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Batch Learning: Background

Linear Contextual Bandits

e Sequential Decision Problem
e Time horizon: 1.

» Action space: K arms.

A random reward iIs generated based on the chosen action
* The expectation of the reward is a linear function of the covariate

e TJarget: maximize the cumulative rewards
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Linear Contextual Bandits

e Sequential Decision Problem

 Time horizon: 1.

» Action space: K arms.

A random reward iIs generated based on the chosen action
* The expectation of the reward is a linear function of the covariate

e TJarget: maximize the cumulative rewards

Recommendation system



Batch Learning: Background

e Each action is associated with a covariate vector (in |

« At time f: observe {Xw}ae[l(]

e Pick action a

. — 1 P
+ Incur reward: r, , = x, 0% + ¢,



Batch Learning: Background

* Previously, each action is associated with a parameter vector (in [Rd):
» At time 7: observe X,

e Pick action a from {fo}ae[K]

— 1 px
+ Incurreward r, , = x; 0 + ¢,



Batch Learning: Background

 Puch parameter arms: Model P.

 Equivalent:

. Given Model C, write X, = {x/ ,....,x" . }!, 0% = {0,...,077, ..

. Given Model P, write ¥, , = {0,...,x/, ...,0}", 0% = {0, ..

L0
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Bandit Feedback: Online Setting

The reward Is iImmediately observed after an arm is pulled

fme | v 5 3 4 5 6 7 .. T
Arm

O B W IN =




Bandit Feedback: Online Setting

The reward Is iImmediately observed after an arm is pulled

Time
Arm

- OB WO N =
N
\




Bandit Feedback: Online Setting

The reward Is iImmediately observed after an arm is pulled

* Online bandit learning is infeasible in practice

* Fully online learning: decision makers receive feedbacks and adjust policy
Immediately.

* Limited adaption due to physical cost or regulatory constrains

e Batch Constrains needed.



Bandit Feedback: Batched Case

e The time horizon is split into M batches

* The rewards can only be observed simultaneously at the end of each batch.

Time | v 513 4 516 7 . T
Arm | !

T B W N =




Bandit Feedback: Batched Case

e The time horizon is split into M batches

* The rewards can only be observed simultaneously at the end of each batch.

fime | v 513 4 516 7 ... T
Arm | |

v
v

T B W N =




Bandit Feedback: Batched Case

e The time horizon is split into M batches

* The rewards can only be observed simultaneously at the end of each batch.
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Bandit Feedback: Batched Case

e The time horizon is split into M batches

* The rewards can only be observed simultaneously at the end of each batch.
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Problem Setting

This paper considers...

e |inear contexual bandits
* High-dimensional regime with sparse parameters

e Batched observations



Problem Formulation

 Time horizon 1, number of arms K.

» Model C: each arm a € [K| is associated with a d-dimensional feature context x; ..
» The contexts {x, , },cx7 are iid drawn from a Kd-dimensional joint distribution.
. Select action a, incure r, , = x, 0% + £,

» £, iid zero mean sub-Gaussian RV.

e Policy & = (ny, ,, ..., my). &, is determined by the observed reward before the
current batch.



Batch Constraint

e Number of batches: M.

 Batch constraint represented by agridt; <t, < ... <t =1

» Static grid: & = {1y, ..., 1} fixed in advance.

* Adaptive grid: the next grid point determined by historic data.

e (Goal: design policy + grid(?).



Regret

T
Ryp(m,T) = Z (max Ty 0" — x4, 9*)
t=1

a€|K]

Minimax Regret

Rmaxmin(Ka Ma T7 30) = inf Sup ) [RT (77, T)]
™ T 116 12<1,]6*[lo<s0




Algorithm

Lasso Batched Greedy Learning

Input Time horizon T'; context dimension d; number of batches M;

sparsity bound s.
1

Initialize b = © (\/T (l) 2””"‘”); fo = 0 € RY:

Static grid 7 = {t1,...,tm}, with t; = by/sp and t,,, = by/tm—1 for
ted{2,...,M},

Partition each batch into M intervals evenly, i.e., (t;—1,tm| =
Ujj‘ilTT(,f), for m € [M].




Algorithm

Lasso Batched Greedy Learning

for m =1 to M do
fort=1t,,_1+1tot, do A
(a) Choose a; = argmax z, ,0,,_1 (break ties with lower action

ae (K] t,a
index).
(b) Incur reward r; 4, .
end for

2log K (logd + 2logT)
()] |

T U, T, Ay, 5\/

A . 1

Update Hm — azgfl?;n Q‘T(m)l ZteT(m) (Tt,at o z;l:ate)z -+ )\mHHHI-
S

end for




Grid Design

* Motivation: Sequential Batch Learning in Finite-Action Linear Contextual
Bandits (Han et al 2020)

e Studied low-dimensional linear contextual batched bandit problems.
e Goal: minimizing the overall regret.

* |ntuition: Optimal way of selecting grids should make sure that each batch’s
regret is the same (at least orderwise in terms of the dependence of T and d) -
equilibrium.



Grid Design

* |In Han et al, the instanteous regret at time t is at most:

ac[K] vbm—1

max (;Bt,a — ;l?t,at)T9* < C’\/log(KT) logT" - \/H ‘

. 1, should cancel out the denominator 4 /7, _; to achieve “equilibrium”.



Theory: Assumptions

Assumption 1 (sub Gaussianity)

» The marginal distribution of ., , is 1-sub-Gaussian.



Theory: Assumptions

Assumption 2 (Diverse Covariate)

 There are (possibly K-dependent) positive constants y(K) and p(K) such that
for any 0 € | 4 and any unit vector v € | 4 there is
P{(I/Txt,a*)2 > y(K)} > p(K), where a* = argmax th,TaH.

* |ntrepretation:

* Theoretical guarantee for exploration-free (greedy) algorithms.



Theory: Assumptions

Assumption 2 (Diverse Covariate)

 There are (possibly K-dependent) positive constants y(K) and p(K) such that
for any 0 € | 4 and any unit vector v € | 4 there is
P{(I/Txt,a*)2 > y(K)} > p(K), where a* = argmax th,TaH.
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Theory: Assumptions

Assumption 2 (Diverse Covariate)

» There are (possibly K-dependent) positive constants y(K) and p(K) such that for any
0 € R? and any unit vector v € R?, there is P{(I/Txt,a*)2 > y(K)} > p(K), where
a* = argmax X, ,0-

I I

. (I/T)Ct a*)z — U X, +X, U - RE condition in Lasso Problem.

| v Av
) ¢min(s, A) — I}lln 5 -
VERY |[v]|o<s Hl/Hz

v Av
. ¢maX(S’A) — I},lax 2
veR%||v]|p<s HVH2




Theory: Assumptions

Assumption 2 (Diverse Covariate)

 There are (possibly K-dependent) positive constants y(K) and p(K) such that
for any 0 € | 4 and any unit vector v € | 4 there is
P{w"x, )" > y(K)} > p(K), where a* = argmax ,xx,/,0.

Lemma 5. Suppose Assumptions 1-4 hold. Given a spar-

2 I T sity parameter s, with probability at least 1 —2M?%exp
° (I/ xt,a*) — U xt,a*xt,a*y (O(s logd)—()(pz(K)-\,/Ts(]/M:)),for any j,m € |[M],
Do (q ﬂ) <16 logKk,
|T”l
 RE condition leads to Lasso convergence. . K)p(K)
(Pmln<g |T’(" jl) 4
PY m



Theory: Assumptions

Assumption 2 (Diverse Covariate)

 Key implication: (later we will see) the regret can be upper bounded by
parameter estimation error.

* Previous concerns about the greedy algorithm: some arms may never chosen
due to greedy selection, yielding inaccurate estimate of 6.

e Claim: not an issue if Hessian of the Lasso problem is well conditioned (under
Assumption 2).



Theory: Assumptions

Assumption 3 (Sparsity in high-dimension)

» d = poly(T)
e 10y < 5, = O(T" ™)



Theory: Assumptions

Assumption 4 (Not too many arms)

. The number of actions K satisfies

(K = 0(d/sy) and

= 0G/T"PIs,) .



Theorem 1

Regret lower bound

Theorem 1. Fix any so,d and T. Let K =log(T/sg) and
consider the problem xi,~N(0,1;), Vae|[K], Vte[T],
where the contexts are independence across t. Then for any
M LT and any dynamic batch learning algorithm Alg, we
have

sup Lot | RT(Alg)]
616", <1, [|6%[lo<s0

1
M
> C - max (M—42—7M/2 N TSO . (z) : 1), \/ TSO) p
(3)

where Eg- denotes taking expectation w.r.t. the distribution
based on the parameter 6”, and ¢ >0 is a numerical constant
independent of (T, M, d, s).
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Reg ret IOwer bOund > (- max (M 42 Mf2 'I'S() - (L>m, Th])) p

* The first term: depends on M.

* The second term: online regret lower bound given in “Contextual Bandits with
Linear Payoff Functions” (Chu et al 2011) and Han et al 2020.

» The break-even point: M = O{loglog(7/sy)} .
 Smaller M: worse results, first term domination.

« Lager M: closer to online setting, second term domination.

» Good M : O{loglog(7/sy)} .



Theorem 1

Online Extension

Lemma 4. When M =T, there exists a two-arm setting
with independent Guassian contexts, for which we have (for
some numerical constant c independent of T,M, d, s):

sup L o* [RT(Alg)] >Cc-4/1T5p.
07:(167]l2<1, [16"[lo <so




Theorem 2

Regret upper bound for proposed algorithm

Theorem 2. Under Model-C, Assumptions 1-4 and M =
O(loglog(T/s0)), we have

sup Lo | RT(Alg)]
6":(|6%[l2<1, [|6"[[o<s0

1

< C-M?3/? \/IOgK log(KT)log(dT) | \/T—So(z> 2(27‘71-1),
y(K)p(K) S0

(10)

where Alg is LBGL and C> 0 is a numerical constant indepen-
dent of (T,d, M, K, sp).



sup  Eg[Rr(Alg)]

0*:(16*|1,<1, 16*|lo<s0 sup Ee+[R7(Alg)]
Theorem 2 Ly ot
M /2 — T\ 22M-y) — 1
> (- max (M 42"MIZ .\ /Tsg - <—> ,\/ ls()>, - C - M3/2,/log Klog(KT)log(dT) \/ﬁ(z) 20M1)
Remarks i y(K)p(K) o)
(1(

* Regret upper bound matches with the lower bound up to log factors.

» With good choice of M = O{loglog(7/s,)}, able to achive fully online reget
O/ Tsy) (up to log factors).



Theorem 2

Online Extension

* Corollary 1. In the fully online learning setting (M =T)
and under Assumptions 1-4:

sup Lo-|[R7(Alg)]
016" <1, 16" lly<sc

C \/ (log log(T/ so)) 3log Klog(KT)log(dT)
y(K)p(K)

Y, TSO/

(11)

where C > 0 is a numerical constant independent of (T,d, M,
K, So).

<



Conclusion

» Study the batched learning problem in high-dimensional linear contexual bandit
setting.

* Develop a lower bound that characterizes the fundamental learning limits
* Provide a algorithm that yields a matching upper bound.

» Restrictions: well conditioned Hessian and knowledge about sparsity.



