Corrections on "A Gentle Introduction to Empirical Process Theory and Applications" by Bodhisattva Sen

- 1. Page 16, Exercise (HW1), the hat sign in $\{\hat{f}_n\}$ can be removed to save some notations.
- 2. Page 19, Equation (7), the summation should be $\sum_{k=1}^{N}$ (instead of $\sum_{i=1}^{N}$).
- 3. Page 20, Exercise (HW1), it should be the entropy $\log N(\epsilon, \mathcal{F}_L, \|\cdot\|_{\infty})$ (instead of the covering number $N(\epsilon, \mathcal{F}_L, \|\cdot\|_{\infty})$) in both occurrences.
- 4. Page 21, Exercise (HW1), the function classes $\mathcal{F} + \mathcal{G}$ and $\mathcal{F} \cdot \mathcal{G}$ should be specified as summations and products of functions from \mathcal{F} and \mathcal{G} , repspectively. The current notation is a bit misleading.
- 5. Page 33, Lemma 3.19 Hint, $\tilde{\theta}_n := \alpha \hat{\theta}_n + (1 \alpha)\theta_0$.
- 6. Page 36, line 2, maybe need a K factor in the first term, e.g.,

$$\sqrt{\log N(\epsilon, \mathcal{G}_n(R), L_1(Q_n))} \frac{K}{\sqrt{n}} \sup_{g \in \tilde{\mathcal{G}}} \|g - g_0\|_n + K\epsilon.$$

- 7. Page 36, Exercise (HW1), the distance/norm Q in the breaket number is not defined. Is it should be $L_1(Q_n)$?
- 8. Page 38, Theorem 3.24, using the argument in the proof, one can only obtain

$$\mathbb{P}(|Z - \mathbb{E}(Z)| > t) \le 2e^{-t^2/2\sum_{i=1}^n c_i^2}.$$

To have a tighter result, we have to bound the difference $\Delta_i(x_1, \ldots, x_{i-1}, x)$ more carefully, e.g., show that $B_i - A_i \leq c_i$, where $A_i < \Delta_i(x_1, \ldots, x_{i-1}, x) < B_i$. In the current proof $B_i - A_i$ is upper bounded by $2c_i$.

9. Page 40, some arugments are missing between bounding the difference term $g(x_1, \ldots, x_n) - g(x_1, \ldots, x_{i-1}, x'_i, x_{i+1}, \ldots, x_n)$ and applying Theorem 3.24. Note that g is defined based on f and Z is defined as the superemum over $f \in \mathcal{F}$.

- 10. Page 41, line 3, the constant in the upper bound (which is 4) does not match that in Lemma 3.16 (which is $2\sqrt{6}$).
- 11. Page 79, Remark 7.1 first line, change VC indices to VC dimensions.
- 12. Page 98, proof of Proposition 8.2, first equation, would it be better to write $\mathbb{P}(Z \ge t) = \inf_{\lambda>0} \mathbb{P}(e^{\lambda Z} \ge e^{\lambda t}) \le ...?$
- 13. Page 98, proof of Proposition 8.2, it says "it can be checked that for z > -1...". However the infimum is attained at $\lambda = \log(1+z)$. As $\lambda > 0$, we only need to consider z > 0, which also always holds as z is taken to be t/ν .
- 14. Page 99, proof of Proposition 8.2, last paragraph of the proof, is it necessary to introduce the extra variable s in $\gamma(s) := \sup_{\lambda \in [0,3)} (\lambda s \psi(\lambda))$? Why not just use $\gamma(t)$?
- 15. Page 102, Example 8.9, "let $Z := n \|\mathbb{F}_n F\|_{\infty}$ ". Moreover, why $\sigma^2 = 1/4$, or is it just an assumption on \mathcal{F} ?
- 16. Page 103, Example 8.9, do we require $c_3 > 1/2$ instead of $c_3 > 0$?
- 17. Page 103, Example 8.9, some argument is missing for the scenario $0 < x < 2c_1$. Moreover, why we have an extra constant c_2 in the final upper bound?
- 18. Page 155, Theorem 12.6, \mathbb{G}_n is not definied. We believe it is just the same as \mathbb{P}_n .
- 19. Page 155, proof of Theorem 12.6, in the introduction of $\tilde{\mathbb{M}}_n(h)$ and \hat{h} , we believe it should be \mathbb{G}_n instead of \mathbb{G} .
- 20. Page 156, proof of Theorem 12.6, it should be $P(f_{n,g}f_{n,h}) P(f_{n,g})P(f_{n,h}) \to \cdots = h^{\top}\mathbb{E}[\mathbb{G}(\dot{m}_{\theta_0}\dot{m}_{\theta_0}^{\top})]h$.
- 21. Page 156, proof of Theorem 12.6, last sentence, $\tilde{\mathbb{M}}_n(h)$ converges weakly to $h^{\top}\mathbb{G}_n(\dot{m}_{\theta_0}) + 1/2h^{\top}Vh$
- 22. Page 157, first equation, it should be $\tilde{\mathbb{M}}_n(h)$ instead of $\tilde{M}_n(h)$. Second line of same equation, missing a $n^{2/3}$ in the second term.
- 23. Page 157, second equation, second line, should use θ^* instead of θ_0 in all occurance (also in the definition of constant b at the end of this example.)
- 24. Page 158, we believe $\mathbb{E}(Z) = 0$ is assumed when calculating Var(Z).

25. Page 166, the equations under definition of $F(\lambda)$, it should be $\operatorname{Ent}(g(X)^2) = \lambda \mathbb{E}(Ze^{\lambda Z}) - \mathbb{E}(e^{\lambda Z}) \log \mathbb{E}(e^{\lambda Z}) = \cdots$