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Batch Learning: Background
Linear Contextual Bandits

• Sequential Decision Problem


• Time horizon: .


• Action space:  arms.


• Each action is associated with a covariate vector (in )


• A random reward is generated based on the chosen action


• The expectation of the reward is a linear function of the covariate


• Target: maximize the cumulative rewards
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Batch Learning: Background

• Each action is associated with a covariate vector (in ): 


• At time : observe 


• Pick action 


• Incur reward: 
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Batch Learning: Background

• Each action is associated with a covariate vector (in ): 


• At time : observe 


• Pick action 


• Incur reward: 


• Previously, each action is associated with a parameter vector (in ):


• At time : observe 


• Pick action a from 


• Incur reward 

ℝd

t {xt,a}a∈[K]

a

rt,a = xT
t,aθ* + ξt

ℝd

t xt

{θ*a }a∈[K]

rt,a = xT
t θ*a + ξt



Batch Learning: Background

• Push covariate arms: Model C.


• Puch parameter arms: Model P.


• Equivalent:


• Given Model C, write , 


• Given Model P, write , .

x̃t = {xT
t,1, …, xT

t,K}T θ̃*a = {0,…, θ*T, …,0}T .

x̃t,a = {0,…, xT
t , …,0}T θ̃* = {θ*T

1 , …, θ*T
K }T



Bandit Feedback: Online Setting
The reward is immediately observed after an arm is pulled
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Bandit Feedback: Online Setting
The reward is immediately observed after an arm is pulled

• Online bandit learning is infeasible in practice


• Fully online learning: decision makers receive feedbacks and adjust policy 
immediately.


• Limited adaption due to physical cost or regulatory constrains


• Batch Constrains needed.



Bandit Feedback: Batched Case

• The time horizon is split into  batches


• The rewards can only be observed simultaneously at the end of each batch.

M
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Problem Setting
This paper considers…

• Linear contexual bandits


• High-dimensional regime with sparse parameters


• Batched observations



Problem Formulation

• Time horizon , number of arms .


• Model C: each arm  is associated with a -dimensional feature context .


• The contexts  are iid drawn from a -dimensional joint distribution.


• Select action , incure 


•  iid zero mean sub-Gaussian RV.


• Policy .  is determined by the observed reward before the 
current batch.

T K

a ∈ [K] d xt,a

{xt,a}a∈[K] Kd

a rt,a = xT
t,aθ* + ξt

ξt

π = (π1, πt, …, πT) πt



Batch Constraint

• Number of batches: M. 


• Batch constraint represented by a grid 


• Static grid:  fixed in advance.


• Adaptive grid: the next grid point determined by historic data.


• Goal: design policy + grid(?).

t1 < t2 < … < tM = T

𝒯 = {t1, …, tm}
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Grid Design

• Motivation: Sequential Batch Learning in Finite-Action Linear Contextual 
Bandits (Han et al 2020)


• Studied low-dimensional linear contextual batched bandit problems.


• Goal: minimizing the overall regret.


• Intuition: Optimal way of selecting grids should make sure that each batch’s 
regret is the same (at least orderwise in terms of the dependence of T and d) - 
equilibrium.



Grid Design

• In Han et al, the instanteous regret at time t is at most:


•  should cancel out the denominator  to achieve “equilibrium”.tm tm−1



Theory: Assumptions
Assumption  1 (sub Gaussianity)

• The marginal distribution of  is 1-sub-Gaussian.xt,a



Theory: Assumptions
Assumption 2 (Diverse Covariate)

• There are (possibly -dependent) positive constants  and  such that 
for any  and any unit vector , there is 

, where .


• Intrepretation: 


• Theoretical guarantee for exploration-free (greedy) algorithms.

K γ(K) ρ(K)
θ ∈ ℝd ν ∈ ℝd

P{(νTxt,a*)2 ≥ γ(K)} ≥ ρ(K) a* = argmaxa∈KxT
t,aθ
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Theory: Assumptions
Assumption 2 (Diverse Covariate)

• There are (possibly -dependent) positive constants  and  such that for any 
 and any unit vector , there is , where 

.


•  - RE condition in Lasso Problem.


• 


•

K γ(K) ρ(K)
θ ∈ ℝd ν ∈ ℝd P{(νTxt,a*)2 ≥ γ(K)} ≥ ρ(K)
a* = argmaxa∈KxT

t,aθ

(νTxt,a*)2 → νTxt,a*xT
t,a*ν

ϕmin(s, A) = min
ν∈ℝd;∥ν∥0≤s

νT Aν
∥ν∥2

2
.

ϕmax(s, A) = max
ν∈ℝd;∥ν∥0≤s

νT Aν
∥ν∥2

2
.



Theory: Assumptions
Assumption 2 (Diverse Covariate)

• There are (possibly -dependent) positive constants  and  such that 
for any  and any unit vector , there is 

, where .


• 


• RE condition leads to Lasso convergence.


•

K γ(K) ρ(K)
θ ∈ ℝd ν ∈ ℝd

P{(νTxt,a*)2 ≥ γ(K)} ≥ ρ(K) a* = argmaxa∈KxT
t,aθ

(νTxt,a*)2 → νTxt,a*xT
t,a*ν



Theory: Assumptions
Assumption 2 (Diverse Covariate)

• Key implication: (later we will see) the regret can be upper bounded by 
parameter estimation error.


• Previous concerns about the greedy algorithm: some arms may never chosen 
due to greedy selection, yielding inaccurate estimate of .


• Claim: not an issue if Hessian of the Lasso problem is well conditioned (under 
Assumption 2).

θ



Theory: Assumptions
Assumption 3 (Sparsity in high-dimension)

• 


•

d = poly(T)

∥θ∥0 ≤ so = O(T1−ϵ)



Theory: Assumptions
Assumption 4 (Not too many arms)

• The number of actions  satisfies  and K
log K

γ(K)ρ(K)
= O(d/s0)

log K
γ(K)ρ(K)3

= O( T1−β/s0) .



Theorem 1
Regret lower bound



Theorem 1
Regret lower bound

• The first term: depends on .


• The second term: online regret lower bound given in “Contextual Bandits with 
Linear Payoff Functions” (Chu et al 2011)  and Han et al 2020.


• The break-even point: 


• Smaller : worse results, first term domination.


• Lager : closer to online setting, second term domination.


• Good 

M

M = O{log log(T/s0)} .

M

M

M : O{log log(T/s0)} .



Theorem 1
Online Extension



Theorem 2
Regret upper bound for proposed algorithm



Theorem 2
Remarks

• Regret upper bound matches with the lower bound up to log factors.


• With good choice of , able to achive fully online reget 
 (up to log factors).

M = O{log log(T/s0)}
O( Ts0)



Theorem 2
Online Extension

•



Conclusion

• Study the batched learning problem in high-dimensional linear contexual bandit 
setting.


• Develop a lower bound that characterizes the fundamental learning limits


• Provide a algorithm that yields a matching upper bound.


• Restrictions: well conditioned Hessian and knowledge about sparsity.


