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Sparse Linear Stochastic Bandits

At the beginning of round t, the learner receives a decision set At ⊂ Rd .
They then choose an action At ∈ At and receive a reward

Xt = ⟨θ∗,At⟩+ ηt (1)

where ηt is zero-mean noise and θ∗ ∈ Rd is an unknown vector. But in
this sparse setting, the parameter vector θ∗ is assumed to have many zero
entries.
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Sparse Linear Stochastic Bandits
Assumptions

The following hold:

1 (Sparse parameter) There exist known constants m0 and m2 such
that ∥θ∗∥0 ≤ m0 and ∥θ∗∥2 ≤ m2.

2 (Bounded mean rewards) ⟨θ∗, a⟩ ≤ 1 for all a ∈ At and all rounds t.

3 (Subgaussian noise) The noise is conditionally 1-subgaussian:

for all λ ∈ R, E[exp(ληt)|Ft−1] ≤ exp(λ2/2)a.s.

where Ft = σ(A1,X1, · · · ,At ,Xt ,At+1).
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Elimination on the Hypercube
Warm-up

Consider the case where the action set is the d-dimensional
hypercube: At = A = [−1, 1]d . Denote the true parameter vector by
θ = θ∗.

The hypercube is notable as an action set because it enjoys perfect
separability.

For each dimension i ∈ [d ], the value of Ati ∈ [−1, 1] can be chosen
independently of Atj for j ̸= i .

The optimal action is a∗ = sign(θ), where

sign(θ)i = sign(θi ) =


1, if θi > 0;

0, if θi = 0;

−1, if θi < 0.
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Elimination on the Hypercube

So learning the optimal action amounts to learning the sign of θi for
each dimension.

A disadvantage of this structure is that in the worst case the sign of
each θi must be learned independently, which in Chapter 24 we show
leads to a worst-case regret of Rn = Ω(d

√
n).

On the positive side, the separability means that θi can be estimated in
each dimension independently while paying absolutely no price for this
experimentation when θi = 0.

It turns out that this allows us to design a policy for which
Rn = O(∥θ∥0

√
n), even without knowing the value of ∥θ∥0.
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Elimination on the Hypercube

Let Gt = σ(A1,X1, . . . ,At ,Xt) be the σ-algebra containing
information up to time t − 1.

Suppose (Ati )
d
i=1 are chosen to be conditionally independent given

Gt−1, and further assume for some specific i ∈ [d ] that Ati is sampled
from a Rademacher distribution so that
P(Ati = −1|Gt−1) = P(Ati = 1|Gt−1) = 1/2. Then

E[AtiXt |Gt−1] = E

Ati

 d∑
j=1

Atjθj + ηt

∣∣∣∣∣∣Gt−1


= θiE[A2

ti |Gt−1] +
∑
j ̸=i

θjE[AtjAti |Gt−1] + E[Atiηt |Gt−1]

= θi .
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Idea of SETC

This looks quite promising, but we should also check the variance.

Using our assumptions that (ηt) is conditionally 1-subgaussian and
that ⟨θ, a⟩ ≤ 1 for all actions a, we have

V[AtiXt |Gt−1] = E[A2
tiX

2
t |Gt−1]− θ2i = E[(⟨θ,At⟩+ ηt)

2|Gt−1]− θ2i ≤ 2

All the policy does is treat all dimensions independently.

How long this takes depends on |θi |, but note that if |θi | is small,
then the price of exploring is also limited. The policy that results
from this idea is called selective explore-then-commit.
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Selective Explore-then-commit Algorithm (SETC)

Algorithm 13 Selective explore-then-commit

Input: n and d
1: Set E1i = 1 and C1i = R for all i ∈ [d ]
2: for t = 1, . . . , n do
3: For each i ∈ [d ] sample Bti ∼ Rademacher
4: Choose action:

(∀i) Ati =


Bti if 0 ∈ Cti ,

1 if Cti ⊂ (0,∞],

−1 if Cti ⊂ [−∞, 0).

5: Play At and observe Xt

6: Construct empirical estimators

(∀i)Ti (t) =
t∑

s=1

Esi θ̂ti =

∑t
s=1 EsiAsiXs

Ti (t)
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Elimination on the Hypercube

Algorithm 13 Selective explore-then-commit (Cont’d)

7: Construct confidence intervals:

(∀i) Wti = 2

√(
1

Ti (t)
+

1

Ti (t)2

)
log

(
n
√

2Ti (t) + 1
)

(∀i) Ct+1,i = [θ̂ti −Wti , θ̂ti +Wti ]

8: Update exploration parameters:

(∀i) Et+1,i =

{
0 if 0 /∈ Ct+1,i or Eti = 0

1 otherwise.

9: end for
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Elimination on the Hypercube
SETC

Theorem 23.2

There exists a universal constants C , C ′ > 0 such that the regret of SETC
satisfies

Rn ≤ 3∥θ∥1 + C
∑
i :θi ̸=0

log(n)

|θi |
and Rn ≤ 3∥θ∥1 + C ′∥θ∥0

√
n log(n)

Lemma 23.3

Define τi = n ∧max{t : Eti = 1}, and let Fi = I{θi /∈ Cτi+1,i} be the event
that θi is not in the confidence interval constructed at time τi . Then
P(Fi ) ≤ 1/n.
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Elimination on the Hypercube

Proof of Theorem 23.2 Recall the definition of the regret. Using the fact
that the optimal action is a∗ = sign(θ), we have the following regret
decomposition:

Rn =
n∑

t=1

max
a∈A

⟨θ, a⟩ − E

[
n∑

t=1

⟨θ,At⟩

]
=

d∑
i=1

(
n|θi | − E

[
n∑

i=1

Atiθi

])
︸ ︷︷ ︸

Rni

If θi = 0, then Rni = 0. Hence, it suffices to bound Rni for each i with
|θi | > 0.
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Elimination on the Hypercube

Proof of Theorem 23.2 (Cont’d) Suppose that |θi | > 0 for some i and
the failure event Fi given in Lemma 23.3 does not occur. Then
θi ∈ Cτi+1,t , and by the definition of the algorithm, Ati = sign(θi ) for all
t ≥ τi . Therefore,

Rn = n|θi | − E

[
n∑

i=1

Atiθi

]
= E

[
n∑

i=1

|θi |(1− Ati sign(θi ))

]
≤ 2n|θi |P(Fi ) + |θi |E[I{F c

i }τi ]
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Elimination on the Hypercube

Proof of Theorem 23.2 (Cont’d)

Rn ≤ 2n|θi |P(Fi ) + |θi |E[I{F c
i }τi ]

Since τi is the first round t when 0 /∈ Ct+1, it follows that if Fi does not
occur, then θi ∈ Cτi ,i and 0 ∈ Cτi ,i . Thus, the width of the confidence
interval Cτi ,i must be at least |θi |, and so

2Wτi−1,i = 4

√(
1

τi − 1
+

1

(τi − 1)2

)
log(n

√
2τi − 1) ≥ |θi |
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Elimination on the Hypercube

Proof of Theorem 23.2 (Cont’d) after rearranging, this shows for some
universal constant C > 0 that

I{F c
i }(τi − 1) ≤ 1 +

C log(n)

θ2i
.

combining this result with

Rn ≤ 2n|θi |P(Fi ) + |θi |E[I{F c
i }τi ]

leads to

Rn ≤ 2n|θi |P(Fi ) + |θi |+
C log(n)

|θi |
,

where Lemma 23.3 bounds P(Fi ).
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Online to Confidence Set Conversion

A new plan is needed to relax the assumption that the action set is a
hypercube. The idea is to modify the ellipsoidal confidence set used
in stochastic linear bandits (Th 20.5) to have a smaller radius

We will see that modifying the algorithm in Chapter 19 to use the
smaller confidence intervals improves the regret to
Rn = O(

√
dpn log(n)).
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Online to Confidence Set Conversion

The prediction problem considered is online linear prediction under
the squared loss.

Also known as online linear regression

The learner interacts with an environment in a sequential manner
where in each round t ∈ N+ :

1 The environment chooses Xt ∈ R and At ∈ Rd in an arbitrary fashion.
2 The value of At is revealed to the learner (but not Xt).
3 The learner produces a real-valued prediction X̂t ∈ R in some way.

4 The environment reveals Xt to the learner and the loss is
(
Xt − X̂t

)2
.
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Online to Confidence Set Conversion

The regret of the learner relative to a linear predictor that uses the
weights θ ∈ Rd is

ρn(θ) =
n∑

t=1

(
Xt − X̂t

)2
−

n∑
t=1

(Xt − ⟨θ,At⟩)2

We say that the learner enjoys a regret guarantee Bn relative to
Θ ⊆ Rd if for any strategy of the environment,

sup
θ∈Θ

ρn(θ) ≤ Bn.
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Online to Confidence Set Conversion

First, we show how to use such a learning algorithm to construct a
confidence set.

Take any learner for online linear regression, and assume the
environment generates Xt in a stochastic manner like in linear bandits:

Xt = ⟨θ∗,At⟩+ ηt .

With elementary algebra,

Qt =
n∑

t=1

(
X̂t − ⟨θ∗,At⟩

)2
= ρn (θ∗) + 2

n∑
t=1

ηt

(
X̂t − ⟨θ∗,At⟩

)
≤ Bn + 2

n∑
t=1

ηt

(
X̂t − ⟨θ∗,At⟩

)
,

where the first equality serves as the definition of Qt .
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Online to Confidence Set Conversion

The fluctuations can be controlled with high probability using a little
concentration analysis. Let

Zt =
t∑

s=1

ηs

(
X̂s − ⟨θ∗,As⟩

)
Since X̂t is chosen based on information available at the beginning of
the round, X̂t is Ft−1-measurable, and so

for all λ ∈ R, E [exp (λ (Zt − Zt−1)) | Ft−1] ≤ exp
(
λ2σ2

t /2
)
,

where σ2
t =

(
X̂t − ⟨θ∗,At⟩

)2
.
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Online to Confidence Set Conversion

The uniform self-normalised tail bound (Theorem 20.4) with λ = 1
implies that

P

(
exists t ≥ 0 such that |Zt | ≥

√
(1 + Qt) log

(
1 + Qt

δ2

))
≤ δ.

Provided this low-probability event does not occur, then we have

Qt ≤ Bt + 2

√
(1 + Qt) log

(
1 + Qt

δ2

)
.

While both sides depend on Qt , the left-hand side grows linearly, while
the right-hand side grows sublinearly in Qt . This means that the
largest value of Qt that satisfies the above inequality is finite.
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Online to Confidence Set Conversion

A tedious calculation then shows this value must be less than

βt(δ) = 1 + 2Bt + 32 log

(√
8 +

√
1 + Bt

δ

)
.

By piecing together the parts, we conclude that with probability at
least 1− δ the following holds for all t :

Qt =
t∑

s=1

(
X̂s − ⟨θ∗,As⟩

)2
≤ βt(δ)
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Online to Confidence Set Conversion

We could define Ct+1 to be the set of all θ such that the above holds
with θ∗ replaced by θ.

But there is one additionally subtlety, which is that the resulting
confidence interval may be unbounded (think about the case that∑t

s=1 AsA
T
s is not invertible).

In Chapter 19 we overcame this problem by regularising the least
squares estimator. Since we have assumed that ∥θ∗∥2 ≤ m2, the
previous display implies that

∥θ∗∥22 +
t∑

s=1

(
X̂s − ⟨θ∗,As⟩

)2
≤ m2

2 + βt(δ)

All together, we have the following theorem:
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Online to Confidence Set Conversion

Theorem 23.4

Let δ ∈ (0, 1) and assume that θ∗ ∈ Θ and supθ∈Θ ρt(θ) ≤ Bt . If

Ct+1 =

{
θ ∈ Rd : ∥θ∥22 +

t∑
s=1

(
X̂s − ⟨θ,As⟩

)2
≤ m2

2 + βt(δ)

}
,

then P (exists t ∈ N such that θ∗ /∈ Ct+1) ≤ δ.
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Online to Confidence Set Conversion

The confidence set in Theorem 23.4 is not in the most convenient
form. By defining Vt = I +

∑t
s=1 AsA

T
s and St =

∑t
s=1 As X̂s and

θ̂t = V−1
t St and performing some algebraic calculation, one can see

that

∥θ∥22 +
t∑

s=1

(
X̂s − ⟨θ,As⟩

)2

=
∥∥∥θ − θ̂t

∥∥∥2

Vt

+
t∑

s=1

(
X̂s −

〈
θ̂t ,As

〉)2

+
∥∥∥θ̂t∥∥∥2

2
.

Using this, the confidence set can be rewritten in the familiar form of
an ellipsoid:

Ct+1 =

{
θ ∈ Rd :

∥∥∥θ − θ̂t

∥∥∥2

Vt

≤ m2
2 + βt(δ)−

∥∥∥θ̂t∥∥∥2

2
−

t∑
s=1

(
X̂ 2

s −
〈
θ̂t ,As

〉)2
}
.
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OLR-UCB

Algorithm 14 Online linear predictor UCB (OLR-UCB)

Input: Online linear predictor and regret bound Bt , confidence parameter δ ∈ (0, 1)
1: for t = 1, . . . , n do
2: Receive action set At

3: Computer confidence set:

Ct =

{
θ ∈ Rd : ∥θ∥22 +

t−1∑
s=1

(
X̂s − ⟨θ,As⟩

)2

≤ m2
2 + βt(δ)

}
4: optimistic action

At = argmaxa∈At
max
θ∈Ct

⟨θ, a⟩

5: Feed At to the online linear predictor and obtain prediction X̂t

6: Play At and receive reward Xt

7: Feed Xt to online linear predictor as feedback
8: end for
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Online to Confidence Set Conversion

It is not obvious that Ct+1 is not empty because the radius could be
negative.

Theorem 23.4 shows, however, that with high probability θ∗ ∈ Ct+1.

At last we have established all the conditions required for Theorem
19.2, which implies the following theorem bounding the regret of
Algorithm 14:

Theorem 23.5

With probability at least 1− δ the pseudo-regret of OLR-UCB satisfies

R̂n ≤
√
8dn

(
m2

2 + βn−1(δ)
)
log
(
1 +

n

d

)
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Sparse Online Linear Prediction

Theorem 23.6

There exists a strategy π for the learner such that for any θ ∈ Rd , the
regret ρn(θ) of π against any strategic environment such that
maxt∈[n] ∥At∥2 ≤ L and maxt∈[n] |Xt | ≤ X satisfies

ρn(θ) ≤ cX 2∥θ∥0
{
log
(
e + n1/2L

)
+ Cn log

(
1 +

∥θ∥1
∥θ∥0

)}
+
(
1 + X 2

)
Cn

where c > 0 is some universal constant and Cn = 2 + log2 log
(
e + n1/2L

)
.
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Sparse Online Linear Prediction

Note that Cn = O(log log(n)), so by dropping the dependence on X
and L, we have

sup
θ:∥θ∥0≤m0,∥θ∥2≤L

ρn(θ) = O (m0 log(n)) .

As a final catch, the rewards (Xt) in sparse linear bandits with
subgaussian noise are not necessarily bounded. However, the
subgaussian property implies that with probability 1− δ,
|ηt | ≤ log(2/δ). By choosing δ = 1/n2 and Assumption 23.1, we have

P
(
max
t∈[n]

|Xt | ≥ 1 + log
(
2n2
))

≤ 1

n
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Sparse Online Linear Prediction

Putting all the pieces together shows that the expected regret of
OLR-UCB when using the predictor provided by Theorem 23.6 and
when ∥θ∥0 ≤ m0 satisfies

Rn = O
(√

dnm0 log(n)
2
)
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Notes

1 The strategy achieving the bound in Theorem 23.6 is not
computationally efficient. In fact we do not know of any polynomial
time algorithm with logarithmic regret for this problem. The
consequence is that OLR-UCB does not yet have an efficient
implementation.

2 While we focused on the sparse case, the results and
techniques apply to other settings. For example, we can also get
alternative confidence sets from results in online learning even for the
standard non-sparse case. Or one may consider additional or different
structural assumptions on θ.
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Notes

3 When the online linear regression results are applied, it is
important to use the tightest possible, data-dependent regret
bounds Bn. In online learning most regret bounds start as tight,
data-dependent bounds, which are then loosened to get further
insight into the structure of problems. The gains from using
data-dependent bounds can be significant.
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Notes

4 The confidence set used by OLR-UCB depends on the sparsity
parameter m0, which must be known in advance. No algorithm
can enjoy a regret of O

(√
∥θ∗∥0 dn

)
for all ∥θ∗∥0 simultaneously (see

Chapter 24).

5 The bound in Theorem 23.5 still depends on the ambient
dimension. In general this is unavoidable. For this reason it
recently became popular to study the contextual setting with
changing actions and make assumptions on the distribution of the
contexts so that techniques from high-dimensional statistics can be
brought to bear. We can refer to papers by Kim and Paik [2019] and
Bastani and Bayati [2020].
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