
for any � > 0, the Klein-Rio version of Talagrand’s lower-tail inequality gives

e�x
� P

✓
Z̃  EZ̃ �

q
2x(n�2 + 2EZ̃) � x

◆
� P

✓
Z̃  (1 � �)EZ̃ �

p

2xn�2 �
1 + �

�
x

◆
.

Similarly, using (99),

P
✓

Z � (1 + �)EZ +
p

2xn�2 +
3 + �

3�
x

◆
 e�x.

Recall also that E[Z]  2E[Z̃]. Then, we have on the intersection of the complement of the

events in the last two inequalities, for � = 1/5 (say),

Z <
6

5
E[Z] +

p

2xn�2 +
16

3
x 

12

5
E[Z̃] +

p

2xn�2 +
16

3
x

<
12

5


5

4
Z̃ +

5

4

p

2xn�2 +
15

2
x

�
+

p

2xn�2 +
16

3
x

= 3Z̃ + 4
p

2xn�2 +
70

3
x;

i.e., this inequality holds with probability 1 � 2e�x.

Note that di↵erent values of � produce di↵erent coe�cients in the above theorem.

8.3 Empirical risk minimization and concentration inequalities

Let X, X1, . . . , Xn, . . . be i.i.d. random variables defined on a probability space and taking

values in a measurable space X with common distribution P . In this section we highlight

the usefulness of concentration inequalities, especially Talagrand’s inequality, in empirical

risk minimization (ERM); see [Koltchinskii, 2011] for a thorough study of this topic.

Let F be a class of measurable functions f : X ! R. In what follows, the values of

a function f 2 F will be interpreted as “losses” associated with certain “actions” (e.g.,

F = {f(x) ⌘ f(z, y) = (y � �>z)2 : � 2 Rd
} and X = (Z, Y ) ⇠ P ).

We will be interested in the problem of risk minimization:

min
f2F

Pf (102)

in the cases when the distribution P is unknown and has to be estimated based on the data

X1, . . . , Xn. Since the empirical measure Pn is a natural estimator of P , the true risk can

be estimated by the corresponding empirical risk, and the risk minimization problem has

to be replaced by the empirical risk minimization (ERM):

min
f2F

Pnf. (103)

As is probably clear by now, many important methods of statistical estimation such as

maximum likelihood and more general M -estimation are versions of ERM.
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Definition 8.12. The excess risk of f 2 F is defined as

E(f) ⌘ EP (f) := Pf � inf
h2F

Ph.

Recall that we have already seen an important application of ERM in the problem of

classification in Example 7.10. Here is another important application.

Example 8.13 (Regression). Suppose that we observe X1 ⌘ (Z1, Y1), . . . , Xn ⌘ (Zn, Yn)

i.i.d. X ⌘ (Z, Y ) ⇠ P on X ⌘ Z ⇥ T , T ⇢ R, and the goal is to study the relationship

between Y and Z. We study regression with quadratic loss `(y, u) := (y � u)2 given a class

of of measurable functions G from Z to T ; the distribution of Z will be denoted by ⇧. This

problem can be thought of as a special case of ERM with

F := {(` • g)(z, y) ⌘ (y � g(z))2 : g 2 G}.

Suppose that the true regression function is g⇤(z) := E[Y |Z = z], for z 2 Z. In this case,

the excess risk of f(z, y) = (y � g(z))2 2 F (for some g 2 G) is given by77

EP (f) = EP (` • g) = kg � g⇤k
2
L2(⇧) � inf

h2G

kh � g⇤k
2
L2(⇧). (104)

If G is such that g⇤ 2 G then EP (` • g) = kg � g⇤k2L2(⇧), for all g 2 G.

Let

f̂ ⌘ f̂n 2 arg min
f2F

Pnf

be a solution of the ERM problem (103). The function f̂n is used as an approximation

of the solution of the true risk minimization problem (102) and its excess risk EP (f̂n) is a

natural measure of accuracy of this approximation.

It is worth pointing out that a crucial di↵erence between ERM and classical M -

estimation, as discussed in Sections 5 and 6, is that in the analysis of ERM we do not

(usually) assume that the data generating distribution P belongs to the class of models

considered (e.g., infh2F Ph need not be 0). Moreover, in M -estimation, typically the focus

is on recovering a parameter of interest in the model (which is expressed as the population

M -estimator) whereas in ERM the focus is mainly on deriving optimal (upper and lower)

bounds for the excess risk EP (f̂n).

It is of interest to find tight upper bounds on the excess risk78 of f̂ that hold with

a high probability. Such bounds usually depend on certain “geometric” properties of the

function class F and on various measures of its “complexity” that determine the accuracy of

approximation of the true risk Pf by the empirical risk Pnf in a neighborhood of a proper

size of the minimal set of the true risk.
77Exercise (HW3): Show this.
78Note that we have studied upper bounds on the excess risk in the problem of classification in Exam-

ple 7.10.
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In the following we describe a rather general approach to derivation of such bounds in

an abstract framework of ERM. We start with some definitions.

Definition 8.14. The �-minimal set of the risk is defined as

F(�) := {f 2 F : EP (f)  �}.

The L2-diameter of the �-minimal set is denoted by

D(�) ⌘ DP (F ; �) := sup
f1,f22F(�)

{P [(f1 � f2)
2]}1/2.

Suppose, for simplicity, that the infimum of the risk Pf is attained at f̄ 2 F (the

argument can be easily modified if the infimum is not attained in the class). Denote

�̂ := EP (f̂).

Then f̂ , f̄ 2 F(�̂) and Pnf̂  Pnf̄ . Therefore,

�̂ = EP (f̂) = P (f̂ � f̄)  Pn(f̂ � f̄) + (P � Pn)(f̂ � f̄)

 sup
f1,f22F(�̂)

|(Pn � P )(f1 � f2)| (105)

 sup
f1,f22F

|(Pn � P )(f1 � f2)|.

Previously, we had used the last inequality to upper bound the excess risk in classification;

see Example 7.10. In this section we will use the implicit characterization of �̂ in (105)

to improve our upper bound. This naturally leads us to the study of the following (local)

measure of empirical approximation:

�n(�) ⌘ �n(F ; �) := E
"

sup
f1,f22F(�)

|(Pn � P )(f1 � f2)|

#
. (106)

Idea: Imagine there exists a nonrandom upper bound

Un(�) � sup
f1,f22F(�)

|(Pn � P )(f1 � f2)| (107)

that holds uniformly in � with a high probability. Then, with the same probability, the

excess risk �̂ = EP (f̂) will be bounded79 by the largest solution of the inequality

�  Un(�). (108)

By solving the above inequality one can obtain �n(F) (which satisfies (108)) such that

P(EP (f̂n) > �n(F)) is small80. Thus, constructing an upper bound on the excess risk

essentially reduces to solving a fixed point inequality of the type �  Un(�).

79As �̂  supf1,f22F(�̂) |(Pn � P )(f1 � f2)|  Un(�̂), �̂ satisfies inequality (108).
80We will formalize this later.
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Let us describe in more detail what we mean by the above intuition. There are many

di↵erent ways to construct upper bounds on the sup-norm of empirical processes. A very

general approach is based on Talagrand’s concentration inequalities. For example, if the

functions in F take values in the interval [0, 1], then81 by (99) we have, for t > 0,82

P
 

sup
f1,f22F(�)

|(Pn � P )(f1 � f2)| � �n(�) +
1

p
n

p
2t (2�n(�) + D2(�)) +

t

3n

!
 e�t. (109)

Then, using the facts: (i)
p

a + b 
p

a+
p

b, and (ii) 2
p

ab  a/K+Kb, for any a, b, K > 0,

we have

p
2t (D2(�) + 2�n(�)) 

p
2tD2(�) + 2

p
t�n(�)  D(�)

p

2t +
t

p
n

+
p

n�n(�).

Thus, from (109), for all t > 0, we have83

P
 

sup
f1,f22F(�)

|(Pn � P )(f1 � f2)| � Ūn(�; t)

!
 e�t (110)

where

Ūn(�; t) := 2

 
�n(�) + D(�)

r
t

n
+

t

n

!
. (111)

This observation provides a way to construct a function Un(�) such that (107) holds with

a high probability “uniformly” in � — by first defining such a function at a discrete set of

values of � and then extending it to all values by monotonicity. We will elaborate on this

shortly. Then, by solving the inequality (108) one can construct a bound on EP (f̂n), which

holds with “high probability” and which is often of correct order of magnitude.

8.3.1 A formal result on excess risk in ERM

Let us now try to state a formal result in this direction. To simplify notation, assume

that the functions in F take values in [0, 1]. Let {�j}j�0 be a decreasing sequence of

positive numbers with �0 = 1 and let {tj}j�0 be a sequence of positive numbers. Define

Un : (0, 1) ! R, via (111), as

Un(�) := Ūn(�j ; tj), for � 2 (�j+1, �j ], (112)

and Un(�) := Un(1) for � > 1. Denote

�n(F) := sup{� 2 (0, 1] : �  Un(�)}. (113)

81This assumption just simplifies a few mathematical expressions; there is nothing sacred about the interval

[0, 1], we could have done it for any constant compact interval.
82According to the notation of (99), we can take �2 = D2(�), and then ⌫n = 2n�n(F ; �) + nD2(�).
83This form of the concentration inequality is usually called Bousquet’s version of Talagrand’s inequality.
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Figure 2: Plot of the piecewise constant function Un(�), for � � �n(F), along with the value

of kPn � PkF 0(�j), for j = 0, 1, . . ., denoted by the ?’s.

It is easy to check that �n(F)  Un(�n(F)). Obviously, the definitions of Un and �n(F)

depend on the choice of {�j}j�0 and {tj}j�0 (we will choose specific values of these quan-

tities later on). We start with the following simple inequality that provides a distribution

dependent upper bound on the excess risk EP (f̂n).

Theorem 8.15. For all � � �n(F),

P
⇣
EP (f̂n) > �

⌘


X

j:�j��

e�tj . (114)

Proof. It is enough to prove the result for any � > �n(F); then the right continuity of the

distribution function of EP (f̂n) would lead to the bound (114) for � = �n(F).

So, fix � > �n(F). Letting F
0(�) := {f1 � f2 : f1, f2 2 F(�)}, we know that

EP (f̂) = �̂  sup
f2F 0(�̂)

|(Pn � P )(f)| ⌘ kPn � Pk
F 0(�̂). (115)

Denote

En,j :=
n

kPn � PkF 0(�j)  Un(�j)
o

.

It follows from Bousquet’s version of Talagrand’s inequality (see (110)) that P(En,j) �

1 � e�tj . Let

En := \j:�j��En,j .

Then

P(En) = 1 � P(Ec

n) � 1 �

X

j:�j��

e�tj . (116)

On the event En, for all � � �, we have

kPn � PkF 0(�)  Un(�). (117)

The above holds as: (i) Un(·) is a piecewise constant function (with possible jumps only

at �j ’s), (ii) the function � 7! kPn � PkF 0(�) is monotonically nondecreasing, and (iii)

kPn � PkF 0(�j)  Un(�j) on En, for j such that � � �j ; see Figure 8.3.1.
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Claim: {�̂ � �} ⇢ Ec
n. We prove the claim using the method of contradiction. Thus,

suppose that the above claim does not hold. Then, the event {�̂ � �} \ En is non-empty.

On the event {�̂ � �} \ En we have

�̂  kPn � Pk
F 0(�̂)  Un(�̂), (118)

where the first inequality follows from (115) and the second inequality holds via (117). This,

in particular, implies that

�  �̂  �n(F),

where the last inequality follows from (118) and the maximality of �n(F) via (113). However

the above display contradicts the assumption that � > �n(F). Therefore, we must have

{�̂ � �} ⇢ Ec
n.

The claim now implies that P(EP (f̂n) � �) = P(�̂ � �)  P(Ec
n) 

P
j:�j��

e�tj ,

via (116), thereby completing the proof.

Although Theorem 8.15 yields a high probability bound on the excess risk of f̂n (i.e.,

EP (f̂n)), we still need to upper bound �n(F) for the result to be useful. We address this

next. We start with some notation. Given any  : (0, 1) ! R, denote by

 †(�) := sup
s��

 (s)

s
. (119)

Note that  † is a nonincreasing function84.

The study of  † is naturally motivated by the study of the function Un(�)
�

and when it

crosses the value 1; cf. (113). As Un(�)
�

may have multiple crossings of 1, we “regularize”
Un(�)

�
by studying V t

n(�) defined below (which can be thought of as a well-behaved monotone

version of U †
n). For q > 1 an t > 0, denote

V t

n(�) := 2q

"
�†n(�) +

q
(D2)†(�)

r
t

n�
+

t

n�

#
, for � > 0. (120)

Note that V t
n is a strictly decreasing of � in (0, 1). Let

�tn ⌘ �tn(F) := inf{� > 0 : V t

n(�)  1}. (121)

We will show next that �tn � �n(F) (for a special choice of {�j}j�0 and {tj}j�0) and

thus, by (8.15) and some algebraic simplification, we will obtain the following result. Given

a concrete application, our goal would be to find upper bounds on �tn; see Section 8.3.2

where we illustrate this technique for finding a high probability bound on the excess risk in

bounded regression.

84Take �1 < �2. Then

 †(�1) = sup
s��1

 (s)
s

� sup
s��2

 (s)
s

=  †(�2).
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Theorem 8.16 (High probability bound on the excess risk of the ERM). For all t > 0,

P
⇣
EP (f̂n) > �tn

⌘
 Cqe

�t. (122)

where Cq := q

q�1 _ e.

Proof. Fix t > 0 and let � > �tn. We will show that P
�
EP (f̂n) > �

�
 Cqe�t. Then, by

taking a limit as � # �tn, we obtain (122).

Define, for j � 0,

�j := q�j and tj := t
�j
�

.

Recall the definitions of Un(�) and �n(F) (in (112) and (113)) using the above choice of the

sequences {�j}j�0 and {tj}j�0. Then, for all � � �, using (112),85

Un(�)

�
= 2

 
�n(�j)

�
+

D(�j)
p
�

r
t�j
��n

+
t�j
��n

!
if � 2 (�j+1, �j ]

 2q

 
�n(�j)

�j
+

D(�j)p
�j

s
t�j
�j�n

+
t�j
�j�n

!
as � > �j+1 =

�j
q

)
1

�
<

q

�j

 2q

 
sup
s��

�n(s)

s
+

r
t

�n
sup
s��

D(�)
p
�

+
t

�n

!
as �j � � � �

= 2q

 
�†n(�) +

q
(D2)†(�)

r
t

�n
+

t

�n

!
= V t

n(�).

Since � > �tn and the function V t
n is strictly decreasing, we have V t

n(�) < V t
n(�tn)  1, and

hence, for all � > �,
Un(�)

�
 V t

n(�) < 1.

Therefore, � > �n(F) := sup{s > 0 : 1 
Un(s)

s
}, and thus, � � �n(F). Now, from

Theorem 8.15 it follows that

P
⇣
EP (f̂n) > �

⌘


X

j:�j��

e�tj  Cqe
�t

where the last step follows from some algebra86.
85For � > �0 ⌘ 1, the following sequence of displays also holds with j = 0.
86Exercise (HW3): Show this. Hint: we can write

X

j:�j��

e�tj =
X

j:�j��

e�t�j/� 

X

j�0

e�tqj = · · · 
q

q � 1
e�t, for t � 1.
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8.3.2 Excess risk in bounded regression

Recall the regression setting in Example 8.13. Given a function g : Z ! T , the quantity

(` • g)(z, y) := `(y, g(z)) is interpreted as the loss su↵ered when g(z) is used to predict y.

The problem of optimal prediction can be viewed as a risk minimization:

E[`(Y, g(Z))] =: P (` • g)

over g : Z ! T . We start with the regression problem with bounded response and with

quadratic loss. To be specific, assume that Y takes values in T = [0, 1] and `(y, u) := (y�u)2.

Suppose that we are given a class of measurable real-valued functions G on Z. We denote

by F := {` • g : g 2 G}. Suppose that the true regression function is g⇤(z) := E[Y |Z = z],

for z 2 Z, which is not assumed to be in G. Recall that the excess risk EP (` • g) in this

problem is given by (104).

In order to apply Theorem 8.16 to find a high probability bound on the excess risk of

the ERM f̂ ⌘ `• ĝ (see (103)) in this problem, which is determined by �tn via (121), we have

to find upper bounds for V t
n(·) (which in turn depends on the functions �†n and

p
(D2)†).

As a first step we relate the excess risk of any f ⌘ ` • g 2 F to g 2 G. The following

lemma provides an easy way to bound the excess risk of f from below in the case of a convex

class G, an assumption we make in the sequel.

Lemma 8.17. If G is a convex class of functions, then

2EP (` • g) � kg � ḡk
2
L2(⇧)

where ḡ := argming2G kg � g⇤k2L2(⇧) is assumed to exist.

Below we make some observations that will be crucial to find �tn.

1. It follows from Lemma 8.17 that

F(�) = {f 2 F : EP (f)  �} ⇢ {` • g : g 2 G, kg � ḡk
2
L2(⇧)  2�}. (123)

2. For any two functions g1, g2 2 G and all z 2 Z, y 2 [0, 1], we have

|(` • g1)(z, y) � (` • g2)(z, y)| =
��(y � g1(z))2 � (y � g2(z))2

��

= |g1(z) � g2(z)| |2y � g1(z) � g2(z)|  2 |g1(z) � g2(z)| ,

which implies

P
⇥
(` • g1 � ` • g2)

2
⇤

 4kg1 � g2k
2
L2(⇧).

Recalling that D(�) := supf1,f22F(�){P [(f1 � f2)2]}1/2, we have

D(�)  2 sup
n

kg1 � g2kL2(⇧) : gk 2 G, kgk � ḡk
2
L2(⇧)  2� for k = 1, 2

o

 2(2
p

2�) (124)
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where the last step follows from the triangle inequality: kg1�g2kL2(⇧)  kg1�ḡkL2(⇧)+

kg2 � ḡkL2(⇧). Hence, by (124),

q
(D2)†(�) =

s

sup
���

D2(�)

�
 4

p

2.

3. By symmetrization inequality (recall that we use ✏1, . . . , ✏n to be i.i.d. Rademacher

variables independent of the observed data), and letting F
0(�) := {f1 � f2 : f1, f2 2

F(�)}, and using (123),

�n(�) = EkPn � PkF 0(�)  2E
"

sup
f2F 0(�)

1

n

��
nX

i=1

✏if(Xi)
��
#

 2E

2

4 sup
gk2G:kgk�ḡk

2
L2(⇧)2�

1

n

���
nX

i=1

✏i (` • g1 � ` • g2)(Xi)
���

3

5

 4E

2

4 sup
g2G:kg�ḡk

2
L2(⇧)2�

1

n

���
nX

i=1

✏i (` • g � ` • ḡ)(Xi)
���

3

5 .

Since `(y, ·) is Lipschitz with constant 2 on the interval [0, 1] one can use the contrac-

tion inequality87 to get

�n(�)  8E

2

4 sup
g2G:kg�ḡk

2
L2(⇧)2�

1

n

���
nX

i=1

✏i(g � ḡ)(Zi)
���

3

5 :=  n(�).

As a result, we get (recall (119))

�†n(�)   †

n(�).

The following result is now a corollary of Theorem 8.16.

Theorem 8.18. Let G be a convex class of functions from Z into [0, 1] and let ĝn denotes

the LSE of the regression function, i.e.,

ĝn := argmin
g2G

1

n

nX

i=1

{Yi � g(Xi)}
2.

Then, there exist constants K > 0 such that for all t > 0,

P
⇢

kĝn � g⇤k
2
L2(⇧) � inf

g2G

kg � g⇤k
2
L2(⇧) +

⇣
 ]

n(
1

4q
) + K

t

n

⌘�
 Cqe

�t, (125)

87Ledoux-Talagrand contraction inequality (Theorem 4.12 of [Ledoux and Talagrand, 1991]): If 'i : R !

R satisfies |'i(a)� 'i(b)|  L|a� b| for all a, b 2 R, then

E
"
sup
h2H

1
n

nX

i=1

✏i'i(h(xi))

#
 LE

"
sup
h2H

1
n

nX

i=1

✏ih(xi)

#
.

In the above application we take 'i(u) = (Yi � u)2 for u 2 [0, 1].
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where for any  : (0, 1) ! R,  ] is defined as88

 ](") := inf
n
� > 0 :  †(�)  "

o
. (126)

Proof. Note that in this case, by (104), EP (ĝn) = kĝn � g⇤k2L2(⇧) � infg2G kg � g⇤k2L2(⇧). To

use Theorem 8.16 we need to upper bound the quantity �tn defined in (121). Recall the

definition of V t
n(�) from (120). By the above observations 1-3, we have

V t

n(�)  2q

"
 †

n(�) + 4
p

2

r
t

n�
+

t

n�

#
(127)

We are only left to show that �tn := inf{� : V t
n(�)  1}   ]

n( 1
4q ) + K t

n
, for a su�ciently

large K, which will be implied if we can show that V t
n

⇣
 ]
n( 1

2q ) + K t

n

⌘
 1 (since then

 ]
n( 1

2q ) + K t

n
2 {� : V t

n(�)  1} and the result follows from the minimality of �tn). Note

that, by the nonincreasing nature of each of the terms on the right hand side of (127),

V t

n

✓
 ]

n(
1

4q
) + K

t

n

◆
 2q

"
 †

n( ]

n(
1

4q
)) + 4

p

2

s
t

n(Kt/n)
+

t

n(Kt/n)

#

 2q

"
1

4q
+

4
p

2
p

K
+

1

K

#
< 1,

where K > 0 is chosen so that 4
p
2

p
K

+ 1
K

< 1
2 (note that  †

n( ]
n( 1

4q )) 
1
4q ).

Example 8.19 (Finite dimensional classes). Suppose that L ⇢ L2(⇧) is a finite dimensional

linear space with dim(L) = d < 1. and let G ⇢ L be a convex class of functions taking

values in a bounded interval (for simplicity, [0, 1]). We would like to show that

P
⇢

kĝn � g⇤k
2
L2(⇧) � inf

g2G

kg � g⇤k
2
L2(⇧) +

⇣d

n
+ K

t

n

⌘�
 Ce�t (128)

with some constant C, K > 0.

It can be shown that89that

 n(�)  c

r
d�

n

with some constant c > 0. Hence,

 †

n(�) = sup
���

 n(�)

�
 sup

���

c

r
d

�n
= c

r
d

�n
.

88Note that  ] can be thought of as the generalized inverse of  †. Thus, under the assumption that  † is

right-continuous,  †(�)  " if and only if � �  ](") (Exercise (HW3): Show this). Further note that with

this notation �t
n = V t,]

n (1).
89Exercise (HW3): Suppose that L is a finite dimensional subspace of L2(P ) with dim(L) = d. Then

E
"

sup
f2L:kfkL2(P )r

1
n

��Pn
i=1 ✏if(Xi)

��
#
 r
q

d
n .

113

plsepifn > Tnt > ≤ cgét inn .

-_-
'

€-0
€-70
_=

×



As,  †
n(�)  " implies � �  ]

n("), taking � := d

n
and q � max{1, 1/(4c)}, we see that

 †

n

✓
d

n

◆
 c

s
d
d

n
n


1

4q
)  ]

n(
1

4q
) 

d

n
,

and Theorem 8.18 then implies (128); here C ⌘ Cq is taken as in Theorem 8.16 and K as

in Theorem 8.18.

Exercise (HW3): Consider the setting of Example 8.19. Instead of using the refined analysis

using (105) (and Talagrand’s concentration inequality) as illustrated in this section, use the

bounded di↵erences inequality to get a crude upper bound on the excess risk of the ERM

in this problem. Compare the obtained high probability bound to (128).

Exercise (HW3)[VC-subgraph classes]: Suppose that G is a convex VC-subgraph class of

functions g : Z ! [0, 1] of VC-dimension V . Then, show that, the function  n(�) can be

upper bounded by:

 n(�)  c

"r
V �

n
log

1

�
_

V

n
log

1

�

#
.

Show that  ]
n(") 

cV

n"2
log n"

2

V
. Finally, use Theorem 8.18 to obtain a high probability

bound analogous to (125).

Exercise (HW3)[Nonparametric classes]: In the case when the metric entropy of the class

G (random, uniform, bracketing, etc.; e.g., if log N(", G, L2(Pn)) 
�
A

"

�2⇢
) is bounded by

O("�2⇢) for some ⇢ 2 (0, 1) (assuming that the envelope of G is 1), we typically have  ]
n(") 

O(n�1/(1+⇢)). Finally, use Theorem 8.18 to obtain a high probability bound analogous

to (125).

8.4 Kernel density estimation

Let X, X1, X2, . . . , Xn be i.i.d. P on Rd, d � 1. Suppose P has density p with respect to

the Lebesgue measure on Rd, and kpk1 < 1. Let K : Rd
! R be any measurable function

that integrates to one, i.e., Z

Rd
K(y)dy = 1

and kKk1 < 1. Then the kernel density estimator (KDE) of p if given by

bpn,h(y) =
1

nhd

nX

i=1

K

✓
y � Xi

h

◆
= h�dPn


K

✓
y � X

h

◆�
, for y 2 Rd.

Here h is called the smoothing bandwidth. Choosing a suitable bandwidth sequence hn ! 0

and assuming that the density p is continuous, one can obtain a strongly consistent estimator

bpn,h(y) ⌘ bpn,hn(y) of p(y), for any y 2 Rd.

It is natural to write the di↵erence bpn(y, h) � p(y) as the sum of a random term and a

deterministic term:

bpn,h(y) � p(y) = bpn,h(y) � ph(y) + ph(y) � p(y)
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where

ph(y) := h�dP
h
K
⇣y � X

h

⌘i
= h�d

Z

Rd
K
⇣y � x

h

⌘
p(x)dx =

Z

Rd
K(u)p(y � hu)du

is a smoothed version of p. Convergence to zero of the second term can be argued based

only on smoothness assumptions on p: if p is uniformly continuous, then it is easily seen

that

sup
hbn

sup
y2Rd

|ph(y) � p(y)| ! 0

for any sequence bn ! 0. On the other hand, the first term is just

h�d(Pn � P )
h
K
⇣y � X

h

⌘i
. (129)

For a fixed y 2 Rd, it is easy to study the properties of the above display using the CLT

as we are dealing with a sum of independent random variables h�dK
⇣
y�Xi

h

⌘
, i = 1, . . . , n.

However, it is natural to ask whether the KDE bpn,hn converges to p uniformly (a.s.) for a

sequence of bandwidths hn ! 0 and, if so, what is the rate of convergence in that case? We

investigate this question using tools from empirical processes.

The KDE bpn,h(·) is indexed by the bandwidth h, and it is natural to consider bpn,h as

a process indexed by both y 2 Rd and h > 0. This leads to studying the class of functions

F :=

⇢
x 7! K

✓
y � x

h

◆
: y 2 Rd, h > 0

�
.

It is fairly easy to give conditions on the kernel K so that the class F defined above satisfies

N(✏kKk1, F , L2(Q))  (A/✏)V (130)

for some constants V � 2 and A � e2; see e.g., Lemma 7.2290. While it follows immediately

from the GC theorem that

sup
h>0,y2Rd

����(Pn � P )
h
K
⇣y � X

h

⌘i����
a.s.
! 0,

this does not su�ce in view of the factor of h�d in (129). In fact, we need a rate of

convergence for suph>0,y2Rd(Pn � P )
h
K
⇣
y�X

h

⌘i
a.s.
! 0. The following theorem gives such a

result91.
90For instance, it is satisfied for general d � 1 whenever K(x) = �(q(x)), with q(x) being a polynomial in

d variables and � being a real-valued right continuous function of bounded variation.
91 To study variable bandwidth kernel estimators [Einmahl and Mason, 2005] derived the following result,

which can be proved with some extra e↵ort using ideas from the proof of Theorem 8.21.

Theorem 8.20. For any c > 0, with probability 1,

lim sup
n!1

sup
c logn/nh1

p
nhkbpn,h(y)� ph(y)k1p
log(1/h) _ log log n

=: K(c) < 1.

Theorem (8.20) implies for any sequences 0 < an < bn  1, satisfying bn ! 0 and nan/ log n ! 1, with

probability 1 ,
sup

anhbn

kbpn,h � phk1 = O

 r
log(1/an) _ log log n

nan

!
,

which in turn implies that limn!1 supanhbn
kbpn,h � phk1

a.s.
! 0.
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Theorem 8.21. Suppose that hn # 0, nhd
n/| log hn| ! 1, log log n/| log hn| ! 1 and

hd
n  čhd

2n for some č > 0. Then

lim sup
n!1

p
nhd

nkbpn,hn(·) � phn(·)k1p
log h�1

n

= C a.s.

where C < 1 is a constant that depends only on the VC characteristics of F .

Proof. We will use the following result:

Lemma 8.22 ([de la Peña and Giné, 1999, Theorem 1.1.5]). If Xi, i 2 N, are i.i.d X -valued

random variables and F a class of measurable functions, then

P
 

max
1jn

���
jX

i=1

(f(Xi) � Pf)
���
F

> t

!
 9P

⇣���
nX

i=1

(f(Xi) � Pf)
���
F

>
t

30

⌘
.

For k � 0, let nk := 2k. Let � > 0; to be chosen later. The monotonicity of {hn}

(hence of hn log h�1
n once hn < e�1) and Lemma 8.22 imply (for k � 1)

P
 

max
nk�1<nnk

s
nhd

n

log h�1
n

kbpn,hn(y) � phn(y)k1 > �

!

= P
 

max
nk�1<nnk

s
1

nhd
n log h�1

n
sup
y2Rd

�����

nX

i=1

h
K
⇣y � Xi

hn

⌘
� EK

⇣y � Xi

hn

⌘i����� > �

!

 P

0

@ 1q
nk�1hd

nk
log h�1

nk

⇥ max
1nnk

sup
y2Rd,hnk

hhnk�1

�����

nX

i=1

h
K
⇣y � Xi

h

⌘
� EK

⇣y � Xi

h

⌘i����� > �

1

A

 9P

0

@ 1q
nk�1hd

nk
log h�1

nk

⇥ sup
y2Rd,hnk

hhnk�1

�����

nkX

i=1

h
K
⇣y � Xi

h

⌘
� EK

⇣y � Xi

h

⌘i����� >
�

30

1

A . (131)

We will study the subclasses

Fk :=

⇢
K
⇣y � ·

h

⌘
: hnk  h  hnk�1 , y 2 Rd

�
.

As

E
h
K2
⇣y � X

h

⌘i
=

Z

Rd
K2
⇣y � x

h

⌘
p(x)dx = hd

Z

Rd
K2(u)p(y � uh)du  hd

kpk1kKk
2
2,

for the class Fk, we can take

Uk := 2kKk1, and �2
k

:= hd

nk�1
kpk1kKk

2
2.

Since hnk # 0, and nhd
n/ log h�1

n ! 1, there exists k0 < 1 such that for all k � k0,

�k < Uk/2 and
p

nk�k �

p

V Uk

r
log

AUk

�k
. (check!) (132)
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Letting Zk := E
���
P

nk
i=1(f(Xi) � Pf)

���
Fk

, we can bound E[Zk] by using Theorem 7.13

(see (84)), for k � k0, to obtain

E[Zk] = E
���

nkX

i=1

(f(Xi) � Pf)
���
Fk

 L�k
p

nk log(AUk/�k)

for a suitable constant L > 0. Thus, using (132),

⌫k := nk�
2
k

+ 2UkE[Zk]  c̃nk�
2
k

for a constant c̃ > 1 and k � k0. Choosing x = c log(AUk/�k) in (99), for some c > 0, we

see that

E[Zk] +
p

2⌫kx + Ukx/3  �k
p

nk log(AUk/�k)(L +
p

2cc̃) + cUk log(AUk/�k)/3

 C�k
p

nk log(AUk/�k),

for some constant C > 0, where we have again used (132). Therefore, by Theorem 8.7,

P
⇣
Zk � C�k

p
nk log(AUk/�k)

⌘
 P(Zk � E[Zk] +

p
2⌫kx + Ukx/3)  e�c log(AUk/�k).

Notice that
30C�k

p
nk log(AUk/�k)q

nk�1hd
nk

log h�1
nk

> � (check!)

for some � > 0, not depending on k. Therefore, choosing this � the probability on the right

hand-side of (131) can be expressed as

P

0

@ Zkq
nk�1hd

nk
log h�1

nk

>
�

30

1

A  P
⇣
Zk � C�k

p
nk log(AUk/�k)

⌘
 e�c log(AUk/�k).

Since
1X

k=k0

e�c log(AUk/�k) = c1

1X

k=k0

hcd/2
nk�1

 c̃1

1X

k=k0

(č)�cd/2 < 1,

for constants c1, c̃1 > 0, we get, summarizing,

1X

k=1

P
 

max
nk�1<nnk

s
nhd

n

log h�1
n

kbpn,h(y) � ph(y)k1 > �

!
< 1.

Let Yn =

r
nhd

n

log h�1
n

kbpn,h � phk1. Letting Y := lim supn!1 Yn, and using the Borel-Cantelli

lemma we can see that P(Y > �) = 0. This yields the desired result using the zero-one

law92.

92For a fixed � � 0, define the event A := {lim supn!1
Yn > �}. As this is a tail event, by the

zero-one law it has probability 0 or 1. We thus have that for each �, P(Y > �) 2 {0, 1}. Defining

c := sup{� : P(Y > �) = 1}, we get that Y = c a.s. Note that c < 1 as there exists � > 0 such that

P(Y > �) = 0, by the proof of Theorem 8.21.
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