
12 Limiting distribution of M-estimators

Let X1, . . . , Xn be i.i.d. P observations taking values in a space X . Let ⇥ denote a parameter

space (assumed to be a metric space with metric d(·, ·)) and, for each ✓ 2 ⇥, let m✓ denote

a real-valued function on X . Consider the map

✓ 7! Mn(✓) := Pn[m✓(X)] ⌘
1

n

nX

i=1

m✓(Xi)

and let ✓̂n denote the maximizer of Mn(✓) over ✓ 2 ⇥, i.e.,

✓̂n = arg max
✓2⇥

Mn(✓).

Such a quantity ✓̂n is called an M -estimator. We study the (limiting) distribution of M -

estimators (properly standardized) in this section.

Their statistical properties of ✓̂n depend crucially on the behavior of the criterion

function Mn(✓) as n ! 1. For example, we may ask: is ✓̂n converging to some ✓0 2 ⇥, as

n ! 1? A natural way to tackle the question is as follows: We expect that for each ✓ 2 ⇥,

Mn(✓) will be close to its population version

M(✓) := P [m✓(X)], ✓ 2 ⇥.

Let

✓0 := arg max
✓2⇥

M(✓).

If Mn and M are uniformly close, then maybe their argmax’s ✓̂n and ✓0 are also close. A key
tool to studying such behavior of ✓̂n is the argmax continuous mapping theorem which we
consider next. Before we present the result in a general setup let us discuss the main idea
behind the proof. For any given ✏ > 0, we have to bound the probability P(d(✓̂n, ✓0) � ✏).
The key step is to realize that

P(d(✓̂n, ✓0) � ✏)  P
 

sup
✓2⇥:d(✓,✓0)�✏

[Mn(✓) � Mn(✓0)] > 0

!

 P
 

sup
✓2⇥:d(✓,✓0)�✏

[(Mn � M)(✓) � (Mn � M)(✓0)] > � sup
d(✓,✓0)�✏

[M(✓) � M(✓0)]

!
. (163)

The (uniform) closeness of Mn and M (cf. condition (3) in Theorem 12.1 below) shows

that the left-hand side of (163) must converge to 0 (in probability), whereas if M has a

well-separated unique maximum120 (cf. condition (1) in Theorem 12.1) then the right-hand

side of (163) must exceed a positive number, thereby showing that P(d(✓̂n, ✓0) � ✏) ! 0

as n ! 1. This was carried out in Subsection 3.5.1 while discussing the consistency of

M -estimators.
120i.e., the function M(✓) should be strictly smaller than M(✓0) on the complement of every neighborhood

of the point ✓0.
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12.1 Argmax continuous mapping theorems

We state our first argmax continuous mapping theorem below which generalizes the above

discussed setup (so that it can also be used to derive asymptotic distributions of the M -

estimator). Our first result essentially says that the argmax functional is continuous at

functions M that have a well-separated unique maximum.

Theorem 12.1. Let H be a metric space and let {Mn(h), h 2 H} and {M(h), h 2 H} be

stochastic processes indexed by H. Suppose the following conditions hold:

1. ĥ is a random element of H which satisfies

M(ĥ) > sup
h/2G

M(h) a.s.,

for every open set G containing ĥ; i.e., M has a unique “well-separated” point of

maximum.

2. For each n, let ĥn 2 H satisfy

Mn(ĥn) � sup
h2H

Mn(h) � oP(1).

3. Mn

d
�! M in `1(H).

Then ĥn

d
�! ĥ in H.

Proof. By the Portmanteau theorem 10.5, to prove ĥn

d
�! ĥ it su�ces to show that

lim sup
n!1

P⇤
{ĥn 2 F}  P{ĥ 2 F} (164)

for every closed subset F of H. Fix a closed set F and note that

{ĥn 2 F} ✓

⇢
sup
h2F

Mn(h) � sup
h2H

Mn(h) � oP(1)

�
.

Therefore,

P⇤
�
ĥn 2 F

�
 P⇤

⇣
sup
h2F

Mn(h) � sup
h2H

Mn(h) + oP(1) � 0
⌘
.

The map suph2F Mn(h)�suph2H Mn(h) converges in distribution to suph2F M(h)�suph2H M(h)

as Mn

d
�! M in `1(H) and by the continuous mapping theorem. We thus have

lim sup
n!1

P⇤

⇣
ĥn 2 F

⌘
 P

✓
sup
h2F

M(h) � sup
h2H

M(h)

◆
,

where we have again used the Portmanteau theorem. The first assumption of the theorem

implies that {suph2F M(h) � suph2H M(h)} ✓ {ĥ 2 F} (note that F c is open). This

proves (164).
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The idea behind the proof of the above theorem can be used to prove the following

stronger technical lemma.

Lemma 12.2. Let H be a metric space and let {Mn(h) : h 2 H} and {M(h) : h 2 H}

be stochastic processes indexed by H. Let A and B be arbitrary subsets of H. Suppose the

following conditions hold:

1. ĥ is a random element of H which satisfies M(ĥ) > suph2A\Gc M(h) almost surely

for every open set G containing ĥ.

2. For each n, let ĥn 2 H be such that Mn(ĥn) � suph2H Mn(h) � oP(1).

3. Mn

d
�! M in `1(A [ B).

Then

lim sup
n!1

P⇤

⇣
ĥn 2 F \ A

⌘
 P

⇣
ĥ 2 F

⌘
+ P

⇣
ĥ 2 Bc

⌘
(165)

for every closed set F .

Observe that Theorem 12.1 is a special case of this lemma which corresponds to A =

B = H.

Proof of Lemma 12.2. The proof is very similar to that of Theorem 12.1. Observe first that

n
ĥn 2 F \ A

o
✓

⇢
sup

h2F\A

Mn(h) � sup
h2B

Mn(h) + oP (1) � 0

�
.

The term suph2F\AMn(h)�suph2B Mn(h)+oP (1) converges in distribution to suph2F\A M(h)�

suph2B M(h) because Mn

d
�! M in `1(A [ B). This therefore gives

lim sup
n!1

P⇤

⇣
ĥn 2 F \ A

⌘
 P

✓
sup

h2F\A

M(h) � sup
h2B

M(h) � 0

◆

Now if the event {suph2F\A M(h) � suph2B M(h)} holds and if ĥ 2 B, then suph2F\A M(h) �

M(ĥ) which can only happen if ĥ 2 F . This means

P
✓

sup
h2F\A

M(h) � sup
h2B

M(h) � 0

◆
 P(ĥ 2 Bc) + P(ĥ 2 F )

which completes the proof.

We next prove a more applicable argmax continuous mapping theorem. The assumption

that Mn

d
�! M in `1(H) is too stringent. It is much more reasonable to assume that

Mn

d
�! M in `1(K) for every compact subset K of H. The next theorem proves that ĥn

converges in law to ĥ under this weaker assumption.

As we will be restricting analysis to compact sets in the next theorem, we need to

assume that ĥn and ĥ lie in compact sets with arbitrarily large probability. This condition,

made precise below, will be referred to as the tightness condition:
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For every ✏ > 0, there exists a compact set K✏ ✓ H such that

lim sup
n!1

P⇤

⇣
ĥn /2 K✏

⌘
 ✏ and P

⇣
ĥ /2 K✏

⌘
 ✏. (166)

Theorem 12.3 (Argmax continuous mapping theorem). Let H be a metric space and let

{Mn(h) : h 2 H} and {M(h) : h 2 H} be stochastic processes indexed by H. Suppose that

the following conditions hold:

1. Mn

d
�! M in `1(K) for every compact subset K of H.

2. Almost all sample paths h 7! M(h) are upper semicontinuous121 (u.s.c.) and possess

a unique maximum at a random point ĥ.

3. For each n, let ĥn be a random element of H such that Mn(ĥn) � suph2H Mn(h) �

oP(1).

4. The tightness condition (166) holds.

Then ĥn

d
�! ĥ in H.

Proof. Let K be an arbitrary compact subset of H. We first claim that

M(ĥ) > sup
h2K\Gc

M(h)

for every open set G containing ĥ. Suppose, for the sake of contradiction, that M(ĥ) =

suph2K\Gc M(h) for some open set G containing ĥ. In that case, there exist hm 2 K \ Gc

with M(hm) ! M(h) as m ! 1. Because K \ Gc (intersection of a closed set with a

compact set) is compact, a subsequence of {hm} converges which means that we can assume,

without loss of generality, that hm ! h for some h 2 K \ Gc. By the u.s.c. hypothesis, this

implies that lim supm!1 M(hm)  M(h) which is same as M(ĥ)  M(h). This implies

that ĥ is not a unique maximum (as ĥ 2 G and h 2 Gc, we note that ĥ 6= h). This proves

the claim.

We now use Lemma 12.2 with A = B = K (note that Mn

d
�! M on `1(A[B) = `1(K)).

This gives that for every closed set F , we have

lim sup
n!1

P⇤

⇣
ĥn 2 F

⌘
 lim sup

n!1

P⇤

⇣
ĥn 2 F \ K

⌘
+ lim sup

n!1

P⇤

⇣
ĥn 2 Kc

⌘

 P
⇣
ĥ 2 F

⌘
+ P

⇣
ĥ 2 Kc

⌘
+ lim sup

n!1

P⇤

⇣
ĥn 2 Kc

⌘
.

The term on the right hand side above can be made smaller than P
�
ĥ 2 F

�
+ ✏ for every

✏ > 0 by choosing K appropriately (using tightness). An application of the Portmanteau

theorem now completes the proof.

121Recall the definition of upper semicontinuity: f is u.s.c. at x0 if lim supn!1
f(xn)  f(x0) whenever

xn ! x0 as n ! 1.
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As a simple consequence of Theorems 12.1 and 12.3, we can prove the following the-

orem which is useful for checking consistency of M -estimators. Note that Mn

d
�! M for a

deterministic process M is equivalent to Mn

P
�! M . This latter statement is equivalent to

suph2H |Mn(h) � M(h)| converges to 0 in probability.

Theorem 12.4 (Consistency Theorem). Let ⇥ be a metric space. For each n � 1, let

{Mn(✓) : ✓ 2 ⇥} be a stochastic process. Also let {M(✓) : ✓ 2 ⇥} be a deterministic process.

1. Suppose sup✓2⇥ |Mn(✓) � M(✓)|
P
�! 0 as n ! 1. Also suppose the existence of ✓0 2

⇥ such that M(✓0) > sup✓/2G M(✓) for every open set G containing ✓0. Then any

sequence sequence of M -estimators ✓̂n (assuming that Mn(✓̂n) � sup✓2⇥Mn(✓)�oP (1)

is enough), converges in probability to ✓0.

2. Suppose sup✓2K |Mn(✓) � M(✓)|
P
�! 0 as n ! 1 for every compact subset K of ⇥.

Suppose also that the deterministic limit process M is upper semicontinuous and has

a unique maximum at ✓0. If {✓̂n} is tight, then ✓̂n converges to ✓0 in probability.

Remark 12.1. For M -estimators, we can apply the above theorem with Mn(✓) :=
P

n

i=1 m✓(Xi)/n

and M(✓) := P [m✓]. In this case, the condition sup✓2K |Mn(✓) � M(✓)|
P
�! 0 is equivalent

to {m✓ : ✓ 2 K} being P -Glivenko-Cantelli.

Theorem 12.3 can also be used to prove asymptotic distribution results for M -estimators,

as illustrated in the following examples.

12.2 Asymptotic distribution

In this section we present one result that gives the asymptotic distribution of M -estimators

for the case of i.i.d. observations. The formulation is from [van der Vaart, 1998]. The limit

distribution of the sequence
p

n(✓̂n � ✓0) follows from the following theorem, where ✓̂n is

an M -estimator of the finite dimensional parameter ✓0 (i.e., ✓̂n := arg max✓2⇥Mn(✓) where

Mn(✓) = Pn[m✓(X)]).

Example 12.5 (Parametric maximum likelihood estimators). Suppose X1, . . . , Xn are i.i.d. from

an unknown density p✓0 belonging to a known class {p✓ : ✓ 2 ⇥ ✓ Rk
}. Let ✓̂n denote the

maximum likelihood estimator of ✓0. A classical result is that, under some smoothness as-

sumptions,
p

n(✓̂n � ✓0) converges in distribution to Nk(0, I�1(✓0)) where I(✓0) denotes the

Fisher information matrix.

This result can be derived from the argmax continuous mapping theorem. The first step

is to observe that if ✓ 7! p✓(x) is su�ciently smooth at ✓0, then, for any h 2 Rk,

nX

i=1

log
p
✓0+hn�1/2(Xi)

p✓0(Xi)
= h>

1
p

n

nX

i=1

˙̀
✓0(Xi) �

1

2
h>I(✓0)h + oP✓0

(1) (167)
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where ˙̀
✓0(x) := r✓ log p✓(x) denotes the score function. Condition (167) is known as the

LAN (local asymptotic normality) condition. We shall prove the asymptotic normality of ✓̂n

assuming the marginal convergence of (167) (for every fixed h) can be suitably strengthened

to a process level result in `1(K), for K ⇢ Rk compact. We apply the argmax continuous

mapping theorem (Theorem 12.3) with H = Rk,

Mn(h) :=
nX

i=1

log
p
✓0+hn�1/2(Xi)

p✓0(Xi)
and M(h) := hT� �

1

2
hT I(✓0)h

where � ⇠ Nk(0, I(✓0)). Then ĥn =
p

n(✓̂n � ✓0) and ĥ ⇠ N(0, I�1(✓0)). The argmax

theorem will then imply the result provided the conditions of the argmax theorem hold. The

main condition is tightness of {ĥn} which means that the rate of convergence of ✓̂n to ✓0 is

n�1/2.

The above idea can be easily extended to derive the asymptotic distributions of other
p

n-consistent estimators, e.g., non-linear regression, robust regression, etc. (see [van der Vaart, 1998,

Chapter 5] for more details).

Theorem 12.6. Suppose that x 7! m✓(x) is a measurable function for each ✓ 2 ⇥ ⇢ Rd

for an open set ⇥, that ✓ 7! m✓(x) is di↵erentiable at ✓0 2 ⇥ for P -almost every x with

derivative ṁ✓0(x), and that

|m✓1(x) � m✓2(x)|  F (x)k✓1 � ✓2k (168)

holds for all ✓1, ✓2 in a neighborhood of ✓0, where F 2 L2(P ). Also suppose that M(✓) =

P [m✓] has a second order Taylor expansion

P [m✓] � P [m✓0 ] =
1

2
(✓ � ✓0)

>V (✓ � ✓0) + o(k✓ � ✓0k
2)

where ✓0 is a point of maximum of M and V is symmetric and nonsingular (negative definite

since M is a maximum at ✓0). If Mn(✓̂n) � sup✓ Mn(✓) � oP(n�1) and ✓̂n
P
! ✓0, then

p
n(✓̂n � ✓0) = �V �1Gn(ṁ✓0) + oP(1)

d
! Nd(0, V �1P [ṁ✓0ṁ

>

✓0
]V �1).

Proof. We will show that

M̃n(h) := nPn(m
✓0+hn�1/2 � m✓0)

d
! h>G(ṁ✓0) +

1

2
h>V h =: M(h) in `1({h : khk  K})

for every K > 0. Then the conclusion follows from the argmax continuous Theorem 12.3

upon noticing that

ĥ = argmax
h

M(h) = �B�1G(ṁ✓0) ⇠ Nd(0, V �1P (ṁ✓0ṁ
>

✓0
)V �1).

Now, observe that

nPn(m
✓0+hn�1/2 � m✓0) =

p
n(Pn � P )[

p
n(m

✓0+hn�1/2 � m✓0)] + nP (m
✓0+hn�1/2 � m✓0).
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By the second order Taylor expansion of M(✓) := P [m✓] about ✓0, the second term of the

right side of the last display converges to (1/2)h>V h uniformly for khk  K. To handle

the first term we use the Donsker theorem with chaining classes. The classes

Fn := {
p

n(m
✓0+hn�1/2 � m✓0) : khk  K}

have envelopes Fn = F = ṁ✓0 for all n, and since ṁ✓0 2 L2(P ) the Lindeberg condition is

satisfied easily. Furthermore, with

fn,g =
p

n(m
✓0+gn�1/2 � m✓0), fn,h =

p
n(m

✓0+hn�1/2 � m✓0),

by the dominated convergence theorem the covariance functions satisfy

P (fn,gfn,h) � P (fn,g)P (fn,h) ! P (g>ṁ✓0ṁ
>

✓0
h) = g>E[G(ṁ✓0)G(ṁ>

✓0
)]h.

Finally, the bracketing entropy condition holds since, by way of the same entropy calcula-

tions used in the proof of we have

N[ ](2✏kFkP,2, Fn, L2(P )) 

✓
CK

✏

◆
d

, i.e., N[ ](✏, Fn, L2(P )) .
✓

CKkFkP,2

✏

◆
d

Thus, J[ ](�, Fn, L2(P )) .
R
�

0

q
d log

�
CK

✏

�
d✏, and hence the bracketing entropy hypothesis

of Donsker theorem holds. We conclude that M̃n(h) converges weakly to h>G(ṁ✓0) in

`1({h : khk  K}), and the desired result holds.

12.3 A non-standard example

Example 12.7 (Analysis of the shorth). Recall the setup of Example 5.4. Suppose that

X1, . . . , Xn are i.i.d. P on R with density p with respect to the Lebesgue measure. Let FX be

the distribution function of X. Suppose that p is a unimodal symmetric density with mode

✓0 (with p0(x) > 0 for x < ✓0 and p0(x) < 0 for x > ✓0). We want to estimate ✓0.

Let

M(✓) := P [m✓] = P(|X � ✓|  1) = FX(✓ + 1) � FX(✓ � 1)

where m✓(x) = 1[✓�1,✓+1](x). We can how that ✓0 = argmax✓2RM(✓).

We can estimate ✓0 by

✓̂n := argmax
✓2R

Mn(✓), where Mn(✓) = Pnm✓.

We have already seen that (in Example 5.4) ⌧n := n1/3(✓̂n � ✓0) = Op(1). Let us here give

a sketch of the limiting distribution of (the normalized version of) ✓̂n. Observe that

⌧n = argmax
h2R

Mn(✓0 + hn�1/3) = argmax
h2R

n2/3[Mn(✓0 + hn�1/3) � Mn(✓0)].
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The plan is to show that the localized (and properly normalized) stochastic process M̃n(h) :=

n2/3[Mn(✓0+hn�1/3)�Mn(✓0)] converges in distribution to “something” so that we can apply

the argmax continuous mapping theorem (Theorem 12.3) to deduce the limiting behavior of

⌧n. Notice that,

M̃n(h) := n2/3Pn[m
✓0+hn�1/3 � m✓0 ]

= n2/3(Pn � P )[m
✓0+hn�1/3 � m✓0 ] + P [m

✓0+hn�1/3 � m✓0 ],

where the second term is

n2/3[M(✓0 + hn�1/3) � M(✓0)] = n2/3M0(✓0)hn�1/3 + n2/3 1

2
M00(✓⇤)h2n�2/3

!
1

2
M00(✓0)h

2 =
1

2
[p0(✓0 + 1) � p0(✓0 � 1)]h2,

uniformly in |h|  K, for any constant K. Note that as M is di↵erentiable M0(✓0) =

p(✓0 + 1) � p(✓0 � 1) = 0. Thus, we want to study the empirical process Gn indexed by the

collection of functions Fn := {n1/6(m
✓0+hn�1/3 � m✓0) : |h|  K}. Here we can apply a

Donsker theorem for a family of functions depending on n, for example Theorem 11.7. Thus

we need to check that (160) and (161) hold. Observe that

P [(fn,s � fn,t)
2] � [P (fn,s � fn,t)]

2

= n1/3P [(m
✓0+sn�1/3 � m

✓0+tn�1/3)2] � o(1)

= n1/3
n

P1[✓0�1+sn�1/6,✓0�1+tn�1/6] + P1[✓0+1+sn�1/6,✓0+1+tn�1/6]

o
+ o(1) if t > s

! [p(✓0 � 1) + p(✓0 + 1)]|s � t|.

Thus, we can conclude that

n2/3(Pn � P )[m
✓0+hn�1/3 � m✓0 ]

d
! aZ(h)

where a2 := p(✓0 + 1) + p(✓0 � 1) and Z is a standard two-sided Brownian motion process

starting from 0 (show this!). We can now use the argmax continuous mapping theorem to

conclude now that

⌧n = n1/3(✓̂n � ✓0)
d
! argmax

h

[aZ(h) � bh2],

where b := �M00(✓0)/2.

157

≈

⼀

n
~

( h )

⽕⑩
⼀
—

—— ⼋

→∝

pim 00) = O

√∞0
⼀

m " 0 )靠⼗ im 的签
—

凶⇐
与÷⼀

σ
∞

→

⼀

吃 。 n
吃 =⑤
Λ ≈
⼀

∞
⼀⼀

⼀
☆


