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Abstract. We study the problem of dynamic batch learning in high-dimensional sparse 
linear contextual bandits, where a decision maker, under a given maximum-number-of- 
batch constraint and only able to observe rewards at the end of each batch, can dynamically 
decide how many individuals to include in the next batch (at the end of the current batch) 
and what personalized action-selection scheme to adopt within each batch. Such batch con-
straints are ubiquitous in a variety of practical contexts, including personalized product 
offerings in marketing and medical treatment selection in clinical trials. We characterize 
the fundamental learning limit in this problem via a regret lower bound and provide a 
matching upper bound (up to log factors), thus prescribing an optimal scheme for this 
problem. To the best of our knowledge, our work provides the first inroad into a theoretical 
understanding of dynamic batch learning in high-dimensional sparse linear contextual 
bandits. Notably, even a special case of our result—when no batch constraint is present— 
yields that the simple exploration-free algorithm using the LASSO estimator already 
achieves the minimax optimal Õ(

ffiffiffiffiffiffiffi
s0T
√

) regret bound (s0 is the sparsity parameter or an 
upper bound thereof and T is the learning horizon) for standard online learning in high- 
dimensional linear contextual bandits (for the no-margin case), a result that appears 
unknown in the emerging literature of high-dimensional contextual bandits.
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1. Introduction
With the growing abundance of user-specific data, ser-
vice personalization—tailoring service decisions based 
on each individual’s own characteristics—has emerged 
to be a predominant paradigm in data-driven decision 
making. This is because through personalization, a deci-
sion maker can exploit the heterogeneity in a given pop-
ulation by selecting the best decisions on a fine-grained 
individual level, thereby improving the outcomes. Such 
heterogeneity is ubiquitous; and intelligently capturing 
its benefits through personalization has found immense 
benefits across a wide range of applications in operations 
management, including medical treatment selection in 
clinical trials, product recommendation in marketing, 
ads selection in online advertising and nurse staffing in 
hospital operating rooms (Bertsimas and Mersereau 
2007, Kim et al. 2011, Bastani et al. 2017, Mintz et al. 2017, 
Schwartz et al. 2017, Ferreira et al. 2018, Hopp et al. 2018, 

Zhou et al. 2018, Ban and Rudin 2019, Miao and Chao 
2019).

In the current era, such data-driven personalized 
decision-making problems often exhibit both high- 
dimensionality and sparsity (Naik et al. 2008, Belloni 
and Chernozhukov 2011, Kim et al. 2011, Bayati et al. 
2014, Belloni et al. 2014, Razavian et al. 2015, Zhou et al. 
2018). High-dimensionality refers to the fact that, as a 
result of modern data collection technologies, a large 
number of features about individuals are collected and 
recorded in the data sets, hence making the covariate 
vector high-dimensional. At the same time, the under-
lying reward response model is often sparse, where 
only a few of those covariates actually influence the 
rewards. To capture these two aspects, and to take 
into account the sequential decision making nature of 
personalization, such problems have been formalized 
in the framework of high-dimensional sparse linear 

1315 

MANAGEMENT SCIENCE 
Vol. 70, No. 2, February 2024, pp. 1315–1342 

ISSN 0025-1909 (print), ISSN 1526-5501 (online) https://pubsonline.informs.org/journal/mnsc 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
2.

78
.4

1.
19

9]
 o

n 
11

 M
ar

ch
 2

02
4,

 a
t 0

5:
55

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

mailto:zren@wharton.upenn.edu
https://orcid.org/0000-0002-2872-5842
mailto:zzhou@stern.nyu.edu
https://orcid.org/0000-0002-0005-9411


contextual bandits, where the contexts are indepen-
dently and identically distributed (i.i.d.) drawn from 
an underlying distribution and the context dimension 
d is comparable or even exceeds the learning horizon T, 
whereas at most s0 (≪ d) context variables influence 
the (random) reward, which in expectation is a linear 
function of the context vector.

Driven by a pressing need to achieve effective person-
alization in this challenging regime, an emerging line of 
work (Wang et al. 2018, Kim and Paik 2019, Bastani and 
Bayati 2020) has developed algorithms and established 
regret guarantees, where regret measures the perfor-
mance difference between the cumulative reward gener-
ated by the algorithm and that achieved by an optimal 
policy (if the underlying model were known). This line 
of work has exploited the fact that the underlying linear 
model is sparse to achieve regret bounds that scale grace-
fully with s0 (much smaller than the ambient dimension 
d). For instance, under further margin conditions (where 
a gap between the optimal action and suboptimal actions 
can be identified with positive probability and where 
regret logarithmic in T is thus possible), Bastani and 
Bayati (2020) have developed a forced-sampling explora-
tion scheme that is used jointly with the least absolute 
shrinkage and selection operator (LASSO) estimator and 
established a O(s2

0 · (log d+ log T)2) regret bound. Build-
ing on Bastani and Bayati (2020), Wang et al. (2018) then 
subsequently1 used the same forced-sampling ex-
ploration scheme, but with a different minimax concave 
penalty weighted LASSO estimator and obtained the 
O(s2

0 · (log d+ s0) · log T) regret bound, an improvement 
if s0 is not much larger compared with log T and/or 
log d. When no margin condition exists (in which case 
dependence on T is at best Ω(

ffiffiffiffi
T
√
)), Kim and Paik (2019) 

constructed a doubly robust LASSO estimator based al-
gorithm (with uniform sampling exploration) that achi-
eves Õ(s0

ffiffiffiffi
T
√
) regret. Additionally, several earlier works 

(Abbasi-Yadkori 2012, Carpentier and Munos 2012) also 
studied high-dimensional linear contextual bandits but 
did not use LASSO based methods: These methods are 
either restricted to specialized settings—special action set 
structure and nonstandard noise in Carpentier and Munos 
(2012)—or obtained regret bounds that are worse2 than 
Θ̃(

ffiffiffiffiffiffi
dT
√
). Taken together, these developments represent 

fruitful inroads into the high-dimensional regimes that 
intelligently exploited sparsity for practical benefits.

Despite these fruitful studies, an important aspect is 
missing in this line of work that limits their applicability 
in practice. The standard online learning model adopted 
in the literature—where a decision is made on the cur-
rent individual, yielding an outcome that is immediately 
observed and incorporated to make the next decision— 
is simply impractical in many applications. In practice, 
although decision makers are able to perform active 
learning and incorporate feedback from the past to adapt 
their decisions in the future, such adaptation is often 

limited to a fixed number of rounds of interaction due to 
physical, cost, or regulatory constraints. We refer to this 
constraint as the batch constraint in this paper. For 
instance, when running a personalized product marketing 
campaign—a prime example where high-dimensional 
customer data are available (Bertsimas and Mersereau 
2007, Schwartz et al. 2017)—a company often needs to mail 
personalized product offers to its (existing and/or poten-
tial) customers. Here, the marketer will not (and cannot 
afford to) make a product offer to one customer, wait to 
receive feedback and then move on to the next customer 
(the standard online learning model). Instead, the marketer 
in practice will batch mail a set of customers, receive their 
feedback collectively and then design the next batch of 
offerings accordingly. The marketer typically has a tar-
geted customer population at hand (selected from the 
entire customer base) and, working with a time and mone-
tary budget that dictates the maximum number of batches, 
needs to design how to optimally partition the customer 
population into different batches and what product to offer 
to each customer in a given batch.

Another example where such a batch constraint exists 
is adaptive clinical trials (Robbins 1952, Chow and Chang 
2008, Pallmann et al. 2018), where a fixed number of 
medical treatments (e.g. different drugs or same drug 
but different dosages or both) are applied to a group of 
patients based on the patients’ medical characteristics 
during a phase of the trial, with the medical outcomes 
collected for the entire group at the end of the phase. The 
data collected from previous phases are then analyzed to 
design the next phase, including how many patients to 
include for the next phase and the medical treatment 
assignment to the patients. Here, each phase corresponds 
to a batch of participating patients. As pointed out in Pal-
lmann et al. (2018, pp. 1–15), “adaptive designs can make 
clinical trials more flexible by utilizing results accumulat-
ing in the trial to modify the trial’s course in accordance 
with pre-specified rules.” Despite being offered such 
flexibility in adaptive clinical trials (compared with tradi-
tional nonadaptive trials), medical decision makers have 
limited adaptivity here because the medical outcome for 
a patient can only be observed after a sufficient amount 
of time has passed; as such, the trials must proceed in 
batches (phases). The current U.S. Food and Drug 
Administration (FDA) regulation requires four phases 
for a standard clinical trial. Thus, the trial patients need 
to be partitioned into four batches, and incorporation of 
new information only occurs at the end of each batch, 
thereby rendering the standard online learning model 
and hence the standard online bandits/contextual ban-
dits algorithms inapplicable. We do point out that phar-
maceutical companies that conduct clinical trials often 
have the sole objective of obtaining FDA approval and 
hence do not have the objective of maximizing the total 
welfare (measured by regret) of the trial patients. In con-
trast, our paper’s focus is on maximizing total welfare 
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(equivalently minimizing regret),and hence would shed 
light for adaptive clinical trials under this criterion.

From the previous statements, we see that the key 
challenge imposed by the batch constraint is the limited 
adaptability: The adaptation can only occur at a batch 
level rather than at an individual level. Such limited adapt-
ability forces the decision maker to carefully select the 
batches, based on available information from the past, 
so that the inability to adapt (and hence the inferior per-
formance resulted therefrom) does not cause much degra-
dation to the overall performance. Motivated by these 
considerations, we study the problem of dynamic batch 
learning, where a decision maker dynamically decides the 
next batch’s size (at the end of the current batch) and what 
personalization scheme to adopt within each batch under 
a given maximum-number-of-batch constraint.

1.1. Main Results
Our main contributions are twofold. First, we study the 
fundamental limits of dynamic batch learning in high- 
dimensional sparse linear contextual bandits. By an 
information-theoretical argument that carefully selects 
a sequence of Bayesian priors, we establish an Ω

�
max 

{M�42�7
2M ffiffiffiffiffiffiffi

Ts0
√
(T=s0)

1
2(2M�1),

ffiffiffiffiffiffiffi
Ts0
√
}
�

regret lower bound 
(Theorem 1), where M is the maximum number of 
batches allowed. This lower bound—which holds even 
for the simple standard Guassian contexts—indicates 
that regardless of how one dynamically makes partitions 
and/or performs action selection within each batch, the 
regret can never be made any smaller. For instance, if 
M�4 (as is the case for clinical trials), then no scheme 
can achieve better regret than Ω(T 8

15s0
7
15). The second 

term Ω(
ffiffiffiffiffiffiffi
Ts0
√
) in the max is a lower bound3 for the stan-

dard online learning setting, which is automatically a 
lower bound for dynamic batch learning since the pres-
ence of a batch constraint only makes the problem 
harder. Furthermore, the break-even point (up to log fac-
tors) between these two terms is M �Θ(log log(T=s0)), 
suggesting that—if the lower bound is tight—only 
Θ(log log(T=s0)) (practically a constant number) batches 
are needed to achieve the optimal performance of stan-
dard online learning, where no batch constraint exists.

Second, we establish that this lower bound is indeed 
tight (up to log factors) by providing a matching upper 
bound. In particular, through a simple LASSO batch 
greedy learning algorithm (Algorithm 1), we establish in 
Theorem F.2 and Theorem 2 that the regret is upper 
bounded by Õ(

ffiffiffiffiffiffiffi
Ts0
√
(T=s0)

1
2(2M�1)) when the number of 

batches does not exceed O(loglog(T=s0)), hence validat-
ing that only Θ(loglog(T=s0)) batches are needed to 
achieve Õ(

ffiffiffiffiffiffiffi
Ts0
√
) regret. It suffices to look at M that is 

O(loglog(T=s0)), because the regret will not get worse 
and hence will stay at Õ(

ffiffiffiffiffiffiffi
Ts0
√
) when M gets larger. In 

particular, a special case of this result (Corollary 1) is that 

in the standard online learning setting where no-margin 
exists, we can achieve the minimax optimal regret 
Θ̃(

ffiffiffiffiffiffiffi
Ts0
√
) using an exploration-free and computationally 

efficient algorithm, improving on the Õ(s0
ffiffiffiffi
T
√
) regret 

bound given in Kim and Paik (2019).
Notably, the algorithm that achieves such strong guar-

antees is simple: it uses a static grid and is exploration-free. 
By the lower bound, using a static grid is not a limitation of 
the algorithm, but an attestation to its strength (easy imple-
mentability in practice). That exploration-free suffices is 
yet another important message, both for dynamic batch 
learning and standard online learning. For the latter, the 
existing state-of-the-art algorithms (Kim and Paik 2019, 
Bastani and Bayati 2020) all use contrived forced-sampling 
exploration schemes, which is burdensome to imple-
ment in practice. However, our results show that forced- 
sampling exploration is not necessary, thus echoing in 
high dimensions a similar message advocated in Bastani 
et al. (2021) for low-dimensional linear contextual bandits.

1.2. Managerial Insights
Our results provide insights on how to prescribe the optimal 
personalization scheme when limited adaptivity is present 
in practice and the resulting performance gap (or the 
absence thereof) when compared with the ideal fully on-
line setting. These insights can help managerial decision 
makers in different ways, depending on the context. First, 
when the adaptivity constraint M is fixed a priori, such as 
in the clinical trials setting with M� 4, our work provides 
prescriptive solutions for how to design the trials to achieve 
optimal performance. Furthermore, this optimal perfor-
mance is Ω(T 8

15s0
7
15), whereas the infeasible fully online opti-

mal performance is 
ffiffiffiffiffiffiffi
Ts0
√

, a quantity that is quite close.
Second, when the limited adaptivity constraint M is not 

as rigid and can hence be thought as a variable subject to 
certain budget limit, our results contribute meaningfully 
to the larger cost/benefit discussions facing the manage-
rial decision makers. For instance, in the personalized 
product recommendation application, our results indicate 
that loglog(T=s0) rounds of campaigns are needed to 
achieve the (practically infeasible) fully online perfor-
mance (where T here corresponds to the number of custo-
mers). This is usually a very small number and the result 
makes it clear that the decision maker should never need 
to budget for more than that. On the other hand, if under a 
tight budget constraint (and hence unable to finance 
loglog(T=s0) rounds), the decision maker would be clearly 
informed by the particular benefits under a range of feasi-
ble M’s and how to execute it optimally once such an M is 
decided on. Taken together, we believe our results pro-
vide valuable prescriptive insights in the area of adaptive 
personalization when limited adaptivity is present.

1.3. Other Related Work
The bandits literature is extensive and much of the exist-
ing work in that space study low-dimensional contextual 
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bandits (see Bubeck et al. (2012), Lattimore and Sze-
pesvári (2020), and Slivkins et al. (2019) for three books 
on this research area), where the dimension d of the con-
texts is small compared with the learning horizon T and 
where many well-performing algorithms have been 
developed and strong theoretical guarantees have been 
established (see Filippi et al. (2010); Rigollet and Zeevi 
(2010); Chu et al. (2011); Goldenshluger and Zeevi (2013); 
Agrawal and Goyal (2013a, b); Russo and Van Roy 
(2016); and Mintz et al. (2020) for a highly incomplete 
list). Low-dimensional contextual bandits are not our 
focus here, and we simply mention in passing that apply-
ing (state-of-the-art) results from the low-dimensional 
contextual bandits literature to the high-dimensional set-
ting often yields results that are not useful. For instance, 
in linear contextual bandits with no-margin, one obtains 
the Θ̃(

ffiffiffiffiffiffi
dT
√
) regret by applying the result in Chu et al. 

(2011). Even if such regret bounds continue to hold in 
high dimensions,4 such performance guarantees are not 
meaningful anymore, because when d �Ω(T) (d could 
also be a lot larger than T), at least linear regret Ω̃(T) is 
incurred, thus yielding completely ineffective learning.

Additionally, we point out that batch-constrained 
learning in bandits has been studied before in the litera-
ture. In two-armed multiarmed bandits (MABs), Perchet 
et al. (2016) studied static batch learning where the batch 
sizes must be decided a prior and established that 
O(loglog T) batches are needed (via a successive elimina-
tion algorithm during each batch) to achieve the same 
regret bound as in standard online learning. Gao et al. 
(2019) then generalized the result to K-armed bandits 
(using the same algorithm) and obtained a tight 
Θ(loglog T) regret bound even when the batch sizes can 
be chosen dynamically. However, since MABs do not 
capture individuals’ characteristics, these initial efforts 
(Perchet et al. 2016, Gao et al. 2019) only operate on a 
population level and do not address the problem of per-
sonalized decision making, which severely limits their 
practical applicability. More recently, Han et al. (2020) 
has studied this problem in low-dimensional linear con-
textual bandits, and provides the first characterization of 
batch learning that incorporates personalized decision 
making. In particular, a greedy ordinary least squares 
based algorithm is shown to achieve optimal regret (up 
to log factors). Despite these strong guarantees, the results 
in Han et al. (2020) are insufficient for several reasons. 
First, importantly, the setting in Han et al. (2020) is limited 
to the low-dimensional regime where d �O(

ffiffiffiffi
T
√
). Second, 

Han et al. (2020) studied static batch learning where the 
batch partitions must be chosen prior to the start of the 
decision-making process and cannot be changed thereaf-
ter. Consequently, this raises the critical issue of whether 
one can do better if dynamic batch learning (where the 
decision maker can decide the next partition based on the 
data observed thus far) is allowed, a question whose 
answer is not at all obvious. Third, Han et al. (2020) works 

exclusively with Guassian contexts, and its proofs rely on 
such Guassianity, which thus limits its applicability. In 
contrast, our goal in this paper is to delineate—in the 
high-dimensional sparse setting—the performance of 
dynamic batch learning by providing theoretical charac-
terizations. Additionally, when restricted to the low- 
dimensional setting (by taking d� s0) with batch con-
straints, our results provide a strict generalization of Han 
et al. (2020) on several fronts when the underlying con-
texts are stochastically generated (Han et al. (2020) also 
investigated adversarially generated contexts, which we 
do not study here): We study dynamic batch learning and 
we deal with general sub-Gaussian contexts (with diver-
sity condition). Consequently, although our goal lies in 
understanding dynamic batch learning under high- 
dimensional sparsity, our results are also state-of-the-art 
in low dimensions as well.

2. Problem Formulation
We start with some useful notation that will be used 
throughout the paper. For a positive integer n, [n] denotes 
the set {1, 2, : : : , n}; Sn�1 denotes the (n� 1)-dimensional 
unit sphere; ∆Sn�1 denotes the (n� 1)-dimensional 
sphere with radius ∆, for a given ∆ > 0; and |S | denotes 
the cardinality of the set S and Sc denotes the complement 
of S. For a vector v and a nonnegative integer q, ‖v‖q 
denotes the ℓq norm of v. For any positive semidefinite 
matrix A, λmin(A) denotes its smallest eigenvalue, and 
λmax(A) its largest eigenvalue. We now move on to the 
formulation of the problem.

2.1. High-Dimensional Sparse Linear 
Contextual Bandits

Let T denote the time horizon, d the feature dimension 
and K the number of arms. At t ∈ [T], the decision maker 
first observes a set of K d-dimensional feature vectors 
(i.e., contexts) {xt, a}a∈[K]. If the decision maker selects 
action a ∈ [K], then a reward rt, a ∈ R is incurred: rt, a �

x⊤t, aθ
? + ξt, where θ? ∈ Rd is the underlying unknown 

parameter vector and {ξt}
∞
t�0 is a sequence of i.i.d. zero- 

mean 1-sub-Gaussian random variables: E[eλξt] ≤ eλ
2

2 , ∀ 
λ ∈ R (the constant 1 is without loss of generality). Here-
after, we shall call this model Model-C.

In the contextual bandit literature, an alternative model 
with a set of underlying unknown d-dimensional para-
meters {θ?a}a∈[K] is sometimes considered. In the alterna-
tive model, at time t ∈ [T], the decision maker observes a 
d-dimensional context xt, and if action a ∈ [K] is chosen, 
the incurred regret is rt, a � x⊤t θ

?
a + ξt, where {ξt}

∞
t�1 is sim-

ilarly a sequence of i.i.d. zero-mean 1-sub-Gaussin ran-
dom variables. We refer to this alternative model as 
Model-P.

Both models have been widely used in previous litera-
ture. For example, Model-C is adopted in Han et al. (2020) 
and Oh et al. (2021) and Model-P in Bastani et al. (2021) 
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and Bastani and Bayati (2020). The two models are in fact 
equivalent in the following sense: given Model-C, one can 
write x̃t � (xt, 1, : : : , xt, K) and θ̃∗a � (0, : : : ,θ∗, : : : , 0), and 
equivalently express rt, a � x̃⊤t θ̃

∗

a + ξt. Conversely, given 
Model-P, we can let x̃t, a � (0, : : : , xt, : : : , 0) and θ̃∗ � (θ∗1, 
: : : ,θ∗K). Then we have rt, a � x̃⊤t, aθ̃

∗
+ ξt. In this paper, we 

mainly focus on Model-C, while we shall also state paral-
lel results under Model-P in Appendix F.

2.2. Assumptions
Without loss of generality (via normalization), we 
assume ‖θ?‖2 ≤ 1; the contexts {xt, a}a∈[K] are random vec-
tors i.i.d. drawn from a (Kd-dimensional) joint distribu-
tion each time: The independence is across time, but for 
each t, xt, as can be arbitrarily correlated across different 
as. We denote by at and rt, at the (random) action chosen 
and the (random) reward incurred at time t: at is random 
because either it is randomly selected or the contexts 
{xt, a}a∈[K] themselves are random, or both. We impose the 
following mild conditions on the context distribution.

Assumption 1 (Sub-Guassianity). For ∀a ∈ [K], the mar-
ginal distribution of xt, a is 1-sub-Gaussian, that is, E[X] � 0 
and E[exp(v⊤X)] ≤ exp(‖v ||2=2), for ∀v ∈ Sd�1.

Remark 1. Because bounded contexts are automatically 
sub-Gaussian, this assumption is more general than the 
bounded contexts assumption commonly adopted in the 
contextual bandits literature (Wang et al. 2018, Kim and 
Paik 2019, Bastani and Bayati 2020, Bastani et al. 2021).

Assumption 2 (Diverse Covariate). There are (possibly K- 
dependent) positive constants γ(K) and ρ(K), such that for 
any θ ∈ Rd and any unit vector v ∈ Rd, there is P((v⊤xt, a∗ )

2 

≥ γ(K)) ≥ ρ(K), where a∗ � arg maxa∈[K] x⊤t, aθ.

Remark 2. The previous assumption ensures there is 
sufficient explaration even with a greedy algorithm (it 
is also the key condition used in Han et al. (2020) for 
the greedy algorithm there). We shall provide a thor-
ough discussion on sufficient conditions for Assump-
tion 2 in Section 2.3.

In low dimensions (Auer 2002, Chu et al. 2011), regret 
bounds of Θ̃(

ffiffiffiffiffiffi
dT
√
)—which are minimax optimal up to 

log factors—have been obtained under upper confi-
dence bound based algorithms such as LinREL in Auer 
(2002) or LinUCB in Chu et al. (2011). However, these 
algorithms and their Thompson sampling counterpart 
LinTS in Agrawal and Goyal (2013b) (which performs 
well empirically but often exhibit slightly worse regret 
bounds) cease to be effective in the high-dimensional 
regime as mentioned in the introduction. Of course, it’s 
important to point out that absence of any further struc-
ture, Θ̃(

ffiffiffiffiffiffi
dT
√
) is the optimal regret bound and hence the 

best one can hope for even when d is very large. In this 
paper, we tackle this problem in the presence of sparsity, 

where only a few covariates influence rewards despite a 
large number of ambient covariates. In particular, we 
study the linear contextual bandits problem in the high- 
dimensional sparse regime: high-dimensional in the sense 
that d is large compared with T (the number of samples 
available in the entire learning horizon is small compared 
with the context dimension) and sparse in the sense that 
the underlying linear model is sparse: ‖θ?‖0≪ d. We 
quantify them next.

Assumption 3 (Sparsity in High Dimension). The dimen-
sion d � Poly(T) with sparse parameters: there exists some 
ε > 0 such that ‖θ?‖0 ≤ s0 �O(T1�ε).

Remark 3. In statistical learning, a regime is considered 
high-dimensional if the dimension of the model is larger 
than the number of samples (Wainwright 2019). In our 
setting, this would translate to d>T. Consequently, our 
assumption that d can be any polynomial of T covers 
very high-dimensional regimes. Furthermore, learning 
becomes infeasible when d becomes even larger to, say, 
exponential in T, because a log d factor is present in the 
estimation accuracy even in the simple i.i.d. supervised 
learning setting (Hastie et al. 2015), which translates to a 
linear dependence on T. The sparsity requirement forma-
lizes the precise requirement of ‖θ?‖0≪ d. One can view 
‖θ?‖0 (or its upper bound s0) as the “intrinsic dimension” 
of the linear contextual bandits; consequently, s0 should 
certainly be sublinear in T for learning to be effective. A 
typical regime of sparsity in statistical learning is s0 �

O(log d) (Wainwright 2019), which certainly meets the 
s0 �O(T1�ɛ) requirement because d � Poly(T). Finally, in 
the previous assumption, we posit that an upper bound 
s0 on the sparsity level is known to the decision maker. 
This assumption is standard and adopted for all the exist-
ing high-dimensional sparse linear contextual bandits 
(Wang et al. 2018, Kim and Paik 2019, Bastani and Bayati 
2020) in their algorithm designs.

Finally, we work in the regime where the action set 
size K is not too large.

Assumption 4 (Not Many Actions). The number of 
actions K satisfy the following two upper bounds: logK

γ(K)ρ(K) �

O(d=s0) and logK
γ(K)ρ3(K) �O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1�β=s0

p
) for some β > 0.

In our motivating applications, K is small (e.g., a con-
stant number of actions) and easily satisfies this require-
ment, although this assumption can tolerate a much 
larger number of actions because s0≪ d. In practice, this 
regime typically suffices unless the number of actions is 
combinatorially large or when the action set is continu-
ous, which would require a separate treatment.

2.3. Covariate Diversity Condition
In this section, we expand on Assumption 2 and provide 
a list of sufficient conditions for it.
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Lemma 1. The following are sufficient conditions for 
Assumption 2. 

1. If for each a ∈ [K], xt, a ~ N (0,Σ) marginally, where 
λmin(Σ) > 0, then Assumption 2 holds with γ(K) � λmin(Σ)

16 
and ρ(K) � 1

10.
2. If there exists constants α, c > 0 such that for each a ∈
[K] and any unit vector v ∈ Rd,

E[exp(�δ · (v⊤xt, a)
2
)] ≤ c · δ�α, (1) 

for any δ > 0, then γ(K) � αe · (2cK)�1=α�and ρ(K) � 1
2.

3. If there exists a constant Λ > 0, such that for each a ∈
[K] and any unit vector v ∈ Rd, v⊤E[xt, ax⊤t, a]v ≥Λ�and 
Var((v⊤xt, a)

2
) ≤ Λ

2

8K, then γ(K) � Λ2 and ρ(K) � 1
2.

4. When K� 2, if there exists a constant Λ > 0 such that 
for any a ∈ [K], any unit vector v ∈ Rd, v⊤E[xt, ax⊤t, a]v ≥Λ, 
and if there exists a constant ν > 0 such that the joint distri-
bution of (xt, 1, xt, 2) satisfies p(xt, 1, xt, 2) ≥ ν · p(�xt, 1, � xt, 2), 
then γ(K) � Λ2 and ρ(K) � νΛ2

64 .
5. When K> 2, suppose the following three conditions 

hold:
(a) There exists a constant Λ > 0, such that for any 

a ∈ [K], any unit vector v ∈ Rd, v⊤E[xt, ax⊤t, a]v ≥ Λ;
(b) There exists a constant ν1 > 0 such that the joint 

distribution of (xt, 1, : : : , xt, K) satisfies p(xt, 1, : : : , xt, K)

≥ ν1 · p(�xt, 1, : : : , � xt, K);
(c) There exists a (possibly K-dependent) constant 
ν2(K) > 0 such that for any θ ∈ Rd, any permutation 
of [K] denoted by {π1, : : : ,πK} and any unit vector 
v ∈ Rd, we have for any a ∈ [K]

ν2(K) ·P (v⊤xt,πa)
2
≥
Λ

2 , x⊤t,π1
θ ≤⋯≤ x⊤t,πK

θ

� �

≤ P (v⊤xt,π1)
2
≥
Λ

2 , x⊤t,π1
θ ≤⋯≤ x⊤t,πK

θ

� �

+P (v⊤xt,πK )
2
≥
Λ

2 , x⊤t,π1
θ ≤⋯≤ x⊤t,πK

θ

� �

:

Then Assumption 2 holds with γ(K) � Λ2 and ρ(K) � ν1ν2(K)Λ2

128 .

The proof of Lemma 1 can be found in Appendix B. 
Broadly speaking, the previous sufficient conditions 
can be categorized into two groups: Conditions 1–3 
are assumptions on the marginal distribution of xt, a, 
whereas Conditions 4 and 5 are on the joint distribution 
of {xt, a}a∈[K]. More specifically, Condition 1 is adopted 
from Han et al. (2020) and uses the property of the Gauss-
ian distribution; Condition 2 characterizes a large class 
of distributions: In particular, if there exists a constant 
ζ > 0, such that for any unit vector v and any a ∈ [K], the 
distribution of v⊤xt, a is bounded by ζ, then this condition 
holds with α � 1=2 and c � ζ

ffiffiffiffi
π
√

=2. The bounded density 
condition is similarly considered in Li et al. (2021) and is 
quite flexible: For example, when the coordinates xt, a, j 
are mutually independent across j, and the density of 
xt, a, j is bounded by ζ, the density of v⊤xt, a is bounded by 

ffiffiffi
2
√
ζ�for any unit vector v (Rudelson and Vershynin 2015, 

theorem 1.2). Condition 3 requires the population covari-
ance matrix of xt, a to be well conditioned, and the vari-
ance of (v⊤xt, a)

2 to be relatively small. Condition 4 is 
inspired by the diversity condition considered in Bastani 
et al. (2021, lemma 1) and Condition 5 by Oh et al. (2021, 
assumption 6).

These assumptions are on the covariates (as opposed 
to those on the underlying model), which are always 
testable (the covariates {xt, a}a∈[K] can be fully observed). 
This fact is particularly appealing to practitioners.

2.4. Dynamic Batch Learning
In the standard online learning setting, the decision 
maker immediately observes the reward rt, at after select-
ing action at at time t. After observing rt, at , the decision 
maker can immediately incorporate this information in 
adapting her decision for action-selection at t+1. In par-
ticular, the decision maker can use all the historical 
information—including contexts {xτ, a}τ≤t, a∈[K] and re-
wards {rτ, aτ}τ≤t�1—in deciding what action at to take at 
current time t.

In contrast, we consider a dynamic batch learning set-
ting, where the decision maker is only allowed to parti-
tion the T units into (at most) M batches, and the reward 
corresponding to each unit in a batch can only be 
observed at the end of the batch. The decision maker can 
provision the partition dynamically: The decision maker 
can decide on how large the next batch is based on what 
has been observed in all previous batches, which in-
cludes all the contexts, the selected actions, and the 
corresponding rewards. The initial batch size is chosen 
without observing anything.

Formalizing the previous statement, given a maximum 
number of batches M, a dynamic batch learning algorithm 
Alg � (T ,π) has the following two components: 

1. A dynamic grid T � {t1, t2, : : : , tM}, with 0 � t0 < t1 
<⋯< tM � T, where each ti is dynamically chosen at 
the end of ti�1 based on all the historical information 
available up to and including ti�1. More specifically, 
prior to starting the decision making process, the deci-
sion maker decides on t1, which indicates the length 
of the first batch. Having selected actions for each 
time in the first batch, the decision maker observes all 
the corresponding rewards at the end of t1. Based on 
such information—including {at}

t1
t�1, {xt, 1, : : : , xt, K}

t1
t�1 

and {rt, at}
t1
t�1—the decision maker then decides on 

what t2 is. This dynamic grid partitioning process con-
tinues, and the decision maker always selects where 
the next batch ends at the end of current batch.

2. A sequence of policies π � (π1,π2, : : : ,πT) such 
that each πt can only use reward information from all 
the prior batches and the contexts that can be observed 
up to t. That is, for a given t, if it lies in the ith batch 
(ti�1 < t ≤ ti), then the policy to be used at t can use 
all the observed rewards from τ�1 to τ � ti�1, all the 
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selected actions from τ�1 to τ � t� 1 and all the con-
texts information from τ�1 to τ � t.

Remark 4. Two special cases of a dynamic batch 
learning algorithm are worth mentioning. First, when 
the grid is fixed in advance—a static T is chosen 
completely at the beginning and not adapted during 
the learning process—we obtain a static batch learning 
algorithm, which is the class of algorithms considered 
in Han et al. (2020). Second, a further special case is 
the fixed grid T � {1, 2, : : : , T} (i.e., M�T). This corre-
sponds to the standard online learning setting where 
the decision maker need not select a grid. We also 
point out that M�1 is the other end of the spectrum, 
where no adaptation is allowed. In this case, irrespec-
tive of what one does, worst-case regret is always lin-
ear in T and regret (as defined next in Definition 1) is 
a meaningless (and thus the wrong) metric. Instead, 
one should adopt an offline learning viewpoint and 
adopt generalization error as the metric. This (offline 
learning in contextual bandits) would be an entirely 
new topic, and it has been well studied by a growing 
literature (see Zhao et al. (2014), Swaminathan and 
Joachims (2015), Joachims et al. (2018), Kitagawa and 
Tetenov (2018), and Kallus and Zhou (2018), and refer-
ences therein).

To measure the performance of a dynamic batch learn-
ing algorithm Alg, we compare the cumulative reward 
obtained by Alg to that obtained by an optimal policy 
(an oracle that knows θ?). This is formalized by regret, as 
defined next.

Definition 1. Let Alg � (T ,π) be a dynamic batch 
learning algorithm. The regret of Alg is:

RT(Alg)¢
XT

t�1

 

max
a∈[K]

x⊤t, aθ
?� x⊤t, at

θ?
!

, (2) 

where a1, a2, : : : , aT are actions generated by Alg in the 
online decision-making process.

Remark 5. The regret defined previously is the same 
as used in standard online learning, but the feedback 
in our setting is much more restricted: Batches induce 
delays in obtaining reward feedback, and hence the 
decision maker cannot immediately incorporate the 
feedback into his subsequent decision making process. 
Consequently, all else equal, the regret will be a priori 
much larger when the decision maker is constrained 
to work with only a small number of batches.

3. Fundamental Limits: Regret 
Lower Bound

In this section, we present the minimax regret lower 
bound that characterizes the fundamental learning limits 
of dynamic batch learning in high-dimensional sparse 
linear contextual bandits.

Theorem 1. Fix any s0, d and T. Let K � log(T=s0) and 
consider the problem xt, a ~ N (0, Id), ∀a ∈ [K], ∀t ∈ [T], 
where the contexts are independence across t. Then for any 
M ≤ T and any dynamic batch learning algorithm Alg, we 
have

sup
θ?:‖θ?‖2≤1, ‖θ?‖0≤s0

Eθ?[RT(Alg)]

≥ c ·max M�42�7M=2 ·
ffiffiffiffiffiffiffi
Ts0

p
·

T
s0

� � 1
2(2M�1)

,
ffiffiffiffiffiffiffi
Ts0

p
 !

,

(3) 

where Eθ? denotes taking expectation w.r.t. the distribution 
based on the parameter θ?, and c>0 is a numerical constant 
independent of (T, M, d, s0).

We shall present the main steps in the proof Theorem 
1 here and defer the details to Appendix C.

Remark 6. There are two terms on the right-hand side 
of Equation (3): The first term characterizes the depen-
dence on M and the second term corresponds to the 
regret lower bound for the standard online learning 
setting. We have mentioned in the previous section 
that standard online learning (corresponding to M�T) 
is a simple special case of dynamic batch learning. 
Because a larger M provides better opportunities for 
adapting the decision-making process, a dynamic batch 
learning problem will only have worse regret com-
pared with standard online learning setting. Conse-
quently, a lower bound to standard online learning is 
immediately a lower bound to dynamic batch learning. 
Of course, the lower bound to dynamic batch learning 
will get worse, particularly when M is small (corre-
sponding to limited chances to adapt one’s decisions), 
and hence the first term on the right-hand side of Equa-
tion (3). We see that the break-even point—where the 
two lower bound terms equalize (up to log factors)— 
occurs at M �O(log log(T=s0)). Consequently, taking 
into account the log terms, we see that when M <O(log 
log(T=s0)), the first term dominates the lower bound, 
whereas the second term dominates the lower bound 
once M gets larger than Θ(loglog(T=s0)).

Remark 7. In Theorem 1, the example used to show the 
lower bound satisfies Assumption 2 with γ(K) � ρ(K) �
O(1) and also satisfies Assumption 1. Furthermore, 
because the lower bound is established for any (s0, d, T), 
it obviously holds for the regime given in Assumption 3
(because taking the supremum in a bigger set only 
results in a no-smaller lower bound). If in addition 
s0 loglog T

s0

� �
�O(d) (a regime where d is slightly larger 

than s0), then Assumption 4 is also satisfied for the prob-
lem construction in Theorem 1. Consequently, the lower 
bound holds under all four assumptions, under which 
the upper bound is subsequently established to match 
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the lower bound (up to log factors). Additionally, when 
s0 � d (the standard low-dimensional regime), our lower 
bound still holds, hence providing a fundamental limit 
that is not known even in that important special case. 
We do point out that in the low-dimensional regime 
where s0 � d, unless K �O(1), Assumption 4 does not 
hold, in which case the subsequent upper bound does 
not apply. Of course, this is not an issue at all because 
Han et al. (2020) already provided an upper bound for 
the low-dimensional setting under static batch design 
and matches the dynamic batch lower bound here, 
thereby completing the picture that even in the low- 
dimensional case and even when dynamic batch is 
allowed, one cannot do better than the static batch learn-
ing characterized in Han et al. (2020).

3.0.1. Main Proof Outline of Theorem 1. A key diffi-
culty of the proof is that the grid is determined adap-
tively based on the observations from the previous 
batches. We briefly highlight the main proof steps here, 
each of which will be elaborated and rigorously formal-
ized in a subsequent section.

We start from the regime of small M. Suppose M �
O(loglog(T=s0)). Define for any m ∈ [M],

Tm �

$

s0 ·
T
s0

� �1�2�m
1�2�M

%

, ∆m �
1

24 ·M2 ·23M ·
T
s0

� �� 1�21�m
2(1�2�M )

:

Considering K � 2M arms, we shall construct a prior Q 
for θ? and examine the regret under Q. Here, the prior is 
carefully designed such that for any m ∈ [M], we can 
divide the 2M arms into 2M�1 pairs such that the diffr-
ence between each pair of arms is approximately the 
scale of ∆m; the values of Tm and ∆m are chosen such that 
the number of observations up to Tm�1 is simply too few 
for the decision maker to distinguish the two arms in a 
pair (and learn a effective policy). Consequently, when 
the decision maker deploys this (ineffective) policy to 
this batch (from Tm�1 + 1 to Tm), even when restricted to 
the portion from Tm�1 + 1 to Tm, the total expected regret 
incurred—(Tm�Tm�1) ·∆m—is still large. Section 3.1
details the construction of the prior, and Section 3.2 con-
nects the worst-case regret to that under Q.

Given an Alg, of course its grid design {t1, : : : , tM} can 
be different from our “ideal” design {T1, : : : , TM}. How-
ever, we now define for each m ∈ [M] the “bad” event 
Bm � {tm�1 ≤ Tm�1 < Tm ≤ tm}: Bm is a “bad” event be-
cause, when Bm occurs, the number of observations up 
to tm�1 is too few (because tm�1 ≤ Tm�1) to distinguish 
pairs of arms that are ∆m apart and learn an effective pol-
icy; when this (ineffective) policy is applied to this batch 
(from tm�1 + 1 to tm), the total expected regret incurred is 
still large (because tm ≥ Tm). In fact, we do not need a 
bad event to happen surely to guarantee that the total 
expected regret incurred is large: a bad event need only 

happen with a large enough probability to meet this 
purpose (with the probability taken over the random-
ness of the observations and the that of the parameters 
θ∗). Section 3.3 formalizes and establishes this step: If at 
least one Bm occurs with a large enough probability, 
then we obtain the desired final regret lower bound.

Section 3.4 is devoted to establishing that “if” is true. 
By a simple combinatorial argument, at least one of 
the Bm events will happen (under the convention that 
t0 � 0, and since tM�T, we are throwing M�1 points 
t1, t2, : : : , tM�1 into the M intervals partitioned by 0, 
T1, T2, : : : , TM�1, T, and hence the conclusion). In other 
words, {Bm}m∈[M] constitute a (nondisjoint) partition of 
the whole probability space. Hence, at least one bad 
event will happen with probability greater than 1=M.

Finally, Section 3.5 establishes the lower bound for stan-
dard (fully) online learning (M�T): Because M ≤ T in 
dynamic batch learning, this is clearly always a lower 
bound to the regret, which corresponds to the second term 
of the right-hand side of Equation (3). Taken together, these 
three steps complete the picture. We next dive into more 
details and begin with some useful notation.

3.1. Construction of the Prior
Let s̃0 � ⌊s0 · 2�M⌋ · 2M, and we have s0� s̃0 ≤ 2M �

O(log(T=s0)). Next, we divide [s̃0] into consecutive sub-
groups at different levels of “resolution.” At the first 
level of resolution, we divide [s̃0] into two consecutive 
group of equal sizes, denoted by I0 and I1, respectively, 
where

I0 � 1, : : : , 1
2 s̃0

� �

, I1 �
1
2 s̃0 + 1, : : : , s̃0

� �

;

at the second level of resolution, we further divide I0 into 
two equal subgroups I00 and I01, and I1 into I10 and I11, 
where

I00 � 1, : : : , 1
4 s̃0

� �

, I01 �
1
4 s̃0 + 1, : : : , 1

2 s̃0

� �

,

I10 �
1
2 s̃0 + 1, : : : , 3

4 s̃0

� �

, I11 �
3
4 s̃0 + 1, : : : , s̃0

� �

:

Repeating the previous steps, at the Mth level of resolu-
tion we obtain 2M subgroups of equal sizes:

I0⋯00 � 1, : : : , 1
2M s̃0

� �

, I0⋯01 �
1

2M s̃0 + 1, : : : , 1
2M�1 s̃0

� �

, ⋯ ,

I1⋯11 � s̃0�
1

2M s̃0 + 1, : : : , s̃0

� �

:

To summarize, for any m ∈ [M], a subgroup at the mth 
level of resolution is represented by a m-dimensional 
vector σ�in Π(m) :� {0, 1}m.

Next, we construct the prior Q on the true parameter 
θ. Generate θ1, : : : ,θM independently from Unif(S

s̃0
2M). 

For each m ∈ [M], we define θ̃m ∈ Rs̃0 in the following 
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way: for each σ ∈Π(M),

θ̃m(Iσ) �
θm σm � 0,
�θm σm � 1,

(

where σm refers to the mth coordinate of σ. As a concrete 
example, for m�1 and 2,

θ̃1 � (θ1, : : : ,θ1,
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

2M�1 items

�θ1, : : : , �θ1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
2M�1 items

)

θ̃2 � (θ2, : : : ,θ2|fflfflfflfflffl{zfflfflfflfflffl}
2M�2 items

,�θ2, : : : , �θ2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
2M�2 items

, θ2, : : : ,θ2,
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

2M�2 items

�θ2, : : : , �θ2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
2M�2 items

):

Setting θ̃ �
PM

m�1 ∆mθm, we construct θ :� f (θ1,θ2, : : : , 
θM) ∈ Rd by letting its first s̃0 coordinates be θ̃�and the 
others zero. It can checked that ‖θ‖2 � ‖θ̃‖2 ≤

PM
m�1 ∆m 

‖θ̃m‖2 ≤ 1 and ‖θ‖1 � s̃0.
We now proceed to specify the joint distribution of the 

K � 2M arms. For each t ∈ [T], we first draw xt ~ N (0, Id). 
To simplify the notation, we let S � {1, 2, : : : , s̃0} and 
Sc � {s̃0 + 1, : : : , d}. For each a ∈ [K], we first let xt, a(Sc)

� xt(Sc). It remains to specify the first s̃0 coordinates of 
xt, a. To do so, we again divide S into 2M consecutive 
groups, each represented by σ ∈Π(M), and will specify 
the value of each group. Given an arm a, we can uniquely 
write a � 1+

PM
m�1 am · 2m�1 where am ∈ {0, 1} for each 

m ∈ [M]; define a mapping Ma :Π(M) ⊢→Π(M), where 
for any m ∈ [M], Ma(σ)m � (1� am) · σm + am · (1� σm). 
We then let xt, a(σ) � xt(Ma(σ)), for any σ ∈Π(M). For 
example, when M�2, we have four arms, where

xt, 1 � xt, xt, 2 � (xt(I1), xt(I0), xt(Sc)),
xt, 3 � (xt(I01), xt(I00), xt(I11), xt(I10), xt(Sc)),
xt, 4 � (xt(I11), xt(I10), xt(I01), xt(I00), xt(Sc)):

By construction, for any a ∈ [K], xt, a ~ N (0, Id) margin-
ally, thus satisfying Assumption 2.

3.2. Notation for Regret Decomposition
We streamline the notation for a regret decomposition 
that will be used throughout:

sup
θ?:‖θ?‖2≤1, ‖θ?‖0≤s0

Eθ?[RT(Alg)] ≥ EQEθ[RT(Alg)]

�
XT

t�1
EQ

�

ExEPt
θ, x

�

max
a∈[K]

x⊤t, aθ� x⊤t, at
θ

��

, 

where EQ denotes taking expectation with respect to the 
prior Q of θ, Ex denotes taking expectation with respect 
to all the random contexts at all times (note that it is both 
equivalent and conceptually simpler to imagine all the 
contexts x � {xt, a}t∈[T], a∈[K] have been drawn once for all 
ahead of time before the decision-making process starts), 
and Pt

θ, x denotes the distribution of all observed rewards 
before time t (and hence before the start of the current 
batch that contains t) conditional on the parameter θ�and 
the contexts x. Per its definition, the distributions Pt

θ, x 

and Pt+1
θ, x are the same if t and t+1 belong to the same 

batch.
Recall that for each j ∈ [2M], we write j � 1+

PM
m�1 jm·

2m�1. Then for each t ∈ [T] and any m ∈ [M],

max
a∈[K]
(x⊤t, aθ� x⊤t, at

θ) �
X

j∈[K]
1{at � j} ·max

a∈[K]
(x⊤t, aθ� x⊤t, jθ)

�
(a) X

j∈[K]:jm�0
1{at � j} ·max

a∈[K]
(x⊤t, aθ� x⊤t, jθ) + 1{at � j+ 2m�1}

·max
a∈[K]
(x⊤t, aθ� x⊤t, j+2m�1θ)

≥
X

j∈[K]:jm�0
1{at � j} · max

a∈{j, j+2m�1}
(x⊤t, aθ� x⊤t, jθ)

+ 1{at � j+ 2m�1} · max
a∈{j, j+2m�1}

(x⊤t, aθ� x⊤t, j+2m�1θ)

�
X

j∈[K]:jm�0
1{at � j} · (x⊤t, j+2m�1θ� x⊤t, jθ)+ + 1{at � j+ 2m�1}

· (x⊤t, j+2m�1θ� x⊤t, jθ)�, (4) 

where in step (a) we categorize the arms into two groups 
by the value of jm. For a j such that jm�0, we can write

x⊤t,j+2m�1θ�x⊤t, jθ�
X

σ∈Π(M)
xt,j+2m�1 (Iσ)⊤θ(Iσ)�xt,j(Iσ)⊤θ(Iσ)

�
X

σ∈Π(M):σm�0
xt,j+2m�1(Iσ)⊤θ(Iσ)�xt,j(Iσ)⊤θ(Iσ)

+
X

σ∈Π(M):σm�1
xt,j+2m�1(Iσ)⊤θ(Iσ)�xt, j(Iσ)⊤θ(Iσ)

� 2∆m ·θ
⊤
m

 
X

σ∈Π(M):σm�1
xt(Iσ)�

X

σ∈Π(M):σm�0
xt(Iσ)

!

:

To simplify the notation, we define

dm,t �
X

σ∈Π(M):σm�2
xt(Iσ)�

X

σ∈Π(M):σm�1
xt(Iσ), um, t �

dm,t

‖dm,t‖2
, 

and Am � {j ∈ [K] : jm � 0}. With the previous expres-
sions, we continue decomposing the regret

(4)� 2∆m
X

j∈Am

1{at� j} · (d⊤m,tθm)+ +1{at� j+2m�1} · (d⊤m,tθm)�

� 2∆m ·1{j∈Am} · (d⊤m,tθm)+ +1{j∈Ac
m} · (d

⊤
m,tθm)�:

As a result, we have

EQEPt
θ, x

max
a∈[K]
(x⊤t, aθ� x⊤t, at

θ)

� �

≥ 2∆m · EQ[(d⊤m, tθm)+ · EPt
θ, x
[1{at ∈ Am}] + (d⊤m, tθm)�

· EPt
θ, x
[1{at ∈ Ac

m}]], (5) 

where we note that conditioned on θ�and x, at depends 
on the distribution of observed rewards Pt

θ, x (hence the 
inner expectation is taken with respect to this distribu-
tion). Through a change of measure, we define two new 
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probability measures via
dQ+m, t

dQ
(θ) �

(d⊤m, tθm)+

Zm(dm, t)
,

dQ�m, t
dQ
(θ) �

(d⊤m, tθm)�

Zm(dm, t)
, 

where Zm(dm, t) � EQ[(d⊤m, tθm)+] � EQ[(d⊤m, tθm)�] is a 
common normalizing factor. Then,

EQEPt
θ,x

max
a∈[K]
(x⊤t, aθ� x⊤t, at

θ)

� �

≥ 2∆mZm(dm, t) ·
�
EPt

θ,x◦Q
+
m, t
[1{at ∈Am}]

+EPt
θ,x◦Q

�
m, t
[1{at �Ac

m}]
�

, 

where Pt
θ, x ◦Q+m, t (respectively, Pt

θ, x ◦Q�m, t) is a mixed 
distribution: θ�is drawn from Q+m, t (respectively, Q�m, t) 
and observed rewards are then drawn from Pt

θ, x. Note 
that Zm(·) is a function and Zm(dm, t) emphasizes that the 
common normalizing factor depends on dm, t.

Reparametrizing of the regret in terms of the two newly 
defined priors allows us to connect the regret with the dis-
tance between measures, from which lower bounds can be 
established with information-theoretic tools.

3.3. Regret Lower Bound When a “Bad” Event 
Happens with Large Probability

When a “bad” event Bm is likely to happen under prior 
Q, large regret follows.

Lemma 2. If there exists m ∈ [M], such that
XTm

t�Tm�1+1
Ex Zm(dm, t) ·EPθ,x◦Q+m, t

[1{Bm}]
h i

≥
Tm�Tm�1

8 · 2M
2 M2

,

(6) 

then there eixsts a numerical constant c>0, independent of 
(T, M, d, s0), such that,

sup
θ?:‖θ?‖2≤1, ‖θ?‖0≤s0

Eθ?[RT(Alg)] ≥
c

M423M

ffiffiffiffiffiffiffi
Ts0

p T
s0

� � 1
2(2M�1)

:

Using the decomposition of the reget, we have for any 
m ∈ [M],

sup
θ? :‖θ?‖2≤1, ‖θ?‖0≤s0

Eθ? [RT(Alg)]

≥ 2∆m
XTm

t�Tm�1+1
Ex

h
Zm(dm, t) ·

�
EPt

θ,x◦Q
+
m, t
[1{at ∈Am}]

+EPt
θ,x◦Q

�
m, t
[1{at ∈Ac

m}]
�i

≥
(a)

2∆m
XTm

t�Tm�1+1
Ex[Zm(dm, t) · (1�TV(Pt

θ,x ◦Q+m, t,Pt
θ,x ◦Q�m, t))]

≥
(b)

2∆m
XTm

t�Tm�1+1
Ex[Zm(dm, t) · (1�TV(PTm

θ,x ◦Q+m, t,P
Tm
θ,x ◦Q�m, t))], 

where step (a) is because P(A) +Q(Ac) ≥ 1�TV(P, Q), 

and step (b) follows from the data processing inequality 
of the total variation distance (Lemma A.2). For the total 
variation,

1�TV PTm
θ, x ◦Q+m, t, PTm

θ, x ◦Q�m, t

� �

�

Z

min dPTm
θ, x ◦Q+m, t, dPTm

θ, x ◦Q�m, t

� �

≥

Z

Bm

min dPTm
θ, x ◦Q+m, t, dPTm

θ, x ◦Q�m, t

� �

�
1
2

Z

Bm

�
dPTm
θ, x ◦Q+m, t + dPTm

θ, x ◦Q�m, t

� |dPTm
θ, x ◦Q+m, t� dPTm

θ, x ◦Q�m, t |
�

�
1
2

Z

Bm

�
dPTm�1
θ, x ◦Q+m, t + dPTm�1

θ, x ◦Q�m, t

� |dPTm�1
θ, x ◦Q+m, t� dPTm�1

θ, x ◦Q�m, t |
�

, (7) 

where the last equality uses the fact that on the event 
Bm, dPTm�1

θ, x � dPTm
θ, x. Using the property that TV(P, Q) �

1
2
R
|dP� dQ | and |P(A)�Q(A) | ≤ TV(P, Q), we have

(7) � 1
2

�
EPTm�1

θ,x ◦Q
+
m, t
[1{Bm}]+EPTm�1

θ,x ◦Q
�
m, t
[1{Am}]

�

�TV
�

dPTm�1
θ,x ◦Q+m, t,dPTm�1

θ,x ◦Q�m, t

�

≥ EPθ,x◦Q+m, t
[1{Bm}]�

3
2TV

�
PTm�1
θ,x ◦Q+m, t,P

Tm�1
θ,x ◦Q�m, t

�
:

Applying Pinsker’s inequality (Lemma A.3), we have

TV
�

PTm�1
θ, x ◦Q+m, t, PTm�1

θ, x ◦Q�m, t

�

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 DKL

�
PTm�1
θ, x ◦Q+m, t‖P

Tm�1
θ, x ◦Q�m, t

�
r

: (8) 

To simplify the right-hand side of Equation (8), we use the 
rotational invariance of the uniform distribution. First, let 
v1, v2, : : : , v2�Ms̃0 

be an orthonormal basis of R2�Ms̃0 , where 
v1 � um, t; define two rotational matrices R1 � [v1, v2, : : : , 
v2�Ms̃0

] and R2 � [�v1, v2, : : : , v2�Ms̃0
]; letting θ′m � θm 

�2(v⊤1 θm)v1 � R1R⊤2 θm, we have θ′m �
d
θm and θ⊤′m dm, t 

��θ⊤mdm, t. Furthermore, let θ′ denote the parameter in-
duced by θ1, : : : ,θm′ , : : : ,θM—that is, θ′ :� f (θ1, : : : ,θ′m, 
: : : ,θM)—we then have θ′ �d θ�and

(8) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 DKL

�
PTm�1
θ, x ◦Q+m, t‖P

Tm�1
θ′, x ◦Q+m, t

�
r

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2EQ+m, t

h
DKL

�
PTm�1
θ, x ‖P

Tm�1
θ′, x

�i
r

, 

where the inequality is due to the joint convexity of 
the Kullback–Leibler (KL) divergence (Lemma A.4). The 
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KL divergence can then be explicitly computed:

EQ+m,t
DKL(PTm�1

θ,x ‖P
Tm�1
θ′,x )

h i

�
1
2
XTm�1

τ�1
EQ+m,t
[(f (θ1,::: ,θm,::: ,θM)� f (θ1,::: ,θm′ ,::: ,θM))

⊤xτ,aτ]
2

�2∆2
m ·EQ+m,t

[ |u⊤m,tθm |
2
] ·u⊤m,t

 
XTm�1

τ�1
hτ,aτh⊤τ,aτ

!

um,t

≤2∆2
m ·EQ+m,t

[ |u⊤m,tθm |
2
] ·u⊤m,t

 
XTm�1

τ�1

X

j∈[K]
hτ,jh⊤τ,j

!

um,t, 

where hτ, j �
P
σ∈Π(M):σm�0xτ, j(Iσ)�

P
σ∈Π(M):σm�1xτ, j(Iσ). 

Note that

EQ+m, t
[ |u⊤m, tθm |

2
] �
‖dm, t‖2

2Zm(dm, t)
·EQ[ |u⊤m, tθm |

3
]

�
EQ[ |θm, 1 |

3
]

2Zm(um, t)
�
EQ[ |θm, 1 |

3
]

EQ[ |θm, 1 | ]

�
(a) 2

2�M · s̃0 + 1
≤

2M+1

s̃0
, 

where step (a) follows from Lemma E.1. We then can 
lower bound the regret as

sup
θ? :‖θ?‖2≤1,‖θ?‖0≤s0

Eθ? [RT(Alg)]

≥ 2∆m
XTm

t�Tm�1+1
Ex

"

Zm(dm, t) ·

 

EPθ,x◦Q+m,t
[1{Bm}]

�
3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M+1∆2
m

s̃0
·u⊤m, t

 
XTm�1

τ�1

X

j∈[K]
hτ, jh⊤τ, j

!

um,t

v
u
u
t

!#

≥
(a)

2∆m
XTm

t�Tm�1+1
Ex

"

Zm(dm, t) ·

 

EPθ,x◦Q+m, t
[1{Bm}]

�
3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

23M+1∆2
mTm�1

s̃0

s !#

≥
(b)

2∆m
XTm

t�Tm�1+1
Ex

"

Zm(dm, t) ·

 

EPθ,x◦Q+m,t
[1{Bm}]�

1
2 ·2M+2M2

!#

,

(9) 

where step (a) uses the independence between (xt, 1, xt, 2)

and {(xτ, 1, xτ, 2)}τ≤Tm�1 and the concavity of x ⊢→
ffiffiffi
x
√

; step 
(b) is due to the choice of ∆m and Tm�1. Note also that

Ex[Zm(dm, t)] � Ex
‖dm, t‖2

2

� �

·EQ[ |u⊤t θ | ]

� Ex
‖dm, t‖2

2

� �

·EQ[ |θ1 | ] ≤
(a) 2M

2
ffiffiffiffiffi
s̃0
√ Ex[‖dm, t‖2]

≤ 2M
2 , 

where step (a) follows from Lemma E.1. Consequently,

(9) ≥ 2∆m

 
XTm

t�Tm�1+1
Ex[Zm(dm, t)·

EPθ,x◦Q+m, t
[1{Bm}]]�

1
2 · 2M

2+2M2
:

!

Finally, letting m be the batch that satisfies Equation (6), 
we have

sup
θ?:‖θ?‖2≤1, ‖θ?‖0≤s0

Eθ? · [RT(Alg)] ≥ (Tm � Tm�1)∆m

2 · 2M
2+2M2

≥
c

M427M=2 ·
ffiffiffiffiffiffiffi
s0T

p T
s0

� � 1
2(2M�1)

:

3.4. Bad Event Happens with Large Enough 
Probability

Our main result here is that a bad event occurs with suffi-
ciently high probability that (6) holds.

Lemma 3. There exists some m ∈ [M], such that
XTm

t�Tm�1+1
Ex[Zm(dm, t) ·EPθ,x◦Q+m, t

[1{Bm}]] ≥
Tm�Tm�1

2M
2+2M2

:

Because the union of {Bm}m∈[M] is the whole space, by a 
union bound, we have 

PM
m�1 P(Bm) ≥ P(∪M

m�1 Bm) � 1, 
where P is any probability measure. Hence P(Bm) ≥ 1=M 
for at least one m. For any m ∈ [M],

XTm

t�Tm�1+1
Ex[Zm(dm, t) ·EPθ,x◦Q+m, t

[1{Bm}]]

�
XTm

t�Tm�1+1
ExEQ[(d⊤m, tθm)+ ·Pθ, x(Bm)]:

Conditional on {xt, a}t≤Tm�1, a∈[K], 1{Bm} is independent of 
{xt, a}t>Tm�1, a∈[K]. Hence,

Pθ, x(Bm) � Pθ(tm�1 ≤ Tm�1 < Tm ≤ tm | {x1, a}a∈[K],
: : : , {xT, a}a∈[K])

� Pθ(tm�1 ≤ Tm�1 < Tm ≤ tm | {x1, a}a∈[K],
: : : , {xTm�1, a}a∈[K]):

Consequently, using the independence between context 
x across t, we have

Ex[EQ[(d⊤m,tθm)+Pθ,x(Bm)]]�EQ[Ex[(d⊤m,tθm)+Pθ,x(Bm)]]

�EQ[Ex[(d⊤m,tθm)+] ·Ex[Pθ,x(Bm)]]�EQ[Ex[(d⊤M,Tθm)+]

·Ex[Pθ,x(Bm)]]

�EQ[Ex[(d⊤M,Tθm)+Pθ,x(Bm)]]�Ex[EQ[(d⊤M,Tθm)+Pθ,x(Bm)]]:
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Using the previous result, we obtain that

XTm

t�Tm�1+1
Ex

h
Zm(dm, t) · EPθ, x◦Qt

1, m
[1{Bm}]

i

�
XTm

t�Tm�1+1
ExEQ

h
(d⊤M, Tθm)+ · Pθ, x(Bm)

i

≥
XTm

t�Tm�1+1
ExEQ

�

min
m′∈[M]

{(d⊤M, Tθm′ )+} · Pθ, x(Bm)

�

�
(a) X

Tm

t�Tm�1+1
Z̃ · EPθ, x◦Q̃[1{Bm}]

� (Tm � Tm�1)Z̃ · EPθ, x◦Q̃[1{Bm}], 

where in step (a) we define the measure Q̃ via dQ̃
dQ×dPx 

(x,θ) � minm′∈[M](d⊤M,Tθm′ )+

Z̃ , and Z̃ � ExEQ[minm′∈[M](d⊤M, T 
θm′ )+] is a normalizing constant.

Z̃ � Ex[‖dM, T‖2 ·EQ

�

min
m∈[M]

(u⊤M, Tθm)+]

�

� Ex[‖dM, T‖2 ·EQ

�

min
m∈[M]

(θm, 1)+]

�

, 

where the last equality is due the fact that θ1, : : : ,θM are 
independent of each other and the rotational invariance 
of the uniform distribution. Note also

EQ min
m
(θm, 1)+

h i

�

Z ∞

0
P
�

min
m
(θm, 1)+ > t

�
dt �

Z ∞

0
P
�
(θ1, 1)+ > t

�M
dt

�
1

2M

Z ∞

0
P( |θ1, 1 | > t)Mdt � 1

2M

Z ∞

0
P( |θ1, 1 |

2
> t2)Mdt

≥
1

2M

Z B(12, s̃02�M�1
2 )=2

0
1� 2t

B(12, s̃02�M�1
2 )

 !M

dt

�
B( 12 , s̃02�M�1

2 )

2M+1(M+ 1)
≥

1
2M+1

2 (M+ 1)
ffiffiffiffiffi
s̃0
√ , 

where B(α,β) denotes the beta function with parameters 
α�and β. With the previous result,

Z̃ ≥ 1
2M+1

2 · (M+ 1)
:

Because 
PM

m�1EPθ,x◦Q̃[1{Bm}] ≥ 1, there exists m ∈ [M], 
such that EPθ,x◦Q̃[1{Bm}] ≥

1
M, and hence,

Z̃ ·EPθ,x◦Q̃[1{Bm}] ≥
Z̃
M ≥

1
2M

2+2M2
:

Finally for this m, 
PTm

t�Tm�1+1Ex[Zm(dm, t) ·EPθ,x◦Q+m, t 
[1{Bm}]] ≥

(Tm�Tm�1)

2
M
2 +2M2

:

3.5. Lower Bound for Fully Online 
Learning Setting

Thus far, we have established the left-hand side of (3) is 
greater or equal to the first term on the right-hand side 
when M �O(loglog(T=s0)). When M �Ω(loglog(T=s0)), 
the first term is dominated by the second term, so it suf-
fices to show that the regret is lower bounded by the sec-
ond term. Lemma 4 completes the picture by showing 
the second part of the inequality.

Lemma 4. When M�T, there exists a two-arm setting 
with independent Guassian contexts, for which we have (for 
some numerical constant c independent of T, M, d, s0):

sup
θ?:‖θ?‖2≤1, ‖θ?‖0≤s0

Eθ?[RT(Alg)] ≥ c ·
ffiffiffiffiffiffiffi
Ts0

p
:

The proof is a simple variant of the first part, and the proof 
is in Appendix C.1. Our online regret lower bound recovers 
the lower bound obtained in Chu et al. (2011)—Their lower 
bound is stated in the dense and low-dimensional setting, 
but the adaptation is straightforward.

4. Achievable Guarantees: Regret 
Upper Bound

In this section, we propose the LASSO batch greedy learn-
ing (LBGL) algorithm, similar in spirit to the (low-dimen-
sional) greedy bandit algorithm (Bastani et al. 2021), to 
tackle the high-dimensional dynamic batch learning 
problem. This simple algorithm is minimax optimal (up 
to log factors).

4.1. LASSO Batch Greedy Learning
LBGL has two important features: (1) at each time t, it 
exploits the current estimate of the true parameter θ?
without further exploration; and (2) it uses a static grid 
that is not adaptive (of course, a static grid is a particular 
type of dynamic grid). As it turns out, this already 
achieves the optimal regret bound. Concretely, given a 
grid choice T � {t1, : : : , tM}, at the beginning of batch m, 
the algorithm constructs a Lasso estimate θ̂m�1 of the 
true parameter using the data in the previous batches; 
then it selects the action a ∈ [K] that maximizes the esti-
mated reward x⊤t, aθ̂m�1 for any t ∈ {tm�1 + 1, : : : , tm}; at 
the end of the mth batch, the algorithm updates the esti-
mate of the underlying parameters with the new obser-
vations in the current batch. Finally, regarding the grid 
choice: Inspired by the grid choice in Han et al. (2020), 
we adopt a similar but somewhat different static grid for 
our setting:

t1 � b
ffiffiffiffi
s0
√

, tm � ⌊b
ffiffiffiffiffiffiffiffiffi
tm�1
√

⌋, m ∈ {2, 3, : : : , M}, 

where b �Θ(
ffiffiffiffi
T
√
· (T=s0)

1
2(2M�1)) is chosen such that tM�T. 

The complete algorithm is described in Algorithm 1. We 
emphasize again this static grid choice, rather than a 
dynamic one, is not a limitation of our algorithm: As we 

Ren and Zhou: Dynamic Batched High-Dimensional Contextual Bandit 
1326 Management Science, 2024, vol. 70, no. 2, pp. 1315–1342, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
2.

78
.4

1.
19

9]
 o

n 
11

 M
ar

ch
 2

02
4,

 a
t 0

5:
55

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



discuss next, it is sufficient to achieve the optimal regret 
bound (up to log factors) for the class of dynamic batch 
learning algorithms.

Algorithm 1 (LBGL Under Model-C)
Input Time horizon T; context dimension d; number 
of batches M; sparsity bound s0.
Initialize b �Θ

� ffiffiffiffi
T
√
· (T=s0)

1
2(2M�1)

�
; θ̂0 � 0 ∈ Rd;

Static grid T � {t1, : : : , tM}, with t1 � b ffiffiffiffis0
√ and tm �

b
ffiffiffiffiffiffiffiffiffi
tm�1
√

for t ∈ {2, : : : , M};
Partition each batch into M intervals evenly, that is, 
(tm�1, tm] �∪

M
j�1 T(j)m , for m ∈ [M].

for m← 1 to M do
for t← tm�1 to tm do 

(a) Choose at � arg maxa∈[K]x⊤t, aθ̂m�1 (break 
ties with lower action index).

(b) Incur reward rt, at .
end
T(m) ←∪m

m′�1 T(m)m′ ;

λm← 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log K(logd+ 2 log T)

|T(m) |

s

;

Update θ̂m← arg minθ∈Rd
1

2 |T(m) |
P

t∈T(m) (rt, at � x⊤t, at 

θ)2 +λm‖θ‖1.
end

Theorem 2 characterizes the performance of the LBGL 
algorithm. In this section, we present the main steps in 
proving Theorem 2, leaving the details to Appendix D.

Theorem 2. Under Model-C, Assumptions 1–4 and M �
O(loglog(T=s0)), we have

sup
θ?:‖θ?‖2≤1, ‖θ?‖0≤s0

Eθ?[RT(Alg)]

≤
C ·M3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log K log(KT)log(dT)
p

γ(K)ρ(K)
·
ffiffiffiffiffiffiffi
Ts0

p T
s0

� � 1
2(2M�1)

,

(10) 

where Alg is LBGL and C>0 is a numerical constant indepen-
dent of (T, d, M, K, s0).

Remark 8. This regret upper bound matches the lower 
bound proved in Theorem 1 (up to logarithmic factors). 
That we only stated the theorem for M �O(loglog(T=s0))

is not a restriction, but instead a merit of our result: With 
the number of batches M �O(loglog(T=s0)), we are 
already able to achieve the fully online optimal regret (up 
to log factors) Õ(

ffiffiffiffiffiffiffi
Ts0
√
). Lemma 4 established the Ω(

ffiffiffiffiffiffiffi
Ts0
√
)

lower bound for fully online learning (under K�2) and 
hence a matching Õ(

ffiffiffiffiffiffiffi
Ts0
√
) regret bound indicates that it 

is minimax optimal. Consequently, for any larger M, the 
achievable regret, which a priori will not get worse, can-
not get better.

The regret of any dynamic batch learning algorithm can 
be achieved by a fully online learning algorithm—in the 

online setting you can always divide the observations into 
batches and run the corresponding batch algorithm—and 
this observation immediately yields Corollary 1.

Corollary 1. In the fully online learning setting (M�T) 
and under Assumptions 1–4:

sup
θ?:‖θ?‖2≤1, ‖θ?‖0≤s0

Eθ?[RT(Alg)]

≤

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

log log(T=s0)
�3

log K log(KT)log(dT)
r

γ(K)ρ(K)
·
ffiffiffiffiffiffiffi
Ts0

p
,

(11) 
where C> 0 is a numerical constant independent of (T, d, M, 
K, s0).

4.2. Regret Analysis
In this section, we present the main steps of proving Theo-
rem 2. We start by showing that the empirical covariance 
matrices are well conditioned even when the arms are 
adaptively chosen: In particular, although unlike in the 
low-dimensional settings the empirical covariance matri-
ces are rank-deficient (as a result of high-dimensional fea-
tures), the restricted eigenvalues are well behaved. Then 
we leverage standard Lasso results to show that with 
“well-behaved” empirical covariance matrices, the Lasso 
estimates of θ? is reasonably close to the true parameters. 
Finally we translate the above results into the regret analy-
sis, and establish the desired regret upper bound.

4.2.1. Establishing the Restricted Eigenvalue Condi-
tion. Given a sparsity parameter s and a matrix A, we 
define the key quantity restricted eigenvalues:

φmin(s, A)¢ min
v∈Rd:‖v‖0≤s

v⊤Av
‖v‖22

( )

,

φmax(s, A)¢ max
v∈Rd:‖v‖0≤s

v⊤Av
‖v‖22

( )

:

Following the notation in Algorithm 1, T(j)m denotes the 
jth interval of the mth batch (where the mth batch has 
been divided evenly into M intervals). We then define 
for any j, m ∈ [M] the empirical covariance matrix: Dm, j �P

t∈T(j)m
xt, at x⊤t, at 

and Am �
Pm

j�1 Dj, m. Lemma 5 shows that 
the restricted eigenvalues are bounded from both above 
and below with high probabilities.

Lemma 5. Suppose Assumptions 1–4 hold. Given a spar-
sity parameter s, with probability at least 1� 2M2exp 
(O(s log d)�Ω(ρ2(K) ·

ffiffiffiffiffiffiffi
Ts0
√

=M)), for any j, m ∈ [M],

φmax s,
Dm, j

|T(j)m |

 !

≤ 16 log K,

φmin s,
Dm, j

|T(j)m |

 !

≥
γ(K)ρ(K)

4 :
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The detailed proof of Lemma 5 is deferred to Appendix 
D.1, and we provide the high-level steps here. For a 
given v ∈ Rd such that ‖v‖0 ≤ s and ‖v‖2 � 1, we prove 
the upper bound of v⊤Dm, jv using standard concentra-
tion inequalities. We then generalize the upper bound to 
an ε-net of the set of all s-sparse v by taking a union 
bound. Finally, we extend the result to any s-sparse v by 
utilizing the property of the ε-net. The proof of the lower 
bound is similar to that of the upper bound, except that 
we apply Assumption 2 when proving the lower bound 
for a single vector.

4.2.2. Bounding Lasso Estimation Error. With well- 
behaved restricted eigenvalues, Lemma 6 leverages stan-
dard Lasso results to prove an estimation error bound 
for ‖θ̂m�θ

?‖2.

Lemma 6. Under Assumptions 1–4, with probability at least 
1�M exp(log d� log K ·Ω(

ffiffiffiffiffiffiffi
Ts0
√

=M))� 2M2 · exp
�

O
�

s0 

·
log K log d
γ(K)ρ(K)

�
�Ω(ρ2(K)

ffiffiffiffiffiffiffi
Ts0
√
)
�
�M ·T�2, for any m ∈ [M],

‖θ̂m�θ
?‖2 ≤

800
ffiffiffi
2
√

γ(K)ρ(K) ·
ffiffiffiffiffiffiffiffiffi
s0 M

p
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logK · (2logT+ logd)
tm

s

:

The proof uses classical Lasso theory (Bickel et al. 2009) 
and is given in Appendix D.2.

4.2.3. Analyzing Regret Upper Bound. With Lemmas 5
and 6, we are now ready to bound the regret of Algo-
rithm 1. Given m ∈ [M], consider t ∈ {tm�1 + 1, : : : , tm}, 
the instantaneous regret can be bounded as maxa∈[K] (xt, a 
�xt, at )

⊤θ? ≤maxa∈[K] (xt, a� xt, at)
⊤
(θ?� θ̂m�1) ≤ 2 maxa∈[K]

|x⊤t, a(θ
?� θ̂m�1) | , where the first inequality is from the 

definition of at.
For a fixed a ∈ [K], x⊤t, a(θ

?� θ̂m�1) is ‖θ?� θ̂m�1‖
2
2- 

sub-Gaussian. Thus, applying a sub-Gaussian maximal 
inequality, we get that given a t ∈ [T], with probability at 
least 1�T�3:

2 max
a∈[K]
|x⊤t, a(θ

?� θ̂m�1) | ≤ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log(TK)
q

· ‖θ?� θ̂m�1‖2:

Applying a union bound over the batch m with m ≥ 2 
and invoking Lemma 6, we have with probability at least 
1� (1+M) ·T�2�M · exp(log d� log K ·Ω(

ffiffiffiffiffiffiffi
Ts0
√

=M))�
2M2 · exp O s0

log K log d
γ(K)ρ(K)

� �
�Ω(ρ2(K) ·

ffiffiffiffiffiffiffi
Ts0
√

=M)
� �

,

max
a∈[K]

(xt, a� xt, at)
⊤θ?

≤
C

γ(K)ρ(K) ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s0 M log(TK)
q

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log K(2 log T + log d)
tm�1

s

,

∀t ∈ [tm�1 + 1, tm], 

where C>0 is a numerical constant. Summing over the 

regret incurred in the m ≥ 2 batches yields
XM

m�2

Xtm

t�tm�1+1
max
a∈[K]
(xt, a� xt, at)

⊤θ?

≤
C

γ(K)ρ(K) · bM3=2 ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s0 log K log(TK)(log d+ 2 log T)
q

≤
C′

γ(K)ρ(K)
·M3=2

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log K log(TK)(log d+ 2 log T)
q ffiffiffiffiffiffiffi

Ts0
p T

s0

� � 1
2(2M�1)

, 

where b �Θ
ffiffiffiffi
T
√
· (T=s0)

1
2(2M�1)

� �
is from the choice of grids. 

Finally for the first batch, because no rewards are observed, 
it suffices for us to adopt a crude bound:

Xt1

t�1
max
a∈[K]
(xt, a� xt, at)

⊤θ? ≤ 2
Xt1

t�1
max
a∈[K]

x⊤t, aθ
?

� �

:

Applying a sub-Gaussian maximal inequality and a 
union bound over all t ∈ [t1], we have with probability at 
least 1�T�2,

Xt1

t�1
max
a∈[K]
(xt, a� xt, at)

⊤θ? ≤ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log(KT)
q

· t1

�Θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log(KT)
q ffiffiffiffiffiffiffi

Ts0
p

·
T
s0

� � 1
2(2M�1)

 !

:

Putting everything together, we then have that with 
probability at least 1� (2+M) ·T�2� 2M2 · exp

�
O
�

s0 

log K log d
γ(K)ρ(K)

�
�Ω(ρ2(K) ·

ffiffiffiffiffiffiffi
Ts0
√

=M)
�
�M · exp(log d� log K ·

Ω(
ffiffiffiffiffiffiffi
Ts0
√

=M)),

RT(Alg) ≤
C′′

γ(K)ρ(K) ·M
3=2 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log K log(KT)log(dT)
q

·
ffiffiffiffiffiffiffi
Ts0

p
·

T
s0

� � 1
2(2M�1)

, 

where C′′ > 0 is a numerical constant resulting from 
merging the constant corresponding to the first batch 
and the constant C′ (corresponding to all subsequent 
batches). Because M �O(loglog(T=s0)), the previous 
high-probability regret bound immediately implies the 
expected regret bound:

Eθ?[RT(Alg)] ≤ C′′′

γ(K)ρ(K)
·M3=2 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log K log(KT)log(dT)
q

·
ffiffiffiffiffiffiffi
Ts0

p
·

T
s0

� � 1
2(2M�1)

, 

where C′′′ > 0 is a numerical constant.

5. Discussion
Through matching lower and upper regret bounds, our 
work completes (up to certain log factors) the picture of 
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dynamic batch learning in high-dimensional sparse linear 
contextual bandits. Furthermore, the algorithm provided is 
very simple to implement in practice, an important merit 
from a practical standpoint. We close the paper by discuss-
ing possible extensions of our work.

5.1. Extension to Subexponential Reward 
Distribution

In this paper, we focused on sub-Gaussian reward dis-
tribution. It would be interesting to consider the high- 
dimensional dynamic batch learning problem with 
subexponential reward distribution (although this is a 
hard task even in the fully online setting).

5.2. Extension to Sparsity-Agnostic Algorithm
It would be desirable to have a dynamic batch learning 
algorithm that would not require any knowledge of a 
sparsity upper bound. In the fully online decision-making 
setting, Oh et al. (2021) propose such an algorithm. Adapt-
ing it the batched setting, however, is challenging because 
the grid design critically depends on s0.

5.3. Other Extensions
It would be interesting to explore the continuous action 
set case and understand whether learning guarantees in 
this regime are materially worse. Finally, going beyond 
to the nonparametric contextual bandits setting would 
also be useful.

Appendix A. Definitions and Auxiliary Results
We collect in this section all the known results in the 
existing literature that will be useful for us.

Definition A.1. Let (X ,F ) be a measurable space and P, Q 
be two probability measures on (X ,F ). 

(a) The total-variation distance between P and Q is defined as

TV(P, Q) � sup
A∈A
|P(A)�Q(A) | :

(b) The KL divergence between P and Q is

DKL(P‖Q) �

Z

log dP
dQ dP if P≪ Q

+∞ otherwise
:

8
<

:

Lemma A.1 (Paley-Zygmund Inequality). If X ≥ 0 is a ran-
dom variable whose variance is finite, Then for any θ ∈ (0, 1),

(1) P(X > θE[X]) ≥ (1�θ)2E[Z]
2

E[Z2]
;

(2) P(X > θE[X]) ≥ (1�θ)2E[X]2

Var(Z) + (1�θ)2E[X]2
:

Lemma A.2 (Data-Processing Inequality (Cover and Tho-
mas 2006)). Let X, Y, Z denote random variables drawn from a 
Markov chain in the order (denoted by X→ Y→ Z) that the con-
ditional distribution of Z depends only on Y and is conditionally 
independent of X. Then if X→ Y→ Z, we have I(X; Y) ≥ I(X; Z), 
where I(X; Y) is the mutual information between X and Y.

Lemma A.3 (Pinsker’s Inequality). Let P and Q be any two 
probability measures on the same measurable space. Then 

TV(P, Q) ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ·DKL(P‖Q)

q

.

Lemma A.4 (Joint Convexity of the KL divergence (Cover 
and Thomas 2006)). The KL divergence DKL(P | |Q) is jointly 
convex in its argument P and Q: let P1, P2, Q1, Q2 be distribu-
tions on X , then for any λ ∈ [0, 1],

DKL(λP1 + (1�λ)P2‖λQ1 + (1�λ)Q2)

≤ λDKL(P1‖Q1) + (1�λ)DKL(P2‖Q2):

Lemma A.5 (Sub-Gaussian Maximal Inequality (Rigollet 
2015)). Let X1, : : : , XK be K centered σ2-sub-Gaussian random vari-

ables, then for any t>0, P(maxk∈[K]Xk ≥ t) ≤ Ke�
t2

2σ2 :

Appendix B. Proof of Lemma 1
1. The proof follows directly from Han et al. (2020, lemma 

4).
2. Given a unit vector v ∈ Rd, for any δ > 0,

P (v⊤xt, at )
2
≤
α

e · (2cK)�
1
α

� �
� P �(v⊤xt, at )

2
≥�
α

e · (2cK)�
1
α

� �

� P(exp(�(v⊤xt, at )
2
· δ) ≥ exp �α

e
· (2cK)�

1
α · δ

� ��

≤
(a)

exp αe · δ · (2cK)�
1
α

� �
·E[exp(�(v⊤xt, at )

2
· δ)]

≤ exp αe · δ · (2cK)�
1
α

� �
·
X

a∈[K]
E[exp(�(v⊤xt, a)

2
· δ)]

≤
(b)

cK · exp αe · δ · (2cK)�
1
α

� �
· δ�α, 

where step (a) is due to Markov’s inequality and step (b) follows 
from Equation (1). Taking δ � e · (2cK)1=α�(the minimizer of the 
upper bound), we arrive at P((v⊤xt, at )

2
≥ αe · (2cK)�1=α

) ≥ 1
2.

3. Let v ∈ Rd be an arbitrary unit vector. For each a ∈ [K],

P (v⊤xt, a)
2
≥

1
2 ·E[(v

⊤xt, a)
2
]

� �

≥
(a) 1

4 ·E[(v
⊤xt, a)

2
]

2

Var((v⊤xt, a)
2
) + 1

4 ·E[(v⊤xt, a)
2
]

2

≥
(b) 1

4 ·E[(v
⊤xt, a)

2
]

2

Λ2

8K++
1
4 ·E[(v⊤xt, a)

2
]

2 ≥
(c) 2K

2K+ 1 :

Previously, step (a) is due to the Paley-Zygmund inequality 
(Lemma A.1); steps (b) and (c) follow from the assumption. As 
a consequence, we have P((v⊤xt, a)

2
< Λ2) ≤

1
2K+1. Finally,

P (v⊤xt, at )
2
≥
Λ

2

� �

≥ P min
a∈[K]
(v⊤xt, a)

2
≥
Λ

2

� �

� 1�P min
a∈[K]
(v⊤xt, a)

2
<
Λ

2

� �

≥ 1�
X

a∈[K]
P (v⊤xt, a)

2
<
Λ

2

� �

≥ 1� K
2K+ 1 ≥

1
2 , 

completing the proof.
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4. Without loss of generality, we assume ν ≤ 1. For an arbi-
trary unit vector v ∈ Rd,

P (v⊤xt, at )
2
≥
Λ

2

� �

�
X2

a�1
P at � a, (v⊤xt, a)

2
≥
Λ

2

� �

:

By symmetry, we only need to focus on a�1, for which we 
have

P at � 1, (v⊤xt, 1)
2
≥
Λ

2

� �

�

Z

1 x⊤t,aθ≥ x⊤t, 2θ, (v⊤xt, 1)
2
≥
Λ

2

� �

· p(xt, 1,xt, 2)dxt, 1dxt, 2

≥
(a) 1

2 ·P at � 1, (v⊤xt,a) ≥
Λ

2

� �

+
ν

2

Z

1 x⊤t, 1θ≥ x⊤t, 2θ, (v⊤xt, 1)
2
≥
Λ

2

� �

· p(�xt, 1, � xt, 2)dxt, 1dxt, 2

�
1
2 ·P at � 1, (v⊤xt, 1)

2
≥
Λ

2

� �

+
ν

2 ·P at � 2, (v⊤xt, 1)
2
≥
Λ

2

� �

≥
ν

2 ·P (v
⊤xt, 1)

2
≥
Λ

2

� �

≥
ν

2 ·P (v
⊤xt,a)

2
≥
E[(v⊤xt, 1)

2
]

2

 !

≥
(b) ν

8 ·
E[(v⊤xt,a)

2
]

2

E[(v⊤xt,a)
4
]
≥
(c)νΛ2

128 , 

where step (a) is by the assumption; step (a) is due to the Paley- 
Zygmund inequality; and step (c) is because of the assumption 
and v⊤xt, a is 1-sub-Gaussian. Combining the case of a�1 and 
a�2, we have

P (v⊤xt, at )
2
≥
Λ

2

� �

≥
νΛ2

64 :

5. Without loss of generality, we assume ν1,ν2(K) ≤ 1. Fix 
an arbitrary unit vector v, and θ ∈ Rd.

To start, we focus on a� 1. We decompose all the permu-
tations of [K] into three subsets: Imin, Imax and Imid, where 
Imin :� {π : π1 � 1}, Imax :� {π : πK � 1} and Imid � {π : π1 ≠ 
1,πK ≠ 1}. We then have

P (v⊤xt,1)
2
≥
Λ

2

� �

�
X

π:π∈Imin

P (v⊤xt, 1)
2
≥
Λ

2 ,x⊤t,π1
θ≤⋯≤ x⊤t,πK

θ

� �

+
X

π:π∈Imax

P (v⊤xt, 1)
2
≥
Λ

2 ,x⊤t,π1
θ≤⋯≤ x⊤t,πK

θ

� �

+
X

π:π∈Imid

P (v⊤xt,1)
2
≥
Λ

2 ,x⊤t,π1
θ≤⋯≤ x⊤t,πK

θ

� �

:

By the assumption, for any permutation π,

ν2(K) · P (v⊤xt, 1)
2
≥
Λ

2 , x⊤t,π1
θ ≤⋯≤ x⊤t,πK

θ

� �

≤ P (v⊤xt,π1 )
2
≥
Λ

2 , x⊤t,π1
θ ≤⋯≤ x⊤t,πK

θ

� �

+P (v⊤xt,πK )
2
≥
Λ

2 , x⊤t,π1
θ ≤⋯≤ x⊤t,πK

θ

� �

:

As a consequence,

P (v⊤xt, 1)
2
≥
Λ

2

� �

≤
1
ν2(K)

·
X

π

P (v⊤xt,π1 )
2
≥
Λ

2 , x⊤t,π1
θ ≤⋯≤ x⊤t,πK

θ

� �

+ P (v⊤xt,πK )
2
≥
Λ

2 , x⊤t,π1
θ ≤⋯≤ x⊤t,πK

θ

� �

:

Previously, by the relaxed symmetry condition,

P (v⊤xt,π1 )
2
≥
Λ

2 , x⊤t,π1
θ ≤⋯≤ x⊤t,πK

θ

� �

≤
1
ν1
·

Z

1 (v⊤xt,π1 )
2
≥
Λ

2 , x⊤t,π1
θ ≤⋯≤ x⊤t,πK

θ

� �

· p(�xt, 1, : : : , � xt, K)dxt, 1: : : dxt, K

�
1
ν1
· P (v⊤xt,π1 )

2
≥
Λ

2 , x⊤t,π1
θ ≥⋯≥ x⊤t,πK

θ

� �

:

We then have

P (v⊤xt, 1)
2
≥
Λ

2

� �

≤
1

ν1ν2(K)
·
X

π

P (v⊤xt, at )
2
≥
Λ

2 , x⊤t,π1
θ ≥⋯≥ x⊤t,πK

θ

� ��

+ P (v⊤xt, at )
2
≥
Λ

2 , x⊤t,π1
θ ≤⋯≤ x⊤t,πK

θ

� ��

�
2

ν1ν2(K)
· P (v⊤xt, at )

2
≥
Λ

2

� �

:

Finally, we arrive at

P (v⊤xt, at )
2
≥
Λ

2

� �

≥
ν1ν2(K)

2 · P (v⊤xt, 1)
2
≥
Λ

2

� �

≥
ν1ν2(K)

2 · P (v⊤xt, 1)
2
≥

v⊤E[xt, 1x⊤t, 1]v
2

� �

≥
(a) ν1ν2(K)

8
Λ2

16 �
ν1ν2(K)Λ2

128 , 

where step (a) is due to the Paley-Zygmund (Lemma A.1) 
inequality and the assumption.

Appendix C. Proof of Main Lemmas in Section 3
C.1. Proof of Lemma 4
As in the batched case (and with the same notation), we con-
struct a prior Q for θ, where θ(S) ~ Unif(∆Ss0�1) and θ?(Sc)

� 0, and ∆ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0=32T

p
. Then,

sup
θ? :‖θ?‖2≤1, ‖θ?‖0≤s0

Eθ? [RT(Alg)]

≥ EQEθ[RT(Alg)] �
XT

t�1
EQExEPt

θ,x

�

max
a∈{1,2}

(x⊤t, aθ� x⊤τ, aτθ)

�

�
XT

t�1
ExEQEPt

θ,x
[1{at � 1} · (d⊤t θ)+ + 1{at � 2} · (d⊤t θ)�],

(C.1) 

where dt � xt, 2 � xt, 1. Define two new measures via: dQ+t
dQ (θ) �

(d⊤t θ)+
Z(dt)

and dQ�t
dQ (θ) �

(d⊤t θ)�
Z(dt)

; Z(dt) � EQ[(d⊤t θ)+] � EQ[(d⊤t θ)�] is 
a common normalizing constant. Using this representation, we 
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have

(C:1) �
XT

t�1
Ex[Z(dt) · (EPθ,x◦Q+t [1{at � 1}]+EPθ,x◦Q�t [1{at � 2}])]

≥
(a)XT

t�1
Ex[Z(dt) · (1�TV(Pt�1

θ,x ◦Q+t ,Pt�1
θ,x ◦Q�t ))]

≥
(b)XT

t�1
Ex Z(dt) · 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2DKL

�
Pt�1
θ,x ◦Q+t ‖ Pt�1

θ�2(ũ⊤t θ)ũ t ,x ◦Q+t
�

r !" #

≥
(c)XT

t�1
Ex Z(dt) · 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2EQ+t [DKL

�
Pt�1
θ,x ‖ Pt�1

θ�2(ũ⊤t θ)ũ t ,x

�
]

r !" #

,

(C.2) 

where step (a) follows from P(A) +Q(Ac) ≤ 1�TV(P, Q); 
step (b) is due to a change of measure and Lemma A.3; and 
step (c) is because of the joint convexity of the KL diver-
gence. Previously,

DKL Pt�1
θ, x ‖P

t�1
θ�2(ũ⊤t θ)ũt , x

� �
�

1
2
Xt�1

τ�1

�
2(ũ⊤t θ) · (ũ

⊤
t xτ, aτ )

�2

� 2(ũ⊤t θ)
2
· ũ⊤t

Xt�1

τ�1
xτ, aτx⊤τ, aτ

 !

ũt, 

where ũt ∈ Rd satisfies ũt(S) � dt(S)
‖dt(S)‖2 

and ũt(Sc) � 0. Plugging 
in the expression of the KL divergence, we have

(C:2)

≥
XT

t�1
Ex Z(dt) · 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EQt
1
[(ũ⊤t θ)

2
] · ũ⊤t

Xt�1

τ�1
x⊤τ,aτxτ,aτ

 !

ũt

v
u
u
t

0

@

1

A

2

4

3

5

≥
XT

t�1
Ex Z(dt) · 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EQt
1
[(ũ⊤t θ)

2
] · ũ⊤t

Xt�1

τ�1
xτ, 1x⊤τ, 1 + xτ, 2x⊤τ, 2

 !

ũt

v
u
u
t

0

@

1

A

2

4

3

5

≥
(a)XT

t�1
Ex Z(dt) · 1�

ffiffiffiffiffiffiffiffiffiffi

4t∆2

s0

s0

@

1

A

2

4

3

5≥
(b) 1

2
XT

t�1
Ex[Z(dt)] ≥

T∆

10 �
ffiffiffiffiffiffiffi
Ts0
√

40
ffiffiffi
2
√ , 

where step (a) is by taking expectation w.r.t. {(xτ, 1, xτ, 2)}τ≤t�1; 
and step (b) follows from the choice of ∆. The proof is 
completed.

Appendix D. Proof of Main Lemmas in Section 4
D.1. Proof of Lemma 5
Consider the mth batch, for any j ∈ [M], by definition at �

arg maxa∈[K]x⊤t, aθ̂m�1 for any t ∈ T(j)m , where θ̂m�1 depends 
only on the observations from batch 1 to m�1. Hence 
{xt, at}t∈T(j)m 

are mutually independent and follow the same 
distribution conditional on the previous batches. Consider 
now a fixed sparsity upper bound s.

D.1.1. Upper Bound. Given a vector v ∈ Rd, such that ‖v‖0 ≤
s and ‖v‖2 � 1. Let supp(v) denote the support of v, where with-
out loss of generality we assume |supp(v) | � s (otherwise we 
can include extra zero coordinates in supp(v)), and let N (ε)
denote the ε-net of Ss�1. For notational simplicity, denote Yt, a �

(v⊤xt, a)
2. For any δ,µ > 0, one has

P

 
X

t∈T(j)m

Yt, at ≥ (4+ δ) · |T(j)m | | θ̂m�1

!

≤
(a)

exp
�
�µ(4+ δ) · |T(j)m |

�
·E

"

exp
 

µ ·
X

t∈T(j)m Yt,at

!

| θ̂m�1

#

�
(b)exp

�
�µ(4+ δ) · |T(j)m |

�
·
Y

t∈T(j)m E

[exp(µ ·Yt, at ) | θ̂m�1]

≤ exp
�
�µ(4+ δ) · |T(j)m |

�Y

t∈T(j)m

 
X

a∈[K]
E[exp(µYt, a)]

!

, 

where step (a) follows from the Markov’s inequality, and step 
(b) is due to the (conditional) independence across t. Because 
xt, a is 1-sub-Gaussian, v⊤xx, a is as well 1-sub-Gaussian. As a 
result, Yt, a �E[Yt, a] is subexponential with parameter (4

ffiffiffi
2
√

, 4), 
and E[Yt, a] ≤ 4. With this, we obtain a Bernstein-type bound:

P
X

t∈T(j)m

Yt, at ≥ (4+ δ) · |T(j)m |

0

@

1

A

≤ exp �min δ2

64 , δ8

� �

+ log K
� �

· |T(j)m |

� �

:

Combining everything previously and letting δ � 9 log K, 
we arrive at

P
1
|T(j)m |

X

t∈T(j)m

(v⊤xt, at )
2
≥ 4+ 9 log K

0

@

1

A ≤ exp �
log K

8 · |T(j)m |

� �

:

Taking a union bound, we get that with probability at 
least 1� exp(slog d+ slog(1+ 1=ε)� |T(j)m | log K=8), for any v 
such that ‖v‖0 ≤ s, ‖v‖2 � 1 and v(supp(v)) ∈N (ε),

1
|T(j)m |

X

t∈T(j)m

(v⊤xt, at )
2
≤ 4+ 9 log K ≤ 15 log K:

Let u ∈ Rd be an arbitrary vector such that ‖u‖0 ≤ s and 
‖u‖2 � 1. By the definition of the ε-net, there exists v0 ∈N (ε), 
such that ‖u(supp(u))� v0‖2 ≤ ε. Let v ∈ Rd be a vector such 
that v(supp(u)) � v0 and v(supp(u)c) � 0. By construction 
‖u� v‖2 ≤ ε:Consequently,

u⊤Dm, ju
|T(j)m |

�
v⊤Dm, jv
|T(j)m |

�
u⊤Dm, j(u� v)
|T(j)m |

+
(u� v)⊤Dm, jv
|T(j)m |

≤ 2εφmax s,
Dm, j

|T(j)m |

 !

:

Note that |T(j)m | �Ω(
ffiffiffiffiffiffiffi
Ts0
√

=M), for any j, m ∈ [M]. Taking 
the supreme over u and rearranging yields that with prob-
ability at least 1� exp(slog d+ slog(1+ 1=ε)�Ω(

ffiffiffiffiffiffiffi
Ts0
√

=M)),

φmax s, Dm

|T(j)m |

 !

≤
15 log K
1� 2ε : (D.1) 

D.1.2. Lower Bound. We now proceed to prove a lower 
bound for the restricted eigenvalues. By Assumption 2, 
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P(Yt, at ≥ γ(K) | θ̂m�1) ≥ ρ(K). We then have that

P

 
1
|T(j)m |

X

t∈T(j)m

Yt, at ≤
γ(K)ρ(K)

2 | θ̂m�1

!

≤ P

 
1
|T(j)m |

X

t∈T(j)m

1 Yt, at ≥ γ(K)
� �

≤
ρ(K)

2 | θ̂m�1

!

≤ P

 
1
|T(j)m |

X

t∈T(j)m

1 Yt, at ≥ γ(K)
� �

�P(Yt, at ≥ γ(K) | θ̂m�1)

≤�
ρ(K)

2 | θ̂m�1

!

≤ exp �
ρ2(K)

2 · |T(j)m |

� �

, 

where the last inequality is due to the Chernoff bound.
Taking a union bound over all s-sparse unit vector v 

whose support is in N (ε), we conclude that with probability 
at least 1� exp(slog d+ slog(1+ 1=ε)� ρ2(K) |T(j)m |=2), for any 
v whose support is in N (ε),

1
|T(j)m |

X

t∈T(j)m

(v⊤xt, at )
2
>
γ(K)ρ(K)

2 : (D.2) 

We now condition on Events (D.1) and (D.2) and turn our 
attention to an arbitrary vector u ∈ Rd such that ‖u‖0 ≤ s and 
‖u‖2 � 1. By the definition of ε-nets, there exists v0 ∈N (ε)
such that ‖u(supp(u))� v0‖2 ≤ ε. Let v ∈ Rd be the vector 
such that v(supp(u)) � v0 and v(supp(u)c) � 0. Then

1
|T(j)m |

X

t∈T(j)m

(u⊤xt, at )
2
≥

1
|T(j)m |

X

t∈T(j)m

(v⊤xt, at )
2
+ 2(u� v)xt, at x⊤t, at

v

0

@

1

A

≥
γ(K)ρ(K)

2 � 2εφmax s,
Dm, j

|T(j)m |

 !

≥
γ(K)ρ(K)

2 �
30εlog K

1� 2ε :

Finally letting ε �min( 1
32 , γ(K)ρ(K)128 log K) and taking a union bound 

over j, m ∈ [M], we conclude that with probability at least 
1� 2M2exp(slog d+ slog(1+ 128 log K

γ(K)ρ(K))�Ω(ρ2(K) ·
ffiffiffiffiffiffiffi
Ts0
√

=M)), 
for any j, m ∈ [M],

φmin s, Dm

|T(j)m |

 !

≥
γ(K)ρ(K)

4 ,

φmax s, Dm

|T(j)m |

 !

≤ 16 log K: w (D.3) 

D.2. Proof of Lemma 6
To start, we work on an upper bound on the magnitude of xt, at , l 
(the lth coodinate of xt, at ). Given any m ∈ [M] and l ∈ [d], define 
Mm, l �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T(m)
P

t∈T(m)x2
t, at , l

q
. For any δ > 0 and 0 < µ < 1=4,

P(M2
m, l ≥ 16logK+ δ)

≤
(a)
P

 
X

t∈T(m)

�

max
a∈[K]

x2
t,a, l�E

�

max
a∈[K]

x2
t,a, l

��

≥ |T(m) | · δ
!

≤
(b)
E

"

exp
 

µ
X

t∈T(m)

�

max
a∈[K]

x2
t,a, l�E

�

max
a∈[K]

x2
t,a, l

��!#

exp(�µδ |T(m) | )

≤
(c) Y

t∈T(m)

(
X

a∈[K]
E[exp(µ(x2

t,a, l�E[x
2
t,a, l]))]

)

exp(�µδ |T(m) | )

≤
(d)

exp((logK+ 16µ2�µδ) · |T(m) | ), (D.4) 

where step (a) is because E[maxa∈[K]x2
t, a, l] ≤ 16 log K; step (b) 

follows from the Markov’s inequality; step (c) is due to the 
independence of xt, a, l across t; and step (d) is because x2

t, a, l 

�E[x2
t, a, l] is (4

ffiffiffi
2
√

, 4)-sub-exponential. Optimizing the right- 
hand side of (D.4) over 0 < µ ≤ 1=4 and taking a union bound 
over l ∈ [d], we obtain that

P
�

max
l∈[d]

M2
m, l ≥ 16 log K+ δ

�

≤ d exp log K�min δ2

64 , δ8

� �� �

· |T(m) |
� �

:

Taking δ � 9 log K, one has that with probability at least 
1� exp(log d� log K · |T(m) |=8), for all l ∈ [d].

M2
m, l ≤ 25 log K: (D.5) 

For any m ∈ [M], any s ≤ d and any v ∈ Rd such that ‖v‖0 ≤
s and ‖v‖2 � 1,

1
|T(m) |

v⊤Amv �
Xm

j�1

|T(m)j |

|T(m) |
v⊤Dj, mv
|T(m)j |

0

@

1

A, 

and consequently,

φmax s, Am

|T(m) |

� �

≤max
j∈[m]

φmax s,
Dj, m

T(m)j

0

@

1

A,

φmin s, Am

|T(m) |

� �

≥min
j∈[m]

φmin s,
Dj, m

|T(m)j |

0

@

1

A:

By Lemma 5, with probability at least 1� 2M2 · exp
�

O(slog 
d log K
γ(K)ρ(K)

� ��
�Ω(ρ2(K) ·

ffiffiffiffiffiffiffi
Ts0
√

=M)), for any j, m ∈ [M],

φmax s, Am

|T(m) |

� �

≤ 16 log K, φmin s, Am

|T(m) |

� �

≥
γ(K)ρ(K)

4 :

(D.6) 
By the definition of θ̂m,

1
2 |T(m) |

X

t∈T(m)
(rt, at � x⊤t, at

θ̂m)
2
+λm‖θ̂m‖1

≤
1

2 |T(m) |
X

t∈T(m)
(rt, at � x⊤t, at

θ?)2 +λm‖θ
?‖1:

Rearranging yields
1

2 |T(m) |
X

t∈T(m)
(x⊤t, at
θ? � x⊤t, at

θ̂m)
2
+ λm‖θ̂m‖1

≤ λm‖θ
?‖1 +

1
|Tm |

X

t∈T(m)
(x⊤t, at
θ̂m � x⊤t, at

θ?)εt:

By the construction of T(m), {εt}t∈T(m) are mutually indepen-
dent conditional on the selected contexts, we obtain that 
with probability at least 1�T�2 � exp(log d� log K · |T(m) |=2),

1
|T(m) |

X

t∈T(m)
(x⊤t, at
θ̂m � x⊤t, at

θ?)εt

≤
Xd

l�1
Mn, l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2(log d+ 2 log T)
|T(m) |

s

| θ̂m, l �θ
?
l | ≤
λm

2 ‖θ̂m �θ
?‖1:
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With the previous two inequalities together, we obtain that
1

2 |T(m) |
X

t∈T(m)
(x⊤t, at
θ? � x⊤t, at

θ̂m)
2
+
λm

2 ‖θ̂m � θ
?‖1

≤ λm(‖θ
?‖1 � ‖θ̂m‖1 + ‖θ̂m � θ

?‖1): (D.7) 

Define S0 � supp(θ?). An immediate result of (D.7) is that
1
2 ‖θ̂m �θ

?‖1 ≤ ‖θ
?(S0)‖1 � ‖θ̂m(S0)‖1 + ‖θ̂m(S0)�θ

?(S0)‖1

⇒ ‖θ̂m(Sc
0)�θ

?(Sc
0)‖1 ≤ 3‖θ̂m(S0)�θ

?(S0)‖1:

Before proving the final result, we state the following lemma 
from Bickel et al. (2009) that links the restricted eigenvalues 
to the condition for recovering sparse signals, where we 
slightly modify the notation in our presentation.

Lemma D.1 (Bickel et al. 2009). Fix a matrix A. Assume that 
there exists an integer r, such that r ≥ s0 and s0 + r ≤ d, such 
that

κ¢

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

φmin(s0 + r, A)
q

1� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0φmax(r, A)

rφmin(s0 + r, A)

s !

> 0:

Then

min v⊤Av
‖v(S)‖22

: S⊂ [d], |S | ≤ s0,v ≠ 0,‖v(Sc)‖1 ≤ 3‖v(S)‖1

( )

> 0,

(D.8) 

min v⊤Av
‖v(S̃)‖22

:S⊂[d], |S | ≤s0,v≠0,‖v(Sc)‖1≤3‖v(S)‖1

( )

�κ2>0,

(D.9) 
where S̃ is the union of S and the set of r largest in absolute 

value coordinates of v outside S.

Now take r � 1152s0log K
γ(K)ρ(K) . By construction, r ≥ s0 and Assump-

tion 4 ensures s0 + r ≤ d. Using Lemma 5 with s � s0 + r, we 
have with probability at least 1� 2M2 · exp(O(s0

log K log d
γ(K)ρ(K) �Ω

(ρ2(K) ·
ffiffiffiffiffiffiffi
Ts0
√

=M)),

φmax s0+r, Am

|T(m) |

� �

≤16log(K), φmin s0+r, Am

|T(m) |

� �

≥
γ(K)ρ(K)

4 :

On the previous event, we have

9s0φmax(r, Am= |T(m) | )
rφmin(s0 + r, Am= |T(m) | )

≤
576s0log K
rγ(K)ρ(K) �

1
2 , 

and

κ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

φmin s0 + r, Am

|T(m) |

� �s

1� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0φmax(r, Am= |T(m) | )

rφmin(s0 + r, Am= |T(m) | )

s !

≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ(K)ρ(K)

p

2 · 1�
ffiffiffi
2
√

2

 !

> 0:

By Lemma D.1, both (D.8) and (D.9) hold, and consequently

1
|T(m) |

X

t∈T(m)
(x⊤t, at
θ? � x⊤t, at

θ̂m)
2
≥ κ2‖θ?(S̃0)� θ̂m(S̃0)‖

2
2:

(D.10) 

Additionally by (D.7),
1

2 |T(m) |
X

t∈T(m)
(x⊤t,at
θ?�x⊤t,at

θ̂m)
2

≤2λm‖θ̂m(S0)�θ
?(S0)‖1 ≤

(a)
2λm

ffiffiffiffi
s0
√
‖θ̂m(S0)�θ

?(S0)‖2

≤2λm
ffiffiffiffi
s0
√
‖θ̂m(S̃0)�θ

?(S̃0)‖2,
(D.11) 

where step (a) is due to the Cauchy-Schwarz inequality. 
Combining (D.10) and (D.11) yields

‖θ?(S̃0)� θ̂m(S̃0)‖2≤
4λm

ffiffiffiffis0
√

κ2 :

Observe that the kth largest coordinates of |θ?(Sc
0)� θ̂m(Sc

0) |

is bounded by ‖θ?(Sc
0)� θ̂m(Sc

0)‖1=k, and consequently,

‖θ?(S̃c
0)�θ̂m(S̃

c
0)‖

2
2≤‖θ

?(Sc
0)�θ̂m(Sc

0)‖
2
1

Xd

k�r+1

1
k2≤

1
r‖θ

?(Sc
0)�θ̂m(Sc

0)‖
2
1

≤
9
r
‖θ?(S0)�θ̂m(S0)‖

2
1≤

9s0

r
‖θ?(S̃0)�θ̂m(S̃0)‖

2
2, 

where the last inequality follows from the Cauchy-Schwarz 
inequality. A result of the previously inequality is that

‖θ?�θ̂m‖2≤
(a)

1+3
ffiffiffiffi
s0

r

r� �

‖θ?(S̃0)�θ̂m(S̃0)‖2≤ 1+3
ffiffiffiffi
s0

r

r� �
4λm

ffiffiffiffis0
√

κ2 :

Finally taking a union bound, we conclude that with probability 
at least 1�MT�2 �M exp(log d� log K ·Ω(

ffiffiffiffiffiffiffi
Ts0
√

=M))� 2M2 

exp(O(s0
log K log d
γ(K)ρ(K) �Ω(ρ2(K) ·

ffiffiffiffiffiffiffi
Ts0
√

=M)), for any m ∈ [M],

‖θ̂m �θ
?‖2 ≤

800
ffiffiffi
2
√

γ(K)ρ(K) ·
ffiffiffiffiffiffiffiffiffi
s0M

p
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log K(log d+ 2 log T)
tm

s

:

Appendix E. Auxiliary Lemmas
Lemma E.1. Suppose that θ ~ Unif(Ss0�1), then the moment of 
|θ1 | can be computed:

E |θ1 |
p
�

2Γ( s0
2 + 1)

ffiffiffiffi
π
√

s0Γ
s0+1

2
� � p � 1,

1
s0

p � 2,
4Γ( s0

2 + 1)
ffiffiffiffi
π
√

s0(s0 + 1)Γ s0+1
2

� � p � 3,

3
s0(s0 + 2) p � 4:

8
>>>>>>>>>>><

>>>>>>>>>>>:

Moreover, we have that 2
5 ffiffiffis0
√ ≤ E |θ1 | ≤

2ffiffiffi
s0
√ :

Proof of Lemma E.1. The density of θ�is f (θ) � f (θ2, : : : ,θs0 )

� s0πs0=2

Γ(
s0
2+1)

� ��1
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�θ2
2�⋯�θ2

s0

p · 1(
Ps0

l�2 θ
2
l ≤ 1), where Γ(x) �

R∞
0 sx�1 

e�sds is the Gamma function. To compute the integrals, we 
leverage the spherical coordinates

θ2 � r cosφ1,
θ3 � r sinφ1cosφ2,
⋮
θs0�1 � r sinφ1sinφ2 ⋯ sinφs0�3cosφs0�2,
θs0 � r sinφ1sinφ2 ⋯ sinφs0�3sinφs0�2:

8
>>>>>>><

>>>>>>>:
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Then by direct calculation,

E |θ1 | �
s0πs0=2

Γ(s0
2 + 1)

� ��1Z

Ps0
l�2θ

2
l ≤1

2dθ2: : : dθs0

� 2 s0πs0=2

Γ(s0
2 + 1)

� ��1Z 1

0

Z π

0
⋯
Z 2π

0
rs0�2sins0�3φ1sins0�4φ2

⋯ sinφs0�3drdφ1dφ2 ⋯ dφs0�2

� 2 s0πs0=2

Γ(s0
2 + 1)

� ��1

·
1

s0 � 1 ·
Γ( s0�2

2 )Γ(
1
2)

Γ( s0�1
2 )

·
Γ( s0�3

2 )Γ(
1
2)

Γ( s0�2
2 )

⋯
Γ(1)Γ( 1

2)

Γ( 3
2)
· 2π

�
2
ffiffiffiffi
π
√

s0

Γ( s0+2
2 )

Γ( s0+1
2 )
�

1
2s0�1

s0 � 1

(s0 � 1)=2

 !

, if s0 is odd,

2s0+1

πs0

s0

s0=2

 !�1

, if s0 is even:

8
>>>>>><

>>>>>>:

From the Sterling’s formula, we arrive at 2
5 ffiffiffis0
√ ≤ E |θ1 | ≤

2ffiffiffi
s0
√ : Similarly, we can compute the higher moments of 
|θ1 | . As for the second moment,

E |θ1 |
2
� 4 s0πs0=2

Γ(s0
2 + 1)

� ��1

·
Γ s0�1

2
� �

Γ 3
2
� �

2Γ(s0
2 + 1) ·

πs0�1=2

Γ s0�1
2

� � �
1
s0
:

For the third moment,

E |θ1 |
3
� 4 s0πs0=2

Γ(s0
2 + 1)

� ��1

·
2

s2
0 � 1

·
πs0�1=2

Γ s0�1
2

� �

�
4

ffiffiffiffi
π
√

s0(s0 + 1)
Γ s0+2

2
� �

Γ s0+1
2

� � :

For the fourth moment,

E |θ1 |
4
� 4 s0πs0=2

Γ(s0
2 + 1)

� ��1

·
3
ffiffiffiffi
π
√
Γ s0�1

2
� �

4(s0 + 2)Γ(s0
2 + 1) ·

πs0�1=2

Γ s0�1
2

� �

�
3

s0(s0 + 2) :

Appendix F. Parallel Results Under Model-P
In this section, we collect parallel results under Model-P. In 
what follows, Section F.1 formulates the problem, stating the 
conditions and assumptions. Section F.2 establishes the 
regret lower bound of Ω c ·max M�22�M ·

ffiffiffiffiffiffiffi
Ts0
√
(T=s0)

1
2(2M�1),

n�

ffiffiffiffiffiffiffi
Ts0
√

}). Section F.3 presents a matching upper bound of the 
regret under the set of (generic) assumptions stated in Sec-
tion F.1. In particular, we verify the assumptions in the case 
of two arms, whereas that of K>2 needs more delicate 
analysis—we leave that for future work.

F.1. Problem Formulation
Recall that under Model-P, we have a set of K parameters 
{θ?1, : : : ,θ?K}; when action a ∈ [K] is chosen, a reward rt, a �

x⊤t θ
?
a + ξt is incurred, where {ξt}

∞
t�0 is a sequence of i.i.d. zero- 

mean 1-sub-Gaussian random variables. We assume ‖θ?a‖2 ≤

1 for all a ∈ [K], and the contexts xt are i.i.d. drawn. Assump-
tions F.1–F.4 are parallel to Assumptions 1–4 under Model-C.

Assumption F.1 (Sub-Guassianity). The marginal distribu-
tion of xt is 1-sub-Gaussian.

Assumption F.2 (Diverse Covariate). There are (possibly K- 
dependent) positive constants γ(K) and ρ(K), such that for any 
{θa}a∈[K], any unit vector v ∈ Rd and any a ∈ [K], there is P(v⊤
xtx⊤t v · 1{a∗ � a} ≥ γ(K)) ≥ ρ(K), where a∗ � arg maxa∈[K] x⊤t θa.

Assumption F.3 (Sparsity in High Dimension). The linear 
contextual bandits have high-dimensional contexts d � Poly(T)
and sparse parameters: There exists some ε > 0 such that 
‖θ?a‖0 ≤ s0 �O(T1�ε) for all a ∈ [K].

Assumption F.4 (Not Many Actions). The number of actions 
K satisfies log K

γ(K)ρ(K) �O(d=s0) and log K
γ(K)ρ3(K) �O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1�ε=s0

p
).

The following lemma establishes the sufficient condition 
for Assumption F.2 for K� 2.

Lemma F.1. When K� 2, suppose both of the following condi-
tions hold: 

1. There exists a constant Λ > 0 such that λmin(E[xtx⊤t ]) ≥Λ; 
for any unit vector v ∈ Rd there is v⊤E[xtx⊤t ]v ≥ Γ;

2. There exists a constant ν > 0 such that the distribution of xt 
satisfies p(xt) ≥ ν · p(�xt).

Then Assumption F.2 holds with γ(K) �Λ=2 and ρ(K) �
νΛ2=128.

Proof of Lemma F.1. For any unit vector v ∈ Rd, and 
a ∈ {1, 2}, we have

P (v⊤xt)
2
· 1{a∗ � a} ≥Λ2

� �

≥ ν ·P (v⊤xt)
2
· 1 a∗ � 3� a{ } ≥

Λ

2

� �

:

As a result,

P (v⊤xt)
2
· 1 a∗ � a{ } ≥

Λ

2

� �

≥
ν

2 · P (v
⊤xt)

2
≥
Λ

2

� �

≥
ν

2 · P (v
⊤xt)

2
≥

1
2 v⊤E[xtx⊤t ]v

� �

≥
νΛ2

128 , 

where the last inequality is due to the Paley-Zygmund 
inequality. w

F.2. Regret Lower Bound

Theorem F.1. Under Model-P, consider the setting where K �
log(T=s0) and the context xt ~ N (0, Id) for any t ∈ [T]. For any 
M ≤ T and for any dynamic batch learning algorithm Alg, we 
have

sup
{θ?a}a∈[K] :‖θ

?
a ‖2≤1, ‖θ?a‖1≤s0

E{θ?a}a∈[K] [RT(Alg)]

≥ c ·max M�22�M ·
ffiffiffiffiffiffiffi
Ts0

p
·

T
s0

� � 1
2(2M�1)

,
ffiffiffiffiffiffiffi
Ts0

p
 !

, (F.1) 

where E{θ?a}a∈[K] denotes taking expectation w.r.t. the distribution 
based on the set of parameters {θ?a}a∈[K], and c>0 is a numeri-
cal constant independent of (T, M, d, s0).
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The proof of Theorem F.1 is similar to that of Theorem 
1. We define for any m ∈ [M],

∆m �
1

48 ·M2 · 2M ·
T
s0

� �� 1�21�m
2(1�2�M )

, Tm �

$

s0 ·
T
s0

� �1�2�m
1�2�M

%

:

We consider K � 2M arms and construct a prior Q for 
{θ?a}a∈[K] in the following way: draw θ1, : : : ,θM indepen-
dently from Unif(Ss0�1). Given a ∈ [K], we can uniquely 
write a � 1+

PM
m�1 am · 2m�1, where am ∈ {0, 1}. We then let 

θ̃a �
PM

m�1 (�1)am ·∆mθm and θ∗a be a d-dimensional vector 
whose first s0 coordinates coincide with θ̃a and the 
remaining zeros. Moving on, we let ut � xt(S)=‖xt(S)‖.

For notational simplicity, we let Θ � (θ1, : : : ,θK) and cor-
respondingly Θ? � (θ?1, : : : ,θ?K). Then

sup
Θ? :‖θ?a‖2≤1, ‖θ?a‖0≤s0,a∈[K]

EΘ? [RT(Alg)] ≥ EQEΘ[RT(Alg)]

�
XT

t�1
EQExEPt

Θ,x
max
a∈[K]

x⊤t θa � x⊤t θat

� �

:

Given any m ∈ [M] and any t ∈ {Tm�1 + 1, : : : , Tm}, define 
Am � {a ∈ [K] : am � 0} and

EQExEPt
Θ,x

�

max
a∈[K]

x⊤t θa � x⊤t θat

�

� EQExEPt
Θ,x

"
X

a∈[K]
1{at � a} ·

�

max
a′∈[K]

x⊤t θa′ � x⊤t θa

�#

� EQExEPt
Θ,x

"
X

a∈Am

1{at � a} ·
�

max
a′∈[K]

x⊤t θa′ � x⊤t θa

�

+ 1{at � a+ 2m�1} ·

�

max
a′∈[K]

x⊤t θa′ � x⊤t θa+2m�1

�#

≥ EQExEPt
Θ,x

"
X

a∈Am

1{at � a} ·
�

max
a′∈{a,a+2m�1}

x⊤t θa′ � x⊤t θa

�

+ 1{at � a+ 2m�1} ·

�

max
a′∈{a,a+2m�1}

x⊤t θa′ � x⊤t θa+2m�1

�#

≥ 2∆m ·EQExEPt
Θ,x

"
X

a∈Am

1{at � a} ·
�

xt(S)⊤θm

�

�

+ 1{at � a+ 2m�1} ·
�

xt(S)⊤θm

�

+

#

� 2∆m ·EQExEPt
Θ,x

"

1{at ∈Am} ·
�

xt(S)⊤θm

�

�

+ 1{at ∈Ac
m} ·

�
xt(S)⊤θm

�

+

#

: (F.2) 

We define two new measures Θ�via

dQ+m, t
dQ
(Θ) �

(xt(S)⊤θm)+
Zm(xt)

,
dQ�m, t

dQ
(Θ) �

(xt(S)⊤θm)�
Zm(xt)

, 

where Zm(xt) � EQ[(xt(S)⊤θm)+] � EQ[(xt(S)⊤θm)�] is the com-
mon normalizing constant. With the new notation, we can 

write

(F:2) � 2∆m ·Ex

h
Zm(xt) ·

�
EPt

Θ,x◦Q
�
m, t
[1{at ∈Am}]

+EPt
Θ,x◦Q

+
m, t
[1{at ∈Ac

m}]
�i

, (F.3) 

where Pt
Θ, x ◦Q+m, t (respectively, Pt

Θ, x ◦Q�m, t) is a mixed distribu-
tion: Θ�is drawn from Q+m, t (respectively, Q�m, t) and observed 
rewards are then drawn from Pt

Θ, x.

F.2.1. Regret Lower Bound When a Bad Event Happens 
with Large Probability. As before, the regret is large when 
a bad event Bm (tm�1 ≤ Tm�1 < Tm ≤ tm) is likely to happen 
under the prior.

Lemma F.2. If there exists m ∈ [M], such that

XTm

t�Tm�1+1
Ex[Zm(xt) ·EPΘ,x◦Q+m, t

[1{Am}]] ≥
Tm �Tm�1

8 ·M2 · 2M , (F.4) 

then there eixsts a numerical constant c> 0, independent of 
(T, M, d, s0), such that,

sup
θ? :‖θ?‖2≤1, ‖θ?‖0≤s0

Eθ? [RT(Alg)] ≥
c

M2 · 2M ·
ffiffiffiffiffiffiffi
Ts0

p T
s0

� � 1
2(2M�1)

:

For any m ∈ [M]

(F:3) ≥ 2∆m ·Ex[Zm(xt) · (1�TV(Pt
Θ, x ◦Q+m, t, Pt

Θ, x ◦Q�m, t))],
(F.5) 

where the inequality is due to P(A) +Q(Ac) ≥ 1�TV(P, Q). 
Previously,

1�TV(Pt
Θ, x ◦Q�m, t, Pt

Θ, x ◦Q+m, t)

≥
(a)

1�TV(PTm
Θ, x ◦Q�m, t, PTm

Θ, x ◦Q+m, t)

�

Z

min(dPTm
Θ, x ◦Q�m, t, dPTm

Θ, x ◦Q+m, t)

≥

Z

Bm

min(dPTm
Θ, x ◦Q�m, t, dPTm

Θ, x ◦Q+m, t)

�
(b)
Z

Bm

min(dPTm�1
Θ, x ◦Q�m, t, dPTm�1

Θ, x ◦Q+m, t), (F.6) 

where step (a) is due to the data-processing inequality, and 
step (b) follows from the fact that on the event Bm, there is 
PTm
Θ, x � PTm�1

Θ, x . Next,

(F:6) � 1
2

Z

Bm

dPTm�1
Θ, x ◦Q+m, t + dPTm�1

Θ, x ◦Q�m, t

� |dPTm�1
Θ, x ◦Q+m, t � dPTm�1

Θ, x ◦Q�m, t |

�
1
2

�
PTm�1
Θ, x ◦Q+m, t(Bm) +PTm�1

Θ, x ◦Q�m, t(Bm)
�

�TV(dPTm�1
Θ, x ◦Q+m, t, dPTm�1

Θ, x ◦Q�m, t)

≥PTm�1
Θ, x ◦Q+m, t(Bm)�

3
2 TV(dPTm�1

Θ, x ◦Q+m, t, dPTm�1
Θ, x ◦Q�m, t):

By Pinsker’s inequality,

TV(dPTm�1
Θ, x ◦Q+m, t, dPTm�1

Θ, x ◦Q�m, t)

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 DKL(dPTm�1

Θ, x ◦Q+m, t‖dPTm�1
Θ, x ◦Q�m, t)

r

:
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Recall that ut � xt(S)=‖xt(S)‖2 and under Q,

(θ1, : : : ,θm, : : : ,θM) �
d
�
θ1, : : : ,θm � 2(u⊤t θm)ut, : : : ,θM

�
:

Let Θ̃(m) � {θ̃(m)a }a∈[K] denote the set of 2M arms induced 
by (θ1, : : : ,θm � 2(u⊤t θm)ut, : : : ,θM):

θ̃
(m)
a � (�1)a1 ∆1 ·θ1+ ⋯ +(�1)am ∆m · (θm � 2(u⊤t θm) · ut)+

⋯ +(�1)aM ∆M ·θM:

Then Θ ~ Q+m, t if and only if Θ̃(m) ~ Q�m, t. Consequently,

DKL(PTm�1
Θ, x ◦Q+m, t ‖ PTm�1

Θ, x ◦Q�m, t)

�DKL

�
PTm�1
Θ, x ◦Q+m, t ‖ PTm�1

Θ̃
(m) , x
◦Q+m, t

�

≤ EQ+m, t

h
DKL

�
PTm�1
Θ, x ‖P

Tm�1

Θ̃
(m), x

�i
, (F.7) 

where the last inequality is due to the joint convexity of the 
KL divergence (see Lemma A.4). By direct computation,

(F:7) � 1
2EQ+m, t

"
XTm�1

τ�1

�
x⊤τ θaτ � x⊤τ θ̃

(m)
aτ

�2
#

� 2∆2
m

XTm�1

τ�1

�
xτ(S)⊤ut

�2
·EQ+m, t

[(u⊤t θm)
2
]

≤ 4 ∆2
m

s3=2
0

‖xt(S)‖2
Zm(xt)

·
XTm�1

τ�1

�
xτ(S)⊤ut

�2
:

The last inequality is because

EQ+m, t
[(u⊤t θm)

2
] �

EQ[(xt(S)⊤θm)+ · (u⊤t θm)
2
]

Zm(xt)

�
1
2 ·
‖xt(S)‖2
Zm(xt)

· EQ[ |u⊤t θm |
3
]

�
1
2 ·
‖xt(S)‖2
Zm(xt)

· EQ[ |θm, 1 |
3
] ≤ 2 · ‖xt(S)‖2

Zm(xt)
· s�3=2

0 :

Using the previous expressions,

(F:3) ≥ 2∆m · Ex[Zm(xt) · PTm�1
Θ, x ◦Q+m, t(Am)]

�

�
3
2Ex Zm(xt)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ∆2
m

s3=2
0

‖xt(S)‖2
Zm(xt)

XTm�1

τ�1

�
xτ(S)⊤ut

�2

v
u
u
t

2

4

3

5

1

C
A

≥
(a)

2∆m · Ex[Zm(xt) · PTm�1
Θ, x ◦Q+m, t(Am)]

�

�
3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ex Zm(xt)
2 ∆2

m

s3=2
0

‖xt(S)‖
Zm(xt)

XTm�1

τ�1

�
xτ(S)⊤ut

�2
" #v

u
u
t

1

C
A

≥ 2∆m · Ex[Zm(xt) · PTm�1
Θ, x ◦Q+m, t(Am)]� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∆2
mTm�1

s0

s0

@

1

A

≥ 2∆m · Ex[Zm(xt) · PTm�1
Θ, x ◦Q+m, t(Am)]�

1
16 ·M2 · 2M

� �

, 

where step (a) is due to Jensen’s inequality and the concavity 

of x ⊢→
ffiffiffi
x
√

. Thus far, we established for any m ∈ [M] that

max
Θ?

XT

t�1
EΘ? max

a∈[K]
x⊤t θa � x⊤t θat

� �

≥ 2∆m ·
XTm

t�Tm�1

Ex[Zm(xt) ·PTm�1
θ, x ◦Q+m, t(Am)]�

1
16 ·M2 · 2M

� �

:

Taking m to be the batch satisfying Condition (F.4), we 
finish the proof.

F.2.2. Bad Event Happens with Large Enough Proba-
bility. It remains to show that with sufficiently high prob-
ability, (6) holds.

Lemma F.3. There exists some m ∈ [M], such that

XTm

t�Tm�1+1
Ex[Zm(xt) ·EPΘ,x◦Q+m, t

[1{Bm}]] ≥
Tm �Tm�1

8 ·M2 · 2M :

For any m ∈ [M], and any t ∈ {Tm�1 + 1, : : : , Tm}, we have

Ex[Zm(xt) ·PTm�1
θ, x ◦Q+m, t(Bm)] � ExEQ[

�
xt(S)⊤θm

�

+
·PTm�1
Θ, x (Bm)]:

(F.8) 

Because Bm � {tm�1 ≤ Tm�1 ≤ Tm ≤ tm} is determined by 
{x1, a1, r1, : : : , xTm�1 , aTm�1 , rTm�1}, PTm�1

Θ, x (Bm) is independent of 
{xτ}τ>Tm�1 . Consequently,

(F:8) �EQEx

��
xT(S)⊤θm

�

+
·PTm�1
Θ, x (Bm)

�

� EQExEPΘ,x

��
xT(S)⊤θm

�

+
1{Bm}

�

≥EQExEPΘ,x

�

min
m′∈[M]

�
xT(S)⊤θm′

�

+
1{Bm}

�

� EQEx

�

min
m′∈[M]

(xT(S)⊤θm′ )+] ·EQ̃EPΘ,x [1{Bm}

�

, 

where the new measure Q̃ is defined via the change of 
measure:

dQ̃
dQ × dPx

(Θ, x) �
minm′∈[M]

�
xT(S)⊤θm′

�

+

E[minm′∈[M]

�
xT(S)⊤θm′

�

+
]
:

By the definition of ut, there is

EQEx

�

min
m′∈[M]

�
xt(S)⊤θm′

�

+

�

≥Ex

�

‖xt(S)‖2 ·EQ

�

min
m′∈[M]

u⊤t θm′

��

:

We can then directly compute

EQ

�

min
m′∈[M]

(u⊤Tθm′ )+

�

�
(a)EQ

�

min
m′∈[M]

(θm′ , 1)+

�

�

Z ∞

0
P
�

min
m′∈[M]

(θm′ , 1)+ > s
�

ds

�

Z ∞

0
P (θ1, 1)+ > s
� �Mds � 1

2M

Z ∞

0
P( |θ1, 1 |

2
> s2)Mds

≥
(b) 1

2M

Z 1
2B(

1
2, s0�1

2 )

0
1� 2s

B(12, s0�1
2 )

 !M

ds

≥
B( 1

2 , s0�1
2 )

(M + 1)2M+1 ≥
1

(M + 1)2M+1 ffiffiffiffis0
√ :
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Previously, B(α,β) is the beta function with parameters α�
and β: Step (a) is because θ1, : : : ,θM are mutually indepen-
dent; and step (b) follows from the fact that θ2

m, 1 follows the 
beta distribution with parameters 1/2 and (s0 � 1)=2. Taking 
expectation over x, we then have

EQEx min
m′∈[M]

(xT(S)⊤θm′ )+

� �

≥
1

(M+ 1)2M+2 :

Furthermore, because the union of {Bm}m∈[M] is the 
whole space, by a union bound, we have 

PM
m�1EQ̃EPΘ,x 

[1{Bm}] ≥ EQ̃EPΘ,x [1{∪M
m�1 Bm}] � 1. Hence, there must exist 

m ∈ [M] such that EQ̃EPΘ,x (Bm ) ≥ 1=M and

XTm

t�Tm�1

Ex Zm (xt) ·EPΘ,x◦Q+m , t
[1{Bm}]

h i
1 ≥ Tm �Tm�1

M(M+ 1)2M+2

≥
Tm �Tm�1

8 ·M2 · 2M , 

completing the proof.

F.2.3. Lower Bound for Fully Online Learning Setting. 
It suffices now to show that the regret is lower bounded by the 
second term in (3). This is established in the following lemma.

Lemma F.4. When M�T, under the setting of two indepen-
dent Guassian contexts, we have (for some numerical constant 
c independent of T, M, d, s0):

sup
Θ? :‖θ?a‖2≤1, ‖θ?a‖0≤s0,a∈{1,2}

Eθ? [RT(Alg)] ≥ c ·
ffiffiffiffiffiffiffi
Ts0

p
:

As in the batched case (and with the same notation), we 
construct a prior Q for Θ?: sample θ�from Unif(Ss0�1); we 
then construct θ1 ∈ Rd such that θ1(S) � ∆θ�and θ1(Sc) � 0, 
where ∆ � 1

8
ffiffiffis0
T

p
. Finally, we let θ2 ��θ1. Then,

sup
Θ? :‖θ?a‖2≤1, ‖θ?a ‖0≤s0,a∈{1, 2}

EΘ? [RT(Alg)] ≥ EQEΘ[RT(Alg)]

�
XT

t�1
EQExEPt

Θ,x

�

max
a∈{1,2}

(x⊤t θa � x⊤t θat )

�

� 2∆
XT

t�1
Ex

�

Z(xt) ·
�
EPΘ,x◦Q�t [1(at � 1)] +EPΘ,x◦Q+t [1(at � 2)]

��

,

(F.9) 

where we similarly define two measures via dQ�t
dQ (Θ) �

(xt(S)⊤θ)�
Z(xt)

, 
dQ+t
dQ (Θ) �

(xt(S)⊤θ)+
Z(xt)

, with Z(xt) �
1
2EQ[ |xt(S)⊤θ | ] being a com-

mon normalizing constant. Note that θ �d θ � 2(u⊤t θ)ut. Let 
Θ̃ � {θ̃1, θ̃2} be the set of vectors induced by θ � 2(u⊤t θ)ut. 
Then Θ ~ Q�t if and only if Θ̃ ~ Q+t . Using this representation, 
we have

(F:9) ≥
(a)

2∆
XT

t�1
Ex

h
Z(xt) ·

�
1�TV(Pt�1

Θ,x ◦Q�t ,Pt�1
Θ,x ◦Q+t )

�i
, (F.10) 

≥
(b)

2∆
XT

t�1
Ex Z(xt) · 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2DKL(Pt�1

Θ,x ◦Q�t ‖Pt�1
Θ̃,x ◦Q�t )

r !" #

, 

≥
(c)

2∆
XT

t�1
Ex Z(xt) · 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
EQ�t [DKL(Pt�1

Θ,x‖Pt�1
Θ̃ ,x)]

r !" #

, (F.11) 

where step (a) follows from P(A) +Q(Ac) ≥ 1�TV(P, Q); step 

(b) is by Pinsker’s inequality; and step (c) is because of the joint 
convexity of the KL divergence. The KL divergence is then

DKL(Pt�1
Θ, x‖P

t�1
Θ̃, x) �

∆2

2
Xt�1

τ�1

�
2(u⊤t θ) ·

�
u⊤t xτ(S)

��2

� 2∆2(u⊤t θ)
2
· u⊤t

 
Xt�1

τ�1
xτ(S)xτ(S)⊤

!

ut:

Plugging in the expression of the KL divergence, we 
have

(F:11) � 2∆
XT

t�1
Ex Z(xt)[

· 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∆2EQ�t [(u
⊤
t θ)

2
] · u⊤t

�Xt�1

τ�1
xτ(S)⊤xτ(S)

�
ut

v
u
u
t

0

@

1

A

3

5

≥
(a)

2∆
XT

t�1
Ex Z(xt) · 1�

ffiffiffiffiffiffiffiffiffiffi

5t∆2

s0

s0

@

1

A

2

4

3

5

≥
(b) T∆

5 �
ffiffiffiffiffiffiffi
Ts0
√

40 , 

where step (a) is by taking expectation w.r.t. {xτ}τ≤t�1 and 
Lemma E.1, and step (b) is the choice of ∆.

F.3. Regret Upper Bound
Algorithm F.1 describes a variant of the LBGL algorithm 
under Model-P; Theorem F.2 establishes a corresponding 
regret upper bound under Assumptions F.1–F.4, and Corollary 
F.1 gives an upper bound for the online learning problem.

Algorithm F.1 (LBGL Under Model-P)
Input Time horizon T; context dimension d; number of 

batches M; sparsity bound s0.
Initialize b �Θ(

ffiffiffi
T
√
· (T=s0)

1
2(2M�1)); θ̂0 � 0 ∈ Rd;

Static grid T � {t1, : : : , tM}, with t1 � b ffiffiffiffis0
√ and tm � b

ffiffiffiffiffiffiffiffiffi
tm�1
√

for t ∈ {2, : : : , M};
Partition each batch into M intervals evenly, that is, 
(tm�1, tm] �∪

M
j�1 T(j)m , for m ∈ [M].

for m← 1 to M do
for t← tm�1 to tm do 

(a) Choose at � arg maxa∈[K]x⊤t θ̂m�1, a (break ties with 
lower action index).

(b) Incur reward rt, at .
end
T(m) ←∪m

m′�1 T(m)m′ ;

λm← 18 ·
ffiffiffiffiffiffiffiffiffiffi
log T
|T(m) |

q

;
Update θ̂m, a← arg minθ∈Rd

1
2 |T(m) |

P
t∈T(m) (rt, at � x⊤t θ)

2
· 1 

at � a{ } +λm‖θ‖1.
end

Theorem F.2. Under Model-P, Assumptions F.1–F.4 and 
M �O(loglog(T=s0)), we have

sup
Θ? :‖θ?a‖2≤1,‖θ?a‖0≤s0

EΘ? [RT(Alg)]≤
C ·M3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logTlog(TK)
p

γ(K)ρ(K)

·
ffiffiffiffiffiffiffi
Ts0

p T
s0

� � 1
2(2M�1)

, (F.12) 
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where Alg is LBGL and C> 0 is a numerical constant indepen-
dent of (T, d, M, K, s0).

Corollary F.1. In the fully online learning setting (M�T) and 
under Assumptions F.1–F.4:

sup
Θ? :‖θ?a‖2≤1, ‖θ?a‖0≤s0

Eθ? [RT(Alg)]

≤

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

loglog(T=s0)
�3
· log T · log(TK)

r

γ(K)ρ(K) ·
ffiffiffiffiffiffiffi
Ts0

p
,

(F.13) 

where C> 0 is a numerical constant independent of (T, d, M, K, s0).

F.3.1. Eigenvalue Conditions. We define for any j, m ∈ [M]
and a ∈ [K] the empirical covariance matrix: Dm, j, a �

P

t∈T(j)m
xtx⊤t 

1{at � a} and Am, a �
Pm

m′�1 Dm′ , m, a. Lemma F.5 shows that the 
restricted eigenvalues are bounded from both above and below 
with high probabilities.

Lemma F.5. Suppose Assumptions F.1–F.4 hold. Given a spar-
sity parameter s, for any j, m ∈ [M] and a ∈ [K], with probability 
at least 1� 2exp

�
O(s · log d

ρ(K)γ(K)

� ��
�Ω(ρ2(K)

ffiffiffiffiffiffiffi
Ts0
√

=M)),

φmax s,
Dm, j, a

|T(j)m |

 !

≤
25
2 , φmin s,

Dm, j, a

|T(j)m |

 !

≥
ρ(K) · γ(K)

4 :

Proof of Lemma F.5. Given a sparsity parameter s, let 
N (ε) denote the ε-net of Ss�1.

Upper bound. Fixing an arbitrary s-sparse vector v ∈ Rd, 
we let Yt � v⊤xt. For any δ,µ > 0,

P
1
|T(j)m |

X

t∈T(j)m

Y2
t · 1{at � a} ≥ 4+ δ

0

@

1

A

≤
(a)

exp
�
� (4+ δ)µ · |T(j)m |

�
·E

"

exp
 
X

t∈T(j)m

µ ·Y2
t 1{at � a}

!#

≤ exp
�
� (4+ δ)µ · |T(j)m |

�
·E

"

exp
 
X

t∈T(j)m

µ ·Y2
t

!#

�
(b)exp

�
� δµ · |T(j)m |

�
·
Y

t∈T(j)m

E
�

exp
�
µ(Y2

t � 4)
��

, (F.14) 

where the step (a) is a result of Markov’s inequality, and 
step (b) is due to the independence between {xt}t∈T(j)m

. 
Because xt is 1-sub-Gaussian, v⊤xt is 1-sub-Gaussian. Hence, 
Y2

t �E[Y2
t ] is (4

ffiffiffi
2
√

, 4)-subexponential and E[Y2
t ] ≤ 4. Using 

this result, we have

(F:14) ≤ exp
�
� δµ · |T(j)m |

�
·
Y

t∈T(j)m

E
�

exp
�
µ · (Y2

t �E[Y
2
t ])
��

≤ exp �min δ8 , δ
2

64

� �

· |T(j)m |

� �

:

Letting δ� 8 and taking a union bound over all the d- 
dimensional vectors whose support is in N (ε), we obtain that 
with probability at least 1� exp(slog d+ slog(1+ 2=ε)� |T(j)m | ),

1
|T(j)m |

X

t∈T(j)m

(v⊤xt)
2
· 1{at � a} < 12, 

for all v whose support is in N (ε). For an arbitrary s-sparse 

vector v, let supp(v) denote its support. Without loss of 
generality, suppose |supp(v) | � s. By the definition of the 
ε-net, we can find u0 ∈N (ε) such that ‖supp(v)� u0‖2 ≤ ε. 
We then construct the d-dimensional vector u such that 
u(supp(v)) � u0 and u(supp(v)c) � 0. Then,

1
|T(j)m |

X

t∈T(j)m

(v⊤xt)
2
· 1{at � a}� 1

|T(j)m |

X

t∈T(j)m

(u⊤xt)
2
· 1{at � a}

�
1
|T(j)m |

X

t∈T(j)m

v⊤xtx⊤t (v� u) · 1{at � a}

�
1
|T(j)m |

X

t∈T(j)m

u⊤xtx⊤t (u� v) · 1{at � a}

≤ 2ε ·φmax s,
Dm, j, a

|T(j)m |

 !

:

Taking the supremum over all s-sparse vectors v and rear-
ranging the previous expression, we conclude that with proba-
bility at least 1� exp(slog d+ slog(1+ 2=ε)� |T(j)m | ),

φmax s,
Dm, j, a

|T(j)m |

 !

≤
12

1� 2ε :

Lower bound. We again fix a s-sparse vector v ∈ Rd and 
let Yt � v⊤xt. For any a ∈ [K],

P
1
|T(j)m |

X

t∈T(j)m

Y2
t · 1{at � a} ≤ ρ(K)γ(K)2

0

@

1

A

� P
1

T(j)m

X

t∈T(j)m

Y2
t

γ(K) · 1{at � a} ≤ ρ(K)2

0

@

1

A

≤ P
1

T(j)m

X

t∈T(j)m

1{Y2
t ≥ γ(K), at � a} ≤ ρ(K)2

0

@

1

A

� P

 
1

T(j)m

X

t∈T(j)m

1{Y2
t ≥ γ(K), at � a}�P

�
Y2

t ≥ γ(K), at � a
�

≤
ρ(K)

2 �P
�

Y2
t ≥ γ(K), at � a

�
!

≤ P

 
1

T(j)m

X

t∈T(j)m

1{Y2
t ≥ γ(K), at � a}

�P
�

Y2
t ≥ γ(K), at � a

�
≤�
ρ(K)

2

!

, (F.15) 

where the last inequality is due to Assumption 2. Applying 
Hoeffding’s inequality, we obtain that

(39) ≤ exp �
|T(j)m | · ρ2(K)

2

 !

:

Taking a union bound over all the d-dimensional vectors 
whose support is in N (ε), we have with probability at least 
1� exp(slog d+ slog(1+ 2=ε)� |T(j)m | · ρ2(K)=2),

1
|T(j)m |

X

t∈T(j)m

(v⊤xt)
2
· 1{at � a} ≥ ρ(K)γ(K)2 , 
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for all v whose support is in N (ε). Conditional on the previ-
ous event, for an arbitrary s-sparse d-dimensional vector v, 
by the definition of an ε-net, we can find u0 ∈N (ε) such 
that ‖u0 � supp(v)‖2 ≤ ε. Let u ∈ Rd such that u(supp(v)) � u0 
and u(supp(v)c) � 0. We then have

1
|T(j)m |

X

t∈T(j)m

(v⊤xt)
2
· 1{at � a}

≥
1
|T(j)m |

X

t∈T(j)m

�
(u⊤xt)

2
+ 2(v� u)⊤xtx⊤t u

�
· 1{at � a}

≥
ρ(K)γ(K)

2 � 2εφmax s,
Dm, j, a

|T(j)m |

 !

:

Finally, taking ε �min( 1
50 , ρ(K)γ(K)100 ), we have with proba-

bility at least 1� 2exp O(slog d
ρ(K)γ(K))�Ω(ρ2(K)

ffiffiffiffiffiffiffi
Ts0
√

=M)
� �

,

φmax s,
Dm, j, a

|T(j)m |

 !

≤
25
2 , φmin s,

Dm, j, a

|T(j)m |

 !

≥
ρ(K) ·γ(K)

4 :

F.3.2. Lasso Estimation Error With well-behaved restricted 
eigenvalues, Lemma F.6 leverages standard Lasso results to 
prove an estimation error bound for ‖θ̂m, a �θ

?
a‖2.

Lemma F.6. Suppose Assumptions F.1–F.4 hold. Given any a ∈
[K] and m ≥ 2, with probability at least 1� 2M exp(O s0

ρ(K)γ(K)

� �
·

log d
ρ(K)γ(K)

� �
�Ω(

ffiffiffiffiffiffiffi
Ts0
√

=M))� 2T�2 � 2exp(log d�Ω(
ffiffiffiffiffiffiffi
Ts0
√

=M)),

‖θa � θ̂m, a‖2 ≤
2, 048
ρ(K)γ(K) ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ms0log T
tm

s

:

By the definition of θ̂m, a,

1
2 |T(m) |

X

t∈T(m)
(rt, at � x⊤t θ̂m, a)

2
· 1{at � a} +λm‖θ̂m, a‖1

≤
1

2 |T(m) |
X

t∈T(m)
(rt, at � x⊤t θa)

2
· 1{at � a} +λm‖θa‖1:

Rearranging yields

1
2 |T(m) |

X

t∈T(m)
(x⊤t θa � x⊤t θ̂m, a)

2
· 1{at � a} + λm‖θ̂m, a‖1

≤
1
|T(m) |

X

t∈T(m)
(x⊤t θ̂m, a � x⊤t θa) · εt · 1{at � a} + λm‖θa‖1:

Because of the construction of T(m), conditional on 
{xt , at}t∈T(m) , {εt}t∈T(m) are mutually independent:

1
|T(m) |

X

t∈T(m)
x⊤t (θ̂m, a �θa) · εt · 1{at � a}

�
1
|T(m) |

X

j∈[d]
(θ̂m, a, j �θa, j)

X

t∈T(m)
xt, jεt1{at � a}

≤
1
|T(m) |

X

j∈[d]
| θ̂m, a, j �θa, j | ·

�
�
�
�
�

X

t∈T(m)
xt, jεt1{at � a}

�
�
�
�
�
: (F.16) 

For a given j ∈ [d] and δ,δ1 > 0,

P
1
|T(m) |

�
�
�
�
�

X

t∈T(m)
xt, j1{at � a}εt

�
�
�
�
�
≥ δ

 !

� E P
1
|T(m) |

�
�
�
�
�

X

t∈T(m)
xt, j1{at � a}εt

�
�
�
�
�
≥ δ | {xt, j}t∈T(m)

 !" #

≤
(a)

2E exp �
|T(m) |2δ2

2
X

t∈T(m)
x2

t, j1{at � a}

0

B
B
@

1

C
C
A

2

6
6
4

3

7
7
5

≤
(b)

2exp �
|T(m) |δ2

2(4+ δ1)

� �

+ 2P 1
|T(m) |

X

t∈T(m)
x2

t, j ≥ 4+ δ1

 !

, 

where step (a) uses Hoeffding’s inequality, and step (b) applies 
a union bound. By the assumption, xt is 1-sub-Gaussian, and 
hence xt, j is also 1-sub-Gaussian; x2

t, j�E[x2
t, j] is (4

ffiffiffi
2
√

, 4)-subex-
ponential and E[x2

t, j] ≤ 4. Consequently,

P
1
|T(m) |

X

t∈T(m)
x2

t, j ≥ 4+ δ1

 !

≤ P
1
|T(m) |

X

t∈T(m)
x2

t, j�E[x
2
t, j] ≥ δ1

 !

≤ exp �min δ2
1

64 , δ1

8

� �

· |T(m) |
� �

:

Letting δ � 9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log T= |T(m) |

p
and δ1 � 8 and taking a 

union bound over j ∈ [d], we have with probability at least 
1� 2T�2 � 2exp(log d� |T(m) | ),

1
|T(m) |

·

�
�
�
�
�

X

t∈T(m)
xt, jεt1{at � a}

�
�
�
�
�
≤ 9

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log T
|T(m) |

s

�
λm

2 ,

for all j ∈ [d]:

(F.17) 

On Event (F.17), (40) ≤ λm
2 ‖θ̂m, a �θa‖1. Consequently,

1
2 |T(m) |

X

t∈T(m)
(x⊤t θa � x⊤t θ̂m, a)

2
· 1{at � a} +λm

2 ‖θ̂m, a � θa‖1

≤ λm · (‖θ̂m, a �θa‖1 + ‖θa‖1 � ‖θ̂m, a‖1):

Denote Sa � supp(θa). The previous inequality yields
1
2 ‖θ̂m, a�θa‖1 ≤ ‖θ̂m, a(Sa)�θa(Sa)‖1 + ‖θa(Sa)‖1 � ‖θ̂m, a(Sa)‖1

⇒ ‖θ̂m, a(Sc
a)�θa(Sc

a)‖1 ≤ 3‖θ̂m, a(Sa)�θa(Sa)‖1:

Define Bm, a �
P

t\inT(m)xtx⊤t · 1{at � t}. For any unit vector 
v ∈ Rd,

v⊤ Bm, a

T(m)
v �

X

j≤m

|T(j)m |

|T(m) |
· v⊤

Dj, m, a

|T(j)m |
v:

Combining the previous expressions and Lemma F.5, we 
have with probability at least 1� 2M · exp O(slog d

ρ(K)γ(K)

��

�Ω(ρ2(K) ·
ffiffiffiffiffiffiffi
Ts0
√

=M)),

φmax s, Bm, a

|T(m) |

� �

≤
25
2 , φmin s, Bm, a

|T(m) |

� �

≥
ρ(K) · γ(K)

4 :
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We now let r � 1,800s0
ρ(K)γ(K) and s � s0 + r. With probability at 

least 1� 2M exp(O( s0
ρ(K)γ(K) log d

ρ(K)γ(K))�Ω(ρ2(K) ·
ffiffiffiffiffiffiffi
Ts0
√

=M)),

9s0φmax r, Bm,a
|T(m) |

� �

rφmin s0 + r, Bm,a
|T(m) |

� � ≤
1
4 , 

and hence

κ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

φmin s0 + r, Bm, a

|T(m) |

� �s

· 1� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s0φmax r, Bm,a
|T(m) |

� �

rφmax s0 + r, Bm, a
|T(m) |

� �

v
u
u
u
t

0

B
@

1

C
A

≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ(K)γ(K)

p

4 :

We now make use of Lemma D.1:

1
2 |T(m) |

X

t∈T(m)
(x⊤t θa � x⊤t θ̂m, a)

2
· 1{at � a}

≥
ρ(K)γ(K)

32 ‖θ̂m, a(S̃a)� θa(S̃a)‖
2
2: (F.18) 

Conversely,

1
2 |T(m) |

X

t∈T(m)
(x⊤t θA � x⊤t θ̂m, a)

2
· 1{at � a}

≤ 2λm · ‖θa(Sa)� θ̂m, a(Sa)‖1

≤ 2λm
ffiffiffiffi
s0
√
· ‖θa(Sa)� θ̂m, a(Sa)‖2

≤ 2λm
ffiffiffiffi
s0
√
· ‖θa(S̃a)� θ̂m, a(S̃a)‖2: (F.18) 

Combining (F.17) and (F.18), we have

‖θ̂m, a(S̃a)� θa(S̃a)‖2 ≤
64λm

ffiffiffiffis0
√

ρ(K)γ(K)
:

Observe that the kth largest coordinate of | θ̂m, a(Sc
a)�

θa(Sc
a) | is bounded by ‖θ̂m, a(Sc

a)�θa(Sc
a)‖1=k. Then,

‖θ̂m, a(S̃
c
a)�θa(S̃

c
a)‖

2
2 ≤ ‖θ̂m, a(Sc

a)�θa(Sc
a)‖

2
1

Xd�s0

ℓ�r+1

1
ℓ2

≤
1
r
· ‖θ̂m, a(Sc

a)�θa(Sc
a)‖

2
1

≤
9
r · ‖θ̂m, a(Sa)�θa(Sa)‖

2
1 ≤

9s0

r · ‖θ̂m, a(Sa)�θa(Sa)‖
2
2

≤
9s0

r
· ‖θ̂m, a(S̃a)�θa(S̃a)‖

2
2:

Combining everything previously stated, we have with 
probability at least 1� 2M · exp

�
O
�

s0
ρ(K)γ(K) log d

ρ(K)γ(K)

�
�Ω(ρ2 

(K) ·
ffiffiffiffiffiffiffi
Ts0
√

=M)
�
� 2T�2 � 2exp(log d�Ω(

ffiffiffiffiffiffiffi
Ts0
√

=M)),

‖θ̂m, a �θa‖2 ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ 9s0

r

r

· ‖θ̂m, a(S̃a)�θa(S̃a)‖2

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ 9s0

r

r

·
64λm

ffiffiffiffis0
√

ρ(K)γ(K) ≤
4, 608
ρ(K)γ(K)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ms0log T
tm

s

:

F.3.3. Regret Analysis Given m ∈ [M] and t ∈ {tm�1 + 1, 
: : : , tm}, the instantaneous regret can be bounded as

max
a∈[K]

x⊤t θa�x⊤t θat �max
a∈[K]

x⊤t θa�x⊤t θat�x⊤t θ̂m�1,at +x⊤t θ̂m�1,at

≤
(a)

max
a∈[K]

x⊤t θa�x⊤t θat�x⊤t θ̂m�1,a+x⊤t θ̂m�1,at

≤2 ·max
a∈[K]
|x⊤t (θa�θ̂m�1,a) | , 

where step (a) is due to the definition of at. Conditional on 
the previous batches, x⊤t (θa � θ̂m�1, a) is ‖θa � θ̂m�1, a‖

2
2-sub- 

Gaussian for a given a ∈ [K]. Letting Ht � {x1, a1, r1, : : : , xt, 
at, rt}, we have

P
�

2 ·max
a∈[K]

|x⊤t (θa � θ̂m�1, a) | ≥ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log(TK)
q

·max
a∈[K]

‖θa � θ̂m�1, a‖2 |Htm�1

�

≤
X

a∈[K]
P
�
|x⊤t (θa � θ̂m�1, a) | ≥ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log(TK)
q

·max
a∈[K]

‖θa � θ̂m�1, a‖2 |Htm�1

�

≤
X

a∈[K]
P
�
|x⊤t (θa � θ̂m�1, a) | ≥ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log(TK)
q

· ‖θa � θ̂m�1, a‖2 |Htm�1

�
≤

1
T4 , 

where the last inequality is due to the Chernoff bound. 
Applying Lemma F.6 and a union bound over t ∈ {tm�1 + 1, 
: : : , tm} and a ∈ [K], for m ≥ 2, with probability at least 1�

T�3 � 2M K exp
�

O
�

s0
ρ(K)γ(K) · log d

ρ(K)γ(K)

� ��
�Ω(

ffiffiffiffiffiffiffi
Ts0
√

=M)
�
� 2 

KT�2 � 2K exp(log d�Ω(
ffiffiffiffiffiffiffi
Ts0
√

=M)), we bound the regret in-
curred in the mth batch as
Xtm

t�tm�1+1
2 ·max

a∈[K]
|x⊤t (θa � θ̂m�1, a) | ≤ 12, 288 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M logTlog(TK)

p

ρ(K)γ(K)
·

ffiffiffiffiffiffiffiffiffi
s0

tm�1

r

· tm

≤ c1 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M logTlog(TK)

p

ρ(K)γ(K)
·
ffiffiffiffiffiffiffi
Ts0

p
·

T
s0

� � 1
2(2M�1)

, 

where the last inequality follows from the choice of the grids 
and c1 > 0 is a numerical constant. Next, for the first batch,

Xt1

t�1
max
a∈[K]

x⊤t θa � x⊤t θat ≤ 2
Xt1

t�1
max
a∈[K]
|x⊤t θa | :

Applying a maximal sub-Gaussian inequality and tak-
ing a union bound over t ∈ [t1], we have with probability 
at least 1�T�2,

Xt1

t�1
max
a∈[K]

x⊤t θa � x⊤t θat ≤ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log(TK)
q

· t1

≤ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log(TK)
q

·
ffiffiffiffiffiffiffi
Ts0

p
·

T
s0

� � 1
2(2M�1)

, 

where c2 > 0 is a numerical constant. Combining everything pre-
viously stated, we have with probability at least 1� (1+M+
2MK) ·T�2 � 2M K exp(log d�Ω(

ffiffiffiffiffiffiffi
Ts0
√

=M))�

2M2K exp
�

O
�

s0
ρ(K)γ(K) ·log d

ρ(K)γ(K)

��
�Ω(

ffiffiffiffiffiffiffi
Ts0
√

=M))
�

,

RT(Alg) ≤ c3 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M3logTlog(TK)

p

ρ(K)γ(K)
·
ffiffiffiffiffiffiffi
Ts0

p
·

T
s0

� � 1
2(2M�1)

, 

where c3 > 0 is a numerical constant independent of (T, d, M, 
K, s0).
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Endnotes
1 A preprint of Bastani and Bayati (2020) occurred prior to Wang 
et al. (2018).
2 In Abbasi-Yadkori (2012), a Õ(

ffiffiffiffiffiffiffiffiffiffi
s0dT
√

) regret bound is obtained, 
although the contexts there can be arbitrary rather than stochastic.
3 This result follows directly from the lower bound given in Chu 
et al. (2011), although our lower bound argument provides an alter-
native proof.
4 This may not be the case since the various low-dimensional regime 
assumptions are often required to obtain the Θ̃(

ffiffiffiffiffiffi
dT
√
) regret bounds.
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