
8 Talagrand’s concentration inequality for the suprema of

the empirical process

The main goal of this chapter is to motivate and formally state (without proof) Talagrand’s
inequality for the suprema of the empirical process. We will also see a few applications of
this result. If we have time, towards the end of the course, I will develop the tools necessary
and prove the main result. To fully appreciate the strength of the main result, we start with
a few important tail bounds for the sum of independent random variables. The following
discussion extends and improves Hoe↵ding’s inequality (Lemma 3.9).

In most of results in this chapter we only assume that the X -valued random variables
X1, . . . , Xn are independent; they need not be identically distributed.

8.1 Preliminaries

Recall Hoe↵ding’s inequality: Let X1, . . . , Xn be independent and centered random variables
such that Xi 2 [ai, bi] w.p.1 and let Sn :=

P
n

i=1 Xi. Then, for any t � 0,

P (Sn � t)  e�2t2/
Pn

i=1(bi�ai)2 , and P (Sn  �t)  e�2t2/
Pn

i=1(bi�ai)2 . (89)

A crucial ingredient in the proof of the above result was Lemma 3.8 which stated that for
a centered X 2 [a, b] w.p.1 we have E[e�X ]  e�

2(b�a)2/8, for � � 0.

Note that if bi�ai is much larger than the standard deviation �i of Xi then, although the
tail probabilities prescribed by Hoe↵ding’s inequality for Sn are of the normal type71, they
correspond to normal variables with the ‘wrong’ variance. The following result incorporates
the standard deviation of the random variable and is inspired by the moment generating
function of Poisson random variables72.

Theorem 8.1. Let X be a centered random variable such that |X|  c a.s, for some c < 1,
and E[X2] = ⌧2. Then

E[e�X ]  exp

✓
⌧2

c2
(e�c � 1 � �c)

◆
, for all � > 0. (90)

As a consequence, if Xi, 1  i  n, are centered, independent and a.s. bounded by c < 1

in absolute value, then setting

�2 :=
1

n

nX

i=1

E[X2
i ], (91)

71Recall that if the Xi’s are i.i.d. and centered with variance �2, by the CLT for fixed t > 0,
limn!1 P (Sn � t

p
n) = 1��

�
t
�

�


�
p
2⇡t

exp
⇣
�

t2

2�2

⌘
, where the last inequality uses a standard bound on

the normal CDF.
72Recall that if X has Poisson distribution with parameter a (i.e., EX = Var(X) = a) then E[e�(X�a)] =

e�a(�+1) P1

k=0 e
�kak/k! = ea(e

�
�1��).
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and Sn =
P

n

i=1 Xi, we have

E[e�Sn ]  exp

✓
n�2

c2
(e�c � 1 � �c)

◆
, for all � > 0, (92)

and the same inequality holds for �Sn.

Proof. Since E(X) = 0, expansion of the exponential gives

E[e�X ] = 1 +
1X

k=2

�kEXk

k!
 exp

⇣ 1X

i=2

�kEXk

k!

⌘
.

Since |EXk
|  ck�2⌧2, for all k � 2, this exponent can be bounded by
�����

1X

k=2

�kEXk

k!

�����  �2⌧2
1X

k=2

(�c)k�2

k!
=

⌧2

c2

1X

k=2

(�c)k

k!
=

⌧2

c2
(e�c � 1 � �c).

This gives inequality (90). Inequality (92) follows from (90) by using the independence of
the Xi’s. The above also applies to Yi = �Xi which yields the result for �Sn.

It is standard to derive tail probability bounds for a random variable based on a bound
for its moment generating function. We proceed to implement this idea and obtain four such
bounds, three of them giving rise, respectively, to the Bennett, Prokhorov and Bernstein
classical inequalities for sums of independent random variables and one where the bound on
the tail probability function is inverted. It is convenient to introduce the following notation:

�(x) = e�x
� 1 + x, for x 2 R

h1(t) = (1 + t) log(1 + t) � t, for t � 0.

Proposition 8.2. Let Z be a random variable whose moment-generating function satisfies
the bound

E(e�Z)  exp
�
⌫(e� � 1 � �)

�
, � > 0, (93)

for some ⌫ > 0. Then, for all t � 0,

P(Z � t)  e�⌫h1(t/⌫)  exp

✓
�

3t

4
log

⇣
1 +

2t

3⌫

⌘◆
 exp

✓
�

t2

2⌫ + 2t/3

◆
(94)

and

P
⇣
Z �

p

2⌫x + x/3
⌘

 e�x, x � 0. (95)

Proof. Observe that by Markov’s inequality and the given bound E[e�Z ], we obtain

P(Z � t) = P(e�Z � e�t)  inf
�>0

e��tE[e�Z ]  e⌫ inf�>0{�(��)��t/⌫}.

It can be checked that for z > �1 (think of z = t/⌫)

inf
�2R

{�(��) � �z} = z � (1 + z) log(1 + z) = �h1(z).
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This proves the first inequality in (94). We can also show that (by checking the value of
the corresponding functions at t = 0 and then comparing derivatives)

h1(t) �
3t

4
log

⇣
1 +

2t

3

⌘
�

t2

2 + 2t/3
, for t > 0,

thus completing the proof of the three inequalities in (94).

To prove (95), we begin by observing that (by Taylor’s theorem) (1��/3)(e����1) 

�2/2, � � 0. Thus, if

'(�) :=
⌫�2

2(1 � �/3)
, � 2 [0, 3),

then inequality (93) yields

P(Z � t)  inf
0�<3

e��tE[e�Z ]  exp


inf

0�<3
('(�) � �t)

�
= exp

"
� sup

0�<3
(�t � '(�))

#
= e��(t),

where we have used the fact that ⌫(e��1��)  '(�) and �(s) := sup�2[0,3)(�s�'(�)), for
s > 0. Then it can be shown73 that ��1(x) =

p
2⌫x + x/3. Therefore, letting t = ��1(x)

(i.e., x = �(t)) in the above display yields (95).

Let Xi, 1  i  n, be independent centered random variables a.s. bounded by c < 1

in absolute value. Let Sn :=
P

n

i=1 Xi and define Z := Sn/c. Then,

E[e�Z ] =
nY

i=1

E[e(�/c)Xi ] 

nY

i=1

exp

✓
E[X2

i
]

c2
(e� � 1 � �)

◆
= exp

✓
n�2

c2
(e� � 1 � �)

◆

where �2 = 1
n

P
n

i=1 E[X2
i
]. Thus, Z satisfies the hypothesis of Proposition 8.2 with ⌫ :=

n�2/c2. Therefore we have the following exponential inequalities, which go by the names
of Bennet’s, Prokhorov’s and Bernstein’s74 (in that order).

Theorem 8.4. Let Xi, 1  i  n, be independent centered random variables a.s. bounded
by c < 1 in absolute value. Set �2 =

P
n

i=1 E[X2
i
]/n and Sn :=

P
n

i=1 Xi. Then, for all
x � 0,

P(Sn � t)  e
�

�
n�2

c2

�
h1

⇣
tc

n�2

⌘

 exp

✓
�

3t

4c
log

⇣
1 +

2tc

3n�2

⌘◆
 exp

✓
�

t2

2n�2 + 2ct/3

◆
(96)

73Exercise (HW3): Complete this.
74It is natural to ask whether Theorem 8.4 extends to unbounded random variables. In fact, Bernstein’s

inequality does hold for random variables Xi with finite exponential moments, i.e., such that E[e�|Xi|] < 1,
for some � > 0, as shown below.

Lemma 8.3 (Bernstein’s inequality). Let Xi, 1  i  n, be centered independent random variables such
that, for all k � 2 and all 1  i  n,

E|Xi|
k


k!
2
�2
i c

k�2,

and set �2 := 1
n

Pn
i=1 �

2
i , Sn :=

Pn
i=1 Xi. Then,

P(Sn � t)  exp

✓
�

t2

2n�2 + 2ct

◆
, for t � 0.
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and

P
⇣
Sn �

p

2n�2x + cx/3
⌘

 e�x, x � 0.

Bennett’s inequality is the sharpest, but Prokhorov’s and Bernstein’s inequalities are
easier to interpret. Prokhorov’s inequality exhibits two regimes for the tail probabilities of
Sn: if tc/(n�2) is small, then the logarithm is approximately 2tc/(3n�2), and the tail
probability is only slightly larger than e�t

2
/(2n�2) (which is Gaussian-like), whereas, if

tc/(n�2) is not small or moderate, then the exponent for the tail probability is of the
order of �[3t/(4c)] log[2tc/(3n�2)] (which is ‘Poisson’-like75). Bernstein’s inequality keeps
the Gaussian-like regime for small values of tc/(n�2) but replaces the Poisson regime by
the larger, hence less precise, exponential regime.

Example 8.5 (Deviation bound with fixed probability). Let us try to shed some light on the
di↵erences between Bernstein’s inequality (i.e., the rightmost side of (96)) and Hoe↵ding’s
inequality (see (89)). We can first attempt to find the value of t which makes the bound on
the rightmost side of (96) exactly equal to ↵, i.e., we want to solve the equation

exp

✓
�

t2

2(n�2 + ct/3)

◆
= ↵.

This leads to the quadratic equation

t2 �
2tc

3
log

1

↵
� 2n�2 log

1

↵
= 0,

whose nonnegative solution is given by

t =
c

3
log

1

↵
+

s
c2

9

✓
log

1

↵

◆2

+ 2n�2 log
1

↵
 �

r
2n log

1

↵
+

2c

3
log

1

↵
.

where in the last inequality we used the fact that
p

a + b 
p

a +
p

b for all a, b � 0. Thus,
Bernstein’s inequality implies that Sn  �

q
2n log 1

↵
+ 2c

3 log 1
↵
with probability at least 1�↵.

Now if X1, . . . , Xn are i.i.d. with mean zero, variance �2 and bounded in absolute value by
c, then this yields

X̄n 
�

p
n

r
2 log

1

↵
+

2c

3n
log

1

↵
(97)

with probability (w.p.) at least 1 � ↵; compare this the Hoe↵ding’s bound which yields

X̄n  c
q

2
n

log 1
↵
w.p. at least 1 � ↵; see (11). Note that if X̄n is normal, then X̄n will be

bounded by the first term in the right hand side of (97) w.p. at least 1 � ↵. Therefore the
above deviation bound agrees with the normal approximation bound except for the smaller
order term (which if of order 1/n; the leading term being of order 1/

p
n).

75Note that if X has Poisson distribution with parameter a (i.e., EX = Var(X) = a) then

P(X � a � t)  exp


�
3t
4

log
⇣
1 +

2t
3a

⌘�
, t � 0.
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Example 8.6 (When Xi’s are i.i.d. Bernoulli). Suppose that Xi’s are i.i.d. Bernoulli with
probability of success p 2 (0, 1). Then, using (97), we see that using the Bernstein’s inequal-

ity yields that X̄n 

q
p(1�p)

n

q
2 log 1

↵
+ 2

3n log 1
↵
holds w.p. at least 1�↵; compare this with

Hoe↵ding’s inequality which yields X̄n 

q
2
n

log 1
↵
w.p. at least 1�↵. Note that Bernstein’s

inequality is superior here if p(1 � p) is a fairly small. In particular, if Var(X1) = 1
n
(i.e.,

p ⇡
1
n
), then the two upper bounds reduce to 1

n

q
2 log 1

↵
+ 2

3n log 1
↵
and

q
2
n

log 1
↵
respectively,

showing that Bernstein’s inequality is so much better in this case.

8.2 Talagrand’s concentration inequality

Talagrand’s concentration inequality for the supremum of the empirical process [Talagrand, 1996a]
is one of the most useful results in modern empirical process theory, and also one of the
deepest results in the theory. This inequality may be thought of as a Bennett, Prokhorov
or Bernstein inequality uniform over an infinite collection of sums of independent random
variables, i.e., for the supremum of the empirical process. As such, it constitutes an expo-
nential inequality of the best possible kind. Below we state Bousquet’s version of the upper
half of Talagrand’s inequality.

Theorem 8.7 (Talagrand’s inequality, [Talagrand, 1996a, Bousquet, 2003]). Let Xi, i =
1, . . . , n, be independent X -valued random variables. Let F be a countable family of measur-
able real-valued functions on X such that kfk1  U < 1 and E[f(X1)] = . . . = E[f(Xn)] =
0, for all f 2 F . Let

Z := sup
f2F

nX

i=1

f(Xi) or Z = sup
f2F

���
nX

i=1

f(Xi)
���

and let the parameters �2 and ⌫n be defined as

U2
� �2

�
1

n

nX

i=1

sup
f2F

E[f2(Xi)] and ⌫n := 2UE[Z] + n�2.

Then76, for all t � 0,

P(Z � EZ + t)  e
�

�
⌫n
U2

�
h1

⇣
tU
⌫n

⌘

 exp

✓
�

3t

4U
log

⇣
1 +

2tU

3⌫n

⌘◆
 exp

⇣
�t2

2⌫n + 2tU/3

⌘
(98)

and

P
⇣
Z � EZ +

p
2⌫nx + Ux/3

⌘
 e�x, x � 0. (99)

76This is a consequence of the following: consider the class of functions F̃ = {f/U : f 2 F} (thus any
f̃ 2 F̃ satisfies kf̃k1  1). Let Z̃ := Z/U , �̃2 := �2/U2, and ⌫̃n := ⌫n/U2. Then,

logE[e�(Z̃�EZ̃)]  ⌫̃n(e
�
� 1� �), � � 0.
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p p

Notice the similarity between (98) and the Bennet, Prokhorov and Bernstein inequali-
ties in (96) in Theorem 8.4: in the case when F = {f}, with kfk1  c, and E[f(Xi)] = 0, U
becomes c, and ⌫n becomes n�2, and the right-hand side of Talagrand’s inequality becomes
exactly the Bennet, Prokhorov and Bernstein inequalities. Clearly, Talagrand’s inequality
is essentially the best possible exponential bound for the empirical process.

Whereas the Bousquet-Talagrand upper bound for the moment generating function of
the supremum Z of an empirical process for � � 0 is best possible, there exist quite good
results for � < 0, but these do not exactly reproduce the classical exponential bounds for
sums of independent random variables when specified to a single function. Here is the
strongest result available in this direction.

Theorem 8.8 ([Klein and Rio, 2005]). Under the same hypothesis and notation as in The-
orem 8.7, we have

logE[e��(Z̃�EZ̃)] 
Ṽn

9
(e3� � 1 � 3�), 0  � < 1,

where Ṽn = Vn/U2 and

Vn := 2UE[Z] + sup
f2F

nX

i=1

E[f2(Xi)].

Then, for all t � 0,

P(Z  EZ � t)  e
�

�
Vn
9U2

�
h1

⇣
3tU
Vn

⌘

 exp

✓
�

t

4U
log

⇣
1 +

2tU

Vn

⌘◆
 exp

⇣
�t2

2Vn + 2tU

⌘
(100)

and

P
⇣
Z  EZ �

p
2Vnx � Ux

⌘
 e�x, x � 0. (101)

Remark 8.1. In order to get concrete exponential inequalities from Theorems 8.7 and 8.8,
we need to have good estimates of EZ and supf2F E[f2(Xi)]. We have already seen many
techniques to control EZ. In particular, (85) gives such a bound.

Example 8.9 (Dvoretzky-Kiefer-Wolfowitz). A first question we may ask is whether Ta-
lagrand’s inequality recovers, up to constants, the DKW inequality. Let F be a distribu-
tion function in Rd and let Fn be the distribution function corresponding to n i.i.d. vari-
ables with distribution F . Let Z := nkFn � Fk1 We can take the envelope of the class
F := {1(�1,x](·) : x 2 Rd

} to be 1 (i.e., U = 1), and �2 = 1/4. F is VC (with V (F) = d)
and inequality (85) gives

E[Z] = nEkFn � Fk1  c1
p

n,

where c1 depends only on d. Here, ⌫n  2c1
p

n+n/4. We have to upper-bound the probability

P(
p

nkFn � Fk1 � x) = P(Z �
p

nx) = P(Z � EZ �
p

nx � EZ).
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Note that for x > 2
p

n, this probability is zero (as Z  2n). For x > 2c1, t :=
p

nx �EZ �
p

n(x�c1) > 0, and thus we can apply the last inequality in (98). Hence, for 2
p

n � x > 2c1,

P(
p

nkFn � Fk1 � x)  exp

✓
�

(
p

nx � EZ)2

2(2c1
p

n + n/4) + 2(
p

nx � EZ)/3

◆

 exp

✓
�

n(x � c1)2

c3n

◆
 exp

✓
�

x2

4c3

◆
,

where we have used (i) for 2
p

n � x the denominator in the exponential term is upper
bounded by 2(2c1

p
n+n/4)+4n/3 which is in turn upper bounded by c3n (for some c3 > 0);

(ii) for x > 2c1, (x � c1)2 > x2/4 (as x � c1 � x � x/2 = x/2). Thus, for some constants
c2, c3 > 0 that depend only on d, we can show that for all x > 0,

P(
p

nkFn � Fk1 � x)  c2e
�x

2
/(4c3).

Example 8.10 (Data-driven inequalities). In many statistical applications, it is of impor-
tance to have data-dependent “confidence sets” for the random quantity kPn � PkF . This
quantity is a natural measure of the accuracy of the approximation of an unknown distribu-
tion by the empirical distribution Pn. However, kPn � PkF itself depends on the unknown
distribution P and is not directly available.

To obtain such data dependent bounds on kPn � PkF we have to replace the unknown
quantities EkPn � PkF , �2 and U by suitable estimates or bounds. Suppose for the sake of
simplicity, �2 and U are known, and the only problem is to estimate or bound the expec-
tation EkPn � PkF . We have discussed so far how to bound the expectation EkPn � PkF .
However, such bounds typically depend on other unknown constants and may not be sharp.
Talagrand’s inequalities (99) and (101), and symmetrization allow us to replace EkPn�PkF

by a completely data-based surrogate. In the following we give such a (finite-sample) high-
probability upper bound on kPn � PkF ; see [Giné and Nickl, 2016, Section 3.4.2] for more
on this topic.

Theorem 8.11. Let F be a countable collection of real-valued measurable functions on X

with absolute values bounded by 1/2. Let X1, . . . , Xn be i.i.d. X with a common probability
law P . Let "1, . . . , en be i.i.d. Rademacher random variables independent from the sequence
{Xi} and let �2

� supf2F Pf2. Then, for all n and x � 0,

P
 

kPn � PkF � 3
���

1

n

nX

i=1

✏if(Xi)
���
F

+ 4

r
2�2x

n
+

70

3n
x

!

 2e�x.

Proof. Set Z := k
P

n

i=1(f(Xi) � Pf)kF and set Z̃ := k
P

n

i=1 ✏if(Xi)kF . Note that Z̃
is also the supremum of an empirical process: the variables are X̃i = ("i, Xi), defined
on {�1, 1} ⇥ X , and the functions are f̃(✏, x) := ✏f(x), for f 2 F . Thus, Talagrand’s
inequalities apply to both Z and Z̃. Then, using the fact

q
2x(n�2 + 2EZ̃) 

p

2xn�2 + 2
p

xEZ̃ 

p

2xn�2 +
1

�
x + �EZ̃,
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for any � > 0, the Klein-Rio version of Talagrand’s lower-tail inequality gives

e�x
� P

✓
Z̃  EZ̃ �

q
2x(n�2 + 2EZ̃) � x

◆
� P

✓
Z̃  (1 � �)EZ̃ �

p

2xn�2 �
1 + �

�
x

◆
.

Similarly, using (99),

P
✓

Z � (1 + �)EZ +
p

2xn�2 +
3 + �

3�
x

◆
 e�x.

Recall also that E[Z]  2E[Z̃]. Then, we have on the intersection of the complement of the
events in the last two inequalities, for � = 1/5 (say),

Z <
6

5
E[Z] +

p

2xn�2 +
16

3
x 

12

5
E[Z̃] +

p

2xn�2 +
16

3
x

<
12

5


5

4
Z̃ +

5

4

p

2xn�2 +
15

2
x

�
+

p

2xn�2 +
16

3
x

= 3Z̃ + 4
p

2xn�2 +
70

3
x;

i.e., this inequality holds with probability 1 � 2e�x.

Note that di↵erent values of � produce di↵erent coe�cients in the above theorem.

8.3 Empirical risk minimization and concentration inequalities

Let X, X1, . . . , Xn, . . . be i.i.d. random variables defined on a probability space and taking
values in a measurable space X with common distribution P . In this section we highlight
the usefulness of concentration inequalities, especially Talagrand’s inequality, in empirical
risk minimization (ERM); see [Koltchinskii, 2011] for a thorough study of this topic.

Let F be a class of measurable functions f : X ! R. In what follows, the values of
a function f 2 F will be interpreted as “losses” associated with certain “actions” (e.g.,
F = {f(x) ⌘ f(z, y) = (y � �>z)2 : � 2 Rd

} and X = (Z, Y ) ⇠ P ).

We will be interested in the problem of risk minimization:

min
f2F

Pf (102)

in the cases when the distribution P is unknown and has to be estimated based on the data
X1, . . . , Xn. Since the empirical measure Pn is a natural estimator of P , the true risk can
be estimated by the corresponding empirical risk, and the risk minimization problem has
to be replaced by the empirical risk minimization (ERM):

min
f2F

Pnf. (103)

As is probably clear by now, many important methods of statistical estimation such as
maximum likelihood and more general M -estimation are versions of ERM.
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