

on the space ⌅. Let " > 0.

Definition 2.1 ("-cover). A "-cover of the set ⇥ with respect to the semi-metric d is a

set {✓1, . . . , ✓N} ⇢ ⌅24 such that for any ✓ 2 ⇥, there exists some v 2 {1, . . . , N} with

d(✓, ✓v)  ".

Definition 2.2 (Covering number). The "-covering number of ⇥ is

N(", ⇥, d) := inf{N 2 N : 9 a "-cover ✓1, . . . , ✓N of ⇥}.

Equivalently, the "-covering number N(", ⇥, d) is the minimal number of balls B(x; ") :=

{y 2 ⇥ : d(x, y)  "} of radius " needed to cover the set ⇥.

Definition 2.3 (Metric entropy). The metric entropy of the set ⇥ with respect to the semi-

metric d is the logarithm of its covering number: log N(", ⇥, d).

Note that a semi-metric space (⇥, d) is said to be totally bounded if the "-covering

number is finite for every " > 0. We can define a related measure of size that relates to the

number of disjoint balls of radius " > 0 that can be placed into the set ⇥.

Definition 2.4 ("-packing). A "-packing of the set ⇥ with respect to the semi-metric d is

a set {✓1, . . . , ✓D} ✓ ⇥ such that for all distinct v, v0 2 {1, . . . , D}, we have d(✓v, ✓v0) > ".

Definition 2.5 (Packing number). The "-packing number of ⇥ is

D(", ⇥, d) := sup{D 2 N : 9 a "-packing ✓1, . . . , ✓D of ⇥}.

Equivalently, call a collection of points "-separated if the distance between each pair of points

is larger than ". Thus, the packing number D(", ⇥, d) is the maximum number of "-separated

points in ⇥.

23By a semi-metric space (⇥, d) we mean, for any ✓1, ✓2, ✓3 2 ⇥, we have: (i) d(✓1, ✓2) = 0 ) ✓1 = ✓2; (ii)

d(✓1, ✓2) = d(✓2, ✓1); and (iii) d(✓1, ✓3)  d(✓1, ✓2) + d(✓2, ✓3).
24The elements {✓1, . . . , ✓N} ⇢ ⌅ need not belong to ⇥ themselves.
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A minimal ✏-cover and or maximal ✏-packing do not have to be finite. In the proofs of

the following results, we do not separate out the case when they are infinite (in which case

there is nothing show).

Lemma 2.6. Show that

D(2", ⇥, d)  N(", ⇥, d)  D(", ⇥, d), for every " > 0.

Thus, packing and covering numbers have the same scaling in the radius ".

Proof. Let us first show the second inequality. Suppose E = {✓1, . . . , ✓D} ✓ ⇥ is a maximal

packing. Then for every ✓ 2 ⇥ \ E, there exists 1  i  D such that d(✓, ✓i)  " (for if this

does not hold for ✓ then we can construct a bigger packing set with ✓D+1 = ✓). Hence E is

automatically an "-covering. Since N(", ⇥, d) is the minimal size of all possible coverings,

we have D(", ⇥, d) � N(", ⇥, d).

We next prove the first inequality by contradiction. Suppose that there exists a 2"-

packing {✓1, . . . , ✓D} and an "-covering {x1, . . . , xN} such that D � N + 1. Then by

pigeonhole, we must have ✓i and ✓j belonging to the same "-ball B(xk, ") for some i 6= j and

k. This means that the distance between ✓i and ✓j cannot be more than the diameter of the

ball, i.e., d(✓i, ✓j)  2", which leads to a contradiction since d(✓i, ✓j) > 2✏ for a 2"-packing.

Hence the size of any 2"-packing is less or equal to the size of any "-covering.

Remark 2.1. As shown in the preceding lemma, covering and packing numbers are closely

related, and we can use both in the following. Clearly, they become bigger as " ! 0.

Let k · k denote any norm on Rd. The following result gives the (order of) covering

number for any bounded set in Rd.

Lemma 2.7. For a bounded subset ⇥ ⇢ Rd there exist constants c < C depending on ⇥

(and k · k) only such that, for ✏ 2 (0, 1),

c

✓
1

✏

◆
d

 N(✏, ⇥, k · k)  C

✓
1

✏

◆
d

.

Proof. If ✓1, . . . , ✓D are ✏-separated points in ⇥, then the balls of radius ✏/2 around the ✓i’s

are disjoint, and their union is contained in ⇥0 := {✓ 2 Rd : k✓ � ⇥k  ✏/2}. Thus, the sum

Dvd(✏/2)d of the volumes of these balls, where vd is the volume of the unit ball, is bounded

by Vol(⇥0), the volume of ⇥0. This gives the upper bound of the lemma, as

N(✏, ⇥, k · k)  D(✏, ⇥, k · k) 
2d Vol(⇥0)

vd

✓
1

✏

◆
d

.

Let ✓1, . . . , ✓N be an ✏-cover of ⇥, i.e., the union of the balls of radius ✏ around them

covers ⇥. Thus the volume of ⇥ is bounded above by the sum of the volumes of the N
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balls, i.e., by Nvd✏d. This yields the lower bound of the lemma, as

N(✏, ⇥, k · k) �
Vol(⇥)

vd

✓
1

✏

◆
d

.

The following result gives an upper bound (which also happens to be optimal) on the

entropy numbers of the class of Lipschitz functions25.

Lemma 2.8. Let F := {f : [0, 1] ! [0, 1] | f is 1-Lipschitz}. Then for some constant A,

we have

log N(✏, F , k · k1)  A
1

✏
, for all ✏ > 0.

Proof. If ✏ > 1, there is nothing to prove as then N(✏, F , k · k1) = 1 (take the function

f0 ⌘ 0 and observe that for any f 2 F , kf � f0k1  1 < ✏).

Let 0 < ✏ < 1. We will explicitly exhibit an ✏-cover of F (under k · k1-metric)

with cardinality less than exp(A/✏), for some A > 0. This will complete the proof as

N(✏, F , k · k1) will then be automatically less than exp(A/✏).

Let us define a ✏-grid of the interval [0,1], i.e., 0 = a0 < a1 < . . . < aN = 1 where

ak := k✏, for k = 1, . . . , N � 1; here N  b1/✏c + 1 (where bxc denotes the greatest integer

less than or equal to x). Let B1 := [a0, a1] and Bk := (ak�1, ak], k = 2, . . . , N . For each

f 2 F define f̃ : [0, 1] ! R as

f̃(x) =
NX

i=1

✏

�
f(ak)

✏

⌫
1Bk(x). (7)

Thus, f̃ is constant on the interval Bk and can only take values of the form i✏, for i =

0, . . . , b1/✏c. Observe that for x 2 Bk (for some k 2 {1, . . . , N}) we have

|f(x) � f̃(x)|  |f(x) � f(ak)| + |f(ak) � f̃(ak)|  2✏,

where the first ✏ comes from the fact that f is 1-Lipschitz, and the second appears because

of the approximation error in (7)26. Thus, kf � f̃k1  2✏.

New, let us count the number of distinct f̃ ’s obtained as f varies over F . There are at

most b1/✏c + 1 choices for f̃(a1). Further, note that for any f̃ (and any k = 2, . . . , N),

|f̃(ak) � f̃(ak�1)|  |f̃(ak) � f(ak)| + |f(ak) � f(ak�1)| + |f(ak�1) � f̃(ak�1)|  3✏.

Therefore once a choice is made for f̃(ak�1) there are at most 7 choices left for the next

value of f̃(ak), k = 2, . . . , N .

25Note that f : X ! R is L-Lipschitz if |f(x)� f(y)|  Lkx� yk for all x, y 2 X .
26Note that, for x 2 Bk, f̃(x) = f̃(ak) = ✏

j
f(ak)

✏

k
 f(ak), and f(ak)� f̃(ak) = ✏

⇣
f(ak)

✏ �

j
f(ak)

✏

k⌘
 ✏.
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Now consider the collection {f̃ : f 2 F}. We see that this collection is a 2✏-cover of F

and the number of distinct functions in this collection is upper bounded by
✓�

1

✏

⌫
+ 1

◆
7b1/✏c.

Thus, N(2✏, F , k · k1) is bounded by the right-side of the above display, which completes

the proof the result.

Thus, the set of Lipschitz functions is much “larger” than a bounded set in Rd, since

its metric entropy grows as 1/✏ as ✏ ! 0, as compared to log(1/✏) (cf. Lemma 2.7).

Exercise (HW1): For L > 0, let FL := {f : [0, 1] ! R | f is L-Lipschitz}. Show that, for

✏ > 0, N(✏, FL, k · k1) � aL

✏
, for some constant a > 0. Then, using Lemma 2.8 show that

N(✏, FL, k · k1) ⇣
L

✏
, for ✏ > 0 su�ciently small.

2.2 Bracketing numbers

Let (F , k · k) be a subset of a normed space of real functions f : X ! R on some set

X . We are mostly thinking of Lr(Q)-spaces for probability measures Q. We shall write

N(", F , Lr(Q)) for covering numbers relative to the Lr(Q)-norm kfkQ,r =
�R

|f |
rdQ

�1/r
.

Definition 2.9 ("-bracket). Given two functions l(·) and u(·), the bracket [l, u] is the set

of all functions f 2 F with l(x)  f(x)  u(x), for all x 2 X . An "-bracket is a bracket

[l, u] with kl � uk < ".

Definition 2.10 (Bracketing numbers). The bracketing number N[ ](", F , k · k) is the min-

imum number of "-brackets needed to cover F .

Definition 2.11 (Entropy with bracketing). The entropy with bracketing is the logarithm

of the bracketing number.

In the definition of the bracketing number, the upper and lower bounds u and l of the

brackets need not belong to F themselves but are assumed to have finite norms.

Example 2.12. (Distribution function). When F is equal to the collection of all indicator

functions of the form ft(·) = 1(�1,t](·), with t ranging over R, then the empirical process

Gn(ft) is the classical empirical process
p

n(Fn(t)�F (t)) (here X1, . . . , Xn are i.i.d. P with

c.d.f. F).

Consider brackets of the form [1(�1,ti�1],1(�1,ti)] for a grid points �1 = t0 < t1 <

· · · < tk = 1 with the property F (ti�) � F (ti�1) < " for each i = 1, . . . , k; here we assume

that " < 1. These brackets have L1(P )-size ". Their total number k can be chosen smaller

than 2/". Since Pf2
 Pf for every 0  f  1, the L2(P )-size of the brackets is bounded by

p
". Thus N[ ](

p
", F , L2(P ))  2/", whence the bracketing numbers are of the polynomial

order 1/"2.
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Exercise (HW1): Show that N(", F , k · k)  N[ ](2", F , k · k), for every " > 0.

In general, there is no converse inequality. Thus, apart from the constant 1/2, bracket-

ing numbers are bigger than covering numbers. The advantage of a bracket is that it gives

pointwise control over a function: l(x)  f(x)  u(x), for every x 2 X . In comparison an

Lr(P )-ball gives integrated, but not pointwise control.

Definition 2.13 (Envelope function). An envelope function of a class F is any function

x 7! F (x) such that |f(x)|  F (x), for every x 2 X and f 2 F . The minimal envelope

function is x 7! supf2F |f(x)|.

Consider a class of functions {m✓ : ✓ 2 ⇥} indexed by a parameter ✓ in an arbitrary

index set ⇥ with a metric d. Suppose that the dependence on ✓ is Lipschitz in the sense

that

|m✓1(x) � m✓2(x)|  d(✓1, ✓2)F (x),

for some function F : X ! R, for every ✓1, ✓2 2 ⇥, and every x 2 X . The bracketing

numbers of this class are bounded by the covering numbers of ⇥ as shown below.

Lemma 2.14. Let F = {m✓ : ✓ 2 ⇥} be a class of functions satisfying the preceding display

for every ✓1 and ✓2 and some fixed function F . Then, for any norm k · k,

N[ ](2✏kFk, F , k · k)  N(✏, ⇥, d).

Proof. Let ✓1, . . . , ✓p be an ✏-cover of ⇥ (under the metric d). Then the brackets [m✓i �

✏F, m✓i + ✏F ], i = 1, . . . , p, cover F . The brackets are of size 2✏kFk.

Exercise (HW1): Let F and G be classes of measurable function. Then for any probability

measure Q and any 1  r  1,

(i) N[ ](2✏, F + G, Lr(Q))  N[ ](✏, F , Lr(Q)) N[ ](✏, G, Lr(Q));

(ii) provided F and G are bounded by 1,

N[ ](2✏, F · G, Lr(Q))  N[ ](✏, F , Lr(Q)) N[ ](✏, G, Lr(Q)).
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