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Introduction to Reinforcement Learning

We now introduce the framework of reinforcement learning (RL),
which encompasses a rich set of dynamic, stateful decision making
problems.

In the language of bandits, for each decision πt , it is now a
multi-stage strategies, rather than one-shot decision. To be specific,
for each time (which is now termed as episode) t = 1, 2, . . . ,T , the
learner acts for H steps.

Another characteristic of RL is that the environments can now have
multiple states and transitions, which will depend on the actions and
state of previous state of the environment.

While the action in RL will depend on the state of environment, the
reward will depend on both the action chosen and the state of the
environment.

RL includes many of the previous bandit problems as special cases as
will be seen later.
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Finite-Horizon Episodic MDP Formulation
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Markov Decision Process

In RL, the interactions between the agent and the environment for a single
episode are often described by an (in)finite-horizon, Markov Decision
Process (MDP): M = (S,A, {PM

h }Hh=1, {RM
h }Hh=1, d1) specified by:

A state space S, which may be finite (or infinite).

An action space A, which also may be discrete or infinite.

A state-dependent transition function PM
h : S ×A → ∆(S), where

∆(S) is the space of probability distributions over S.
▶ Ph(s

′|s, a) is the probability of transitioning into state s ′ upon taking
action a in state s at step h.

A time-dependent reward function RM
h : S ×A → ∆(R), the

immediate reward associated with taking action a in state s at step h.

The integer H which defines the horizon of the problem.

An initial state distribution d1, which specifies how the initial state s1
is generated.

Chaowen Zheng (UoS) Reinforcement Learning May 10, 2024 6 / 43



Markov Decision Process
For any fixed MDP M, an episode proceeds under the following protocol.

1 At the beginning of the episode, the learner selects a randomized,
non-stationary (i.e. different across different steps) policy

π = (π1, . . . , πH),

where πh : S → ∆(A), Πrns is the collection for all “randomized,
non-stationary” policies.

2 The episode then evolves through the following process, beginning
from s1 ∼ d1. For h = 1, . . . ,H:

▶ ah ∼ πh(sh),
▶ rh ∼ RM

h (sh, ah) and sh+1 ∼ PM
h (sh, ah).

For convenience, sH+1 is set to be a deterministic terminal state.

The Markov property refers to the fact that

PM
h (sh+1 = s ′|sh, ah) = PM

h (sh+1 = s ′|sh, ah, sh−1, ah−1, . . . , s1, a1).
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Values and Goals of RL

The value for a policy π under M is given by

f M(π) := EM,π

[
H∑

h=1

rh

]
,

where EM,π denotes expectation under the process above, with
respect to the randomness of state transitions and the stochasticity of
π, and possibly the reward function (which however will be assumed
to be deterministic later).

The optimal policy for model M is defined as

πM = arg max
π∈Πrns

f M(π). (1)
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Values and Goals of RL

Maximization in (1) is a daunting task, since each policy π is a
complex multi-stage object consisting of H steps.

To facilitate analysis, we break this complex task into smaller
sub-tasks.

Specifically, for a given model M and policy π, we define the
state-action value function and state value function via

QM,π
h (s, a) = EM,π

[
H∑

h′=h+1

rh′ | sh = s, ah = a

]
, (2)

VM,π
h (s) = EM,π

[
H∑

h′=h

rh′ | sh = s

]
. (3)

Hence, the definition in (1) reads

f M(π) = Es∼d1,a∼π1(s)[Q
M,π
1 (s, a)] = Es∼d1 [V

M,π
1 (s)] (4)
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Online RL and the Regret
We will focus on online RL problem that interacts with an unknown
MDP M∗ for T episodes. For each episode t = 1, . . . ,T , the learner
selects a policy πt ∈ Πrns and could observe the following trajectory

τ t = (st1, a
t
1, r

t
1), . . . , (s

t
H , a

t
H , r

t
H).

The goal is to minimize the total regret

T∑
t=1

Eπt∼pt [f
M∗

(πM∗
)− f M

∗
(πt)] (5)

against the optimal policy πM∗
for M∗.

As can be seen, Online RL is a strict generalization of (structured)
bandits and contextual bandits (with i.i.d. contexts)

▶ if S = {s0} and H = 1, each episode amounts to choosing an action
a ∈ A and observing a reward r t with mean f M(at), which is precisely
a bandit problem

▶ taking S = X and H = 1 puts us in the setting of contextual bandits,
with d1 being the distribution of contexts
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Planning via Dynamic Programming
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Panning via Dynamic Programming

To bound the regret in (5), we need to understand the structure of
solutions to (1) in the case where M∗ is known to the decision-maker.

It will be shown that the problem of solving (1) for known M (known
as planning) can be solved efficiently via the principle of dynamic
programming, which solves a complex multi-stage decision (policy) by
breaking down it into a sequence of small decisions.

A fundamental result in dynamic programming is the existence of an
optimal policy πM = (πM,1, . . . , πM,H) that maximizes VM,π

1 (s) over
Πrns for all states s ∈ S simultaneously (rather than just on average,
as in (1))

The intuition for such a results is that if πM,h(s) is defined for all
s ∈ S and h = 2, . . . ,H, then defining the optimal πM,1(s) at any
state s to greedily choose an action that maximizes the sum of the
expected immediate reward and the remaining expected reward under
the optimal policy.
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Optimal Value Functions

To state the result formally, we introduce the optimal value functions:

QM,∗
h (s, a) = max

π∈Πrns

EM,π

[
H∑

h′=h

rh′ | sh = s, ah = a

]
,

VM,∗
h (s) = max

a
QM,∗

h (s, a) (6)

for all s ∈ S, a ∈ A, and h ∈ [H].

We adopt the convention that VM,∗
H+1(s) = QM,∗

H+1(s, a) = 0.

It can be shown that there exists πM such that for all s, a, h:

QM,∗
h (s, a) = QM,πM

h (s, a), and VM,∗
h (s) = VM,πM

h (s). (7)

A proof could be found in Theorem 1.7 in Reinforcement Learning:
Theory and Algorithms, which is complicated but followable.
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Proposition 1 (Bellman Optimality)

The optimal value functions in (6) for MDP M can be computed via

VM,πM

H+1 (s) := 0, and for each s ∈ S,

VM,πM

h (s) = max
a∈A

E
[
rh + VM,πM

h+1 (sh+1) | sh = s, ah = a
]
. (8)

The optimal policy is given by:

πM,h(s) ∈ argmax
a∈A

E
[
rh + VM,πM

h+1 (sh+1) | sh = s, ah = a
]
. (9)

Equivalently, for all s ∈ S, a ∈ A,

QM,πM

h (s, a) = E
[
rh + max

a′∈A
QM,πM

h+1 (sh+1, a
′) | sh = s, ah = a

]
. (10)

and the optimal policy is given by

πM,h(s) ∈ argmax
a∈A

Qh
M,πM (s, a). (11)
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Proof

We only provide proof for (8), and all the others will follow by

definition and noticing that VM,πM
h (s) = maxa Q

M,πM
h (s, a).

Proof of (8):

VM,πM
h (s) = max

π∈Π
EM

[
rh +

H∑
h′=h+1

rh′(sh′ , ah′)|sh = s

]

= max
π∈Π

EM

[
rh + E

[
H∑

h′=h+1

rh′(sh′ , ah′) | π, sh = s, sh+1

]
|sh = s,

]

≤ max
π∈Π

EM

[
rh + max

π′∈Π
E

[
H∑

h′=h+1

rh′(sh′ , ah′) | π′, sh = s, sh+1

]
|sh = s,

]

= max
π∈Π

EM
[
rh + VM,πM

h+1 (sh+1)|sh = s
]

= max
a∈A

EM
[
rh + VM,πM

h+1 (sh+1)|sh = s, ah = a
]

The result then follow by definition that VM,πM
h (s) is also the optimal

value function.
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Bellman Operator

The update in (11) is referred to as value iteration (VI).

We now define Bellman Operators which will be useful. For an MDP
M, define the T M

1 , . . . , T M
H via

T M
h Q(s, a) = EM

[
rh(sh, ah) + max

a′
Q(sh+1, a

′) | sh = s, ah = a

]
In the language of Bellman operators, (11) can be written as

QM,πM
h = T M

h QM,πM
h+1
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Failure of Uniform Exploration
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Failure of Uniform Exploration

Since we are interested in learning to make decisions in the face of an
unknown environment, we will need exploration to minimize regret.

While the ϵ-Greedy works for bandits and contextual bandits, albeit
with a suboptimal rate (T 2/3 as opposed to

√
T ), it can be disastrous

in RL as it leads to exponential (in the horizon H) regret.

“combination lock” example:
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“Combination Lock” Example

There are H + 2 states, and two actions ag and ab, and a starting
state 1.

The ”good” action ag deterministically leads to the next state in the
chain, while the ”bad” action deterministically leads to a terminal
state.

The only place where a non-zero reward can be received is the last
state H, if the good action is chosen.

So the only way to receive non-zero reward is to select ag for all the
H steps within the episode.

Since the length of the episode is also H, selecting actions uniformly
brings no information about the optimal sequence of actions, unless
by chance all of the actions sampled happen to be good;

The probability that this occurs is exponentially small in H.

This means that T needs to be at least O(2H) to achieve nontrivial
regret, and highlights the need for more strategic exploration.
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UCB Methods and the Anaysis Tools
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UCB Methods and the Analysis Tools

While ϵ-Greedy method fails, it can be shown that UCB method yields
a regret bound that is polynomial in the parameters |S|, |A|, and H.

We now introduce two very important lemmas:
1 The Performance Difference Lemma: that expresses the difference in

values for two policies in terms of differences in single-step decisions
made by the two policies.

2 The Bellman residual decomposition: that relates the performance of
the same policy under two different MDPs.
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Lemma 1 (Performance Difference Lemma)

For any s ∈ S, and π, π′ ∈ Πrns,

VM,π′

1 (s)− VM,π
1 (s) =

H∑
h=1

EM,π
[
QM,π′

h (sh, π
′(sh))− QM,π′

h (sh, ah) | s1 = s
]

The proof proceeds by successively changing one policy into another
and keep track of the ensuing differences in expected rewards.

Proof: Fix a pair of policies π, π′ and define
πh = (π1, . . . , πh−1, π

′
h, . . . , π

′
H), with π1 = π′ and πH = π. By

telescoping, we can write

VM,π′

1 (s)− VM,π
1 (s) =

H∑
h=1

[
VM,πh

1 (s)− VM,πh+1

1 (s)
]

(12)

Chaowen Zheng (UoS) Reinforcement Learning May 10, 2024 22 / 43



Observe that for each h, we have

VM,πh

1 (s)−VM,πh+1

1 (s) = EM,πh

[
H∑

h=1

rh | s1 = s

]
−EM,πh+1

[
H∑

h=1

rh | s1 = s

]
(13)

Here, one process evolves according to (M, πh) and the one evolves
according to (M, πh+1). The processes only differ in the action taken
once the state sh is reached. In the former, the action π′(sh) is taken,
whereas in the latter it is π(sh). Hence, equation (13) is equal to

EM,π
[
QM,π′

h (sh, π
′(sh))− QM,π′

h (sh, π(sh)) | s1 = s
]

(14)

which can be written as

EM,π
[
QM,π′

h (sh, π
′(sh))− QM,π′

h (sh, ah) | s1 = s
]
. (15)
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Lemma 2 (Bellman residual decomposition)

For any pair of MDPs M = (PM ,RM) and M̃ = (P̃M , R̃M), for any s ∈ S, and policies
π ∈ ΠRNS,

VM,π
1 (s)− V M̂,π

1 (s) =
H∑

h=1

EM̂,π
[
QM,π

h (sh, ah)− rh − VM,π
h+1 (sh+1) | s1 = s

]
(16)

Hence, for M, M̂ with the same initial state distribution,

f M(π)− f M̂(π) =
H∑

h=1

EM,π
[
QM,π

h (sh, ah)− rh − VM,π
h+1 (sh+1)

]
. (17)

In addition, for any MDP M and function Q = (Q1, . . . ,QH ,QH+1) with QH+1 = 0,
letting πQ,h(s) = argmaxa∈A Qh(s, a), we have

max
a∈A

Q1(s, a)− V
M,πQ
1 (s) =

H∑
h=1

EM,πQ

[
Qh(sh, ah)− T M

h Qh+1(sh, ah) | s1 = s
]
. (18)

and, hence,

Es1∼d1

[
max
a∈A

Q1(s1, a)− f M(πQ)

]
=

H∑
h=1

EM,πQ

[
Qh(sh, ah)− T M

h Qh+1(sh, ah)]
]
. (19)
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Proof I

We will prove (17), and omit the proof for (16), which is similar but more
verbose. We have:

H∑
h=1

EM̂,π
[
QM̂,π

h (sh, ah)− rh − VM,π
h+1 (sh+1)

]

=
H∑

h=1

EM̂,π
[
QM,π

h (sh, ah)− VM,π
h+1 (sh+1)

]
− EM̂,π

[
H∑

h=1

rh

]

=
H∑

h=1

EM̂,π
[
QM,π

h (sh, ah)− VM,π
h+1 (sh+1)

]
− f M̂(π).
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Proof II
On the other hand, since VM,π

h (s) = Ea∼πh(s)[Q
M,π
h (s, a)], a telescoping

argument yields

H∑
h=1

EM̂,π[QM,π
h (sh, ah)− VM,π

h+1 (sh+1)]

=
H∑

h=1

EM̂,π[VM,π
h (sh)− VM,π

h+1 (sh+1)]

= EM̂,π[VM,π
1 (s1)]− EM̂,π[VM,π

H+1(sH+1)] = f M(π),

where we have used that VH+1
M,π = 0, and that both MDPs have the same

initial state distribution.
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Proof III

We prove (19) (omitting the proof of (18)) using a similar argument. We
have

H∑
h=1

EM,πQ [Qh(sh, ah)− rh −max
a′∈A

Qh+1(sh+1, a
′)]

=
H∑

h=1

EM,πQ [Qh(sh, ah)−max
a∈A

Qh+1(sh+1, a)− EM,πQ

[
H∑

h=1

rh

]
,

=
H∑

h=1

EM,πQ [Qh(sh, ah)−max
a∈A

Qh+1(sh+1, a)− f M(πQ)].

Since ah+1 = πQ,h(sh+1) = arg maxa∈AQh+1(sh+1, a), we have
EM,πQ [Qh(sh, ah)−maxa∈AQh+1(sh+1, a)] =
EM,πQ [Qh(sh, ah)− Qh+1(sh+1, ah+1)], the result follows by telescoping.
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Optimism
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Error Decomposition for Optimistic Policies
We now turn back to the development of UCB algorithm for RL.
Before constructing a sequence of optimistic value functions
Q̄1, . . . , Q̄H , which are guaranteed to over-estimate the optimal value
function Q∗

M , we first introduce the following lemma

Lemma 3 (Error Decomposition for Optimistic Policies)

Let {Q̄1, . . . , Q̄H}Hh=1 be a sequence of functions Q̄h : S ×A → R with the
property that for all (s, a),

QM,∗
h (s, a) ≤ Q̄h(s, a) (20)

and set Q̄H+1 = 0. Let π̂ = (π̂1, . . . , π̂H) be such that
π̂h(s) = argmaxa Q̄h(s, a). Then for all s ∈ S ,

VM,∗
1 (s)− VM,π̂

1 (s) ≤
H∑

h=1

EM,π̂
[
(Q̄h − T M

h Q̄h+1)(sh, π̂(sh)) | s1 = s
]
.

(21)
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Proof

The lemma tells us that closeness of Q̄h to the Bellman backup
T M
h Q̄h+1 implies closeness of π̂ to πM in terms of the value.

Proof: Let V̄h(s) = maxa Q̄h(s, a). Just as in the proof of Lemma 7,
the assumption that Q̄h is “optimistic” implies that

QM,∗
h (sh, πM(sh)) ≤ Q̄h(sh, πM(sh)) ≤ Q̄h(sh, π̂M(sh)),

and hence, VM,∗
1 (s) ≤ V̄1(s). Then, (18) applied to Q = Q̄ and

πQ = π̂ states that

V̄1(s)−VM,π̂
1 (s) =

H∑
h=1

EM,π̂[(Q̄h(sh, ah)−T M
h Q̄h+1(sh, ah)) | s1 = s].
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The UCB-VI Algorithm for Tabular MDPs
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The UCB-VI Algorithm for Tabular MDPs

We now instantiate the principle of optimism to give regret bounds
for online RL in tabular MDPs, where the state and action spaces are
small (or finite).

For simplicity, we assume that the reward function is known to the
learner, so that only the transition probabilities are unknown.

We will show that the regret bounds we present will depend
polynomially on |S| and |A|, as well as the horizon H.

Define, with a slight abuse of notation,

nt(s, a) =
t−1∑
i=1

1((si , ai ) = (s, a)), nt(s, a, s
′) =

t−1∑
i=1

1((si , ai , si+1) = (s, a, s ′)),

We can estimate the transition probabilities via

P̂t(s
′|s, a) = nt(s, a, s

′)

nt(s, a)
. (22)
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The UCB-VI Algorithm
The following algorithm, UCB-VI (Upper Confidence Bound Value
Iteration), combines the notion of optimism with dynamic programming.
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Regret Bounds

The bonus functions play precisely the same role as the width of the
confidence interval in (2.19): these bonuses ensure that (20) holds
with high probability, as we as ensuring Q̄h to be “self-consistent” as
required by (21).

With an appropriate choice of bonus, the above algorithm achieves a
polynomial regret bound.

Theorem 4

For any δ > 0, UCB-VI with

bh,t(s, a) = 2

√
log(2SAHT/δ)

nt(s, a)
(23)

guarantees that with probability at least 1− δ,

Reg ≲ HS
√
AT ·

√
log(SAHT/δ)
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Analysis for a Single Episode
To bound the regret for UCB-VI, we first focus on a single episode by
fixing t and prove several useful lemmas.

Given the estimated transitions P̂h(.|s, a), {S,A, {P̂H
h }, {RM

h }, d1},
the associated Bellman operator is

T M̂
h Q(s, a) = rh(s, a) + Es′∼P̂h(.|s,a)[max

a
Q(s ′, a)]

Consider the sequence of functions Q̄h : S ×A → [0, 1], where
V̄h : S → [0, 1],with Q̄H+1 = 0 and

Q̄h(s, a) = [T M̂
h Q̄h+1(s, a) + bh(s, a)] ∧ 1, and V̄h(s) = max

a
Q̄h(s, a).

(24)
for bonus functions bh,δ : S ×A → R to be chosen later.

The following lemma shows that as long as the bonuses bh,δ are large
enough to bound the error between the estimated transition
probabilities and true transition probabilities, the functions
Q1, . . . ,QH constructed above will be optimistic.
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Lemma 5

Suppose we have estimates P̂h(. | s, a) and a function
bh,δ(s, a) : S ×A → R with the property that for all s ∈ S, a ∈ A,∑

s′

P̂h(s
′ | s, a)VM,∗

h (s ′)−
∑
s′

PM
h (s ′ | s, a)VM,∗

h (s ′) ≤ bh,δ(s, a).

Then for all h ∈ [H], we have

Q̄h ≥ QM,∗
h , and V̄h ≥ VM,∗

h ,

for Q̄h, V̄h defined in (24).

Proof: The proof proceeds by backward induction on the statement

V̄h ≥ VM,∗
h ,

with h = H + 1 down to h = 1. We start with the base case h = H + 1,
which is trivial because V ∗

H+1 = 0. Now, assume V ∗
h+1 ≤ V̄h+1, and let us
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prove the induction step. Fix s, a ∈ S ×A. If Q̄h(s, a) = 1, then trivially,

Q̄h(s, a) ≥ QM,∗
h (s, a). Otherwise, Q̄h(s, a) = T M̂

h Q̄h+1(s, a) + bh,δ(s, a),
and thus

Q̄h(s, a)− QM,∗
h (s, a)

= bh,δ(s, a) + Es′∼P̂h(·|s,a)[V̄h+1(s
′)]− Es′∼PM

h (·|s,a)[V
M,∗
h+1 (s

′)]

≥ bh,δ(s, a) + Es′∼P̂h(·|s,a)[V
M,∗
h+1 (s

′)]− Es′∼PM
h (·|s,a)[V

M,∗
h+1 (s

′)] ≥ 0.

which implies that

V̄h(s) = max
a

Q̄h(s, a) ≥ max
a

Q∗
h(s, a) = VM,∗

h (s),

concluding the induction step.
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We now analyze the effect of using an estimated model M̂ for the
Bellman operator rather than the true unknown T M

h

Lemma 6

Suppose we have estimates P̂h(. | s, a), and b′h,δ(s, a) with the property
that

max
v∈[0,1]s

∣∣∣∣∣∑
s′

P̂h(s
′ | s, a)v(s ′)−

∑
s′

PM
h (s ′ | s, a)v(s ′)

∣∣∣∣∣ ≤ b′h,δ(s, a),

then the Bellman residual satisfies

Q̄h − T M
h Q̄h+1 ≤ (bh,δ + b′h,δ) ∧ 1

for Q̄h, V̄h defined in (24).
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Proof

That Q̄h − T M
h Q̄h+1 ≤ 1 is immediate. To prove the main result, observe

that

Q̄h−T M
h Q̄h+1 =

{
T M
h Q̄h+1 + bh,δ

}
∧1−T M

h Q̄h+1 ≤ (T M̂
h −T M

h )Q̄h+1+bh,δ

For any Q ∈ S ×A → [0, 1],

(T M̂
h − T M

h )Q(s, a) = Es′∼P̂h(·|s,a)

[
max

a
Q(s ′, a)

]
− Es′∼PM

h
(·|s,a)

[
max

a
Q(s ′, a)

]
≤ max

V∈[0,1]S

∣∣∣Es′∼P̂h(·|s,a)[V (s ′)]− Es′∼PM
h

(·|s,a)[V (s ′)]
∣∣∣ .

Since the maximum is achieved at a vertex of [0, 1]S , the statement
follows.
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Regret Analysis

We now reintroduce the time index t and demonstrate that the
estimated transition probabilities in UCB-VI satisfy conditions of
Lemma 5 and Lemma 6, ensuring that the functions Q̄1, . . . , Q̄H are
optimistic.

Lemma 7

Let {P̂t
h} be defined as in (22). Then with probability at least 1− δ, the

functions

bh,t(s, a) = 2

√
log(2SAHT/δ)

nht (s, a)
, b′h,t(s, a) = 8

√
log(2SAHT/δ)

nht (s, a)

satisfy the assumptions of Lemma 5 and Lemma 6, respectively, for all
s ∈ S, a ∈ A, h ∈ [H], and t ∈ [T ] simultaneously.

See Lemma 7.2 in Reinforcement Learning: Theory and Algorithms
for a proof.
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Proof of Theorem 1. I
Integrating the results from Lemma 7, the Q̄1, . . . , Q̄H are shown to be optimistic,
meaning the conditions of Lemma 3 hold, and the instantaneous regret on round
t (conditionally on s1 ∼ d1) is at most:

H∑
h=1

EM,π̂t [(Q̄h − T M
h Q̄h+1)(sh, πt(sh)) | s1 = s]

≤
H∑

h=1

EM,π̂t [(bh,δ(sh, π̂t(sh)) + b′
h,δ(sh, π̂t(sh))) | s1 = s],

where the second inequality invokes Lemma 6. Summing over t = 1, . . . ,T , and
applying the Azuma-Hoeffding inequality, we have that with probability at least
1− δ, the regret of UCB-VI is bounded by:

T∑
t=1

H∑
h=1

EM,π̂t [
bh,δ(s

t
h, π̂

t
h(s

t
h)) + b′h,δ(s

t
h, π̂

t
h(s

t
h))

]
∧ 1

≤
T∑
t=1

H∑
h=1

(
bh,δ(s

t
h, π̂

t
h(s

t
h)) + b′h,δ(s

t
h, π̂

t
h(s

t
h))

)
∧ 1 +

√
HT log(1/δ).
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Proof of Theorem 1. II

Using the bonus definition in (23), the bonus term above is bounded by

T∑
t=1

H∑
h=1

√
S log(2SAHT/δ)

nht (s
t
h, π̂

t
h(s

t
h))

∧1 ≤
√
S log(2SAHT/δ)

T∑
t=1

H∑
h=1

1√
nht (s

t
h, π̂

t
h(s

t
h))

∧1.

The double summation can be handled in the same fashion as Lemma 8:

T∑
t=1

H∑
h=1

1√
nht (s

t
h, π̂

t
h(s

t
h))

∧ 1 =
H∑

h=1

∑
(s,a)

T∑
t=1

I{(sth, π̂t
h(s

t
h)) = (s, a)}√

nht (s, a)
∧ 1

≤
H∑

h=1

∑
(s,a)

√
nTh (s, a) ≤ H

√
SAT .

Chaowen Zheng (UoS) Reinforcement Learning May 10, 2024 42 / 43



Thank You !
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