for any § > 0, the Klein-Rio version of Talagrand’s lower-tail inequality gives

e " >P (Z <EZ - \/233(11024—21{32) —x) >P (Z < (1 —(5)JEZ— V2xno? —

Similarly, using (99),
J > .
x| <e "

Recall also that E[Z] < 2E[Z]. Then, we have on the intersection of the complement of the

events in the last two inequalities, for 6 = 1/5 (say),

12
Z < 5 E[Z ]—i—\/2a:na +f:c<€ [Z] + V2ano? —l——a:

12
< = \/2an2 + fx + V2zxno? + —a:

= 37+ 4V2zno? + E:p;

%).

2xno?

P<ZZ(1+5)

i.e., this inequality holds with probability 1 — 2e™". O

Note that different values of § produce different coefficients in the above theorem.

8.3 Empirical risk minimization and concentration inequalities

Let X, Xq,...,X,,... be ii.d. random variables defined on a probability space and taking
values in a measurable space X with common distribution P. In this section we highlight
the usefulness of concentration inequalities, especially Talagrand’s inequality, in empirical
risk minimization (ERM); see [Koltchinskii, 2011] for a thorough study of this topic.

Let F be a class of measurable functions f : X — R. In what follows, the values of
a function f € F will be interpreted as “losses” a “losses” associated with certain “actions” (e.g.,

F = %ﬁ € Rd} and X = (Z,Y) ~ P).

We will be 1ntereste{d in the problem of risk minimization:

K% wht min Pf (102)

ﬁ'\_/‘\

in the cases when the distribution P is unknown and has to be estimated based on the data

X1,...,X,. Since the empirical measurw a natural estimator of P, the true risk can
Ne—
be estimated by the corresponding empirical risk, and the risk minimization problem has

to be replaced by the empirical risk minimization (ERM):
(
min P, . Zf ~ Wil W\"“\n?nf W™ 103 {(j . \J‘>
'\fe/Q_/\ "

As is probably clear by now, many important methods of istical e jon s [;;7\, i
i

maximum likelihood and more general M-estimation are versions of ERM.
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Definition 8.12. The excess risk € F is defined as

f
E(f) j Ep(f) = Pf

—

rf Py
’Fg%fwﬂm err

in the problem of

Recall that we have already seen an important application

classification in Example 7.10. Here is another important application.

Example 8.13 (Regression). Suppose that we observe X1 = (Z1,Y1),..., Xn = (Zp, Yn)

ii.d. X =(Z,)Y) ~P on X = ZxT, T CR, and the goal is to study the relationship

between Y and Z. We study regression with quadratic loss ((y,u) := (y —
—_—

a class
of of measurable functions G from Z to T'; the distribution of Z will be denoted by 11.) This
problem can be thought of as a special case of ERM with =

F={(teg)(zy)=(y—9(2))*:9€G}.
W — _
Suppose that the true regression function is g.(z) = E[Y|Z = z], for z € Z. In this case,

the excess risk of f(z,y) = (y — g(2))? € F (for some g € G715 gwen by’

——— <=

104
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If G is such that g, € G then Ep(L e g) = ||g — gﬁim), forall g € G.

Functions

Let

fz fn € argminP, f
efu\

be a solution of the ERM problem (103). The function f, is used as a

of the solution of the true risk minimization problem (10® and its excess risk Ep(f,) is a

natural measure of accuracy of this approximation.

. 90 tripwtion
| M&e\/ﬁ_ﬁwﬂdﬂ‘igw\}vor h5 pointing out that a crucial difference between ERM and classical M-
stimation, as discussed in Sections 5 and 6, is that in the analysis of ERM we do not
<. (055 fvw\c A ys (09 [ves funthign . .
: usuahy) e generating distribution P belongs to the class of models

considered (e.g., infyex Ph need not be 0). Moreover, in M-estimation, typically the focus

\f/\ is on recovering a parameter of interest in the model (which is expressed as the population
M-estimator) whereas in ERM the focus is mainly on deriving optimal (upper and lower)
bounds for the excess risk Ep(f,).

It is of interest to find tight upper bounds on the excess risk™® of f that hold with
a high probability. Such bounds usually depend on certain “geometric” properties of the
function class F and on various measures of its “complexity” that determine the accuracy of
approximation of the true risk Pf by the empirical risk P, f in a neighborhood of a proper

size of the minimal set of the true risk.

"Exercise (HW3): Show this.
"®Note that we have studied upper bounds on the excess risk in the problem of classification in Exam-
ple 7.10.
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In the following we describe a rather general approach to derivation of such bounds in

an abstract framework of ERM. We start with some definitions.

ANl functions

Definition 8.14. The d-minimal set of the risk is defined as

F)={feF:& < 4} :f
The Lo-diameter of the §-minimal set is denoted by A
F-foc orgoin ]
D(8) = Dp(F;8):== sup {P[(f1 — f2)’]}"/2. <5
~—— f1,f2€F(9) —

Wu/\ ]C
Suppose, for simplicity, that the infimum of the risk Pf is attained-laat f € %t e.

argument can be easily modified if the infimum is not attained in the class). Denote

”‘*f%éf s < (D]
fans,
en(f) = P(f - f - J)

< s (B P x: uﬂc&) ‘ (105)

f1,f2€F(8)

S P = P)(fi = fo)l- Wpper pound 0‘( eRsL sk

Previously, we had used the last inequality to upper bound the excess risk in classification;
see Example 7.10. In this section we will use the implicit characterization of § in (105)

to improve our upper bound. This naturally leads us to the study of the following (local)

measure of empirical approximation:

Pn(0) = gn(F;6) :=E [ sup  |(Pn, — P)(f1 — f2)|] : (106)
J1,f2E€F(6)

C——

Idea: Imagine there exists a nonrandom upper bound

(Lo s 1@~ P)(si— fo) (107)
: Q)

that holds uniformly in § with a high probability. Then, with the same probability, the

excess risk 0 = Ep(f) will be bounded™ by t

rgest solution of the inequality

—

which satisfies (108)) such that

-~




VV\ = 2 MEE/’]* nv'*

P (27 Egralzumx tUr[y) €7+ 720

Let us describe in more detail what we mean by the dbove intuition. There are many
different ways to construct upper bounds on the sup-norm |of empirical processes. A very
general approach is based on Talagrand’s concentration inéqualities. For example, if the

functions in F take values in the interval [0, 1], then®! by (99) we have, for t > 0,2  X=7{ M: L

N e
? et 1 t . >
P sup [(Pn— P)(f1 = fo)l = ¢n(0) + —=V/2t (200 (6) + D2(6)) + 3, | S (109)
f1,f2€F(3) o ~—— Vi — v
—e————— S ——— v

Then, using the facts: (i) Va+b < ;éa—i—x@ and (ii) 2v/ab b&7/K+Kb, for any a,b, K > 0, %
>T

we have %l;}ﬁ’b/i) 12 4,”(}) n 2/7\|3> D/X> ,,‘ ;Y‘
V2t (D2(5 (D?(6) + 204(9)) <\/2tD2 D(6 )f+i+f¢n(5)

2 2RI+ p(& )'\E 2L

Thus, from (109), for all ¢ > 0, we have®?

P ( sup (B — P)(fi — fo)| 2 Un(831) | < e (110)
J1,f2€F(8) ' .
where
Un(65t) :=2 (¢n(5) + D(6) L + . (111)

This observation provides a way to construct a function U, () such that (107) holds with

a high probability “uniformly” in § — by first defining such a function at a discrete set of
values of § and then extending it to all values by monotonicity. We will elaborate on this
shortly. Then, by solving the inequality (108) one can construct a bound on Ep( fn), which
holds with “high probability” and which is often of correct order of magnitude.

8.3.1 A formal result on excess risk in ERM

Let us now try to state a formal result i is direction. To simplify notation, assume
that the functions in F take vah;es{[(—),\l]. et {d;}j>0 be a decreasing sequence of
positive numbers with dg = 1 andm be a sequence of positive numbers. Define
Up : (0,00) = R, via (111), as Jj ‘4/50;]
Un((S) = Un(éj;tj), for 0 € (5]'-1-175]']7 (112)
S a— _—
and Uy (9) := Uy(1) for § > 1. Denote
On(F) :=sup{o € (0,1] : 6 < Uy,(9)}. (113)

81 This assumption just simplifies a few mathematical expressions; there is nothing sacred about the interval

[0, 1], we could have done it for any constant compact interval.
82 According to the notation of (99), we can take o = D?(5), and then v, = 2n¢,(F;d) + nD?(9).
83This form of the concentration inequality is usually called Bousquet’s version of Talagrand’s inequality.
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Figure 2: Plot of the piecewise constant fur 0 > 6, (F), along with the value
of [Py, — Pl z5,), for j =0,1,..., denoted by the x’s.

g < Uql)} )
It is easy to check that 6, (F) < Up(6,(F)). Obviously, the definitions of U, and 0, (F)

depend on the choice oﬁme will choose specific values of these quan-
tities later on). We start with the following simple inequality that provides a distribution

dependent upper bound on the excess risk Ep( fn)

Theorem 8.15. For all 6 > 6,(F),
N~

P(é’p(fn) >£)§ 3 et (114)

j:6; >0

Proof. 1t is enough to prove the result for any § > §,,(F); then the right continuity of the
distribution function of £p(f,) would lead to the bound (114) for § = 4,,(F).

So, fix § > 6, (F). Lettm@- {fi—fa: f1, f2 we know that
.\

Ep(f) =6 < suwp [(Pn—P)(f)| = [P0 — Pllr) (115)

<~ T JEF ()

/'\
$ '
E, ;= wn - ij) @@} )

It follows from Bousquet’s version of Talagrand’s inequality (see (110)) that P(E, ;) >

Denote

1—e%. Let T ———
————— E, = ﬂj;éj25En,j- /q—/“’—\—/)
Then WA
P(En) =1- P( = B " 6)
o

On the event E,, for all o > 0, we have

\}w\\\/\l\w« 1P = Pllpgy < Un(9): [y (117)

The above holds as: (i) Uy(-) is a piecewise constant function (with possible jumps only
at d;'s), (i) the function o — [P, — P|/z/(s) is monotonically nondecreasing, and (iii)
IPn, — PllF/s5,) < Un(d;) on Ey, for j such that § > §;; see Figure 8.3.1.
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On the event {5 >0} N E, we Iiave
’v/‘

<Py — Pl z5 < Un(0 (118)

where the first inequality follows from (115) and the second inequality holds via (117). This,

(5§A§gn(]‘—!, gmtf),\:—_

where the last inequality follows from (118) and the maximality of 95

the above display contradicts the assumption th Therefore, we must have
|!e claim now implies that P(Ep(fn) > 6) = P(0 > §) < P(ES) < Zj:5j>5 el

; —
via (116), thereby completing the proof. L]

in particular, implies that

\'yﬁbfnm

Although Theorem 8.15 yields a high probability bound on the excess risk of fn (i.e.,
@r the result to be useful. We address this
: (0,00) — R, denote by

Sp(fn)), we still need to upper bound

next. We start with some notation. Given an

N} w

Note that ¢t is a nonincreasing function®. . 2 v, (P_TIV‘, l}/-r{ v2),

(119)

ated by the study of the functio

5(5 nd w it
may have multiple crossings of 1, Wg/reéaarize”

S s Tthe Value 1; cf 113).
by studylng Vt efined bel which can be thought of as a well- behav&i‘monotone

=2 o>+ DN)—

+ J , for o > 0. 120)
no

iv
Un

T7he i$tudy of YT is naturally

a;(f) inf{oc >0: V(o) <1}. (121)

We will show next th @

thus, by (8.15) and some algebraic 3

a concrete application, our goal would be to find upper bounds on o’ ; see Section 8.3.2

Strplification, we will obtain the followmg result Given

where we illustrate this technique for finding a high probability bound on the excess risk in

bounded regression.

+
84Take o1 < 2. Then V/‘ @Vz}) .4/ ]
#(01) = sup £ > sup L _ i),

s>o01 S s>o9 S

Vfﬂv)s)
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Theorem 8.16 (High probability bound on the excess risk of the ERM). For allt > 0,

Sp (fn) > o, < Ce " (122)

where Cy : = 1 /ﬁ\’/
-1

Proof. Fix t > 0 and let o > ol. We will show that P( Sp(fn) > o) < Cye". Then, by
taking a limit as o | o, we obtain (122).

Define, for j > 0,

5= g - 5j

Recall the definitions of U, (§) and 5 (in (112 113 usmg the above choice of the
sequences {0;};>0 and {t; }]>0 Then, for using (112),
++ =
<¢< ) . D) Mn[x‘”"z Wx FoBE 1)
L + J if & E +1 0 ] -
5 5 ) Oi+1y &
\[ J = ﬂ 1

6n(6;)  D(5;) [ t5 571 @
< 2 sCs. =% b, = ¥
= ( d; + Vo |\ djon + 6j(fn as \]il\ q ) < 0
t D(9) t
< — — R >0 >
- (igg on igg Vo +0n> a8 02020

( D?)t(o )\/>+W /100~ /W5)()7 fhﬂﬁ/ﬂ/]

Since o > o, and e function V! is strictly decreasing, we have V(o) < Vi{(ol) < 1, and

hence, for all § > o, T

)
Un (5) <[Vi(o) X>Ufl(<§) \

Sy
Therefore, § > 6,(F) := sup{s > 0 : 1 < Un(s} and thus.Now from 1z ’?[
Theorem 8.15 it follows that @ =

(5anjig Ze J<Ce )\J/vﬁ\ (e?])__L

{ 1:0;>a Z—
M = TN 6 -
J )f/& JE

where the last step follows from some algebra®.

T

85For § > 89 = 1, the following sequence of displays also holds with j = 0.

80Exercise (HW3): Show this. Hint: we can write \
Z el = Z e_téj/U§Ze_tqj Y A ¢ for ¢ > 1.
jid;>o jidj>o >0 q- 1 lx)
~— n
- Unl22 /i Q)




8.3.2 Excess risk in bounded regression

Recall the regression setting in Example 8.13. Given a function g : Z — T, the quantity
(Leg)(z,y) == L(y,g(z)) is interpreted as the loss suffered when g(z) is used to predict y.

The problem of optimal prediction can be viewed as a risk minimization:
ot
E[((Y,9(Z))] =: P(Leg)
S~

over g : Z — T. We start with the regression problem with bounded response and with
quadratic loss. To be specific, assume that Y takes values in 7' = [0, 1}and £(y, u) := (y—u)?.

Suppose that we are given a class of measurable real-valued functions G on Z. We denote

by F :={leg:g € G}. Suppose that the true regression function is g.(z) := E[Y'|Z = 2],

for z € Z, which is not assumed to be in G. Recall that the excess risk Ep(¢ @ g) in this

problem is given by (104). []t) - gl{ J j*HLZ{T) _’n'[‘ M #/ILZ ”T)

In order to apply Theorem 8.16 to ﬁnd a hlgh proba ity bound on thet ss risk of
the ERM f = fe( (se¢

upper bounds for

in this problem, which is determined by o, vig (121)/ we have
(-) (which in turn depends on the functions ¢}, and|y/(D2)f).

i
N [Pnj‘\ As a first step we relate the excess risk of any f = /e g € F to g € G. The following

‘féjf lemma provides an easy way to bound the excess risk of f from below in the case ¢f a convex

class G, an assumption we make in the sequel.

Vg5 (1) 120 W21

Lemma 8.17. If G is a convex class of functions, then

=  —

=

where § := argmingc& ||lg — g7 () is assumed to exist.

ponrondon UppeT bnd

Below we make some observations that will be crucial to find a

:

1. It follows from Lemma 8.17 that = |\ ) 473 ,
- e
F@O)={feF:&p(f) <0} L{leg:9€G. llg—3li,m < (123)
e N

2. For any two functions ¢1,92 € G and all z € Z,y € [0, 1], we have
(

) |U-512) Y- 7212)
e o] 1§ Je4? |-ty #12)

= |g1(2) — g2(z < 2|g1(z) — g2(2)]
- ﬁz — -
ce (o |
Pl(teg —6092)2] <A4|lg1 — 92”L2 Sin [ g ]
Recalling that D(0) := supy, r,er@s){P[(f1 — £2)?]}/2, we have

which implies

D(9)

IN

zsup{ug\l/%\ 9k € G, llgr — 913,y < 20 for k= 1,2}
2(2v/25) (124)
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where the last step follows from the triangle inequality: ||g1—g2|| Lo(1T) < lg1—all L, (m+
g2 — gll o (m)- Hence, by (124),

\V (D2)i(0) = /§1>1p D25(5) < 4v2.

By symmetrization inequality (recall that we use €1,...,€, to be ii.d. Rademacher
variables independent of the observed data), and letting F'(0) := {f1 — fo : f1, f2 €

F(9)}, and using (123),
g ) . ‘f“x\)'—fl[v\‘) _Thﬁ'reV\/\ %,\VA\

&

¢n(5) = EHPn - PH]—" 5y < 2E| sup — eif(X
©) o n} 21 %7
1 n

< 2E sup — Zﬁi(g’gl_£°92)(Xi)
gkeg ”gk g”L (H)§26 n =1
- Ly

< 4E Fsup *‘ €i(leg—Leg)(X;)
| 96619317, 11y <20 [t

Since £(y, -) is Lipschitz with constant 2 on the interval [0, 1] one can use the contrac-

=7
6ul6) < SE sip =S elg - (20| | = vn(d).

9€G:llg=al3 <28 "' i \{/(9)

As a result, we get ( recallw \V (T>\ = z:/\/v /g_)

) <Yl (o

The following result is now a corollary of Theorem 8.16.

tion inequality®” to get

Theorem 8.18. Let G be a convex class of functions from Z into [0,1] and let g, denotes

the LSE of the regression function, i.e.,

Gn = argmmf Z{Y g(Xi)}2.
9€g

Then, there exist constants K > 0 such that for all t > 0

. . 1 _
{0 > nt lo— o @G + KD e 029

8"Ledoux-Talagrand contraction inequality (Theorem 4.12 of [Ledoux and Talagrand, 1991]): If ¢; : R —
R satisfies |p;(a) — ¢i(b)| < Lla — b| for all a,b € R, then

E

sup 1 Zez%(h(xl))} <LE |:Sup 1 ZQh(ml)] .

heH T i hen T ]

In the above application we take @;(u) = (Y; — u)? for u € [0,1].

112



7 1 -7
Plepn =) =0q€ (P7)
where for any ¥ : (0,00) — R, * is defined as®®

Yie) :=inflo > 0:47(0) < 5} . (126)

Proof. Note that in this case, by (104),\% |Gn — 9*”%2(1'[) — inflgeg llg — g*\\%2(n). To
use Theorem 8.16 we need to upper bound the quantity o! defined in (121). Recall the

definition of V;!(o) from (120). By the above observations 1-3, we have

V(o) X 2 lwl(a) Y

We are only left to show that of := inf{o : V!(o) < 1} wi(%) + KL, foy a sufficiently

q

(127)

¢£(2iq) + KL e {o: V(o) <1} and the result follows from the minimality of ¢f,). Note

that, by the nonincre ature of each of the terms on the right hand side of (127),

it L ! t
< 2 _¢n(¢n(4q)) +4v2 n(Kt/n) © n(Kt/n)]

\M
O

xample 8.19 (Finite dimensional classes). Suppose that L C Lo(I1) is a finite dimensional
linear space with dim(L£) = d < oo. and let G C L be a convex class of functions taking

values in a bounded interval (for simplicity, [0,1]). We would like to show that

. . d t _
P {10~ 0 > nf o = 0nlmy + (5 + K5) | < 0 (128)

with some constant C, K > 0.
It can be shown that>that

do
n 5 —
bal®) < )
with some constant ¢ > 0. Hence,
T _ Yn(6) < o i
vho) = s =5 Sy =yl o

85Note that ¥* can be thought of as the generalized inverse of 1!. Thus, under the assumption that " is
right-continuous, ¢ (0) < ¢ if and only if o > ¢*(e) (Exercise (HW3): Show this). Further note that with
this notation of, = V,2#(1).

89Exercise (TW3): Suppose that £ is a finite dimensional subspace of Lo(P) with dim(£) = d. Then

E sup %’27:1 Ezf(Xz)’:| S7"\/%’

FeL:NfllLy(pyST
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As, 1/);2(0) < ¢ implies o > 1/)}1(5), taking o 1= % and ¢ > max{1,1/(4c)}, we see that
d d 1 1 d
T2 )<e/—<— = i(—)<=
d(n)sefimsa = G
and Theorem 8.18 then implies (128); here C = Cy is taken as in Theorem 8.16 and K as
in Theorem §8.18.

Exercise (HW3): Consider the setting of Example 8.19. Instead of using the refined analysis
using (105) (and Talagrand’s concentration inequality) as illustrated in this section, use the
bounded differences inequality to get a crude upper bound on the excess risk of the ERM
in this problem. Compare the obtained high probability bound to (128).

Exercise (HW3)[VC-subgraph classes|: Suppose that G is a convex VC-subgraph class of

functions g : Z — [0,1] of VC-dimension V. Then, show that, the function v, () can be
upper bounded by:

Pn(0) <c|y/—log =V —log =
n n

o o

Ve, 1V 1

Show that 1[)%(5) < Y log ”782 Finally, use Theorem 8.18 to obtain a high probability

ne?
bound analogous to (125).
Exercise (HW3)[Nonparametric classes]: In the case when the metric entropy of the class
G (random, uniform, bracketing, etc.; e.g., if log N(g,G, La(P,,)) < (é)Qp) is bounded by
O(g727) for some p € (0, 1) (assuming that the envelope of G is 1), we typically have @Z)ﬂl(s) <
O(n‘l/ (1+p)). Finally, use Theorem 8.18 to obtain a high probability bound analogous
to (125).

8.4 Kernel density estimation

Let X, X1, Xa,...,X, be iid. P on R d > 1. Suppose P has density p with respect to
the Lebesgue measure on R%, and |[p||c < 00. Let K : R? — R be any measurable function

that integrates to one, i.e.,

K(y)dy =1
R4
and || Koo < 00. Then the kernel density estimator (KDE) of p if given by

~ 1 o y—X; —d y—X d
[ g K = P K fo € R%.
pn,h(y) nhd P ( h ) h n |: ( h ):| ’ Ty

Here h is called the smoothing bandwidth. Choosing a suitable bandwidth sequence h, — 0

and assuming that the density p is continuous, one can obtain a strongly consistent estimator

Prn(Y) = Drpa (y) of p(y), for any y € RY.

It is natural to write the difference p,(y, h) — p(y) as the sum of a random term and a

deterministic term:

Pun(Y) = p(Y) = Dan(y) — pu(y) +pu(y) — p(y)
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where /7 *VW{/
pu(y) == h~ P [K(%)] =p /Rd K(%)p(w}dm = y K(u)p(y — hu)du
N S S R

is a smoothed version of p. Convergence to zero of the second term can be argued based
only on smoothness assumptions on p: if p is uniformly continuous, then it is easily seen
,-\_/\—/\_/\_
=0 = T (
that 5> 9 Y :l — ’{'lﬂ)—e‘ 11)
Fhlv\\L r sup sup [py(y) —p(y)| = 0

h<bn yeRd

for any sequence b, — 0. On the other hand, the first term is just

Pran) - Tl 71te, - P [ (5] i

For a fixed y € ]Rd it is easy to study the properties of the above dlsplay usmg the CLT

sequence of bandwidths h and, if so, th convergence in that case? We

investigate this question using tools from empiri rocesses.

The KDE p,, (-) is indexed by the bandwidth h, and it is natural to consider p,, ;, as
a process indexed by both y € R? and h > 0. This leads to studying the class of functions

f::{xHK(Z/;:E):yERd,h>O}.

It is fairly easy to/give conditions)on the kernel K so that the class F defined above satisfies
—_—

paverty AWAbSr ik @) < (4707 (130)

for some constants V' > 2 and A > e?; see e.g., Lemma 7.22°°. While it follows immediately
sup

from the GC theorem that
- X
®u- ) [E (=)
h>0,ycRd h
-—_— e
this does not suffice in view of the factor of A~ in (129). In fact, we need a rate of

\__\
thw,yew (P, — P) [K(%)} %2 0. The following theorem gives such a
result’!.

a.s.

— 0,

9For instance, it is satisfied for general d > 1 whenever K (z) = ¢(q(x)), with g(x) being a polynomial in
d variables and ¢ being a real-valued right continuous function of bounded variation.
91 To study variable bandwidth kernel estimators [Einmahl and Mason, 2005] derived the following result,

which can be proved with some extra effort using ideas from the proof of Theorem 8.21.

Theorem 8.20. For any c > 0, with probability 1,

lim sup sup nh[pn.n(y) = Pr(y)llee =: K(c) < c0.
n—oo clogn/n<h<1l \/log (1/h) Vloglogn

Theorem (8.20) implies for any sequences 0 < a, < b, < 1, satisfying b, — 0 and na,/logn — oo, with
probability 1, log(1/ax) V log logn>

sup  [|Pn,n — Prllec = O
an<h<bn Nan

which in turn implies that lim, o5 Sup, 2,<p, [[Pnn — Prllec =3 0.
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Theorem 8.21. Suppose that hy, | 0, nhd/|logh,| — oo, loglogn/|loghy,| — oo and
hd < ¢hd, for some é > 0. Then

d||5 D= .
s YR IP () ~ 2, Ollee _

n—o0o v/ log hgl

where C' < o0 is a constant that depends only on the VC characteristics of F.

Proof. We will use the following result:
Lemma 8.22 ([de la Pena and Giné, 1999, Theorem 1.1.5]). If X;,i € N, are i.i.d X -valued

random variables and F a class of measurable functions, then

> - Py, > t) <or(| S0 -pr), > 5.
‘ i=1

P | max
1<j<n

For k > 0, let ng := 2F. Let A > 0; to be chosen later. The monotonicity of {h,}
(hence of hy,logh, ! once h, < e~!) and Lemma 8.22 imply (for k > 1)

)

nhd
P max — 5 |Pnn, (Y) = Ph, (Y)][oo > A
log hn,

Ne—1<nng
1 - - X; - X;
= P max —————5 sup Z[K(y ) —JEK(y )}
ng_1<nng nh% log hn yeRd | hn hn

1 n _x Ly
= P X max sup [ (22 —Er (2220)] >
ng—1hd log hpl  1SPSPE yeR by <h<hn, |15 h L
1 Nk _ Xz . XZ A\
- B RCSE m(5) )
ng_1hd loghn!  YER"hny <h<hny 30

i=1

We will study the subclasses

Fip = {K(y;) iy Sh < B,y € Rd}.

As

e[r2 (Y2 5)] = /R (5 ptaide =t [P @ply — wh)du < 1o K3

for the class Fj, we can take
Up:=2|Klloo,  and o} :=hy_ [Ipllo]| KI5

Nk—1

Since hy,, | 0, and nhd /log h,;} — oo, there exists kg < oo such that for all k > ko,

A
o < Ug/2 and Vo > VV U [log Uk. (check!) (132)
Ok
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Letting Zp := ]EH Yok (f(Xs) — Pf)H; , we can bound E[Zy] by using Theorem 7.13
k
(see (84)), for k > ko, to obtain

B{) — B 370X - P .
i=1

for a suitable constant L > 0. Thus, using (132),

< Loy/ny log(AU [oy,)

Vv 1= nkak + 2UkE[Zk] nkak

for a constant ¢ > 1 and k& > ky. Choosing = = clog(AUy /o) in (99), for some ¢ > 0, we

see that

E[Zk]+\/2uk$+Uk$/3 < Uk\/nklog(AUk/JkXL—l-\/ché)+CUk10g(AUk/Jk)/3
< Cak\/nklog(AUk/ak),

for some constant C' > 0, where we have again used (132). Therefore, by Theorem 8.7,

P(Zk > Cak\/nk log(AUk/ak)) < P(Zk > E[Zk] + V2vpT + ka/3) < eicIOg(AUk/Uk).

Notice that

BOCO'k \/nk log(AUk/ok)
\/nk—lh‘flk log k!
for some A > 0, not depending on k. Therefore, choosing this A the probability on the right

>\ (check!)

hand-side of (131) can be expressed as

Z A
P k >—1 < P(Zk > Cak\/nk log(AUk/gk)) < e—clog(AUk/ok)
\/ n_1hd loghy! 30 A —
Since .
Z e_CIOg(AUk/Uk) = Z h%ci/Zl < Z cd/2
k=ko k=ko k=ko

for constants c1,¢; > 0, we get, summarizing,

>.P ( max Lhdenh( ) = pr(Y)lloo > A) < 0.
k=1

ng—1<n<ng || log h_

Let Yo =/ gh‘1 |Dn,h — Phlloo- Letting Y := limsup,, ., Yy, and using the Borel-Cantelli

lemma we can see that P(Y > X) = 0. This yields the desired result using the zero-one
law”?. O

“For a fixed A > 0, define the event A := {limsup, . Yn > A}. As this is a tail event, by the
zero-one law it has probability 0 or 1. We thus have that for each A, P(Y > X) € {0,1}. Defining
c:=sup{X : P(Y > \) = 1}, we get that Y = c a.s. Note that ¢ < oo as there exists A > 0 such that
P(Y > X\) =0, by the proof of Theorem 8.21.
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