for any $\delta > 0$, the Klein-Rio version of Talagrand's lower-tail inequality gives

$$e^{-x} \ge \mathbb{P}\left(\tilde{Z} \le \mathbb{E}\tilde{Z} - \sqrt{2x(n\sigma^2 + 2\mathbb{E}\tilde{Z})} - x\right) \ge \mathbb{P}\left(\tilde{Z} \le (1 - \delta)\mathbb{E}\tilde{Z} - \sqrt{2xn\sigma^2} - \frac{1 + \delta}{\delta}x\right).$$

Similarly, using (99),

$$\mathbb{P}\left(Z \ge (1+\delta)\mathbb{E}Z + \sqrt{2xn\sigma^2} + \frac{3+\delta}{3\delta}x\right) \le e^{-x}.$$

Recall also that $\mathbb{E}[Z] \leq 2\mathbb{E}[\tilde{Z}]$. Then, we have on the intersection of the complement of the events in the last two inequalities, for $\delta = 1/5$ (say),

$$Z < \frac{6}{5}\mathbb{E}[Z] + \sqrt{2xn\sigma^2} + \frac{16}{3}x \le \frac{12}{5}\mathbb{E}[\tilde{Z}] + \sqrt{2xn\sigma^2} + \frac{16}{3}x$$
$$< \frac{12}{5}\left[\frac{5}{4}\tilde{Z} + \frac{5}{4}\sqrt{2xn\sigma^2} + \frac{15}{2}x\right] + \sqrt{2xn\sigma^2} + \frac{16}{3}x$$
$$= 3\tilde{Z} + 4\sqrt{2xn\sigma^2} + \frac{70}{3}x;$$

i.e., this inequality holds with probability $1-2e^{-x}$.

Note that different values of δ produce different coefficients in the above theorem.

Empirical risk minimization and concentration inequalities

Let $X, X_1, \ldots, X_n, \ldots$ be i.i.d. random variables defined on a probability space and taking values in a measurable space \mathcal{X} with common distribution P. In this section we highlight the usefulness of concentration inequalities, especially Talagrand's inequality, in empirical risk minimization (ERM); see [Koltchinskii, 2011] for a thorough study of this topic.

Let \mathcal{F} be a class of measurable functions $f:\mathcal{X}\to\mathbb{R}$. In what follows, the values of a function $f \in \mathcal{F}$ will be interpreted as "losses" associated with certain "actions" (e.g.,

$$\mathcal{F} = \{ f(x) \equiv f(z, y) = (y - \beta^{\top} z)^2 : \beta \in \mathbb{R}^d \} \text{ and } X = (Z, Y) \sim P \}.$$
We will be interested in the problem of risk minimization:
$$\min_{f \in \mathcal{F}} Pf$$
(102)

in the cases when the distribution P is unknown and has to be estimated based on the data X_1, \ldots, X_n . Since the empirical measure \mathbb{P}_n is a natural estimator of P, the true risk can be estimated by the corresponding empirical risk, and the risk minimization problem has to be replaced by the *empirical risk minimization* (ERM):

As is probably clear by now, many important methods of statistical estimation such as maximum likelihood and more general M activities.

maximum likelihood and more general M-estimation are versions of ERM.

Definition 8.12. The excess risk of $f \in \mathcal{F}$ is defined as

imation

Recall that we have already seen an important application of ERM in the problem of classification in Example 7.10. Here is another important application.

Example 8.13 (Regression). Suppose that we observe $X_1 \equiv (Z_1, Y_1), \dots, X_n \equiv (Z_n, Y_n)$ i.i.d. $X \equiv (Z,Y) \sim P$ on $\mathcal{X} \equiv \mathcal{Z} \times T$, $T \subset \mathbb{R}$, and the goal is to study the relationship between Y and Z. We study regression with quadratic loss $\ell(y,u) := (y-u)^2$ given a class of of measurable functions $\mathcal G$ from $\mathcal Z$ to T; the distribution of Z will be denoted by Π .) This problem can be thought of as a special case of ERM with

$$\mathcal{F} := \{ (\ell \bullet g)(z, y) \equiv (y - g(z))^2 : g \in \mathcal{G} \}.$$

Suppose that the true regression function is $g_*(z) := \mathbb{E}[Y|Z=z]$, for $z \in \mathcal{Z}$. In this case, the excess risk of $f(z,y) = (y - g(z))^2 \in \mathcal{F}$ (for some $g \in \mathcal{G}$) is given by 77

$$\mathcal{E}_{P}(f) = \mathcal{E}_{P}(\ell \bullet g) = g - g_{*}\|_{L_{2}(\Pi)}^{2} - \inf_{h \in \mathcal{G}} \|h - g_{*}\|_{L_{2}(\Pi)}^{2}.$$

(104)tunctions Á١١

If \mathcal{G} is such that $g_* \in \mathcal{G}$ then $\mathcal{E}_P(\ell \bullet g) = \|g - g_*\|_{L_2(\Pi)}^2$, for all $g \in \mathcal{G}$.

Let

$$\hat{f} \equiv \hat{f}_n \in \arg\min_{f \in \mathcal{F}} \mathbb{P}_n f$$

be a solution of the ERM problem (103). The function \hat{f}_n is used as an approximation of the solution of the true risk minimization problem (102) and its excess risk $\mathcal{E}_P(\hat{f}_n)$ is a

natural measure of accuracy of this approximation. was is worth pointing out that a crucial difference between ERM and classical Mestimation, as discussed in Sections 5 and 6, is that in the analysis of ERM we do not (usually) assume that the data generating distribution P belongs to the class of models considered (e.g., $\inf_{h\in\mathcal{F}} Ph$ need not be 0). Moreover, in M-estimation, typically the focus is on recovering a parameter of interest in the model (which is expressed as the population

M-estimator) whereas in ERM the focus is mainly on deriving optimal (upper and lower) bounds for the excess risk $\mathcal{E}_P(f_n)$.

It is of interest to find tight upper bounds on the excess risk⁷⁸ of \hat{f} that hold with a high probability. Such bounds usually depend on certain "geometric" properties of the function class \mathcal{F} and on various measures of its "complexity" that determine the accuracy of approximation of the true risk Pf by the empirical risk $\mathbb{P}_n f$ in a neighborhood of a proper size of the minimal set of the true risk.

⁷⁷Exercise (HW3): Show this.

⁷⁸Note that we have studied upper bounds on the excess risk in the problem of classification in Example 7.10.

In the following we describe a rather general approach to derivation of such bounds in an abstract framework of ERM. We start with some definitions. All functions

Definition 8.14. The δ -minimal set of the risk is defined as

$$\mathcal{F}(\delta) := \{ f \in \mathcal{F} : \mathcal{E}_P(f) \leq \delta \}.$$

The L_2 -diameter of the δ -minimal set is denoted by

the
$$\delta$$
-minimal set is denoted by
$$D(\delta) \equiv D_P(\mathcal{F}; \delta) := \sup_{f_1, f_2 \in \mathcal{F}(\delta)} \{P[(f_1 - f_2)^2]\}^{1/2}.$$

$$f = f_N \in \text{arg min} \text{ Properties of the risk } Pf \text{ is attained at } \overline{f} \in \mathcal{F} \text{ (the properties of the risk } Pf \text{ is attained at } \overline{f} \in \mathcal{F} \text{ (the properties of the risk } Pf \text{ is attained at } \overline{f} \in \mathcal{F} \text{ (the properties of the risk } Pf \text{ is attained at } \overline{f} \in \mathcal{F} \text{ (the properties of the risk } Pf \text{ is attained at } \overline{f} \in \mathcal{F} \text{ (the properties of the risk } Pf \text{ is attained at } \overline{f} \in \mathcal{F} \text{ (the properties of the risk } Pf \text{ (the properties of the risk } Pf$$

Suppose, for simplicity, that the infimum of the risk Pf is attained at $\overline{f} \in \mathcal{F}$ the argument can be easily modified if the infimum is not attained in the class). Denote

Then
$$\hat{f}, \bar{f} \in \mathcal{F}(\hat{\delta})$$
 and $\mathbb{P}_n \hat{f} \leq \mathbb{P}_n \hat{f}$. Therefore,
$$\hat{\delta} := \mathcal{E}_P(\hat{f}). \quad \bar{f} \in \mathcal{F}(\hat{\delta}) = f \in \mathcal{F}(\hat{\delta}) = f \in \mathcal{F}(\hat{f}) = f \in \mathcal{F}(\hat{f})$$

$$\leq \sup_{f_1, f_2 \in \mathcal{F}(\hat{\delta})} |(\mathbb{P}_n - P)(f_1 - f_2)| \leq \sup_{f_1, f_2 \in \mathcal{F}(\hat{\delta})} |(\mathbb{P}_n - P)(f_1 - f_2)|. \quad \text{wpper bound of excess risk}$$

Previously, we had used the last inequality to upper bound the excess risk in classification; see Example 7.10. In this section we will use the implicit characterization of $\hat{\delta}$ in (105) to improve our upper bound. This naturally leads us to the study of the following (local) measure of empirical approximation:

$$\phi_n(\delta) \equiv \phi_n(\mathcal{F}; \delta) := \mathbb{E}\left[\sup_{f_1, f_2 \in \mathcal{F}(\delta)} |(\mathbb{P}_n - P)(f_1 - f_2)|\right]. \tag{106}$$

Idea: Imagine there exists a normandom upper bound

$$U_n(\delta) \ge \sup_{f_1, f_2 \in \mathcal{F}(\delta)} |(\mathbb{P}_n - P)(f_1 - f_2)|$$
(107)

that holds uniformly in δ with a high probability. Then, with the same probability, the excess risk $\hat{\delta} = \mathcal{E}_P(\hat{f})$ will be bounded⁷⁹ by the largest solution of the inequality

$$\delta \leq U_n(\delta). \qquad \delta \leq U_n(\delta). \qquad (108)$$

By solving the above inequality one can obtain $\delta_n(\mathcal{F})$ (which satisfies (108)) such that $\mathbb{P}(\mathcal{E}_P(\hat{f}_n))$ $\delta_n(\mathcal{F})$ is small⁸⁰. Thus, constructing an upper bound on the excess risk essentially reduces to solving a fixed point inequality of the type $\delta \leq U_n(\delta)$.

⁷⁹ As $\hat{\delta} \leq \sup_{f_1, f_2 \in \mathcal{F}(\hat{\delta})} |(\mathbb{P}_n - P)(f_1 - f_2)| \leq U_n(\hat{\delta}), \hat{\delta}$ satisfies inequality (108). ⁸⁰We will formalize this later. upper bound with a high probability

Let us describe in more detail what we mean by the above intuition. There are many different ways to construct upper bounds on the sup-norm of empirical processes. A very general approach is based on Talagrand's concentration inequalities. For example, if the functions in \mathcal{F} take values in the interval [0,1], then⁸¹ by (99) we have, for t > 0,⁸² $\chi = \frac{1}{n}$

$$\mathbb{P}\left(\sup_{f_1,f_2\in\mathcal{F}(\delta)}|(\mathbb{P}_n-P)(f_1-f_2)|\geq \underbrace{\phi_n(\delta)}_{} + \frac{1}{\sqrt{n}}\sqrt{2t\left(2\phi_n(\delta)+D^2(\delta)\right)} + \frac{t}{3n}\right) \leq e^{-t}. \tag{109}$$

Then, using the facts: (i) $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$, and (ii) $2\sqrt{ab} \le a/K + Kb$, for any a, b, K > 0, we have

$$\frac{4n|\mathcal{S}| + p|\mathcal{S}|}{\sqrt{2t(D^{2}(\delta) + 2\phi_{n}(\delta))}} \leq \sqrt{2tD^{2}(\delta) + 2\sqrt{t\phi_{n}(\delta)}} \leq D(\delta)\sqrt{2t} + \frac{t}{\sqrt{n}} + \sqrt{n\phi_{n}(\delta)}.$$

$$\frac{2}{\sqrt{2t}} \frac{1}{\sqrt{n}} + \frac{2}{\sqrt{n}} + \frac{2}{\sqrt{n$$

Thus, from (109), for all t > 0, we have ⁸³

$$\mathbb{P}\left(\sup_{f_1, f_2 \in \mathcal{F}(\delta)} |(\mathbb{P}_n - P)(f_1 - f_2)| \ge \bar{U}_n(\delta; t)\right) \le e^{-t}$$

$$\bar{U}_n(\delta; t) := 2\left(\phi_n(\delta) + D(\delta)\sqrt{\frac{t}{n} + \frac{t}{n}}\right).$$

$$(110)$$

where

$$\bar{U}_n(\delta;t) := 2\left(\phi_n(\delta) + D(\delta)\sqrt{\frac{t}{n} + \frac{t}{n}}\right). \tag{111}$$

This observation provides a way to construct a function $U_n(\delta)$ such that (107) holds with a high probability "uniformly" in δ — by first defining such a function at a discrete set of values of δ and then extending it to all values by monotonicity. We will elaborate on this shortly. Then, by solving the inequality (108) one can construct a bound on $\mathcal{E}_P(f_n)$, which holds with "high probability" and which is often of correct order of magnitude.

8.3.1 A formal result on excess risk in ERM

Let us now try to state a formal result in this direction. To simplify notation, assume that the functions in \mathcal{F} take values in [0,1]. Let $\{\delta_j\}_{j\geq 0}$ be a decreasing sequence of positive numbers with $\delta_0 = 1$ and let $\{t_j\}_{j\geq 0}$ be a sequence of positive numbers. Define $U_n:(0,\infty)\to\mathbb{R}$, via (111), as

11), as
$$U_n(\delta) := \bar{U}_n(\delta_j; t_j), \qquad \text{for } \delta \in (\delta_{j+1}, \delta_j], \tag{112}$$

and $U_n(\delta) := U_n(1)$ for $\delta > 1$. Denote

$$\delta_n(\mathcal{F}) := \sup\{\delta \in (0,1] : \delta \le U_n(\delta)\}. \tag{113}$$

⁸¹This assumption just simplifies a few mathematical expressions; there is nothing sacred about the interval [0, 1], we could have done it for any constant compact interval.

⁸²According to the notation of (99), we can take $\sigma^2 = D^2(\delta)$, and then $\nu_n = 2n\phi_n(\mathcal{F}; \delta) + nD^2(\delta)$.

⁸³ This form of the concentration inequality is usually called Bousquet's version of Talagrand's inequality.

Figure 2: Plot of the piecewise constant function $U_n(\delta)$, for $\delta \geq \delta_n(\mathcal{F})$, along with the value of $\|\mathbb{P}_n - P\|_{\mathcal{F}'(\delta_j)}$, for j = 0, 1, ..., denoted by the \star 's.

 $\mathcal{F} \subseteq \mathsf{Vn}(\mathcal{F})$ It is easy to check that $\delta_n(\mathcal{F}) \leq U_n(\delta_n(\mathcal{F}))$. Obviously, the definitions of U_n and $\delta_n(\mathcal{F})$ depend on the choice of $\{\delta_j\}_{j\geq 0}$ and $\{t_j\}_{j\geq 0}$ (we will choose specific values of these quantities later on). We start with the following simple inequality that provides a distribution dependent upper bound on the excess risk $\mathcal{E}_P(f_n)$.

Theorem 8.15. For all $\delta \geq \delta_n(\mathcal{F})$,

$$\mathbb{P}\left(\mathcal{E}_{P}(\hat{f}_{n}) > \underline{\delta}\right) \leq \sum_{j:\delta_{j} \geq \delta} e^{-t_{j}}.$$
(114)

Proof. It is enough to prove the result for any $\delta > \delta_n(\mathcal{F})$; then the right continuity of the distribution function of $\mathcal{E}_P(\hat{f}_n)$ would lead to the bound (114) for $\delta = \delta_n(\mathcal{F})$.

So, fix $\delta > \delta_n(\mathcal{F})$. Letting $\mathcal{F}'(\delta) = \{f_1 - f_2 : f_1, f_2 \in \mathcal{F}(\delta)\}$ we know that

$$\mathcal{E}_{P}(\hat{f}) = \hat{\delta} \leq \sup_{f \in \mathcal{F}'(\hat{\delta})} |(\mathbb{P}_{n} - P)(f)| \equiv \|\mathbb{P}_{n} - P\|_{\mathcal{F}'(\hat{\delta})}. \tag{115}$$

$$E_{n,j} := \left\{ \|\mathbb{P}_{n} - P\|_{\mathcal{F}'(\delta_{j})} \leq U_{n}(\delta_{j}) \right\}.$$

Denote

Then

$$E_{n,j} := \left\{ \|\mathbb{P}_n - P\|_{\mathcal{F}'(\delta_j)} \leq U_n(\delta_j) \right\}.$$

It follows from Bousquet's version of Talagrand's inequality (see (110)) that $\mathbb{P}(E_{n,j}) \geq$ $1 - e^{-t_j}$. Let

$$E_n:=\cap_{j:\delta_j\geq\delta}E_{n,j}.$$

$$\mathbb{P}(E_n)=1-\mathbb{P}(E_n^c)\geq 1-\sum_{j:\delta_j\geq\delta}e^{-t}.$$

$$\mathbb{P}(E_n)=1-\mathbb{P}(E_n^c)\geq 1-\sum_{j:\delta_j\geq\delta}e^{-t}$$
 high probabilities $t=0$

On the event E_n , for all $\sigma \geq \delta$, we have

$$|\mathcal{M}^{(1)} = \overline{\mathsf{L}} \mathsf{N}^{(1)} \qquad ||\underline{\mathbb{P}}_n - P||_{\mathcal{F}'(\sigma)} \leq \underline{U_n(\sigma)}. \quad \exists \mathsf{L} \mathsf{N} . \tag{117}$$

The above holds as: (i) $U_n(\cdot)$ is a piecewise constant function (with possible jumps only at δ_j 's), (ii) the function $\sigma \mapsto \|\mathbb{P}_n - P\|_{\mathcal{F}'(\sigma)}$ is monotonically nondecreasing, and (iii) $\|\mathbb{P}_n - P\|_{\mathcal{F}'(\delta_j)} \le U_n(\delta_j)$ on E_n , for j such that $\delta \ge \delta_j$; see Figure 8.3.1.

Claim: $\{\hat{\delta} \geq \delta\} \subset E_n^c$ We prove the claim using the method of contradiction. Thus, suppose that the above claim does not hold. Then, the event $\{\hat{\delta} \geq \delta\} \cap E_n$ is non-empty. On the event $\{\hat{\delta} \geq \delta\} \cap E_n$ we have

$$\hat{\delta} \le \|\mathbb{P}_n - P\|_{\mathcal{F}'(\hat{\delta})} \le U_n(\hat{\delta}),\tag{118}$$

where the first inequality follows from (115) and the second inequality holds via (117). This, in particular, implies that

 $\delta \leq \hat{\delta} \leq \delta_n(\mathcal{F}),$ $\int n(f)! = \sup \{ S \in [0,1] : \delta \leq Un(\delta) \}$

where the last inequality follows from (118) and the maximality of $\delta_n(\mathcal{F})$ via (113). However the above display contradicts the assumption that $\delta > \delta_n(\mathcal{F})$. Therefore, we must have $\{\hat{\delta} \geq \delta\} \subset E_n^{\kappa}$

The claim now implies that $\mathbb{P}(\mathcal{E}_P(\hat{f}_n) \geq \delta) = \mathbb{P}(\hat{\delta} \geq \delta) \leq \mathbb{P}(E_n^c) \leq \sum_{j:\delta_j \geq \delta} e^{-t_j}$, via (116), thereby completing the proof.

Although Theorem 8.15 yields a high probability bound on the excess risk of \hat{f}_n (i.e., $\mathcal{E}_P(\hat{f}_n)$), we still need to upper bound $\delta_n(\mathcal{F})$ for the result to be useful. We address this next. We start with some notation. Given any $\psi:(0,\infty)\to\mathbb{R}$, denote by

$$\psi^{\dagger}(\sigma) := \sup_{s \ge \sigma} \frac{\psi(s)}{s}. \tag{119}$$

Note that ψ^{\dagger} is a nonincreasing function⁸⁴. $\nabla \cdot \langle \nabla_2 \rangle$, $\psi^{\dagger} \langle \nabla_2 \rangle$,

The study of ψ^{\dagger} is naturally motivated by the study of the function $U_n(\delta)$ and when it crosses the value 1; cf. (113). As $U_n(\delta)$ may have multiple crossings of 1, we "regularize" by studying $V_n^t(\delta)$ defined below which can be thought of as a well-behaved monotone

For
$$q > 1$$
 an $t > 0$, denote
$$\sqrt{\frac{t}{n\sigma}} = 2 \left[\frac{t}{n\sigma} \left(\frac{\tau}{n\sigma} \right) + \sqrt{\frac{t}{n\sigma}} + \frac{t}{n\sigma} \right]$$

$$\sqrt{\frac{t}{n\sigma}} + \frac{t}{n\sigma} , \quad \text{for } \sigma > 0.$$

$$\sqrt{\frac{t}{n\sigma}} + \frac{t}{n\sigma} , \quad \text{for } \sigma > 0.$$

$$\sqrt{\frac{t}{n\sigma}} + \frac{t}{n\sigma} , \quad \sqrt{\frac{t}{n\sigma}} + \frac{t}{n\sigma} , \quad \sqrt{\frac{t}{n\sigma$$

Note that V_n^t is a strictly decreasing of σ in $(0, \infty)$. Let

We will show next that
$$\sigma_n^t \neq \delta_n(\mathcal{F}) := \inf\{\sigma > 0 : V_n^t(\sigma) \leq 1\}.$$
 (121)

We will show next that σ_n^t $\delta_n(\mathcal{F})$ (for a special choice of $\{\delta_j\}_{j\geq 0}$ and $\{t_j\}_{j\geq 0}$) and thus, by (8.15) and some algebraic simplification, we will obtain the following result. Given a concrete application, our goal would be to find upper bounds on σ_n^t ; see Section 8.3.2 where we illustrate this technique for finding a high probability bound on the excess risk in bounded regression.

84 Take
$$\sigma_1 < \sigma_2$$
. Then
$$\psi^{\dagger}(\sigma_1) = \sup_{s \ge \sigma_1} \frac{\psi(s)}{s} \ge \sup_{s \ge \sigma_2} \frac{\psi(s)}{s} = \psi^{\dagger}(\sigma_2).$$

Theorem 8.16 (High probability bound on the excess risk of the ERM). For all t > 0,

$$where \ C_q := \frac{q}{q-1} \lor e.$$

$$\text{Mat} \left\{ \begin{array}{c} Q \\ Q \\ \end{array} \right\}$$

$$\text{We form } C = \frac{q}{q-1} \lor e.$$

$$\text{Mat} \left\{ \begin{array}{c} Q \\ Q \\ \end{array} \right\}$$

$$\text{Mat} \left\{ \begin{array}{c} Q \\ Q \\ \end{array} \right\}$$

Proof. Fix t>0 and let $\sigma>\sigma_n^{t}$. We will show that $\mathbb{P}(\mathcal{E}_P(\hat{f}_n)>\sigma)\leq C_q e^{-t}$. Then, by taking a limit as $\sigma \downarrow \sigma_n^t$, we obtain (122).

Define, for $j \geq 0$,

$$\delta_j := q^{-j}$$
 and $t_j := t \frac{\delta_j}{\sigma}$.

Recall the definitions of $U_n(\delta)$ and $\delta_n(\mathcal{F})$ (in (112) and (113)) using the above choice of the sequences $\{\delta_j\}_{j\geq 0}$ and $\{t_j\}_{j\geq 0}$. Then, for all $\delta \geq \sigma$ using (112), 85

The sequences
$$\{\delta_{j}\}_{j\geq 0}$$
 and $\{t_{j}\}_{j\geq 0}$. Then, for all $\delta \geq \sigma$ using (112), so $\mathcal{O}(s) = 2\left(\frac{\phi_{n}(\delta_{j})}{\delta} + \frac{D(\delta_{j})}{\sqrt{\delta}}\sqrt{\frac{t\delta_{j}}{\delta\sigma n}} + \frac{t\delta_{j}}{\delta\sigma n}\right)$ if $\delta \in (\delta_{j+1}, \delta_{j}]$ as $\delta = 2q\left(\frac{\phi_{n}(\delta_{j})}{\delta_{j}} + \frac{D(\delta_{j})}{\sqrt{\delta_{j}}}\sqrt{\frac{t\delta_{j}}{\delta_{j}\sigma n}} + \frac{t\delta_{j}}{\delta_{j}\sigma n}\right)$ as $\delta > \delta_{j+1} = \frac{\delta_{j}}{q} \Rightarrow \frac{1}{\delta} < \frac{q}{\delta_{j}}$ as $\delta > \delta_{j+1} = \frac{\delta_{j}}{q} \Rightarrow \frac{1}{\delta} < \frac{q}{\delta_{j}}$ as $\delta > \delta > \delta_{j+1} = \frac{\delta_{j}}{q} \Rightarrow \frac{1}{\delta} < \frac{q}{\delta_{j}}$ as $\delta > \delta > \delta_{j+1} = \frac{\delta_{j}}{q} \Rightarrow \frac{1}{\delta} < \frac{q}{\delta_{j}}$ as $\delta > \delta > \delta_{j+1} = \frac{\delta_{j}}{q} \Rightarrow \frac{1}{\delta} < \frac{q}{\delta_{j}}$ as $\delta > \delta > \delta_{j+1} = \frac{\delta_{j}}{q} \Rightarrow \frac{1}{\delta} < \frac{q}{\delta_{j}}$ as $\delta > \delta > \delta_{j+1} = \frac{\delta_{j}}{q} \Rightarrow \frac{1}{\delta} < \frac{q}{\delta_{j}}$

Since $\sigma > \sigma_n^t$ and the function V_n^t is strictly decreasing, we have $V_n^t(\sigma) < V_n^t(\sigma_n^t) \le 1$, and hence, for all $\delta > \sigma$,

tence, for all
$$\delta > \sigma$$
,
$$\frac{U_n(\delta)}{\delta} \leq V_n^t(\sigma) < 1.$$

Therefore, $\delta > \delta_n(\mathcal{F}) := \sup\{s > 0 : 1 \le \frac{U_n(s)}{s}\}$, and thus $\sigma \ge \delta_n(\mathcal{F})$. Now, from Theorem 8.15 it follows that

$$\mathbb{P}\left(\mathcal{E}_{P}(\hat{f}_{n}) > \sigma\right) \leq \sum_{j:\delta_{j} \geq \sigma} e^{-t_{j}} \leq C_{q}e^{-t}$$
The sequence of displays also holds with $j = 0$.

The sequence of displays also holds with $j = 0$.

The sequence of displays also holds with $j = 0$.

The sequence of displays also holds with $j = 0$.

where the last step follows from some algebra 86 .

⁸⁶Exercise (HW3): Show this. Hint: we can write

$$\sum_{j:\delta_{j}\geq\sigma}e^{-t_{j}}=\sum_{j:\delta_{j}\geq\sigma}e^{-t\delta_{j}/\sigma}\leq\sum_{j\geq0}e^{-tq^{j}}=\cdots\leq\left(\frac{q}{q-1}e^{-t},\quad\text{for }t\geq1.\right)$$

$$\left(e^{-t}\right)^{q}\leq e^{-t}$$

$$\left(e^{-t}\right)^{$$

⁸⁵For $\delta > \delta_0 \equiv 1$, the following sequence of displays also holds with j = 0.

Excess risk in bounded regression 8.3.2

Recall the regression setting in Example 8.13. Given a function $g: \mathcal{Z} \to T$, the quantity $(\ell \bullet g)(z,y) := \ell(y,g(z))$ is interpreted as the loss suffered when g(z) is used to predict y. The problem of optimal prediction can be viewed as a risk minimization:

$$\mathbb{E}[\ell(Y,g(Z))] =: P(\ell \bullet g)$$

over $g: \mathcal{Z} \to T$. We start with the regression problem with bounded response and with quadratic loss. To be specific, assume that Y takes values in T = [0, 1] and $\ell(y, u) := (y - u)^2$. Suppose that we are given a class of measurable real-valued functions \mathcal{G} on \mathcal{Z} . We denote by $\mathcal{F} := \{\ell \bullet g : g \in \mathcal{G}\}$. Suppose that the true regression function is $g_*(z) := \mathbb{E}[Y|Z=z]$, for $z \in \mathcal{Z}$, which is not assumed to be in \mathcal{G} . Recall that the excess $risk \ \mathcal{E}_P(\ell \bullet g)$ in this

problem is given by (104). $\mathcal{L}_{p}[f] = \mathcal{L}_{p}[f] = |g-g|^{2} |g-g|^{2}$ the ERM $\hat{f} \equiv \ell \bullet \hat{g}$ (see (103)) in this problem, which is determined by σ_n^t via (121), we have to find upper bounds for $V_n^t(\cdot)$ (which in turn depends on the functions ϕ_n^t and $\sqrt{(D^2)^{\dagger}}$).

As a first step we relate the excess risk of any $f \equiv \ell \bullet g \in \mathcal{F}$ to $g \in \mathcal{G}$. The following lemma provides an easy way to bound the excess risk of f from below in the case ϕ f a convex class \mathcal{G} , an assumption we make in the sequel.

Lemma 8.17. If \mathcal{G} is a convex class of functions, then

$$2\mathcal{E}_P(\ell \bullet g) \ge \|g - \bar{g}\|_{L_2(\Pi)}^2$$

where $\bar{g} := \operatorname{argmin}_{g \in \mathcal{G}} \|g - g_*\|_{L_2(\Pi)}^2$ is assumed to exist.

Below we make some observations that will be crucial to find σ_n^t . Montandom upper bound

1. It follows from Lemma 8.17 that

ows from Lemma 8.17 that
$$\mathcal{F}(\delta) = \{ f \in \mathcal{F} : \mathcal{E}_{P}(f) \leq \delta \} \quad \{ \ell \bullet g : g \in \mathcal{G}, \|g - \bar{g}\|_{L_{2}(\Pi)}^{2} \leq 2\delta \}.$$
 (123)

2. For any two functions
$$g_1, g_2 \in \mathcal{G}$$
 and all $z \in \mathcal{Z}$, $y \in [0, 1]$, we have $|(\ell \bullet g_1)(z, y) - (\ell \bullet g_2)(z, y)| = |(y - g_1(z))|^2 - (y + g_2(z))^2|$

$$= |g_1(z) - g_2(z)| |2y - g_1(z) - g_2(z)| \le 2|g_1(z) - g_2(z)|,$$

which implies

$$= |g_1(z) - g_2(z)| |2y - g_1(z) - g_2(z)| \le 2 |g_1(z) - g_2(z)|,$$

$$P\left[(\ell \bullet g_1 - \ell \bullet g_2)^2 \right] \le 4 ||g_1 - g_2||_{L_2(\Pi)}^2.$$
 Since $\left[= \left[\begin{smallmatrix} 0 & \ell & \ell \end{smallmatrix} \right] \right]$

Recalling that $D(\delta) := \sup_{f_1, f_2 \in \mathcal{F}(\delta)} \{ P[(f_1 - f_2)^2] \}^{1/2}$, we have

$$D(\delta) \leq 2 \sup \left\{ \|g_{1} - g_{2}\|_{L_{2}(\Pi)} : g_{k} \in \mathcal{G}, \|g_{k} - \bar{g}\|_{L_{2}(\Pi)}^{2} \leq 2\delta \text{ for } k = 1, 2 \right\}$$

$$\leq 2(2\sqrt{2\delta})$$

$$111$$
(124)

Min Prof

where the last step follows from the triangle inequality: $\underline{\|g_1 - g_2\|_{L_2(\Pi)}} \le \|g_1 - \overline{g}\|_{L_2(\Pi)} + \underline{\|g_2 - \overline{g}\|_{L_2(\Pi)}}$. Hence, by (124),

$$\sqrt{(D^2)^{\dagger}(\sigma)} = \sqrt{\sup_{\delta \ge \sigma} \frac{D^2(\delta)}{\delta}} \le 4\sqrt{2}.$$

3. By symmetrization inequality (recall that we use $\epsilon_1, \ldots, \epsilon_n$ to be i.i.d. Rademacher variables independent of the observed data), and letting $\mathcal{F}'(\delta) := \{f_1 - f_2 : f_1, f_2 \in \mathcal{F}(\delta)\}$, and using (123),

$$\begin{split} & \xrightarrow{\mathcal{F}(\delta)}, \text{ and using (123)}, \\ & \phi_n(\delta) = \mathbb{E}\|\mathbb{P}_n - P\|_{\mathcal{F}'(\delta)} & \leq & 2\,\mathbb{E}\left[\sup_{f\in\mathcal{F}'(\delta)}\frac{1}{n}\Big|\sum_{i=1}^n\epsilon_i f(X_i)\Big|\right] \\ & \leq & 2\,\mathbb{E}\left[\sup_{g_k\in\mathcal{G}:\|g_k-\bar{g}\|_{L_2(\Pi)}^2\leq 2\delta}\frac{1}{n}\Big|\sum_{i=1}^n\epsilon_i\left(\ell\bullet g_1-\ell\bullet g_2\right)(X_i)\Big|\right] \\ & \leq & 4\,\mathbb{E}\left[\sum_{g\in\mathcal{G}:\|g-\bar{g}\|_{L_2(\Pi)}^2\leq 2\delta}\frac{1}{n}\Big|\sum_{i=1}^n\epsilon_i\left(\ell\bullet g-\ell\bullet\bar{g}\right)(X_i)\Big|\right]. \end{split}$$

Since $\ell(y,\cdot)$ is Lipschitz with constant 2 on the interval [0,1] one can use the *contraction inequality*⁸⁷ to get

$$\phi_n(\delta) \leq 8 \mathbb{E} \left[\sup_{g \in \mathcal{G}: \|g - \bar{g}\|_{L_2(\Pi)}^2 \leq 2\delta} \frac{1}{n} \Big| \sum_{i=1}^n \epsilon_i (g - \bar{g})(Z_i) \Big| \right] := \psi_n(\delta).$$
As a result, we get (recall (119))
$$\phi_n^{\dagger}(\sigma) \leq \psi_n^{\dagger}(\sigma).$$

The following result is now a corollary of Theorem 8.16.

Theorem 8.18. Let \mathcal{G} be a convex class of functions from \mathcal{Z} into [0,1] and let \hat{g}_n denotes the LSE of the regression function, i.e.,

$$\hat{g}_n := \underset{g \in \mathcal{G}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \{Y_i - g(X_i)\}^2.$$

Then, there exist constants K > 0 such that for all t > 0,

$$\mathbb{P}\left\{\|\hat{g}_{n} - g_{*}\|_{L_{2}(\Pi)}^{2} \ge \inf_{g \in \mathcal{G}} \|g - g_{*}\|_{L_{2}(\Pi)}^{2} \left(\psi_{n}^{\sharp}(\frac{1}{4q}) + K\frac{t}{n}\right)\right\} \le C_{q}e^{-t}, \tag{125}$$

$$\mathbb{E}\left[\sup_{h\in\mathcal{H}}\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}\varphi_{i}(h(x_{i}))\right]\leq L\,\mathbb{E}\left[\sup_{h\in\mathcal{H}}\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}h(x_{i})\right].$$

In the above application we take $\varphi_i(u) = (Y_i - u)^2$ for $u \in [0, 1]$.

⁸⁷Ledoux-Talagrand contraction inequality (Theorem 4.12 of [Ledoux and Talagrand, 1991]): If $\varphi_i : \mathbb{R} \to \mathbb{R}$ satisfies $|\varphi_i(a) - \varphi_i(b)| \leq L|a-b|$ for all $a, b \in \mathbb{R}$, then

where for any $\psi:(0,\infty)\to\mathbb{R}$, ψ^{\sharp} is defined as⁸⁸

$$\psi^{\sharp}(\varepsilon) := \inf \left\{ \sigma > 0 : \psi^{\dagger}(\sigma) \le \varepsilon \right\}.$$
 (126)

Proof. Note that in this case, by (104), $\mathcal{E}_P(\hat{g}_n) = \|\hat{g}_n - g_*\|_{L_2(\Pi)}^2 - \inf_{g \in \mathcal{G}} \|g - g_*\|_{L_2(\Pi)}^2$. To use Theorem 8.16 we need to upper bound the quantity σ_n^t defined in (121). Recall the definition of $V_n^t(\sigma)$ from (120). By the above observations 1-3, we have

$$V_n^t(\sigma) \ge 2q \left[\psi_n^\dagger(\sigma) + 4\sqrt{2}\sqrt{\frac{t}{n\sigma}} + \frac{t}{n\sigma} \right] \tag{127}$$

We are only left to show that $\underline{\sigma}_n^t := \inf\{\sigma: V_n^t(\sigma) \leq 1\} \not\leq \psi_n^\sharp(\frac{1}{4q}) + K_n^t$, for a sufficiently large K, which will be implied if we can show that $\underline{V_n^t}(\psi_n^\dagger(\frac{1}{2q}) + K_n^{\frac{t}{n}}) \leq 1$ (since then $\psi_n^\sharp(\frac{1}{2q}) + K_n^{\frac{t}{n}} \in \{\sigma: V_n^t(\sigma) \leq 1\}$ and the result follows from the minimality of σ_n^t). Note that, by the nonincreasing nature of each of the terms on the right hand side of (127),

$$V_n^t \left(\psi_n^\sharp(\frac{1}{4q}) + K \frac{t}{n} \right) \le 2q \left[\psi_n^\dagger(\psi_n^\sharp(\frac{1}{4q})) + 4\sqrt{2}\sqrt{\frac{t}{n(Kt/n)}} + \frac{t}{n(Kt/n)} \right]$$

$$\le 2q \left[\frac{1}{4q} + \frac{4\sqrt{2}}{\sqrt{K}} + \frac{1}{K} \right] < 1,$$

where K > 0 is chosen so that $\frac{4\sqrt{2}}{\sqrt{K}} + \frac{1}{K} < \frac{1}{2}$ (note that $\psi_n^{\dagger}(\psi_n^{\sharp}(\frac{1}{4q})) \leq \frac{1}{4q}$).

Example 8.19 (Finite dimensional classes). Suppose that $\mathcal{L} \subset L_2(\Pi)$ is a finite dimensional linear space with $\dim(\mathcal{L}) = d < \infty$. and let $\mathcal{G} \subset \mathcal{L}$ be a convex class of functions taking values in a bounded interval (for simplicity, [0,1]). We would like to show that

$$\mathbb{P}\left\{\|\hat{g}_n - g_*\|_{L_2(\Pi)}^2 \ge \inf_{g \in \mathcal{G}} \|g - g_*\|_{L_2(\Pi)}^2 + \left(\frac{d}{n} + K\frac{t}{n}\right)\right\} \le Ce^{-t}$$
(128)

with some constant C, K > 0.

It can be shown that 89 that

$$\psi_n(\delta) \le c\sqrt{\frac{d\delta}{n}}$$

with some constant c > 0. Hence,

$$\psi_n^{\dagger}(\sigma) = \sup_{\delta > \sigma} \frac{\psi_n(\delta)}{\delta} \le \sup_{\delta > \sigma} c \sqrt{\frac{d}{\delta n}} = c \sqrt{\frac{d}{\sigma n}}.$$

⁸⁸Note that ψ^{\sharp} can be thought of as the *generalized inverse* of ψ^{\dagger} . Thus, under the assumption that ψ^{\dagger} is right-continuous, $\psi^{\dagger}(\sigma) \leq \varepsilon$ if and only if $\sigma \geq \psi^{\sharp}(\varepsilon)$ (Exercise (HW3): Show this). Further note that with this notation $\sigma_n^t = V_n^{t,\sharp}(1)$.

⁸⁹Exercise (HW3): Suppose that \mathcal{L} is a finite dimensional subspace of $L_2(P)$ with $\dim(\mathcal{L}) = d$. Then $\mathbb{E}\left[\sup_{f \in \mathcal{L}: \|f\|_{L_2(P)} \le r} \frac{1}{n} \left| \sum_{i=1}^n \epsilon_i f(X_i) \right| \right] \le r\sqrt{\frac{d}{n}}.$

As, $\psi_n^{\dagger}(\sigma) \leq \varepsilon$ implies $\sigma \geq \psi_n^{\sharp}(\varepsilon)$, taking $\sigma := \frac{d}{n}$ and $q \geq \max\{1, 1/(4c)\}$, we see that

$$\psi_n^\dagger \left(\frac{d}{n}\right) \le c \sqrt{\frac{d}{\frac{d}{n}n}} \le \frac{1}{4q} \quad \Rightarrow \quad \psi_n^\sharp (\frac{1}{4q}) \le \frac{d}{n},$$

and Theorem 8.18 then implies (128); here $C \equiv C_q$ is taken as in Theorem 8.16 and K as in Theorem 8.18.

Exercise (HW3): Consider the setting of Example 8.19. Instead of using the refined analysis using (105) (and Talagrand's concentration inequality) as illustrated in this section, use the bounded differences inequality to get a crude upper bound on the excess risk of the ERM in this problem. Compare the obtained high probability bound to (128).

Exercise (HW3)[VC-subgraph classes]: Suppose that \mathcal{G} is a convex VC-subgraph class of functions $g: \mathcal{Z} \to [0,1]$ of VC-dimension V. Then, show that, the function $\psi_n(\delta)$ can be upper bounded by:

$$\psi_n(\delta) \le c \left[\sqrt{\frac{V\delta}{n} \log \frac{1}{\delta}} \vee \frac{V}{n} \log \frac{1}{\delta} \right].$$

Show that $\psi_n^{\sharp}(\varepsilon) \leq \frac{cV}{n\varepsilon^2} \log \frac{n\varepsilon^2}{V}$. Finally, use Theorem 8.18 to obtain a high probability bound analogous to (125).

Exercise (HW3)[Nonparametric classes]: In the case when the metric entropy of the class \mathcal{G} (random, uniform, bracketing, etc.; e.g., if $\log N(\varepsilon, \mathcal{G}, L_2(\mathbb{P}_n)) \leq \left(\frac{A}{\varepsilon}\right)^{2\rho}$) is bounded by $O(\varepsilon^{-2\rho})$ for some $\rho \in (0,1)$ (assuming that the envelope of \mathcal{G} is 1), we typically have $\psi_n^{\sharp}(\varepsilon) \leq O(n^{-1/(1+\rho)})$. Finally, use Theorem 8.18 to obtain a high probability bound analogous to (125).

8.4 Kernel density estimation

Let $X, X_1, X_2, ..., X_n$ be i.i.d. P on \mathbb{R}^d , $d \ge 1$. Suppose P has density p with respect to the Lebesgue measure on \mathbb{R}^d , and $||p||_{\infty} < \infty$. Let $K : \mathbb{R}^d \to \mathbb{R}$ be any measurable function that integrates to one, i.e.,

$$\int_{\mathbb{D}^d} K(y) dy = 1$$

and $||K||_{\infty} < \infty$. Then the kernel density estimator (KDE) of p if given by

$$\widehat{p}_{n,h}(y) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{y - X_i}{h}\right) = h^{-d} \mathbb{P}_n\left[K\left(\frac{y - X}{h}\right)\right], \quad \text{for } y \in \mathbb{R}^d.$$

Here h is called the smoothing bandwidth. Choosing a suitable bandwidth sequence $h_n \to 0$ and assuming that the density p is continuous, one can obtain a strongly consistent estimator $\widehat{p}_{n,h}(y) \equiv \widehat{p}_{n,h_n}(y)$ of p(y), for any $y \in \mathbb{R}^d$.

It is natural to write the difference $\widehat{p}_n(y,h) - p(y)$ as the sum of a random term and a deterministic term:

$$\widehat{p}_{n,h}(y) - p(y) = \widehat{p}_{n,h}(y) - p_h(y) + p_h(y) - p(y)$$

where
$$\underbrace{p_h(y) := h^{-d}P\Big[K\Big(\frac{y-X}{h}\Big)\Big]}_{\mathbb{R}^d} = h^{-d}\int_{\mathbb{R}^d}K\Big(\frac{y-x}{h}\Big)p(x)dx = \int_{\mathbb{R}^d}K(u)p(y-hu)du$$

is a smoothed version of p. Convergence to zero of the second term can be argued based only on smoothness assumptions on p: if p is uniformly continuous, then it is easily seen that

for any sequence $b_n \to 0$. On the other hand, the first term is just

$$\widehat{\mathbb{P}_{n}} \setminus \mathbb{P}_{n} \setminus \mathbb{P}_{n} = h^{-d}(\mathbb{P}_{n} - P) \left[K \left(\frac{y - X}{h} \right) \right]. \tag{129}$$

For a fixed $y \in \mathbb{R}^d$, it is easy to study the properties of the above display using the CLT as we are dealing with a sum of independent random variables $h^{-d}K\left(\frac{y-X_i}{h}\right)$, $i=1,\ldots,n$. However, it is natural to ask whether the KDE \widehat{p}_{n,h_n} converges to p uniformly (a.s.) for a sequence of bandwidths $h_n \to 0$ and, if so, what is the rate of convergence in that case? We investigate this question using tools from empirical processes.

The KDE $\widehat{p}_{n,h}(\cdot)$ is indexed by the bandwidth h, and it is natural to consider $\widehat{p}_{n,h}$ as a process indexed by both $y \in \mathbb{R}^d$ and h > 0. This leads to studying the class of functions

$$\mathcal{F} := \left\{ x \mapsto K\left(\frac{y-x}{h}\right) : y \in \mathbb{R}^d, h > 0 \right\}.$$

It is fairly easy to give conditions on the kernel K so that the class \mathcal{F} defined above satisfies

Covering number
$$N(\epsilon ||K||_{\infty}, \mathcal{F}, L_2(Q)) \leq (A/\epsilon)^V$$
 (130)

for some constants $V \ge 2$ and $A \ge e^2$; see e.g., Lemma 7.22⁹⁰. While it follows immediately from the GC theorem that

$$\sup_{h>0,y\in\mathbb{R}^d}\left|(\mathbb{P}_n-P)\left[K\left(\frac{y-X}{h}\right)\right]\right|\overset{a.s.}{\to}0,$$

this does not suffice in view of the factor of h^{-d} in (129). In fact, we need a rate of convergence for $\sup_{h>0,y\in\mathbb{R}^d}(\mathbb{P}_n-P)\left[K\left(\frac{y-X}{h}\right)\right]\overset{a.s.}{\to}0$. The following theorem gives such a result⁹¹.

Theorem 8.20. For any c > 0, with probability 1

$$\limsup_{n \to \infty} \sup_{c \log n/n \le h \le 1} \frac{\sqrt{nh} \|\widehat{p}_{n,h}(y) - p_h(y)\|_{\infty}}{\sqrt{\log(1/h) \vee \log \log n}} =: K(c) < \infty.$$

Theorem (8.20) implies for any sequences $0 < a_n < b_n \le 1$, satisfying $b_n \to 0$ and $na_n/\log n \to \infty$, with probability 1, $\sup_{\substack{a_n \le h \le b_n \\ a_n \le h \le b_n}} \|\widehat{p}_{n,h} - p_h\|_{\infty} = O\left(\sqrt{\frac{\log(1/a_n) \vee \log\log n}{na_n}}\right),$ which in turn implies that $\lim_{n \to \infty} \sup_{a_n \le h \le b_n} \|\widehat{p}_{n,h} - p_h\|_{\infty} \xrightarrow{a.s.} 0$.

⁹⁰For instance, it is satisfied for general $d \ge 1$ whenever $K(x) = \phi(q(x))$, with q(x) being a polynomial in d variables and ϕ being a real-valued right continuous function of bounded variation.

⁹¹ To study variable bandwidth kernel estimators [Einmahl and Mason, 2005] derived the following result, which can be proved with some extra effort using ideas from the proof of Theorem 8.21.

Theorem 8.21. Suppose that $h_n \downarrow 0$, $nh_n^d/|\log h_n| \to \infty$, $\log \log n/|\log h_n| \to \infty$ and $h_n^d \leq \check{c}h_{2n}^d$ for some $\check{c} > 0$. Then

$$\limsup_{n \to \infty} \frac{\sqrt{nh_n^d} \|\widehat{p}_{n,h_n}(\cdot) - p_{h_n}(\cdot)\|_{\infty}}{\sqrt{\log h_n^{-1}}} = C \quad a.s.$$

where $C < \infty$ is a constant that depends only on the VC characteristics of \mathcal{F} .

Proof. We will use the following result:

Lemma 8.22 ([de la Peña and Giné, 1999, Theorem 1.1.5]). If X_i , $i \in \mathbb{N}$, are i.i.d \mathcal{X} -valued random variables and \mathcal{F} a class of measurable functions, then

$$\mathbb{P}\left(\max_{1\leq j\leq n}\left\|\sum_{i=1}^{j}(f(X_i)-Pf)\right\|_{\mathcal{F}}>t\right)\leq 9\,\mathbb{P}\left(\left\|\sum_{i=1}^{n}(f(X_i)-Pf)\right\|_{\mathcal{F}}>\frac{t}{30}\right).$$

For $k \geq 0$, let $n_k := 2^k$. Let $\lambda > 0$; to be chosen later. The monotonicity of $\{h_n\}$ (hence of $h_n \log h_n^{-1}$ once $h_n < e^{-1}$) and Lemma 8.22 imply (for $k \geq 1$)

$$\mathbb{P}\left(\max_{n_{k-1} < n \leq n_{k}} \sqrt{\frac{nh_{n}^{d}}{\log h_{n}^{-1}}} \| \widehat{p}_{n,h_{n}}(y) - p_{h_{n}}(y) \|_{\infty} > \lambda\right)$$

$$= \mathbb{P}\left(\max_{n_{k-1} < n \leq n_{k}} \sqrt{\frac{1}{nh_{n}^{d} \log h_{n}^{-1}}} \sup_{y \in \mathbb{R}^{d}} \left| \sum_{i=1}^{n} \left[K\left(\frac{y - X_{i}}{h_{n}}\right) - \mathbb{E}K\left(\frac{y - X_{i}}{h_{n}}\right) \right] \right| > \lambda\right)$$

$$\leq \mathbb{P}\left(\frac{1}{\sqrt{n_{k-1}h_{n_{k}}^{d} \log h_{n_{k}}^{-1}}} \times \max_{1 \leq n \leq n_{k}} \sup_{y \in \mathbb{R}^{d}, h_{n_{k}} \leq h \leq h_{n_{k-1}}} \left| \sum_{i=1}^{n} \left[K\left(\frac{y - X_{i}}{h}\right) - \mathbb{E}K\left(\frac{y - X_{i}}{h}\right) \right] \right| > \lambda\right)$$

$$\leq 9\mathbb{P}\left(\frac{1}{\sqrt{n_{k-1}h_{n_{k}}^{d} \log h_{n_{k}}^{-1}}} \times \sup_{y \in \mathbb{R}^{d}, h_{n_{k}} \leq h \leq h_{n_{k-1}}} \left| \sum_{i=1}^{n_{k}} \left[K\left(\frac{y - X_{i}}{h}\right) - \mathbb{E}K\left(\frac{y - X_{i}}{h}\right) \right] \right| > \frac{\lambda}{30}\right). \tag{131}$$

We will study the subclasses

$$\mathcal{F}_k := \left\{ K\left(\frac{y-\cdot}{h}\right) : h_{n_k} \le h \le h_{n_{k-1}}, y \in \mathbb{R}^d \right\}.$$

As

$$\mathbb{E}\Big[K^2\Big(\frac{y-X}{h}\Big)\Big] = \int_{\mathbb{R}^d} K^2\Big(\frac{y-x}{h}\Big)p(x)dx = h^d\int_{\mathbb{R}^d} K^2(u)p(y-uh)du \leq h^d\|p\|_{\infty}\|K\|_2^2,$$

for the class \mathcal{F}_k , we can take

$$U_k := 2\|K\|_{\infty}, \quad \text{and} \quad \sigma_k^2 := h_{n_{k-1}}^d \|p\|_{\infty} \|K\|_2^2.$$

Since $h_{n_k} \downarrow 0$, and $nh_n^d/\log h_n^{-1} \to \infty$, there exists $k_0 < \infty$ such that for all $k \ge k_0$,

$$\sigma_k < U_k/2$$
 and $\sqrt{n_k}\sigma_k \ge \sqrt{V}U_k\sqrt{\log\frac{AU_k}{\sigma_k}}$. (check!)

Letting $Z_k := \mathbb{E} \left\| \sum_{i=1}^{n_k} (f(X_i) - Pf) \right\|_{\mathcal{F}_k}$, we can bound $\mathbb{E}[Z_k]$ by using Theorem 7.13 (see (84)), for $k \geq k_0$, to obtain

$$\mathbb{E}[Z_k] = \mathbb{E} \Big\| \sum_{i=1}^{n_k} (f(X_i) - Pf) \Big\|_{\mathcal{F}_k} \le L\sigma_k \sqrt{n_k \log(AU_k/\sigma_k)}$$

for a suitable constant L > 0. Thus, using (132),

$$\nu_k := n_k \sigma_k^2 + 2U_k \mathbb{E}[Z_k] \le \tilde{c} n_k \sigma_k^2$$

for a constant $\tilde{c} > 1$ and $k \ge k_0$. Choosing $x = c \log(AU_k/\sigma_k)$ in (99), for some c > 0, we see that

$$\mathbb{E}[Z_k] + \sqrt{2\nu_k x} + U_k x/3 \leq \sigma_k \sqrt{n_k \log(AU_k/\sigma_k)} (L + \sqrt{2c\tilde{c}}) + cU_k \log(AU_k/\sigma_k)/3$$

$$\leq C\sigma_k \sqrt{n_k \log(AU_k/\sigma_k)},$$

for some constant C > 0, where we have again used (132). Therefore, by Theorem 8.7,

$$\mathbb{P}\Big(Z_k \ge C\sigma_k \sqrt{n_k \log(AU_k/\sigma_k)}\Big) \le \mathbb{P}(Z_k \ge \mathbb{E}[Z_k] + \sqrt{2\nu_k x} + U_k x/3) \le e^{-c \log(AU_k/\sigma_k)}.$$

Notice that

$$\frac{30C\sigma_k\sqrt{n_k\log(AU_k/\sigma_k)}}{\sqrt{n_{k-1}h_{n_k}^d\log h_{n_k}^{-1}}} > \lambda \qquad \text{(check!)}$$

for some $\lambda > 0$, not depending on k. Therefore, choosing this λ the probability on the right hand-side of (131) can be expressed as

$$\mathbb{P}\left(\frac{Z_k}{\sqrt{n_{k-1}h_{n_k}^d \log h_{n_k}^{-1}}} > \frac{\lambda}{30}\right) \leq \mathbb{P}\left(Z_k \geq C\sigma_k \sqrt{n_k \log(AU_k/\sigma_k)}\right) \leq e^{-c\log(AU_k/\sigma_k)}.$$

Since

$$\sum_{k=k_0}^{\infty} e^{-c\log(AU_k/\sigma_k)} = c_1 \sum_{k=k_0}^{\infty} h_{n_{k-1}}^{cd/2} \le \tilde{c}_1 \sum_{k=k_0}^{\infty} (\check{c})^{-cd/2} < \infty,$$

for constants $c_1, \tilde{c}_1 > 0$, we get, summarizing,

$$\sum_{k=1}^{\infty} \mathbb{P}\left(\max_{n_{k-1} < n \le n_k} \sqrt{\frac{nh_n^d}{\log h_n^{-1}}} \|\widehat{p}_{n,h}(y) - p_h(y)\|_{\infty} > \lambda\right) < \infty.$$

Let $Y_n = \sqrt{\frac{nh_n^d}{\log h_n^{-1}}} \|\widehat{p}_{n,h} - p_h\|_{\infty}$. Letting $Y := \limsup_{n \to \infty} Y_n$, and using the Borel-Cantelli lemma we can see that $\mathbb{P}(Y > \lambda) = 0$. This yields the desired result using the zero-one law⁹².

⁹²For a fixed $\lambda \geq 0$, define the event $A := \{\limsup_{n \to \infty} Y_n > \lambda\}$. As this is a tail event, by the zero-one law it has probability 0 or 1. We thus have that for each λ , $\mathbb{P}(Y > \lambda) \in \{0,1\}$. Defining $c := \sup\{\lambda : \mathbb{P}(Y > \lambda) = 1\}$, we get that Y = c a.s. Note that $c < \infty$ as there exists $\lambda > 0$ such that $\mathbb{P}(Y > \lambda) = 0$, by the proof of Theorem 8.21.