Dynamic Batch Learning in High-Dimensional Sparse Linear Contextual Bandits

Zhimei Ren and Zhengyuan Zhou (2023)

Contents

- Batch learning: Backgound
- Problem Formulation
- Algorithm Design
- Theory Overview
- Conclusion
- Proof Details

Linear Contextual Bandits

- Sequential Decision Problem
- Time horizon: T.
- Action space: *K* arms.
- Each action is associated with a covariate vector (in \mathbb{R}^d)
- A random reward is generated based on the chosen action
- · The expectation of the reward is a linear function of the covariate
- Target: maximize the cumulative rewards

Linear Contextual Bandits

- Sequential Decision Problem
- Time horizon: T.
- Action space: K arms.

- Each action is associated with a covariate vector (in \mathbb{R}^d)
- A random reward is generated based on the chosen action
- The expectation of the reward is a linear function of the covariate
- Target: maximize the cumulative rewards

- Each action is associated with a covariate vector (in \mathbb{R}^d):
- At time t: observe $\{x_{t,a}\}_{a \in [K]}$
- Pick action a
- Incur reward: $r_{t,a} = x_{t,a}^T \theta^* + \xi_t$

- Each action is associated with a covariate vector (in \mathbb{R}^d):
- At time t: observe $\{x_{t,a}\}_{a \in [K]}$
- Pick action a
- Incur reward: $r_{t,a} = x_{t,a}^T \theta^* + \xi_t$
- Previously, each action is associated with a parameter vector (in \mathbb{R}^d):
- At time t: observe x_t
- Pick action a from $\{\theta_a^*\}_{a \in [K]}$
- Incur reward $r_{t,a} = x_t^T \theta_a^* + \xi_t$

- Push covariate arms: Model C.
- Puch parameter arms: Model P.
- Equivalent:
- Given Model C, write $\tilde{x}_t = \{x_{t,1}^T, ..., x_{t,K}^T\}^T$, $\tilde{\theta}_a^* = \{0, ..., \theta^{*T}, ..., 0\}^T$.
- Given Model P, write $\tilde{x}_{t,a} = \{0,\dots,x_t^T,\dots,0\}^T$, $\tilde{\theta}^* = \{\theta_1^{*T},\dots,\theta_K^{*T}\}^T$.

Bandit Feedback: Online Setting

The reward is immediately observed after an arm is pulled

Time	1	2	3	4	5	6	7	 T
1								
2								
3								
4								
5								
:								
\boldsymbol{K}								

Bandit Feedback: Online Setting

The reward is immediately observed after an arm is pulled

Time	1	2	3	4	5	6	7		T
1						✓			
2		\checkmark							
3	✓				\checkmark				
4									✓
5				✓					
:								√	
\boldsymbol{K}			✓				\checkmark		

Bandit Feedback: Online Setting

The reward is immediately observed after an arm is pulled

- Online bandit learning is infeasible in practice
- Fully online learning: decision makers receive feedbacks and adjust policy immediately.
- Limited adaption due to physical cost or regulatory constrains
- Batch Constrains needed.

- The time horizon is split into M batches
- The rewards can only be observed simultaneously at the end of each batch.

Time	1	2	່ ່ ຊ	1	5	6	7		T
Arm	_	2	, J	7	5	U	'	• • •	
1									
2			I		I				
3			 						
4			' 						
5			l		!				
:			l		Ì				
\boldsymbol{K}			 -			 			

- The time horizon is split into M batches
- The rewards can only be observed simultaneously at the end of each batch.

Time	1	2	3	4	5 ¦	6	7	 T
1			l					
2		\checkmark	I		ı			
3	✓		 		١			
4			l I		i			
5			l		١			
			l		'			
:			I		I			
\boldsymbol{K}			 -		١			

- The time horizon is split into M batches
- The rewards can only be observed simultaneously at the end of each batch.

Time	1	2	3	4	5	6	7	 T
1			l					
2		\checkmark	I			l		
3	✓		 		\checkmark	 		
4			I		Ì	I		
5			 	\checkmark		 		
•			I			' 		
:			l 			l		
\boldsymbol{K}			' √			l		

- The time horizon is split into M batches
- The rewards can only be observed simultaneously at the end of each batch.

Time Arm	1	2	3	4	5	6	7		T
1			l			√			
2		\checkmark	l			l			
3	✓		l I		\checkmark	l I			
4			I			I			\checkmark
5			 	\checkmark		 			
•			' 			 		√	
\boldsymbol{K}			· ✓			 	\checkmark		

Problem Setting

This paper considers...

- Linear contexual bandits
- High-dimensional regime with sparse parameters
- Batched observations

Problem Formulation

- Time horizon T, number of arms K.
- Model C: each arm $a \in [K]$ is associated with a d-dimensional feature context $x_{t,a}$.
- The contexts $\{x_{t,a}\}_{a\in [K]}$ are iid drawn from a Kd-dimensional joint distribution.
- Select action a, incure $r_{t,a} = x_{t,a}^T \theta^* + \xi_t$
- ξ_t iid zero mean sub-Gaussian RV.
- Policy $\pi = (\pi_1, \pi_t, ..., \pi_T)$. π_t is determined by the observed reward before the current batch.

Batch Constraint

- Number of batches: M.
- Batch constraint represented by a grid $t_1 < t_2 < \ldots < t_M = T$

- Static grid: $\mathcal{T} = \{t_1, ..., t_m\}$ fixed in advance.
- Adaptive grid: the next grid point determined by historic data.

• Goal: design policy + grid(?).

Metric

Regret

$$R_T(\pi, \mathcal{T}) \stackrel{\Delta}{=} \sum_{t=1}^T \left(\max_{a \in [K]} x_{t,a}^{\top} \theta^* - x_{t,a_t}^{\top} \theta^* \right)$$

Minimax Regret

$$R_{\mathsf{maxmin}}(K, M, T, s_0) = \inf_{\pi, \mathcal{T}} \sup_{\|\theta^{\star}\|_2 \le 1, \|\theta^{\star}\|_0 \le s_0} \mathbb{E}\left[R_T(\pi, \mathcal{T})\right]$$

Algorithm

Lasso Batched Greedy Learning

Input Time horizon T; context dimension d; number of batches M; sparsity bound s_0 .

Initialize
$$b=\Theta\left(\sqrt{T}\cdot\left(\frac{T}{s_0}\right)^{\frac{1}{2(2^{M}-1)}}\right);\,\hat{\theta}_0=\mathbf{0}\in\mathbb{R}^d;$$

Static grid $\mathcal{T}=\{t_1,\ldots,t_M\}$, with $t_1=b\sqrt{s_0}$ and $t_m=b\sqrt{t_{m-1}}$ for $t\in\{2,\ldots,M\}$;

Partition each batch into M intervals evenly, i.e., $(t_{m-1},t_m]=\bigcup_{j=1}^M T_m^{(j)}$, for $m\in[M]$.

Algorithm

Lasso Batched Greedy Learning

 $\begin{aligned} &\text{for } m=1 \text{ to } M \text{ do} \\ &\text{for } t=t_{m-1}+1 \text{ to } t_m \text{ do} \\ &\text{ (a) Choose } a_t=\mathop{\mathrm{argmax}}_{a\in[K]} x_{t,a}^\top \hat{\theta}_{m-1} \text{ (break ties with lower action index).} \\ &\text{ (b) Incur reward } r_{t,a_t}. \\ &\text{ end for} \\ &T^{(m)} \leftarrow \cup_{m'=1}^m T_{m'}^{(m)}; \ \lambda_m \leftarrow 5\sqrt{\frac{2\log K(\log d + 2\log T)}{|T^{(m)}|}}; \\ &\text{ Update } \hat{\theta}_m \leftarrow \mathop{\mathrm{argmin}}_{\theta\in\mathbb{R}^d} \frac{1}{2|T^{(m)}|} \sum_{t\in T^{(m)}} (r_{t,a_t} - x_{t,a_t}^\top \theta)^2 + \lambda_m \|\theta\|_1. \\ &\text{ end for} \end{aligned}$

Grid Design

- Motivation: Sequential Batch Learning in Finite-Action Linear Contextual Bandits (Han et al 2020)
- Studied low-dimensional linear contextual batched bandit problems.
- Goal: minimizing the overall regret.
- Intuition: Optimal way of selecting grids should make sure that each batch's regret is the same (at least orderwise in terms of the dependence of T and d) equilibrium.

Grid Design

• In Han et al, the instanteous regret at time t is at most:

$$\max_{a \in [K]} (x_{t,a} - x_{t,a_t})^{\top} \theta^* \le C' \sqrt{\log(KT) \log T} \cdot \sqrt{\frac{d}{\kappa t_{m-1}}}.$$

• t_m should cancel out the denominator $\sqrt{t_{m-1}}$ to achieve "equilibrium".

Assumption 1 (sub Gaussianity)

• The marginal distribution of $x_{t,a}$ is 1-sub-Gaussian.

Assumption 2 (Diverse Covariate)

• There are (possibly K-dependent) positive constants $\gamma(K)$ and $\rho(K)$ such that for any $\theta \in \mathbb{R}^d$ and any unit vector $\nu \in \mathbb{R}^d$, there is $P\{(\nu^T x_{t,a^*})^2 \geq \gamma(K)\} \geq \rho(K)$, where $a^* = \operatorname{argmax}_{a \in K} x_{t,a}^T \theta$.

- Intrepretation:
- Theoretical guarantee for exploration-free (greedy) algorithms.

Assumption 2 (Diverse Covariate)

- There are (possibly K-dependent) positive constants $\gamma(K)$ and $\rho(K)$ such that for any $\theta \in \mathbb{R}^d$ and any unit vector $\nu \in \mathbb{R}^d$, there is $P\{(\nu^T x_{t,a^*})^2 \geq \gamma(K)\} \geq \rho(K)$, where $a^* = \operatorname{argmax}_{a \in K} x_{t,a}^T \theta$.
- $(\nu^T x_{t,a^*})^2 \to \nu^T x_{t,a^*} x_{t,a^*}^T \nu$

Assumption 2 (Diverse Covariate)

- There are (possibly K-dependent) positive constants $\gamma(K)$ and $\rho(K)$ such that for any $\theta \in \mathbb{R}^d$ and any unit vector $\nu \in \mathbb{R}^d$, there is $P\{(\nu^T x_{t,a^*})^2 \geq \gamma(K)\} \geq \rho(K)$, where $a^* = \operatorname{argmax}_{a \in K} x_{t,a}^T \theta$.
- $(\nu^T x_{t,a^*})^2 \to \nu^T x_{t,a^*} x_{t,a^*}^T \nu$ RE condition in Lasso Problem.

$$\phi_{\min}(s, A) = \min_{\nu \in \mathbb{R}^d; \|\nu\|_0 \le s} \frac{\nu^T A \nu}{\|\nu\|_2^2}.$$

$$\phi_{\max}(s, A) = \max_{\nu \in \mathbb{R}^d; \|\nu\|_0 \le s} \frac{\nu^T A \nu}{\|\nu\|_2^2}.$$

Assumption 2 (Diverse Covariate)

• There are (possibly K-dependent) positive constants $\gamma(K)$ and $\rho(K)$ such that for any $\theta \in \mathbb{R}^d$ and any unit vector $\nu \in \mathbb{R}^d$, there is $P\{(\nu^T x_{t,a^*})^2 \ge \gamma(K)\} \ge \rho(K)$, where $a^* = \operatorname{argmax}_{a \in K} x_{t,a}^T \theta$.

•
$$(\nu^T x_{t,a^*})^2 \to \nu^T x_{t,a^*} x_{t,a^*}^T \nu$$

 $(O(s \log d) - \Omega(\rho^{2}(K) \cdot \sqrt{Ts_{0}}/M)), for any j, m \in [M],$ $\phi_{\max}\left(s, \frac{D_{m,j}}{|T_{m}^{(j)}|}\right) \le 16 \log K,$

Lemma 5. Suppose Assumptions 1–4 hold. Given a spar-

sity parameter s, with probability at least $1-2M^2\exp$

• RE condition leads to Lasso convergence.

$$\phi_{\min}\left(s, \frac{D_{m,j}}{|T_m^{(j)}|}\right) \geq \frac{\gamma(K)\rho(K)}{4}.$$

Assumption 2 (Diverse Covariate)

 Key implication: (later we will see) the regret can be upper bounded by parameter estimation error.

• Previous concerns about the greedy algorithm: some arms may never chosen due to greedy selection, yielding inaccurate estimate of θ .

 Claim: not an issue if Hessian of the Lasso problem is well conditioned (under Assumption 2).

Assumption 3 (Sparsity in high-dimension)

- d = poly(T)
- $\|\theta\|_0 \le s_o = O(T^{1-\epsilon})$

Assumption 4 (Not too many arms)

. The number of actions K satisfies $\frac{\log K}{\gamma(K)\rho(K)}=O(d/s_0)$ and $\frac{\log K}{\gamma(K)\rho(K)^3}=O(\sqrt{T^{1-\beta}/s_0})\,.$

Regret lower bound

Theorem 1. Fix any s_0 , d and T. Let $K = \log(T/s_0)$ and consider the problem $x_{t,a} \sim \mathcal{N}(0,I_d)$, $\forall a \in [K]$, $\forall t \in [T]$, where the contexts are independence across t. Then for any $M \leq T$ and any dynamic batch learning algorithm Alg, we have

$$\sup_{\theta^{\star}:\|\theta^{\star}\|_{2} \leq 1, \|\theta^{\star}\|_{0} \leq s_{0}} \mathbb{E}_{\theta^{\star}}[R_{T}(\mathbf{Alg})]$$

$$\geq c \cdot \max\left(M^{-4}2^{-7M/2} \cdot \sqrt{Ts_{0}} \cdot \left(\frac{T}{s_{0}}\right)^{\frac{1}{2(2^{M}-1)}}, \sqrt{Ts_{0}}\right), \tag{3}$$

where \mathbb{E}_{θ^*} denotes taking expectation w.r.t. the distribution based on the parameter θ^* , and c > 0 is a numerical constant independent of (T, M, d, s_0) .

Regret lower bound

$$\sup_{\theta^{\star}:\|\theta^{\star}\|_{2}\leq 1, \|\theta^{\star}\|_{0}\leq s_{0}} \mathbb{E}_{\theta^{\star}}[R_{T}(\mathbf{Alg})]$$

$$\geq c \cdot \max\left(M^{-4}2^{-7M/2} \cdot \sqrt{Ts_{0}} \cdot \left(\frac{T}{s_{0}}\right)^{\frac{1}{2(2^{M}-1)}}, \sqrt{Ts_{0}}\right), \tag{3}$$

- The first term: depends on M.
- The second term: online regret lower bound given in "Contextual Bandits with Linear Payoff Functions" (Chu et al 2011) and Han et al 2020.
- The break-even point: $M = O\{\log\log(T/s_0)\}$.
- Smaller M: worse results, first term domination.
- Lager M: closer to online setting, second term domination.
- Good $M: O\{\log\log(T/s_0)\}$.

Online Extension

Lemma 4. When M = T, there exists a two-arm setting with independent Guassian contexts, for which we have (for some numerical constant c independent of T, M, d, s_0):

$$\sup_{\theta^*: \|\theta^*\|_2 \le 1, \|\theta^*\|_0 \le s_0} \mathbb{E}_{\theta^*}[R_T(\mathbf{Alg})] \ge c \cdot \sqrt{Ts_0}.$$

Regret upper bound for proposed algorithm

Theorem 2. *Under* Model-C, *Assumptions* 1–4 and $M = O(\log\log(T/s_0))$, we have

$$\sup_{\theta^*:\|\theta^*\|_2 \le 1, \|\theta^*\|_0 \le s_0} \mathbb{E}_{\theta^*}[R_T(\mathbf{Alg})]$$

$$\leq \frac{C \cdot M^{3/2} \sqrt{\log K \log(KT) \log(dT)}}{\gamma(K)\rho(K)} \cdot \sqrt{Ts_0} \left(\frac{T}{s_0}\right)^{\frac{1}{2(2^{M}-1)}},$$
(10)

where Alg is LBGL and C > 0 is a numerical constant independent of (T, d, M, K, s_0) .

Remarks

$$\sup_{\theta^{\star}:\|\theta^{\star}\|_{2}\leq 1, \|\theta^{\star}\|_{0}\leq s_{0}} \mathbb{E}_{\theta^{\star}}[R_{T}(\mathbf{Alg})]$$

$$\geq c \cdot \max \left(M^{-4}2^{-7M/2} \cdot \sqrt{Ts_{0}} \cdot \left(\frac{T}{s_{0}} \right)^{\frac{1}{2(2^{M}-1)}}, \sqrt{Ts_{0}} \right), \quad \leq \frac{C \cdot M^{3/2} \sqrt{\log K \log(KT) \log(dT)}}{\gamma(K)\rho(K)} \cdot \sqrt{Ts_{0}} \left(\frac{T}{s_{0}} \right)^{\frac{1}{2(2^{M}-1)}},$$

- Regret upper bound matches with the lower bound up to log factors.
- With good choice of $M = O\{\log\log(T/s_0)\}$, able to achive fully online reget $O(\sqrt{Ts_0})$ (up to log factors).

Online Extension

• **Corollary 1.** *In the fully online learning setting* (M = T) *and under Assumptions* 1–4:

$$\sup_{\theta^*:\|\theta^*\|_2\leq 1,\|\theta^*\|_0\leq s_0}\mathbb{E}_{\theta^*}[R_T(\mathbf{Alg})]$$

$$\leq \frac{C\sqrt{\left(\log\log(T/s_0)\right)^3\log K\log(KT)\log(dT)}}{\gamma(K)\rho(K)}\cdot\sqrt{Ts_0},\tag{11}$$

where C > 0 is a numerical constant independent of (T, d, M, K, s_0) .

Conclusion

 Study the batched learning problem in high-dimensional linear contexual bandit setting.

Develop a lower bound that characterizes the fundamental learning limits

Provide a algorithm that yields a matching upper bound.

Restrictions: well conditioned Hessian and knowledge about sparsity.