Reinforcement Learning and Bandit Algorithms Joint Reading Group, Spring 2024

- Review of Part 1 (4.1-4.2)
- DEC Bound: examples
 - Cheating Code
 - Linear Bandits
 - Nonparametric Bandits
 - Further Examples
- Connection to UCB and Posterior Sampling
 - Connection to UCB
 - Connection to Posterior Sampling
 - Other stuffs
- Conclusion

•0000

Review of Part 1

Revisit Structured Bandits

Multi-Armed Bandit:

- ε -Greedy algorithm: Reg $\leq A^{1/3}T^{2/3} \cdot \log^{1/3}(AT/\delta)$.
- UCB algorithm: Reg $\lesssim \sqrt{AT \log(AT/\delta)}$.
- Posterior Sampling Algorithm: $\mathbf{Reg} \lesssim \sqrt{AT \log(A)} / \sqrt{AT \log |\mathcal{F}|}$
- Exp3 Algorithm: Reg $\leq \sqrt{AT \log A}$

Motivation: Decision space Π is large and potentially continuous. (not finite set). \rightarrow Replace A with some intrinsic measure of complexity.

Failure of UCB

Regret Bound with Eluder dimension

For a finite set of functions $\mathcal{F} \subset (\Pi \to [0,1])$, the generalized UCB algorithm guarantees that with probability at least $1 - \delta$,

$$\mathsf{Reg} \lesssim \sqrt{\mathrm{Edim}\left(\mathcal{F}, \mathcal{T}^{-1/2}\right) \cdot \mathcal{T} \log(|\mathcal{F}|/\delta)}$$

The UCB algorithm is useful for some special cases, it does not attain optimal regret for any structured bandit problem.

- relu class models: $\operatorname{Edim}(\mathcal{F}, \varepsilon) \gtrsim e^d \to \operatorname{Eulder}$ dimension is still large (overly pessimistic)
- Cheating Code: we can find simple algorithms that give

$$\operatorname{Reg} \lesssim \log_2^2(A/\delta).$$

while with UCB we have $\operatorname{Reg} \geq \sqrt{AT}$.

E2D and $dec_{\gamma}(\mathcal{F})$

Estimation-to-Decision (E2D) Algorithm

Input: Exploration parameter $\gamma > 0$.

for $t = 1, \ldots, T$ do

- -Obtain \hat{f}^t from online regression oracle with $(\pi^1, r^1), \dots, (\pi^{t-1}, r^{t-1})$.
- Select action $\pi^t \sim p^t$, where

$$\label{eq:pt} \textit{p}^t = \mathop{\arg\min\max}_{\textit{p} \in \Delta(\Pi)} \mathop{\max}_{\textit{f} \in \mathcal{F}} \mathbb{E}_{\pi \sim \textit{p}} \left[\textit{f}(\pi_\textit{f}) - \textit{f}(\pi) - \gamma \cdot \left(\textit{f}(\pi) - \widehat{\textit{f}^t}(\pi) \right)^2 \right].$$

Decision-Estimation Coefficient is a complexity measure for \mathcal{F} :

$$\operatorname{dec}_{\gamma}(\mathcal{F},\widehat{f}) = \min_{\rho \in \Delta(\Pi)} \max_{f \in \mathcal{F}} \mathbb{E}_{\pi \sim \rho} [\underbrace{f(\pi_f) - f(\pi)}_{\text{regret of decision}} - \gamma \cdot \underbrace{(f(\pi) - \widehat{f}(\pi))^2}_{\text{information gain for obs.}}]$$

$$\operatorname{dec}_{\gamma}(\mathcal{F}) = \sup_{\widehat{f} \in \operatorname{co}(\mathcal{F})} \operatorname{dec}_{\gamma}(\mathcal{F}, \widehat{f})$$

Regret Bound for E2D

Proposition 13. The E2D algorithm with exploration parameter $\gamma>0$ guarantees with probability at least $1-\delta$,

$$Reg \leq dec_{\gamma}(\mathcal{F}) \cdot \mathcal{T} + \gamma \cdot Est_{Sq}(\mathcal{F}, \mathcal{T}, \delta),$$

where $\mathrm{Est}_{\mathrm{Sq}}(\mathcal{F}, \mathcal{T}, \delta)$ is the estimation error from online oracle and scales as $\log(|\mathcal{F}|/\delta)$ for finite \mathcal{F} .

Therefore, for regret bound we just need to bound DEC.

Actually, any specific choice of $p \in \Delta(\Pi)$ gives an upper bound of DEC.

Proposition 14. For the Multi-Armed Bandit setting, where $\Pi = [A]$ and $\mathcal{F} = \mathbb{R}^A$

- the Inverse Gap Weighting distribution $p = \mathrm{IGW}_{4\gamma}(\widehat{f})$ is the exact minimizer for $\mathrm{dec}_{\gamma}(\mathcal{F},\widehat{f})$.
- $\operatorname{dec}_{\gamma}(\mathcal{F}, \widehat{f}) = \frac{A+1}{4\gamma}$.

4.3 Decision-Estimation Coefficient: Examples

Example 1: Background of Cheating Code

Cheating Code: Settings

- Decision space: $\Pi = [A] \cup \mathcal{C}$, where $\mathcal{C} = \{c_1, \dots, c_{\log_2(A)}\}$ is a set of "cheating" actions.
- For all $\pi \in [A], f(\pi) \in [0,1]$ for all $f \in \mathcal{F}$.
- For each $f \in \mathcal{F}$, let $b(f) = (b_1(f), \ldots, b_{\log_2(A)}(f)) \in \{0, 1\}^{\log_2(A)}$ be a binary encoding for the index of $\pi_f \in [A]$. For each action $c_i \in \mathcal{C}$, we set

$$f(c_i) = -b_i(f).$$

- Determine each $b_i(f^*)$, which will incur $O(\log_2(A))$ regret.
- Then stop exploring, and commit to playing π_{f^*} for remaining rounds.

$$\Rightarrow \operatorname{Reg} \lesssim \log_2^2(A/\delta).$$

• UCB algorithm only pull actions in [A], ignoring the cheating actions.

New Regret bound with DEC for Cheating Code

Proposition 15 (DEC for Cheating Code)

Consider the cheating code. For this class \mathcal{F} , we have

$$\operatorname{dec}_{\gamma}(\mathcal{F}) \lesssim \frac{\log_2(A)}{\gamma}$$

Remark:

- this result implies $\operatorname{Reg} \lesssim \sqrt{\log_2(\overline{A}) T \log |\mathcal{F}|}$.
- the strategy p that certifies the bound on the DEC is not necessarily the exact DEC minimizer (the distributions p^1, \ldots, p^T played by E2D may be different.).
- Using a slightly more refined version of the E2D algorithm (Foster, Golowich and Han, 2023), one can improve the bound to match the log(A) given earlier.

Proof of Proposition 15

For simplicity, we work on $\operatorname{dec}_{\gamma}(\mathcal{F}, \widehat{f})$ for $\widehat{f} \in \mathcal{F}$, not for $\widehat{f} \in \operatorname{co}(\mathcal{F})$. Define

$$p = (1 - \varepsilon)\pi_{\widehat{\epsilon}} + \varepsilon \cdot \text{unif}(\mathcal{C}).$$

We want to show with $\varepsilon = 2 \frac{\log_2(A)}{\gamma}$, it yields

$$\operatorname{dec}_{\gamma}(\mathcal{F}, \widehat{f}) \lesssim \frac{\log_2(A)}{\gamma}$$

For minimax problem of

$$\mathbb{E}_{\pi \sim p} \left[f(\pi_f) - f(\pi) - \gamma \cdot (f(\pi) - \widehat{f}(\pi))^2 \right],$$

Let's consider two cases:

First , if $\pi_f = \pi_{\widehat{f}}$, then

$$\mathbb{E}_{\pi \sim p} \left[f(\pi_f) - f(\pi) - \gamma \cdot (f(\pi) - \widehat{f}(\pi))^2 \right] \leq \mathbb{E}_{\pi \sim p} \left[f(\pi_f) - f(\pi) \right]$$

$$= \mathbb{E}_{\pi \sim p} \left[f(\pi_f) - f(\pi) \right] \leq 2\varepsilon.$$

$$\mathbb{E}_{\pi \sim p} \left[f(\pi_{\mathbf{f}}) - f(\pi) - \gamma \cdot (f(\pi) - \widehat{f}(\pi))^2 \right] \leq 2 - \gamma \cdot \mathbb{E}_{\pi \sim p} \left[(f(\pi) - \widehat{f}(\pi))^2 \right]$$

Observe that since $\pi_f \neq \pi_{\widehat{f}}$, if we let $b_1, \ldots, b_{\log_2(A)}$ and $b'_1, \ldots, b'_{\log_2(A)}$ denote the binary representations for π_f and $\pi_{\hat{f}}$, there must exist i such that $b_i \neq b'_i$. Hence

$$\mathbb{E}_{\pi \sim p}\left[\left(f(\pi) - \widehat{f}(\pi)\right)^{2}\right] \geq \frac{\varepsilon}{\log_{2}(A)}\left(f(c_{i}) - \widehat{f}(c_{i})\right)^{2} = \frac{\varepsilon}{\log_{2}(A)}$$

We conclude that in the second case.

$$\mathbb{E}_{\pi \sim p} \left[f(\pi_{f}) - f(\pi) - \gamma \cdot (f(\pi) - \widehat{f}(\pi))^{2} \right] \leq 2 - \gamma \frac{\varepsilon}{\log_{2}(A)}$$

$$\mathbb{E}_{\pi \sim p}\left[f(\pi_{\mathit{f}}) - f(\pi) - \gamma \cdot (f(\pi) - \widehat{f}(\pi))^{2}\right] \leq \max\left\{2\varepsilon, 2 - \gamma \frac{\varepsilon}{\log_{2}(A)}\right\}$$

To balance these terms, set

$$\varepsilon = 2 \frac{\log_2(A)}{\gamma}$$

which leads to the result.

Example 2: Background of Linear Bandit

Linear Bandit: Settings

Review of Part 1 (4.1-4.2)

Linear Bandits

- Decision space: arbitrary Π . Define $\mathcal{F} = \{\pi \mapsto \langle \theta, \phi(\pi) \rangle \mid \theta \in \Theta \}$, where $\Theta \subseteq \mathrm{B}_2^d(1)$ and $\phi: \Pi \to \mathrm{B}_2^d(1)$ is a fixed feature map (known).
- Special case of the linear contextual bandit problem

G-optimal Design

Definition: G-optimal Design

For any compact set $\mathcal{Z} \subseteq \mathbb{R}^d$ with $\dim \operatorname{span}(\mathcal{Z}) = d$, there exists a distribution $p \in \Delta(\mathcal{Z})$, called the G-optimal design, which has

$$\sup_{z \in \mathcal{Z}} \left\langle \Sigma_p^{-1} z, z \right\rangle \le d \tag{4.23}$$

where $\Sigma_p := \mathbb{E}_{z \sim p} [zz^\top]$.

The G-optimal design ensures coverage in every direction of the decision space. Special cases include:

- When $\mathcal{Z} = \Delta([A])$, $p = \text{unif}(e_1, \dots, e_A)$ is an optimal design
- When $\mathcal{Z} = \mathrm{B}_2^d(1)$, $p = \mathrm{unif}\left(e_1, \ldots, e_A\right)$ is an optimal design.
- For any positive definite matrix $A \succ 0$, letting $\lambda_1, \ldots, \lambda_d$ and v_1, \ldots, v_d denote the eigenvalues and eigenvectors for A, respectively, $p = \text{unif}\left(\lambda_1^{-1/2} \mathbf{v}_1, \dots, \lambda_d^{-1/2} \mathbf{v}_d\right)$ is an optimal design.

Regret (DEC) bound

Review of Part 1 (4.1-4.2)

Linear Bandits

- Generalised ε -greedy algorithm gives $\operatorname{Reg} \leq d^{1/3} T^{2/3} \log |\mathcal{F}|$.
- We can obtain a d/γ bound on the DEC, which leads to $\operatorname{Reg} \lesssim \sqrt{dT}$.

Algorithm: D2E+IGW with G-Optimal Design

- Define $\bar{\phi}(\pi) = \phi(\pi)/\sqrt{1+rac{\gamma}{d}\left(\hat{f}\left(\pi_{\hat{f}}\right)-\hat{f}(\pi)\right)}$, where $\pi_{\hat{\epsilon}} = \arg\max_{\pi \in \Pi} \hat{f}(\pi).$
- Let $\bar{q} \in \Delta(\Pi)$ be the G-optimal design, and define $q = \frac{1}{2}\bar{q} + \frac{1}{2}\mathbb{I}_{\pi_2}$.
- For each $\pi \in \Pi$, set

$$p(\pi) = \frac{q(\pi)}{\lambda + \frac{\gamma}{d} \left(\widehat{f}(\pi_{\widehat{f}}) - \widehat{f}(\pi) \right)}$$

Proposition 17: This strategy certifies that

$$\mathrm{dec}_{\gamma}(\mathcal{F}) \lesssim \frac{\textit{d}}{\gamma}$$

Linear Bandits

Fix f, denote $\eta = \gamma/d$. Minimax problem in DEC,

$$\operatorname{dec}_{\gamma}(\mathcal{F},\widehat{f}) = \min_{p \in \Delta(\Pi)} \max_{f \in \mathcal{F}} \mathbb{E}_{\pi \sim p} [\underbrace{f(\pi_f) - f(\pi)}_{\text{regret of decision}} - \gamma \cdot \underbrace{(f(\pi) - \widehat{f}(\pi))^2}_{\text{information gain for obs.}}]$$

Handle the regret term: decomposition (same as Proposition 9)

$$\mathbb{E}_{\pi \sim p} \left[f(\pi_f) - f(\pi) \right] = \mathbb{E}_{\pi \sim p} \left[\widehat{f}(\pi_{\widehat{f}}) - \widehat{f}(\pi) \right] + \mathbb{E}_{\pi \sim p} \left[\widehat{f}(\pi) - f(\pi) \right] + \underbrace{f(\pi_f) - \widehat{f}(\pi_{\widehat{f}})}_{\text{(II) ext error an policy}} + \underbrace{f(\pi_f) - \widehat{f}(\pi_{\widehat{f}})}_{\text{(III) est error at opt}}$$

(I) and (II)

Review of Part 1 (4.1-4.2)

For (I)

$$\mathbb{E}_{\pi \sim p}\left[\widehat{f}\left(\pi_{\widehat{f}}\right) - \widehat{f}(\pi)\right] = \sum_{\pi} \frac{q(\pi)\left(\widehat{f}\left(\pi_{\widehat{f}}\right) - \widehat{f}(\pi)\right)}{\lambda + \eta\left(\widehat{f}\left(\pi_{\widehat{f}}\right) - \widehat{f}(\pi)\right)} \leq \sum_{\pi} \frac{q(\pi)}{\eta} \leq \frac{1}{\eta}$$

For (II)

$$\mathbb{E}_{\pi \sim p}[\widehat{f}(\pi) - f(\pi)] \leq \sqrt{\mathbb{E}_{\pi \sim p}\left[(\widehat{f}(\pi) - f(\pi))^2\right]} \leq \frac{1}{2\gamma} + \frac{\gamma}{2}\mathbb{E}_{\pi \sim p}(\widehat{f}(\pi) - f(\pi))^2$$

(III): Est error at opt

Decomposition:

$$(\mathrm{III}) = f(\pi_f) - \widehat{f}(\pi_f) - \left(\widehat{f}\left(\pi_{\widehat{f}}\right) - \widehat{f}(\pi_f)\right) = \left\langle \theta - \widehat{\theta}, \phi\left(\pi_f\right) \right\rangle - \left(\widehat{f}\left(\pi_{\widehat{f}}\right) - \widehat{f}(\pi_f)\right),$$

where
$$f(\pi) = \langle \theta, \phi(\pi) \rangle$$
 and $\hat{f}(\pi) = \langle \hat{\theta}, \phi(\pi) \rangle$.

Define $\Sigma_p = \mathbb{E}_{\pi \sim p} \left[\phi(\pi) \phi(\pi)^{\top} \right]$, we have

$$\begin{split} \left\langle \theta - \widehat{\theta}, \phi\left(\pi_{f}\right) \right\rangle &= \left\langle \Sigma_{p}^{1/2}(\theta - \widehat{\theta}), \Sigma_{p}^{-1/2}\phi\left(\pi_{f}\right) \right\rangle \\ &\leq \left\| \Sigma_{p}^{1/2}(\theta - \widehat{\theta}) \right\|_{2} \left\| \Sigma_{p}^{-1/2}\phi\left(\pi_{f}\right) \right\|_{2} \\ &\leq \frac{\gamma}{2} \left\| \Sigma_{p}^{1/2}(\theta - \widehat{\theta}) \right\|_{2}^{2} + \frac{1}{2\gamma} \left\| \Sigma_{p}^{-1/2}\phi\left(\pi_{f}\right) \right\|_{2}^{2} \\ &= \frac{\gamma}{2} \mathbb{E}_{\pi \sim p} \left[\left(\widehat{f}(\pi) - f(\pi) \right)^{2} \right] + \frac{1}{2\gamma} \left\langle \phi\left(\pi_{f}\right), \Sigma_{p}^{-1}\phi\left(\pi_{f}\right) \right\rangle \end{split}$$

Connection to UCB and Posterior Sampling

(III): Est error at opt

Review of Part 1 (4.1-4.2)

Linear Bandits

Observe that $\Sigma_p \succeq \frac{1}{2} \bar{\Sigma}_{\bar{q}}$, hence

$$\begin{split} \left\langle \phi\left(\pi_{f}\right), \Sigma_{p}^{-1}\phi\left(\pi_{f}\right)\right\rangle &\leq 2\left\langle \phi\left(\pi_{f}\right), \bar{\Sigma}_{\bar{q}}^{-1}\phi\left(\pi_{f}\right)\right\rangle \\ &= 2\left(1 + \eta\left(\hat{f}\left(\pi_{\widehat{f}}\right) - \hat{f}\left(\pi_{f}\right)\right)\left\langle\bar{\phi}\left(\pi_{f}\right), \bar{\Sigma}_{\bar{q}}^{-1}\bar{\phi}\left(\pi_{f}\right)\right\rangle \\ &\leq 2d\left(1 + \eta\left(\hat{f}\left(\pi_{\widehat{f}}\right) - \hat{f}\left(\pi_{f}\right)\right), \end{split}$$

where we defined $\bar{\phi}(\pi)=\phi(\pi)/\sqrt{1+rac{\gamma}{d}\left(\hat{f}\left(\pi_{\hat{f}}\right)-\hat{f}(\pi)\right)}$ and \bar{q} is the G-optimal design for $\{\bar{\phi}(\pi)\}_{\pi\in\Pi}$.

$$\Sigma_{p} \succeq \frac{1}{2} \sum_{\pi} \frac{\bar{q}(\pi)}{\lambda + \eta \left(\hat{f}(\pi_{\hat{f}}) - \hat{f}(\pi) \right)} \phi(\pi) \phi(\pi)^{\top} \succeq \frac{1}{2} \sum_{\pi} \bar{q}(\pi) \bar{\phi}(\pi) \bar{\phi}(\pi)^{\top} =: \frac{1}{2} \bar{\Sigma}_{\bar{q}}$$

(III): Est error at opt

Therefore:

$$(\mathrm{III}) \leq \frac{\gamma}{2} \mathbb{E}_{\pi \sim p} \left[\left(\widehat{f}(\pi) - f(\pi) \right)^{2} \right] + \underbrace{\frac{1}{2\gamma} \left\langle \phi\left(\pi_{f}\right), \Sigma_{p}^{-1} \phi\left(\pi_{f}\right) \right\rangle - \left(\widehat{f}\left(\pi_{\widehat{f}}\right) - \widehat{f}(\pi_{f}) \right)}_{(\mathrm{IV})},$$

where

$$(\mathrm{IV}) \leq \frac{2d}{2\gamma} + \frac{2d\eta}{2\gamma} \left(\widehat{f} \left(\pi_{\widehat{f}} \right) - \widehat{f} (\pi_f) \right) - \left(\widehat{f} \left(\pi_{\widehat{f}} \right) - \widehat{f} (\pi_f) \right) \leq \frac{d}{\gamma},$$

which completes the proof.

Remarks on Regret Bound

Linear Bandits

- One can show $\operatorname{dec}_{\gamma}(\mathcal{F}) \gtrsim \frac{d}{\gamma}$
- Combining this result with Proposition 13 and using the averaged exponential weights algorithm gives $\operatorname{Reg} \leq \sqrt{dT \log(|\mathcal{F}|/\delta)}$.
- So far, we have shown

$$\mathrm{dec}_{\gamma}(\mathcal{F}) \lesssim \frac{\mathrm{eff\text{-}dim}(\mathcal{F},\Pi)}{\gamma}$$

where eff-dim(\mathcal{F},Π) is some quantity that (informally) reflects the amount of exploration required.

• In general, DEC can have slower decay rate than $\gamma^{-1} \Rightarrow$ optimal rate worse than \sqrt{T} .

Nonparametric Bandits

Consider the Lipschitz bandits in metric spaces:

Let Π to be a metric space equipped with metric ρ , and define

$$\mathcal{F} = \{f \colon \Pi \to [0,1] \mid f \text{ is } 1\text{-Lipschitz w.r.t } \rho\}$$

Objective: give bound on the DEC which depends on the $\mathcal{N}_{\rho}(\Pi, \varepsilon)$.

Define $\Pi' \subseteq \Pi$ as an ε -cover with respect to ρ if

$$\forall \pi \in \Pi \quad \exists \pi' \in \Pi' \quad \text{s.t.} \quad \rho(\pi, \pi') \leq \varepsilon$$

Suppose $\mathcal{N}_{\rho}(\Pi, \varepsilon) \leq \varepsilon^{-d}$ for all $\varepsilon > 0$. Let $\widehat{f} : \Pi \to [0, 1]$ and $\gamma \geq 1$, consider:

- Let $\Pi' \subseteq \Pi$ witness the covering number $\mathcal{N}_{\varrho}(\Pi, \varepsilon)$.
- Let p be IGW distribution, restricted to the (finite) decision space Π'

Nonparametric Bandits

Proposition 18: DEC bound for Lipschitz Bandits

By setting $\varepsilon \propto \gamma^{-\frac{1}{d+1}}$, this strategy certifies that

$$\mathrm{dec}_{\gamma}(\mathcal{F},\widehat{\mathit{f}}) \lesssim \gamma^{-\frac{1}{d+1}}$$

This leads to $\operatorname{Reg} \leq T^{\frac{d+1}{d+2}}$, which cannot be improved.

Proof: Since f is 1-Lipschitz and Π' is the ε -cover for Π , there exists $\iota(\pi) \in \Pi'$ such that $\rho(\pi, \iota(\pi)) \leq \varepsilon$. Consequently,

$$\mathbb{E}_{\pi \sim p} \left[f(\pi_f) - f(\pi) \right] \leq \mathbb{E}_{\pi \sim p} \left[f(\iota(\pi_f)) - f(\pi) \right] + \left| f(\pi_f) - f(\iota(\pi_f)) \right|$$

$$\leq \mathbb{E}_{\pi \sim p} \left[f(\iota(\pi_f)) - f(\pi) \right] + \varepsilon$$

Nonparametric Bandits

since $\iota\left(\pi_{f}\right) \in \Pi'$, Proposition 9 ensures for p from inverse gap weighting over Π' , we have

$$\mathbb{E}_{\pi \sim p}\left[f(\iota\left(\pi_{f}\right)) - f(\pi)\right] \leq \frac{|\Pi'|}{\gamma} + \gamma \cdot \mathbb{E}_{\pi \sim p}\left[\left(f(\pi) - \widehat{f}(\pi)\right)^{2}\right]$$

As we assume $\mathcal{N}_o(\Pi, \varepsilon), |\Pi'| \leq \varepsilon^{-d}$,

$$\mathbb{E}_{\pi \sim p} \left[f(\pi_f) - f(\pi) - \gamma \cdot (f(\pi) - \widehat{f}(\pi))^2 \right] \leq \varepsilon + \frac{\varepsilon^{-d}}{\gamma}$$

Choosing $\varepsilon \propto \gamma^{-\frac{1}{d+1}}$ leads to the result.

Example 4: DEC subsumes Edim

Consider any class \mathcal{F} with values in [0,1]. For all $\gamma \geq e$, we have

$$\operatorname{dec}_{\gamma}(\mathcal{F}) \lesssim \inf_{\varepsilon > 0} \left\{ \varepsilon + \frac{\operatorname{Edim}(\mathcal{F} - \mathcal{F}, \varepsilon) \log^{2}(\gamma)}{\gamma} \right\} + \gamma^{-1}$$

As a special case, this implies that E2D enjoys a regret bound for generalized linear bandits similar to that of UCB.

Example 5: Bandits with Concave Rewards

Take $\Pi \subseteq B_2^d(1)$ and define

Review of Part 1 (4.1-4.2)

Further Examples

$$\mathcal{F} = \{f \colon \Pi \to [0,1] \mid f \text{ is concave and } 1\text{-Lipschitz w.r.t } \ell_2\}$$

For this setting, Lattimore (2020) shows

$$\operatorname{dec}_{\gamma}(\mathcal{F}) \lesssim \frac{d^4}{\gamma} \cdot \operatorname{polylog}(d, \gamma)$$

For the relu function class

$$\mathcal{F} = \left\{ f(\pi) = -\operatorname{relu}(\langle \phi(\pi), \theta \rangle) \mid \theta \in \Theta \subset B_2^d(1) \right\},\,$$

above bound leads to $\sqrt{\operatorname{poly}(\overline{d})T}$ regret bound.

⇒Eluder dimension is overly pessimistic, as it grows exponentially for this class.

Connection to UCB and Posterior Sampling

Combine E2D with Confidence Sets

Algorithm: E2D with Confidence Set

Input: $\gamma > 0$, confidence radius $\beta > 0$.

For $t = 1, \ldots, T$ do

Obtain \hat{f}^t from online regression oracle with $(\pi^1, r^1), \dots, (\pi^{t-1}, r^{t-1})$.

Set

$$\mathcal{F}^{t} = \left\{ f \in \mathcal{F} \mid \sum_{i < t} \mathbb{E}_{\pi^{i} \sim p^{i}} \left[\left(\widehat{f}^{i} \left(\pi^{i} \right) - f^{\star} \left(\pi^{i} \right) \right)^{2} \right] \leq \beta \right\}$$

Select action $\pi^t \sim p^t$, with

$$p^t = \operatorname*{arg\,min}_{p \in \Delta(\Pi)} \max_{f \in \mathcal{F}^t} \mathbb{E}_{\pi \sim p} \left[f(\pi_f) - f(\pi) - \gamma \cdot \left(f(\pi) - \widehat{f^t}(\pi) \right)^2 \right]$$

Same as E2D, except that at each step, we compute a confidence set \mathcal{F}^t . If $\beta = \mathrm{Est}_{\mathrm{sq}}(\mathcal{F}, \mathcal{T}, \delta)$, then it ensures that with probability at least $1 - \delta$,

$$\textit{Reg} \leq \sum_{t=1}^{T} \operatorname{dec}_{\gamma} \left(\mathcal{F}^{t} \right) + \gamma \cdot \operatorname{Est}_{\operatorname{Sq}} (\mathcal{F}, T, \delta)$$

Relation to usual UCB

Proposition 20

The UCB strategy $\pi^t = \arg\max_{\pi \in \Pi} \bar{f}^t(\pi)$ certifies that

$$\operatorname{dec}_{0}\left(\mathcal{F}^{t}\right) \leq \bar{f}^{t}\left(\pi^{t}\right) - \underline{f}\left(\pi^{t}\right) \tag{4.27}$$

Connection to UCB and Posterior Sampling

the confidence width might be large for a given round t, but by the pigeonhole argument

$$\sum_{t=1}^{T} \operatorname{dec}_{0}\left(\mathcal{F}^{t}\right) \leq \sum_{t=1}^{T} \bar{f}^{t}\left(\pi^{t}\right) - \underline{f^{t}}\left(\pi^{t}\right) \leq \widetilde{O}(\sqrt{AT})$$

Meaningful only if $\mathcal{F}^1, \dots, \mathcal{F}^T$ are shrinking (fast).

Proposition 21

For any $\gamma > 0$, the UCB strategy $\pi^t = \arg \max_{\pi \in \Pi} \bar{f}^t(\pi)$ certifies that

$$\operatorname{dec}_{\gamma}\left(\mathcal{F}^{t}, \widehat{f}^{t}\right) \leq \bar{f}^{t}\left(\pi^{t}\right) - \widehat{f}^{t}\left(\pi^{t}\right) + \frac{1}{4\gamma}$$

Proof of Proposition 21

By choosing $\pi^t = \arg \max_{\pi \in \Pi} \bar{f,t}(\pi)$, we have

$$\begin{aligned} \operatorname{dec}_{\gamma}\left(\mathcal{F}, \widehat{f^{t}}\right) &= \min_{\rho \in \Delta(\Pi)} \max_{f \in \mathcal{F}_{t}} \mathbb{E}_{\pi \sim \rho} \left[\max_{\pi^{\star}} f(\pi^{\star}) - f(\pi) - \gamma \cdot \left(\widehat{f^{t}}(\pi) - f(\pi) \right)^{2} \right] \\ &\leq \max_{f \in \mathcal{F}_{t}} \left[\max_{\pi^{\star}} f(\pi^{\star}) - f(\pi^{t}) - \gamma \cdot \left(\widehat{f^{t}}(\pi^{t}) - f(\pi^{t}) \right)^{2} \right] \\ &\leq \max_{f \in \mathcal{F}_{t}} \left[\overline{f^{t}}(\pi^{t}) - f(\pi^{t}) - \gamma \cdot \left(\widehat{f^{t}}(\pi^{t}) - f(\pi^{t}) \right)^{2} \right] \\ &= \max_{f \in \mathcal{F}_{t}} \underbrace{\left[\widehat{f^{t}}(\pi^{t}) - f(\pi^{t}) - \gamma \cdot \left(\widehat{f^{t}}(\pi^{t}) - f(\pi^{t}) \right)^{2} \right]}_{\leq \frac{1}{4\gamma}} \\ &+ \overline{f^{t}}(\pi^{t}) - \widehat{f^{t}}(\pi^{t}). \end{aligned}$$

Connection to Posterior Sampling

Define a natural dual (max-min) analogue of the DEC

$$\underline{\operatorname{dec}}_{\gamma}(\mathcal{F}, \widehat{\mathit{f}}) = \sup_{\mu \in \Delta(\mathcal{F})} \inf_{\mathit{p} \in \Delta(\Pi)} \mathbb{E}_{\mathit{f} \sim \mu} \mathbb{E}_{\pi \sim \mathit{p}} \left[\mathit{f}(\pi_{\mathit{f}}) - \mathit{f}(\pi) - \gamma \cdot (\mathit{f}(\pi) - \widehat{\mathit{f}}(\pi))^{2} \right]$$

The adversary selects a prior distribution μ over models in \mathcal{M} , and the learner (with knowledge of the prior) finds a decision distribution p that balances the average tradeoff between regret and information acquisition when the underlying model is drawn from μ .

Equivalence of Primal and Dual

Under mild regularity conditions, we have

$$\operatorname{dec}_{\gamma}(\mathcal{F},\widehat{f}) = \operatorname{dec}_{\gamma}(\mathcal{F},\widehat{f})$$

Remarks:

- Any bound on the dual DEC immediately yields a bound on the primal DEC. We bring existing tools for Bayesian bandits and reinforcement learning to bear on the primal DEC.
- the dual DEC is always bounded by a Bayesian complexity measure known as the *information ratio*, which is used throughout the literature on Bayesian bandits and reinforcement learning.

Algorithm: E2D for Contextual Structured Bandits

Input: Exploration parameter $\gamma > 0$.

for $t = 1, \ldots, T$ do

- Observe $x^t \in \mathcal{X}$.
- Obtain f^t from online regression oracle with

$$(x^1, \pi^1, r^1), \ldots, (x^{t-1}, \pi^{t-1}, r^{t-1}).$$

- Compute

Review of Part 1 (4.1-4.2)

Other stuffs

$$p^{t} = \operatorname*{arg\,min\,max}_{p \in \Delta(\Pi)} \mathbb{E}_{\pi \sim p} \left[f(x^{t}, \pi_{f}(x^{t})) - f(x^{t}, \pi) - \gamma \cdot \left(f(x^{t}, \pi) - \widehat{f^{t}}(x^{t}, \pi) \right)^{2} \right]$$

- Select action $\pi^t \sim p^t$.

Connection to UCB and Posterior Sampling

Regret Bound of Contextual E2D

Review of Part 1 (4.1-4.2)

Other stuffs

The E2D algorithm with exploration parameter $\gamma > 0$ guarantees that

$$\operatorname{Reg} \leq \sup_{\mathbf{x} \in \mathcal{X}} \operatorname{dec}_{\gamma}(\mathcal{F}(\mathbf{x}, \cdot)) \cdot T + \gamma \cdot \operatorname{Est}_{\operatorname{Sq}}(\mathcal{F}, T, \delta),$$

where $\mathcal{F}(x,\cdot) = \{f(x,\cdot) \mid f \in \mathcal{F}\}$. (Proof is identical to Proposition 13.)

- For finite decisions, if $\mathcal{F} = \mathbb{R}^A$, SquaredCB is precisely the special case of Contextual E2D (IGW distribution is the exact DEC minimiser).
- Going beyond the finite-action setting: e.g.,

$$\mathcal{F} = \{ f(x, a) = \langle \phi(x, a), g(x) \rangle \mid g \in \mathcal{G} \}$$

Applying Proposition 17 gives $\sup_{x \in \mathcal{X}} \operatorname{dec}_{\gamma}(\mathcal{F}(x,\cdot)) \lesssim \frac{d}{\gamma}$, so that Proposition 23 gives $\operatorname{Reg} \leq \sqrt{dT \cdot \operatorname{Est}_{\operatorname{Sq}}(\mathcal{F}, T, \delta)}$.

Conclusion

- In this Chapter, we introduced Structured Bandit, which generalises the decision space Π into large and potentially continuous space, where UCB could fail.
- Using Estimation-to-Decision (E2D) framework (combined with other schemes, e.g., IGW), which provides a better (optimal) regret rate:

$$Reg \le dec_{\gamma}(\mathcal{F}) \cdot T + \gamma \cdot Est_{Sq}(\mathcal{F}, T, \delta)$$

 \bullet Seen some examples on how to bound $\operatorname{dec}_{\gamma}(\mathcal{F})$