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Review of Multi-Armed and Contextual Bandits

Multi-Armed Bandit Protocol
for t = 1, ...,T do

Select decision πt ∈ Π := {1, ...,A}.
Observe reward rt ∈ R

Contextual Bandit Protocol
for t = 1, ...,T do

Observe context xt ∈ X
Select decision πt ∈ Π := {1, ...,A}.
Observe reward rt ∈ R

Measure performance for Bandit problem:

Reg :=
∑T

t=1 f ⋆(π⋆)−
∑T

t=1 Eπt∼pt [f ⋆(πt)]
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Motivation

Practical Issue

In medicine, the treatment may be a continuous variable, such as a
dosage. The treatment could even by a high-dimensional vector
(such as dosages for many different medications).

In pricing applications, a seller might aim to select a continuous
price or vector in order to maximize their returns.

In routing applications, the decision space may be finite, but
combinatorially large. For example, the decision might be a path or
flow in a graph.

⇒ Decision space Π is not finite set.
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Motivation

Regret Bound

Multi-Armed Bandit:
ε-Greedy algorithm: Reg ≲ A1/3T2/3 · log1/3(AT/δ).
UCB algorithm: Reg ≲

√
AT log(AT/δ).

Posterior Sampling Algorithm: Reg ≲
√

AT log(A) /
√

AT log |F|

Exp3 Algorithm: Reg ≲
√

AT log A

Contextual Bandit:
ε-Greedy algorithm: Reg ≲ A1/3T2/3 · EstSq(F ,T, δ)1/3.

LinUCB algorithm: Reg ≲
√

dT log(|F|/δ) log(1 + T/d)
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Motivation

Necessity of structural assumptions

Let Π = [A], and let F = {fi}i∈[A], where

fi(π) :=
1

2
+

1

2
I{π = i}.

Reg ≳ A and log |F| = log(A) for this setting.

Reg ≲
√

AT log |F| is impossible if A � T.
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Structured Bandit

Structured Bandit

Structured Bandit Protocol
for t = 1, ...,T do

Select decision πt ∈ Π. Π is large and potentially continuous.
Observe reward rt ∈ R.
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Structured Bandit

Assumption and Regret

Decision: πt ∈ Π, for t = 1, ...,T.

Stochastic rewards: Rewards are generated independently via
rt ∼ M ⋆(·|πt).

Mean reward function: f ⋆(π) := E[r|π].

Regret function: Reg :=
∑T

t=1 f ⋆ (π⋆)−
∑T

t=1 Eπt∼pt [f ⋆ (πt)],
where π⋆ := arg maxπ∈Π f ⋆(π).

Data history: Ht =
(
π1, r1

)
, . . . , (rt, πt).

The decision-maker has access to a class F ⊂ {f : Π → R} such
that f ⋆ ∈ F .
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UCB for Structured Bandit

Upper Confidence Bound

Assumption and definition:
Assume F = {f : Π → [0, 1]} and rt ∈ [0, 1] almost surely.
f̂ t = arg min

f∈F

∑t−1
i=1

(
f
(
πi)− ri)2.

Confidence sets F1 = F and

F t =

{
f ∈ F :

t−1∑
i=1

(
f
(
πi)− ri)2 ≤

t−1∑
i=1

(
f̂ t
(
πi)− ri

)2
+ β

}
,

where β := 8 log(|F|/δ).
f̄ t(π) := maxf ∈F t f (π) is the upper confidence bound.

Generalized UCB algorithm:

πt = arg max
π∈Π

f̄ t(π)
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UCB for Structured Bandit

Upper Confidence Width

Lemma 10
Let π1, ..., πT be chosen by an arbitrary (and possibly randomized)
decision-making algorithm. With probability at least 1− δ, f ⋆ ∈ F t for all
t ∈ [T]. Moreover, with probability at least 1− δ, for all τ ≤ T, all
f ∈ Fτ with β = 8 log(|F/δ|) satisfy

τ∑
t=1

Eπt∼pt
[
(f (xt, πt)− f ⋆(xt, πt))2

]
≤ 4β.

From Lemma 10, f ⋆ ∈ F with high probability. The regret is bounded by
upper confidence width

Reg ≤
T∑

t=1

(
f̄ t(πt)− f ⋆(πt)

)
.

When will the confidence shrink?
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UCB for Structured Bandit

LinearUCB Algorithm

We hope Π and F have nice structure to get a better regret bound.

Recall linearUCB algorithm:

F =
{
π 7→ 〈θ, ϕ(π)〉 | θ ∈ Θ ⊂ Bd

2(1)
}

From Proposition 7 we know Reg ≲
√

dT log |F|.

Is there a general version when we move beyond linear model?
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Eulder Dimension

Definition

Eulder Dimension
F ⊂ (Π → R) and f ⋆ : Π → R be given, and define Edimf⋆(F , ε) as the
length of the longest sequence of decisions π1, . . . , πd ∈ Π such that for
all t ∈ [d], there exists f t ∈ F such that∣∣f t (πt)− f ⋆

(
πt)∣∣ > ε, and

∑
i<t

(
f t (πi)− f ⋆

(
πi))2 ≤ ε2

Eluder dimension: Edimf ⋆(F , ε) = supε′≥ε Edimf ⋆ (F , ε′) ∨ 1,
Edim(F , ε) = maxf ⋆∈F Edimf ⋆(F , ε).

When β = ε2 in confidence set, then

T∑
t=1

I
{

f̄ t(πt)− f ⋆(πt) > ε
}
≤ Edimf⋆(F , ε).

Monotonicity with respect to ε.
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Eulder Dimension

Regret Bound for UCB

Regret Bound

For a finite set of functions F ⊂ (Π → [0, 1]), using β = 8 log(|F|/δ), the
generalized UCB algorithm guarantees that with probability at least 1− δ,

Reg ≲ min
ε>0

{
√

Edim(F , ε) · T log(|F|/δ) + εT}

≲
√

Edim
(
F ,T−1/2

)
· T log(|F|/δ)
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Eulder Dimension

Proof of Regret Bound

Define

F t
=

{
f ∈ F |

∑
i<t

(
f
(
πi)− f ⋆

(
πi))2 ≤ 4β

}
.

By Lemma 10, f ⋆ ∈ F t and F t ⊆ F t for t = 1, ...,T with probability at
least 1− δ.

Define
wt(π) = sup

f ∈Ft
[f (π)− f ⋆(π)] .

The regret can be bounded by

Reg ≤
T∑

t=1

f̄ t
(
πt)− f ⋆

(
πt) ≤ T∑

t=1

wt (πt)
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Eulder Dimension

Fix ε > 0,
T∑

t=1

wt (πt) ≤ T∑
t=1

wt (πt) I{wt (πt) > ε
}
+ εT.

Lemma 1
Fix a function class F , function f ⋆ ∈ F , and parameter β > 0. For any
sequence π1, . . . , πT, if we define

wt(π) = sup
f ∈F

{
f (π)− f ⋆(π) :

∑
i<t

(
f
(
πi)− f ⋆

(
πi))2 ≤ β

}

then for all α > 0,
T∑

t=1

I
{

wt (πt) > α
}
≤
(

β

α2
+ 1

)
· Edimf⋆(F , α)
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Eulder Dimension

Order the indices {1, . . . ,T} as {i1, . . . , iT}, so that

wi1 (πi1) ≥ wi2 (πi2) ≥ . . . ≥ wiT (πiT) .
Consider any index τ for which wiτ

(
πiτ
)
> ε. For any α > ε, if we have

wiτ
(
πiτ
)
> α, Lemma 1 implies that

τ ≤
T∑

t=1

I
{

wt (πt) > α
}
≤
(
4β

α2
+ 1

)
Edimf⋆(F , α) ≤ 5β

α2
Edimf⋆(F , α).

Hence,

wiτ (πiτ ) ≤√5β Edim(F , ε)

τ
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Eulder Dimension

With this,
T∑

t=1

wt (πt) I{wt (πt) > ε
}
≲

T∑
t=1

√
β Edim(F , ε)

t ≲
√
β Edim(F , ε)T

The regret is bounded by

Reg ≤
T∑

t=1

wt (πt) I{wt (πt) > ε
}
+ εT

≲
√
β Edim(F , ε)T + εT,

where ε > 0 is arbitrary.
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Eulder Dimension

Proof of Lemma 1

The proof will be finished by following steps:

1. Define α-dependent, which is similar to the Eulder dimension.

2. For wt(πt) > α in a sequence π1, ..., πt, we find at most
β
α2 of disjoint subsequences that are α-dependent of πt.

3. For any sequence, we find that there exists one π in the
sequence α-dependent with at least bτ/dc disjoint subsequence.

4. Establish relationship between Step 2 and Step 3.
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Eulder Dimension

Step 1:

Let d = Edimf⋆(F , α).

α-independent:

π is α-independent of π1, . . . , πt if ∃ f ∈ F
such that |f(π)− f ⋆(π)| > α and

∑t
i=1

(
f
(
πi)− f ⋆

(
πi))2 ≤ α2.

α-dependent:

π is α-dependent on π1, . . . , πt if
∀ f ∈ F with

∑t
i=1

(
f
(
πi)− f ⋆

(
πi))2 ≤ α2, |f (π)− f ⋆(π)| ≤ α.
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Eulder Dimension

Step 2:

For any t, if wt (πt) > α, then πt is α-dependent on at most β/α2

disjoint subsequences of π1, . . . , πt−1.

Let f be |f (πt)− f ⋆ (πt)| > α. If πt is α-dependent on πi1 , . . . , πik but
wt (πt) > α, we must have

k∑
j=1

(
f
(
πij)− f ⋆

(
πij))2 ≥ α2

If there are M such disjoint sequences, we have

Mα2 ≤
∑
i<t

(
f
(
πi)− f ⋆

(
πi))2 ≤ β

so M ≤ β
α2 .
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Eulder Dimension

Step 3:

For τ and any sequence
(
π1, . . . , πτ

)
, there is some πj is α-dependent on

at least bτ/dc disjoint subsequences of π1, . . . , πj−1.

Let N = bτ/dc, and let B1, . . . ,BN be subsequences of π1, . . . , πτ , and
Bi =

(
πi).

Do the following step

i = N + 1

Find relationship between πi amd B1, ...,BN

Exist Bj α-independent of πi Add πi into Bj; i = i + 1

Stop searching
No

Yes

If stop at i = τ , we have
∑N

i=1 |Bi| ≥ τ ≥ dN. Moreover, |Bi| ≤ d, so in
this case πτ is α-dependent on all Bi.
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Eulder Dimension

Step 4:

Let (πt1 , . . . , πtτ ) be the subsequence π1, . . . , πT consisting of all
elements for which wti (πti) > α.

From Step 2, each πti is dependent on at most β/α2 disjoint
subsequences of (πt1 , . . . , πtτ ).

From Step 3, one element is dependent on at least bτ/dc disjoint
subsequences.

We must have bτ/dc ≤ β/α2, and which implies that τ ≤
(
β/α2 + 1

)
d.
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Eulder Dimension

When will this bound be vacuous?

Consider generalised linear models

F =
{
π 7→ σ(〈θ, ϕ(π)〉) | θ ∈ Θ ⊂ Bd

2(1)
}

Let σ(z) = + relu(z) or σ(z) = − relu(z), where relu(z) := max{z, 0} is
the ReLU function.

The lower bound of Eulder dimension is

Edim(F , ε) ≳ ed

for constant ε.
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Suboptimality of Optimism

Suboptimality of Optimism

The UCB algorithm is useful for some special cases, it does not attain
optimal regret for any structured bandit problem. We see an example by
adding ”cheating” action into decision space.

Example: Let A ∈ N be a power of 2 and consider the following F .

The decision space is Π = [A] ∪ C, where C =
{

c1, . . . , clog2(A)

}
is a

set of ”cheating” actions.

For all actions π ∈ [A], f (π) ∈ [0, 1] for all f ∈ F .

For each f ∈ F , rewards for actions in C take the following form.
Let b(f) =

(
b1(f), . . . , blog2(A)(f)

)
∈ {0, 1}log2(A) be a binary

encoding for the index of πf ∈ [A]. For each action ci ∈ C, we set

f (ci) = −bi(f).
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Suboptimality of Optimism

Simple analyses
Suppose that rewards are Gaussian with r ∼ N (f ⋆(π), 1) under π.

If we do this for each ci ∈ C, which will incur Õ(log2(A)) regret.

We can stop exploring, and commit to playing πf ⋆ for remaining
rounds.

⇒ with probability at least 1− δ,

Reg ≲ log22(A/δ).

UCB algorithm
ci ∈ C have f (ci) ≤ 0 for all f ∈ F , we have f̄ t (ci) ≤ 0.

UCB algorithm only pull actions in [A], ignoring the cheating actions.

⇒
Reg ≳

√
AT.
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Suboptimality of Optimism

The ”cheating” actions are guaranteed to have low reward, UCB
avoids them even though they are very informative.

We conclude that:

Balance the tradeoff between optimizing reward and acquiring
information to get optimal regret bound.

The Inverse Gap Weighting algorithm attained optimal sample
complexity for any choice of class F , and all that needed to change
was how to perform estimation.
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E2D Algorithm

Online Regression Oracle

Online Regression Oracle
At each time t ∈ [T], an online regression oracle returns, given(

π1, r1
)
, . . . ,

(
πt−1, rt−1

)
with E

[
ri | πi] = f ⋆

(
πi) and πi ∼ pi, a function f̂ t : Π → R such that

T∑
t=1

Eπt∼pt

(
f̂ t
(
πt)− f ⋆

(
πt))2 ≤ EstSq(F ,T, δ)

with probability at least 1− δ. Here, pi (· | Hi−1
)

is the randomization
distribution for the decision-maker.
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E2D Algorithm

E2D Algorithm

Estimation-to-Decision (E2D) for Structured Bandits
Input: Exploration parameter γ > 0.
for t = 1, . . . ,T do

Obtain f̂ t from online regression oracle with
(
π1, r1

)
, . . . ,

(
πt−1, rt−1

)
.

Compute

pt = arg min
p∈∆(Π)

max
f ∈F

Eπ∼p

[
f (πf)− f(π)− γ ·

(
f(π)− f̂ t(π)

)2]
.

Select action πt ∼ pt.
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Decision-Estimation Coefficient

Decision-to-Estimation Coefficient

Decision-Estimation Coefficient is a complexity measure for F , and it
is defined as:

decγ(F , f̂ ) = min
p∈∆(Π)

max
f∈F

Eπ∼p[ f (πf)− f (π)︸ ︷︷ ︸
regret of decision

−γ · (f (π)− f̂ (π))2︸ ︷︷ ︸
information gain for obs.

]

decγ(F) = sup
f̂ ∈co(F)

decγ(F , f̂ )
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Decision-Estimation Coefficient

Regret Bound for E2D

Rgeret Bound
The E2D algorithm with exploration parameter γ > 0 guarantees that
with probability at least 1− δ,

Reg ≤ decγ(F) · T + γ · EstSq(F ,T, δ)

We can optimize over the parameter γ in the result above, which yields

Reg ≤ inf
γ>0

{decγ(F) · T + γ · EstSq(F ,T, δ)}

≤ 2 · inf
γ>0

max {decγ(F) · T, γ · EstSq(F ,T, δ)}

For finite classes, the exponential weights method give Estsq(F ,T, δ) ≲
log(|F|/δ), and this bound specializes to

Reg ≲ inf
γ>0

max {decγ(F) · T, γ · log(|F|/δ)}
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Decision-Estimation Coefficient

Proof of Regret Bound

We write

Reg =

T∑
t=1

Eπt∼pt
[
f ⋆ (π⋆)− f ⋆

(
πt)]

=

T∑
t=1

Eπt∼pt
[
f ⋆ (π⋆)− f ⋆

(
πt)]− γ · Eπt∼pt

[(
f ⋆
(
πt)− f̂ t

(
πt))2]

+ γ · EstSq(F ,T, δ)
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Decision-Estimation Coefficient

For each t, since f ⋆ ∈ F , we have

Eπt∼pt
[
f ⋆ (π⋆)− f ⋆

(
πt)]− γ · Eπt∼pt

[(
f ⋆
(
πt)− f̂ t

(
πt))2]

≤ sup
f∈F

{
Eπt∼pt

[
f (πf)− f

(
πt)]− γ · Eπt∼pt

[(
f
(
πt)− f̂ t

(
πt))2]}

= inf
p∈∆(Π)

sup
f∈F

Eπ∼p

[
f (πf)− f (π)− γ ·

(
f
(
πt)− f̂ t

(
πt))2]

= decγ
(
F , f̂ t

)
We conclude that

Reg ≤ sup
f̂

decγ(F , f̂ ) · T + γ · EstSq(F ,T, δ)



Introduction Optimism for Structured Bandits Decision-Estimation Coefficient Conclusion

Decision-Estimation Coefficient

Example: Multi-Armed Bandit

Decision-to-Estimation Bound (IGW minimizes the DEC)
For the Multi-Armed Bandit setting, where Π = [A] and F = RA

the Inverse Gap Weighting distribution p = IGW4γ (̂f ) is the exact
minimizer for decγ(F , f̂ ).
decγ(F , f̂ ) = A+1

4γ .

Inverse Gap Weighting

Give a vector f̂ = ( f̂ (1), ..., f̂ (A)) ∈ RA, the Inverse Gap Weighting
distribution p = IGWγ( f̂ (1), ..., f̂ (A)) with parameter γ ≥ 0 is defined as

p(π) = 1

λ+ 2γ( f̂ (π̂)− f̂ (π))
,

where π̂ = arg maxπ f̂ (π), and λ ∈ [1,A] satisfy
∑

π p(π) = 1
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Decision-Estimation Coefficient

Proposition 9

Consider a finite decision space Π = {1, ...,A}. For any vector f̂ ∈ RA

and γ > 0, define p = IGWγ( f̂ (1), ..., f̂ (A)). This strategy guarantees
that for all f ⋆ ∈ RA,

E[f ⋆(π⋆)− f ⋆(π)] ≤ A
γ
+ γ · Eπ∼p[( f̂ (π)− f ⋆(π))2].

By rewriting Proposition 9, we can deduce that the DEC is bounded
by A+1

4γ .

Proposition 14 shows that IGW is actually the best possible
distribution for this minimax problem.
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Decision-Estimation Coefficient

Proof of DEC Bound
Rewrite the definition of DEC:

min
p∈∆([A])

max
f ∈RA

Eπ∼p
[
f (πf)− f(π)− γ(f (π)− f̂ (π))2

]
= min

p∈∆([A])
max
f ∈RA

max
π⋆∈[A]

Eπ∼p
[
f (π⋆)− f (π)− γ(f (π)− f̂ (π))2

]
= min

p∈∆([A])
max
π⋆∈[A]

max
f ∈RA

Eπ∼p
[
f (π⋆)− f (π)− γ(f (π)− f̂ (π))2

]
.

Proof step:
IGW achieve lower bound of

Inner Equaiton = max
π⋆∈[A]

max
f ∈RA

Eπ∼p
[
f (π⋆)− f (π)− γ(f (π)− f̂ (π))2

]
IGW achieve the condition of

min
p∈∆([A])

Inner Equaiton

.
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Decision-Estimation Coefficient

Step 1

Firstly, we find the lower bound.

For any fixed p and π⋆, first-order conditions for optimality imply that

f (π) = f̂ (π)− 1

2γ
+

1

2γp (π⋆)
I {π = π⋆}

It gives that

Eπ∼p [f (π⋆)− f (π)] = Eπ∼p
[̂
f (π⋆)− f̂ (π)

]
+

1− p (π⋆)

2γp (π⋆)

and

γEπ∼p
[
(f (π)− f̂ (π))2

]
=

1− p (π⋆)

4γ
+

(1− p (π⋆))
2

4γp (π⋆)
=

1

4γp (π⋆)
− 1

4γ
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Decision-Estimation Coefficient

For any p ∈ ∆(Π),

max
π⋆∈[A]

max
f ∈RA

Eπ∼p
[
f (π⋆)− f (π)− γ(f (π)− f̂ (π))2

]
= max

π⋆∈[A]

{
Eπ∼p

[̂
f (π⋆)− f̂ (π)

]
+

1

4γp (π⋆)

}
− 1

4γ

≥ Eπ⋆∼p

[
Eπ∼p

[̂
f (π⋆)− f̂ (π)

]
+

1

4γp (π⋆)

]
− 1

4γ

=
A
4γ

− 1

4γ
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Decision-Estimation Coefficient

Next, we prove that IGW can achieve this lower bound.

Let p = IGW4γ (̂f ), for all π⋆,

Eπ∼p
[̂
f (π⋆)− f̂ (π)

]
+

1

4γp (π⋆)

= Eπ∼p
[̂
f (π⋆)− f̂ (π)

]
+

λ

4γ
+ f̂ (π̂)− f̂ (π⋆) = Eπ∼p [̂f (π̂)− f̂ (π)] + λ

4γ

Hence,

max
π⋆∈[A]

{
Eπ∼p

[̂
f (π⋆)− f̂ (π)

]
+

1

4γp (π⋆)

}
= min

π⋆∈[A]

{
Eπ∼p

[̂
f (π⋆)− f̂ (π)

]
+

1

4γp (π⋆)

}
= Eπ⋆∼p

{
Eπ∼p

[̂
f (π⋆)− f̂ (π)

]
+

1

4γp (π⋆)

}
=

A
4γ

p = IGW4γ (̂f ) achieves the optimal value.
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Decision-Estimation Coefficient

Step 2

Relaxing to p ∈ RA
+. Define

gπ⋆(p) = f̂ (π⋆) +
1

4γp (π⋆)
.

Let ν ∈ R be a Lagrange multiplier, and Lagrangian is

L(p, ν) = gπ⋆(p)−
∑
π

p(π)̂f (π) + ν

(∑
π

p(π)− 1

)

Based on Step 1, we aim to show that p ∈ ∆(Π) is optimal for

min
p∈∆(Π)

max
π⋆∈[A]

{
Eπ∼p

[̂
f (π⋆)− f̂ (π)

]
+

1

4γp (π⋆)

}
− 1

4γ
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Decision-Estimation Coefficient

It is sufficient to find ν such that

0 ∈ ∂pL(p, ν)

where ∂p denotes the subgradient with respect to p.

For a convex function h(x) = maxy g(x, y), we have

∂xh(x) = co
({

∇g(x, y) | g(x, y) = max
y′

g (x, y′)
})

.

Hence,

∂pL(p, ν) = ν1 − f̂ + co
({

∇pgπ⋆(p) | gπ⋆(p) = max
π′

gπ′(p)
})
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Decision-Estimation Coefficient

Now, let p = IGW4γ (̂f ). From Step 1, we know that gπ(p) = gπ′(p) for
all π, π′, so

∂pL(p, ν) = ν1 − f̂ + co
(
{∇pgπ⋆(p)}π⋆∈Π

)
.

Since ∇pgπ⋆(p) = − 1
4γp2(π⋆)eπ⋆ ,

δ :=
∑
π

p(π)∇pgπ(p) =
{
− 1

4γp(π)

}
π∈Π

=

{
− λ

4γ
− f̂ (π̂) + f̂ (π)

}
π∈Π

.

Therefore, δ ∈ co
(
{∇pgπ⋆(p)}π⋆∈Π

)
, by choosing ν = λ

4γ + f̂ (π̂), we
have

ν1 − f̂ + δ = 0,

which finishes the proof.
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Conclusion

Introduce Sructured Bandit, and generalise the decision space Π into
large and potentially continuous space.

Applying UCB algorithm with Eulder dimension to solve Structured
Bandit problem, where

Reg ≲ min
ε>0

{
√

Edim(F , ε) · T log(|F|/δ) + εT}.

Using Estimation-to-Decision (E2D) for Structured Bandit, which
provide the optimal rate. The regret bound is

Reg ≤ decγ(F) · T + γ · EstSq(F ,T, δ)
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