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Revisit Structured Bandits

Multi-Armed Bandit:

o c-Greedy algorithm: Reg < AY/3T2/3 . 10g!/3(AT/§).

o UCB algorithm: Reg < \/ATlog(AT/S).

e Posterior Sampling Algorithm: Reg < \/ATlog(A) / \/ATlog |F|
@ Exp3 Algorithm: Reg < +/ATlog A

Motivation: Decision space II is large and potentially continuous. (not
finite set). — Replace A with some intrinsic measure of complexity.
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Failure of UCB

Regret Bound with Eluder dimension

For a finite set of functions F C (II — [0, 1]), the generalized UCB
algorithm guarantees that with probability at least 1 — 4,

Reg < /Edim (F, T-1/2) - Tlog(|F|/5)

The UCB algorithm is useful for some special cases, it does not attain
optimal regret for any structured bandit problem.

o relu class models: Edim(F,¢) > e? — Eulder dimension is still
large (overly pessimistic)

@ Cheating Code: we can find simple algorithms that give
Reg < logs(A/9).

while with UCB we have Reg > vV AT.
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E2D and dec,(F)

Estimation-to-Decision (E2D) Algorithm

Input: Exploration parameter v > 0.

fort=1,...,Tdo
-Obtain f* from online regression oracle with (7!, r') ..., (71, A=1).
- Select action 7t ~ p*, where

~ 2
t .
p-=argminmaxE,, |f(7f) — Aw) — v (f(w) — fi(w }
wgminmex . | () fir) - () ~ i)

Decision-Estimation Coefficient is a complexity measure for F:

decy (F, f) = i max Bl f(mr) — f(m) =y (F(r) = F(m))* ]
regret of decision information gain for obs.

decy(F) = sup decw(}",?)
Feco(F)
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Regret Bound for E2D

Proposition 13. The E2D algorithm with exploration parameter v > 0
guarantees with probability at least 1 — §,

Reg < (10(',7 (F) - T+ v EStSq(‘F7 Ta 5)7

where Estgq(F, T,9) is the estimation error from online oracle and scales
as log(|F|/d) for finite F.

Therefore, for regret bound we just need to bound DEC.
Actually, any specific choice of p € A(II) gives an upper bound of DEC.

Proposition 14. For the Multi-Armed Bandit setting, where II = [A] and
F=RA

o the Inverse Gap Weighting distribution p = IGW,(f) is the exact
minimizer for dec. (F, f).

° decw(]:,Af) = A+l

4y
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4.3 Decision-Estimation Coefficient: Examples
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Example 1: Background of Cheating Code

Cheating Code: Settings

@ Decision space: II = [A]JUC, where C = {cl, e q(,g2(A>} is a set of
"cheating” actions.

o For all w € [A], f(r) € [0,1] for all fe F.

o For each fe€ F, let b(f) = (bi(f), ..., biog,(a)(f)) € {0,1}1°e2(D) be
a binary encoding for the index of 7¢ € [A]. For each action ¢; € C,

we set
f(C,‘) = —b,'(f).

o Determine each b;(f), which will incur 6(log2(A)) regret.

@ Then stop exploring, and commit to playing s« for remaining
rounds.
= Reg < log3(A/9).

e UCB algorithm only pull actions in [A], ignoring the cheating actions.
= Classic bound: Reg > VAT.
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Cheating Code

New Regret bound with DEC for Cheating Code

Conclusion

Proposition 15 (DEC for Cheating Code)

Consider the cheating code. For this class F, we have

dec,(F) < logy(A)
v

Remark:

o this result implies Reg < /log,(A) Tlog | F|.

@ the strategy p that certifies the bound on the DEC is not necessarily

the exact DEC minimizer (the distributions p', ..., p" played by
E2D may be different.).

e Using a slightly more refined version of the E2D algorithm (Foster,
Golowich and Han, 2023), one can improve the bound to match the
log(A) given earlier.
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Cheating Code

Proof of Proposition 15

For simplicity, we work on decv(}';f) for f € F, not for f € co(F).
Define

p= (1 —¢e)m;+ e - unif(C).

log, (A)

We want to show with e =2 , it yields

~ _ log,(A
dec, (F, ) < 02
v
For minimax problem of

Ervp |f(m) = fir) = - (fm) = F(m))?]

Let’s consider two cases:
First , if mp= Tz, then

~

Ernp |f(mr) = A7) = 7+ (Am) = F(7))*| < Eaplf(my) — Aim)]
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Cheating Code

Second, suppose that 7 # ;. Note

~

Eanp [f(m7) = £(m) =7+ (F(r) = F(m))?] < 2= 7B [ () = F())?

Observe that since 77 # 77, if we let by, ..., biog,(a) and by, ..., b{OgZ(A)

denote the binary representations for 7 and 7, there must exist i such
that b; # b}. Hence

?(ﬂ)?] > @ (f(co —?<Cf>)2 - 1og§(A>

We conclude that in the second case,

Erp () -

€
log, (A)

By [Fm) — i) =7~ () — F(m)2] <29
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Cheating Code

Putting the cases together, we have

Ervp [f(’ﬂ'f) — flm) — - (fm) —?(7'(‘))2:| < max {267 2— /Vlog;S(A)}

To balance these terms, set
log, (A
c—=29 gz( )

Y
which leads to the result. ]
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Linear Bandits

Example 2: Background of Linear Bandit

Linear Bandit: Settings
@ Decision space: arbitrary II. Define F = {7 — (6, ¢(m)) | 6 € 6},

where © C BY(1) and ¢ : IT — B4(1) is a fixed feature map
(known).

@ Special case of the linear contextual bandit problem
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G-optimal Design

Definition: G-optimal Design
For any compact set Z C R? with dim span(Z) = d, there exists a
distribution p € A(Z), called the G-optimal design, which has

sup <E;12, zy<d (4.23)

zeEZ

where ¥, :=E,., [z T].

The G-optimal design ensures coverage in every direction of the decision
space. Special cases include:

e When Z = A([A]), p= unif (ey,...,ea) is an optimal design
o When Z = B{(1), p = unif(ey,...,ea) is an optimal design.

@ For any positive definite matrix A > 0, letting A1,..., Ay and
Vi,..., Vg denote the eigenvalues and eigenvectors for A,

respectively, p = unif (/\171/2 Vi, ..., )\;1/2 vd) is an optimal design.
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Regret (DEC) bound

- Generalised e-greedy algorithm gives Reg < d/3 T?/2log | F|.

Connection to UCB and Posterior Sampling
00000000 @00000000000 00000000

- We can obtain a d/+ bound on the DEC, which leads to Reg< v/dT.

Algorithm: D2E+IGW with G-Optimal Design

o Define ¢(r /\/ f(w)), where

T3 = arg MaXy el f

o Let g € A(II) be the G-optlmal design, and define g = %Z‘]—F %H,r?.
@ For each m € II, set

q(m)

A+ (?(ﬂ'?) —?(71'))

p(m) =

Conclusion
[e]

Proposition 17:This strategy certifies that

dec,(F) <

=
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Proof of Proposition 17

Fix f, denote = v/d. Minimax problem in DEC,

dec, (F, ) = min maxEq[ f(n) — f(m) =7 (f(r) = F(m))? ]

regret of decision information gain for obs.

Handle the regret term: decomposition (same as Proposition 9)

Erp [f(m) — ()]

=Ervp |F(m7) —m)| +Exmplfir) — Am)] + F(m) ~F(my)

(1) exploration bias (I1) est error on policy

(1) est error at opt
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(1) and (I1)

Connection to UCB and Posterior Sampling

Conclusion
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Linear Bandits

(I1): Est error at opt

Decomposition:

(ITT) = f(wf)_?m)_(?(w?) _?(m)) - <9 -
where f(r) = (6, ¢(m)) and fir) = (B, o()).

Define £, = Erp, [¢(m)o(m) "], we have

(6-8.0(m)) = <1/29 0),%, "2 (n))

H 1/2

lHE”QH HH
2

w\q

Ennp |(fir) = f(r)) ]

1/2¢ 71'{ H

r Sampling

prd S

1
+ ﬂ <¢(7rf)a

S, 6 ()
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(I1): Est error at opt

Connection to UCB and Posterior Sampling
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Observe that ¥, = $5g, hence

(¢ (m9),E ¢ (1) < 2(o(mr) , 55" b (m))
=2 (140 (F(m) = F(m0)) (8 (=) , 5776 ()
<2d (1 +n ?(7@) —?(ﬂ'f)) ,

where we defined ¢(m /\/1 +3 7Tf —fir )) and g is the
G-optimal design for {gb( )}weH

Conclusion
[e]
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(I1): Est error at opt

Conclusion

Therefore:

o~

(1) < J2emp [ () = ) P 3 (0 () 556 () = (F(m) = Fir).

Iv)

where

(v) < gj 2;’77’ (F(m) = T(m)) = (F(m) ~ (o) <

which completes the proof. O

)

=la
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Linear Bandits

Remarks on Regret Bound

@ One can show dec, (F) 2 g
@ Combining this result with Proposition 13 and using the averaged
exponential weights algorithm gives Reg < \/dTlog(|F|/9).

@ So far, we have shown

eff-dim(F, 1)

dec,(F) < S

where eff-dim(F, II) is some quantity that (informally) reflects the
amount of exploration required.

e In general, DEC can have slower decay rate than y~! = optimal
rate worse than v/T.



Review of Part 1 (4.1-4.2) DEC Bound: examples Connection to UCB and Posterior Sampling Conclusion
00000 0000000000000 00e0000 00000000 [e]
Nonparametric Bandits

Example 3: Nonparametric Bandits

Consider the Lipschitz bandits in metric spaces:
Let II to be a metric space equipped with metric p, and define

F={f:11 —[0,1] | fis 1-Lipschitz w.r.t p}
Objective: give bound on the DEC which depends on the N, (I, ¢).
Define II' C II as an e-cover with respect to p if
Vrell In’elll st p(mn)<e

Suppose N, (I, &) < e~ for all € > 0. Let f: 1 —[0,1] and v > 1,
consider:

o Let IT' C II witness the covering number N, (1L, ¢) .
@ Let p be IGW distribution, restricted to the (finite) decision space II'
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DEC bound for Lipschitz Bandits

Proposition 18: DEC bound for Lipschitz Bandits

1 o
By setting € oc v~ @1, this strategy certifies that

deC’Y(]:a?) S 'y_dJ%

This leads to Reg < TZ%, which cannot be improved.

Proof: Since fis 1-Lipschitz and II’ is the e-cover for II, there exists
() € TI' such that p(m, (7)) < e. Consequently,
Ernp [f(m) — A(m)] < By [f(e (7)) — f(m)] + [£(7f) — £( (77))]
< Ernp [f(e(mp) — f(m)] + €
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Nonparametric Bandits

Proof of Proposition 18

since ¢ (mf) € I, Proposition 9 ensures for p from inverse gap weighting
over IT’, we have

Eap (0 (1) = )] < L 4y By (1) ~Tem)?

As we assume N, (IL¢), [II'| < e~

Ervp |F(re) — fim) = (Fm) ~ F(m)?| <o+ —

1
Choosing € oc v~ @1 leads to the result. O
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Consider any class F with values in [0,1]. For all v > e, we have

. _ 2
dec, (F) S inf {s 4 Bdim(F f .€)los (7)} 4471

As a special case, this implies that E2D enjoys a regret bound for
generalized linear bandits similar to that of UCB.

Conclusion
[e]
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Example 5: Bandits with Concave Rewards

Take IT C B4(1) and define
F ={f:1I - [0,1] | fis concave and 1-Lipschitz w.r.t {2}

For this setting, Lattimore (2020) shows

d*

7

decy(F) S — - polylog(d,v)

For the relu function class
F = {flx) = —relu((¢(r),0)) | 6 € © C B§(1)},

above bound leads to y/poly(d) T regret bound.

=-Eluder dimension is overly pessimistic, as it grows exponentially for this
class.
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4.4 Relationship to Optimism and Posterior
Sampling
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Combine E2D with Confidence Sets

Algorithm: E2D with Confidence Set

Input: v > 0, confidence radius 8 > 0.
Fort=1,..., T do

Obtain ft from online regression oracle with (7t /), (7 A,
Set
~ N2
Ft = {fG F | ZEﬂ-iNPi |:<f’ (7‘(’) — (7‘(:)) :| < 6}
i<t

Select action 7t ~ pt, with

PN 2
t = i Epwp | F(mf) — fm) = - — ft
p’ = arg min max p[ (mp) — flm) = (f(ﬂ) (W)) }

Same as E2D, except that at each step, we compute a confidence set F*.
If 8 = Estsq(F, T,0), then it ensures that with probability at least 1 — 9,

-
Reg < Zdecﬂ, (}'t) + - EStSq(fv T, 5)

t=1
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Relation to usual UCB

Proposition 20
The UCB strategy 7t = arg max e fi(7) certifies that

Conclusion
[e]

dec (F*) < ft(n*) — f(n") (4.27)

the confidence width might be large for a given round t, but by the
pigeonhole argument

ideco (ft) < i ft (ﬂ't) —ft (7rt) < 5(\/ﬁ)
=1 t=1
Meaningful only if 71,... FT are shrinking (fast).
Proposition 21
For any v > 0, the UCB strategy ! = arg max e fi() certifies that

1

dec, (]-"t, i?t) < ft (7f) — ft (7%) + >
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Proof of Proposition 21
By choosing 7wt = arg max e ,t(), we have

. ~ 2
t) — ; x) _ A~ (Ft _
dec, (}", f) pemAl(r%[) Ifgelz}}t(Eﬂwp |:IITIFS*LX f(m*) —f(m) —~ ( (m) (w)) }

< e e () = £ () - (7 () = 7)) |

< max |ft (ﬂ't) — f(7rt) -

x| (
(

_ Tt A
_rfréz})t(_f(ﬂ) f(7r) o
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Connection to Posterior Sampling

Connection to Posterior Sampling

Define a natural dual (max-min) analogue of the DEC

dec, (F,f) = inf BBy |[f(mg) — fm) — - (1) — f))?
docy(Ff) = sup inf | BrBroy |Fm) = fir) = (fir) ~ )|

The adversary selects a prior distribution p over models in M, and the
learner (with knowledge of the prior) finds a decision distribution p that
balances the average tradeoff between regret and information acquisition
when the underlying model is drawn from p.
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Equivalence of Primal and Dual

Under mild regularity conditions, we have
decﬂ,(}",?) = dec.y(}",?)

Remarks:

@ Any bound on the dual DEC immediately yields a bound on the
primal DEC. We bring existing tools for Bayesian bandits and
reinforcement learning to bear on the primal DEC.

@ the dual DEC is always bounded by a Bayesian complexity measure
known as the information ratio, which is used throughout the
literature on Bayesian bandits and reinforcement learning.

Conclusion
[e]
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Incorporating with Contextual Bandits

Algorithm: E2D for Contextual Structured Bandits

Input: Exploration parameter v > 0.
fort=1,..., T do

- Observe x* € X'

- Obtain ft from online regression oracle with
Ottty (Lt A

- Compute

pt — argAI{lriI?I}éE}?(EwNp f(Xt,7rf (Xt)) = f(Xt, 77) — - (f(xt, 71') — f/:t (Xt77T
pPE

- Select action 7t ~ pt.
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Regret Bound of Contextual E2D

The E2D algorithm with exploration parameter v > 0 guarantees that
Reg < supdecy (F(x,-)) - T+ - Estgq(F, T,9),
xeX
where F(x,-) = {f(x,-) | f€ F}. (Proof is identical to Proposition 13.)

e For finite decisions, if F = R”, SquaredCB is precisely the special
case of Contextual E2D (IGW distribution is the exact DEC
minimiser).

@ Going beyond the finite-action setting: e.g.,

F ={flx,a) = (¢(x a),8(x)) | g € G}
Applying Proposition 17 gives sup, ¢ decy (F(x,-)) < g, so that
Proposition 23 gives Reg < /dT - Estgq(F, T, 9).




a
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Conclusion

@ In this Chapter, we introduced Structured Bandit, which generalises
the decision space II into large and potentially continuous space,
where UCB could fail.

@ Using Estimation-to-Decision (E2D) framework (combined with
other schemes, e.g., IGW), which provides a better (optimal) regret

rate:
Reg < dec,(F) - T+~ - Estgq(F, T,9)

@ Seen some examples on how to bound dec (F)
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