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LASSO Bandit - Motivation

Sparsity - LASSO identifies a sparse subset of predictive covariates,
which is an effective approach for treatment effect estimation in
practice.

Asymptotic performance - some techniques create substantial bias in
our estimates to increase predictive accuracy for small sample sizes.

Data-poor regimes - the performance of all existing algorithms scales
polynomially in the number of covariates d , and provides no
theoretical guarantees when the number of users is of order d .
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Main Contributions

Adapted LASSO to the bandit setting and tune the resulting
bias-variance trade-off over time to transit from data-poor to
data-rich regimes.

Proved theoretical guarantees that the algorithm achieves good
performance as soon as the number of users T is polyogarithmic in d ,
which is an exponential improvement over existing theory.

Empirically demonstrated the potential benefit in a medical
decision-making context with real patient data.
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Notation

[n]: the set {1, 2, . . . , n};
βI : for any index set I ⊂ [d ], the vector obtained by setting the
elements of β that are not in I to zero, βI ∈ Rd .

supp(v): the set of indices corresponding to nonzero entries of v .

T : the number of (unknown) time steps.

K : the number of arms.

reward X⊤
t βi + ϵi ,t , where ϵi ,t are independent σ− subgaussian

random variables.

rt : expected regret. rt = E
[
maxj(X

⊤
t βj)− X⊤

t βi
]

s0: sparsity parameter.
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Assumptions

Assumption 1 (Parameter set).There exist positive constants xmax

and b such that ∥x∥∞ ≤ xmax for all x ∈ X and ∥βi∥1 ≤ b for all
i ∈ [K ]. The former implies that any realization of the random
variable Xt satisfies ∥Xt∥∞ ≤ xmax for all t.

Assumption 2 (Margin condition). There exists a constant
C0 ∈ R+such that for all i and j in [K ] where i ̸= j ,
Pr

[
0 <

∣∣X⊤ (βi − βj)
∣∣ ≤ κ

]
≤ C0κ for all κ ∈ R+.
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Assumptions

Assumption 3 (Arm optimality). Let Kopt and Ksub be mutually
exclusive sets that include all K arms. Then there exists some h > 0
such that:
(a) sub-optimal arms i ∈ Ksub satisfy x⊤βi < maxj ̸=i x

⊤βj − h for
every x ∈ X ; and (b) for a constant p∗ > 0, each optimal arm
i ∈ Kopt has a corresponding set

Ui ≡
{
x ∈ X | x⊤βi > max

j ̸=i
x⊤βj + h

}
such that mini∈Kopt Pr [X ∈ Ui ] ≥ p∗.
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Assumption 3: Arm Optimality

Our third assumption is a less restrictive version of an assumption
introduced in Goldenshluger and Zeevi (2013). In particular, we assume
that our K arms can be split into two sets:

a. Sub-optimal arms Ksub that are strictly sub-optimal for all covariate
vectors in X , i.e., there exists a constant hsub > 0 such that for each
i ∈ Ksub, x

⊤βi < maxj ̸=i x
⊤βj − hsub for every x ∈ X .

b. A non-empty set of optimal arms Kopt that are strictly optimal with
positive probability for some covariate vectors x ∈ X , i.e., there exists
a constant hopt > 0 and some region Ui ⊂ X (with
Pr [X ∈ Ui ] = pi > 0 ) for each i ∈ Kopt such that
x⊤βi > maxj ̸=i x

⊤βj + hopt for all covariate vectors x in Ui .
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Assumption 4: Compatibility Condition

Definition 2 (Compatibility Condition)

For any set of indices I ⊂ [d ] and a positive and deterministic constant ϕ,
define the set of matrices

C(I , ϕ) ≡ {M ∈ Rd×d
⪰0 | ∀v ∈ Rd s.t. ∥vI c∥1 ≤ 3 ∥vI∥1 ,

we have ∥vI∥21 ≤ |I |
(
v⊤Mv

)
/ϕ2}.

Assumption 4 (Compatibility condition). There exists a constant
ϕ0 > 0 such that for each i ∈ Kopt ,Σi ∈ C (supp (βi ) , ϕ0), where we
define Σi ≡ E

[
XX⊤ | X ∈ Ui

]
.
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Additional Notation

design matrix X: T × d matrix whose rows are Xt .

Yi : length of T vector of observations X⊤
t βi + ϵi ,t .

all-sample set Si : Si = {t|πt = i} ⊂ [T ], set of times when arm i was
played.

X(S ′): |S ′| × d submatrix of X whose rows are Xt for each t ∈ S ′.

Yi (S ′): defined similarly, when S ′ ⊂ Si , it is length |S ′| vector of
corresponding observed rewards Yi (t). Note that since πt = i for
each t ∈ S ′, Yi (S ′) has no missing entries.

Σ̂(Z) = Z⊤Z/n: its sample covariance matrix.

Σ̂(A) to refer to Σ̂(Z(A)).

β̂ (S ′, λ): simpler notation of β̂X(S′),Y (S′),λ (LASSO estimator).
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LASSO Estimation

Definition 3 (LASSO).

Given a regularization parameter λ ≥ 0, the LASSO estimator is

β̂X,Y (λ) ≡ argmin
β′

{
∥Y − Xβ′∥22

n
+ λ

∥∥β′∥∥
1

}

The LASSO estimator satisfies the following tail inequality.
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LASSO Estimation

Proposition 1 (LASSO Tail Inequality for Adapted Observations).

Let Xt denote the tth row of X and Y (t) denote the tth entry of Y . The
sequence {Xt : t = 1, . . . , n} forms an adapted sequence of observations,
i.e., Xt may depend on past regressors and their resulting observations
{Xt′ ,Y (t ′)}t−1

t′=1. Also, assume that all realizations of random vectors Xt

satisfy ∥Xt∥∞ ≤ xmax. Then for any ϕ > 0 and χ > 0, if
λ = λ(χ, ϕ) ≡ χϕ2/ (4s0), we have

Pr
[∥∥∥β̂X,Y (λ)− β

∥∥∥
1
> χ

]
≤2 exp

[
−C1(ϕ)nχ

2 + log d
]
+

Pr[Σ̂(X) /∈ C(supp(β), ϕ)],

where C1(ϕ) ≡ ϕ4/
(
512s20σ

2x2max

)
.
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LASSO for bandit setting

We then consider estimating the parameter βi for each arm i ∈ [K ]. Using
any subset of past samples S ′ ⊂ Si (arm i was played) and any λ, we can
use the corresponding LASSO estimator β̂ (S ′, λ), to estimate βi .
In order to prove regret bounds, we need to establish convergence
guarantees for such estimates.

From Proposition 1 , in order to bound the error
∥∥∥β̂ (S ′, λ)− βi

∥∥∥
1
for each

arm i ∈ [K ], we need to

ensure with high probability Σ̂ (S ′) ∈ C (supp (βi ) , ϕ) for some constant ϕ

appropriately choose parameters λ over time to control the rate of convergence

Thus, the main challenge in the algorithm and analysis is constructing and
maintaining sets S ′ such that with high probability
Σ̂ (S ′) ∈ C (supp (βi ) , ϕ), (although the rows of X (S ′) are not i.i.d.) with
sufficiently fast convergence rates.
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Description of Algorithm

The LASSO Bandit takes as input the forced sampling parameter
q ∈ Z+(which is used to construct the forced-sample sets), a
localization parameter h > 0 (defined in Assumption 3)3, as well as
initial regularization parameters λ1, λ2,0.

These parameters will be specified in Theorem 1 .
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Description of Algorithm
Forced-Sample Sets

We prescribe a set of times when we forced-sample arm i (regardless of
the observed covariates Xt ):

Ti ≡ { (2n − 1) · Kq + j | n ∈ {0, 1, 2, . . .} and

j ∈ {q(i − 1) + 1, q(i − 1) + 2, . . . , qi}.

Thus, the set of forced samples from arm i up to time t is Ti ,t ≡ Ti ∩ [t],
with size O(q log t).
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Description of Algorithm
All-Sample Sets

As before, let Si ,t = {t ′ | πt′ = i and 1 ≤ t ′ ≤ t} denote the set of times
we play arm i up to time t. Note that by definition Ti ,t ⊂ Si ,t . At any
time t, the LASSO Bandit maintains two sets of parameter estimates for
each βi :

1 the forced-sample estimate β̂ (Ti ,t−1, λ1) based only on forced
samples observed from arm i ,

2 the all-sample estimate β̂ (Si ,t−1, λ2,t) based on all samples observed
from arm i .
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Description of Algorithm
Execution

If the current time t is in Ti for some arm i , then arm i is played.

Otherwise, two actions are possible.

First, we use the forced-sample estimates to find the highest estimated
reward achievable across all K arms.
We then select the subset of arms K̂ ⊂ [K ] whose estimated rewards
are within h/2 of the maximum achievable.
After this pre-processing step, we use the all-sample estimates to
choose the arm with the highest estimated reward within the set K̂.
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Description of Algorithm
Algorithm
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Regret Analysis of LASSO Bandit

Theorem 1

When q ≥ 4 ⌈q0⌉ ,K ≥ 2, d > 2, t ≥ C5, and we take λ1 =
(
ϕ2
0p∗h

)
/ (64s0xmax) and

λ2,0 =
[
ϕ2
0/ (2s0)

]√
1/ (p∗C1), we have the following (non-asymptotic) upper bound on

the expected cumulative regret of the LASSO Bandit at time T by:

RT ≤ C3(logT )2 + [2Kbxmax(6q + 4) + C3 log d ] logT

+ (2bxmaxC5 + 2Kbxmax + C4)

= O
(
s20 [logT + log d ]2

)
where the constants C1 (ϕ0) ,C2 (ϕ0) ,C3 (ϕ0, p∗) ,C4 (ϕ0, p∗), and C5 are given by

C1 (ϕ0) ≡
ϕ4
0

512s20σ
2x2

max
, C2 (ϕ0) ≡ min

(
1

2
,

ϕ2
0

256s0x2
max

)
, C3 (ϕ0, p∗) ≡

1024KC0x
2
max

p3
∗C1

,

C4 (ϕ0, p∗) ≡
8Kbxmax

1− exp
[
− p2∗C

2
2

32

] , C5 ≡ min
{
t ∈ Z+ | t ≥ 24Kq log t + 4(Kq)2

}
,

and we take q0 ≡ max
{

20
p∗
, 4
p∗C2

2
, 12 log d

p∗C2
2
,
1024x2max log d

h2p2∗C1

}
= O

(
s20 log d

)
.

Siyu Xie (NU STATS) Bastani and Bayata, 2020 March 8, 2024 22 / 41



Outline

1 Introduction

2 Problem Formulation
Notation
Assumptions

3 LASSO Bandit Algorithm
Additional Notation
LASSO Estimation
Description of Algorithm

4 Key Steps of the Analysis

5 Empirical Results

Siyu Xie (NU STATS) Bastani and Bayata, 2020 March 8, 2024 23 / 41



Key Steps of the Analysis

In this section, we outline the proof strategy of Theorem 1.

Prove a new general LASSO tail inequality that holds even when the
rows of the design matrix are not iid (Section 4.1).

Use this result to obtain convergence guarantees for the
forced-sample (Section 4.2) and all sample estimators (Section 4.3)
under a fixed regularization path.

Sum up the expected regret from the errors in the estimators.
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A LASSO Tail Inequality for Non-i.i.d. Data

Letting Σ ≡ EZ∼PZ

[
ZZ⊤], we further assume that

Σ ∈ C (supp(β), ϕ1) for a constant ϕ1 ∈ R+.

We will show that if the number |A′| of i.i.d. samples is sufficiently
large, then we can prove a convergence guarantee for the LASSO
estimator β̂(A, λ) trained on samples in A, which includes non-i.i.d.
samples.
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A LASSO Tail Inequality for Non-i.i.d. Data
Section 4.1

Lemma 1

For any χ > 0, if d > 1, |A′| /|A| ≥ p/2, |A| ≥ 6 log d/
(
pC2 (ϕ1)

2
)
, and

λ = λ
(
χ, ϕ1

√
p/2

)
= χϕ2

1p/ (16s0), then the following tail inequality
holds:

Pr
[
∥β̂(A, λ)− β∥1 > χ

]
≤ 2 exp

[
−C1

(
ϕ1

√
p

2

)
|A|χ2 + log d

]
+ exp

[
−pC2 (ϕ1)

2 |A|/2
]
.
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LASSO Tail Inequality for the Forced Sample Estimator
Section 4.2

Proposition 2

Proposition 2. For all i ∈ [K ], the forced sample estimator β̂ (Ti ,t , λ1)
satisfies

Pr

[∥∥∥β̂ (Ti ,t , λ1)− βi

∥∥∥
1
>

h

4xmax

]
≤ 5

t4

when λ1 = ϕ2
0p∗h/ (64s0xmax) , t ≥ (Kq)2, q ≥ 4 ⌈q0⌉, and q0 satisfies the

definition in Section 3.3.
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LASSO Tail Inequality for the All-Sample Estimator
Section 4.3

The challenge is that the all-sample sets Si ,t depend on choices made
online by the algorithm.

The algorithm selects arm i at time t based both on Xt and on
previous observations {Xt′}1≤t′<t .

As a consequence, the variables {Xt | t ∈ Si ,t} may be correlated.

We resolve this by showing that

(a) our algorithm uses the forced-sample estimator O(T ) times with high
probability, and

(b) a constant fraction of the samples where we use the forced-sample
estimator are i.i.d. from the regions Ui . We then invoke Lemma 1 with
a modified A′ such that |A′| = O(T ).
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LASSO Tail Inequality for the All-Sample Estimator
Section 4.3

In particular, we define the event

At ≡
{∥∥∥β̂ (Ti ,t , λ1)− βi

∥∥∥
1
≤ h

4xmax
, ∀i ∈ [K ]

}
.

Since the event At only depends on forced-samples, the random variables
{Xt | At−1 holds } are i.i.d. (with distribution PX ). Furthermore, if we let

S ′
i ,t ≡{t ′ ∈ [t] | At′−1 holds, Xt′ ∈ Ui , and

t ′ /∈ ∪j∈[K ]Tj ,t}

then the random variables
{
Xt′ | t ′ ∈ S ′

i ,t

}
are i.i.d.
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LASSO Tail Inequality for the All-Sample Estimator
Section 4.3

Proposition 3

The all-sample estimator β̂ (Si ,t , λ2,t) for i ∈ Kopt satisfies the tail
inequality

Pr

[∥∥∥β̂ (Si ,t , λ2,t)− βi

∥∥∥
1
> 16

√
log t + log d

p3∗C1 (ϕ0) t

]

<
2

t
+ 2 exp

[
−p2∗C2 (ϕ0)

2

32
· t

]

when λ2,t =
[
ϕ2
0/ (2s0)

]√
(log t + log d)/ (p∗C1 (ϕ0) t) and t ≥ C5.
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LASSO Tail Inequality for the All-Sample Estimator
Section 4.3

Note that the all-sample estimator tail inequality only holds for
optimal arms Kopt while the forced-sample estimator tail inequality
holds for all arms [K ].

However, the algorithm requires a preprocessing step using the forced
sample estimator to

(a) ensure that we obtain O(T ) i.i.d. samples for each i ∈ Kopt and
(b) to prune out suboptimal arms Ksub with high probability.
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Bounding the Cumulative Expected Regret

We divide the time periods [T ] into three groups:

1 Initialization (t ≤ C5), or forced sampling (t ∈ Ti ,T for some i ∈ [K ]).

2 Times t > C5 when the event At−1 does not hold.

3 Times t > C5 when the event At−1 holds and we do not perform
forced sampling; that is, the LASSO Bandit plays the estimated best
arm from K̂ (chosen by the forced-sampling estimator) using the
all-sample estimator.
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Proof of Main Result

Theorem 1

When q ≥ 4 ⌈q0⌉ ,K ≥ 2, d > 2, t ≥ C5, and we take λ1 =
(
ϕ2
0p∗h

)
/ (64s0xmax) and

λ2,0 =
[
ϕ2
0/ (2s0)

]√
1/ (p∗C1), we have the following (non-asymptotic) upper bound on

the expected cumulative regret of the LASSO Bandit at time T by:

RT ≤ C3(logT )2 + [2Kbxmax(6q + 4) + C3 log d ] logT

+ (2bxmaxC5 + 2Kbxmax + C4)

= O
(
s20 [logT + log d ]2

)
where the constants C1 (ϕ0) ,C2 (ϕ0) ,C3 (ϕ0, p∗) ,C4 (ϕ0, p∗), and C5 are given by

C1 (ϕ0) ≡
ϕ4
0

512s20σ
2x2

max
, C2 (ϕ0) ≡ min

(
1

2
,

ϕ2
0

256s0x2
max

)
, C3 (ϕ0, p∗) ≡

1024KC0x
2
max

p3
∗C1

,

C4 (ϕ0, p∗) ≡
8Kbxmax

1− exp
[
− p2∗C

2
2

32

] , C5 ≡ min
{
t ∈ Z+ | t ≥ 24Kq log t + 4(Kq)2

}
,

and we take q0 ≡ max
{

20
p∗
, 4
p∗C2

2
, 12 log d

p∗C2
2
,
1024x2max log d

h2p2∗C1

}
= O

(
s20 log d

)
.
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Proof of Main Result

Proof of Theorem 1

The total expected cumulative regret of the LASSO Bandit up to time T
is upper-bounded by summing all the terms from Lemmas EC.15, EC.17,
and EC.20:

RT ≤

Regret from (a)︷ ︸︸ ︷
2bxmax (6qK logT + C5)+

Regret from (b)︷ ︸︸ ︷
2Kbxmax

+

Regret from (c)︷ ︸︸ ︷
(8Kbxmax + C3 log d) logT + C3(logT )2 + C4

=C3(logT )2 + [2Kbxmax(6q + 4) + C3 log d ] logT

+ (2bxmaxC5 + 2Kbxmax + C4)

= logT [C3 logT + 2Kbxmax(6q + 4) + C3 log d ]

+ (2bxmaxC5 + 2Kbxmax + C4) .
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Proof of Main Result

Proof of Theorem 1 (Cont’d)

Now, using q = O
(
s20 log d

)
, and the fact that C0, . . . ,C5, b, xmax, and ϕ0

are constants,

RT = O
(
logT

[
logT + s20 log d

])
= O

(
s20 [logT + log d ]2

)
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Empirical Results

We compare the LASSO Bandit against

a the UCB-based algorithmOFUL-LS (Abbasi-Yadkori et al.2011),which is
an improved version of the algorithm sug-gested in Dani et al. (2008),

b a sparse variant OFUL-EG for high-dimensional settings
(Abbasi-Yadkori2012, Abbasi-Yadkori et al.2012), and

c the OLSBandit by Goldenshluger and Zeevi (2013). Our
re-sultsdemonstrate thattheLASSO Bandit significantlyoutperforms
these benchmarks. Separately, wefindthat the LASSO Bandit is robust
to changes in inputparameters by even an order of magnitude
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Empirical Results

We consider three scenarios for K , d , and s0: a) K = 2, d = 100,
s0 = 5; (b) K = 10, d = 1000, s0 = 2; and (c) K = 50, d = 20,
s0 = 2.

In each case, we consider K arms (treatments) and d user covariates,
where only a randomly chosen subset of s0 covariates are predictive of
the reward for each treatment,

for each i ∈ [K ], the arm parameters βi are set to zero except for s0
randomly selected components that are drawn from a uniform
distribution on [0, 1].
Note that the OFUL-EG algorithm requires an additional technical
assumption that ΣK

i=1∥βi∥1 = 1. We scale our βi ’s accordingly so that
this assumption is met.

Next, at each time t, user covariates Xt are independently sampled
from a Gaussian distribution N(0d , Id) and truncated so that
∥Xt∥∞ = 1.

Finally, we set the noise variance to be σ2 = 0.052.
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Empirical Results

(a) LASSO Bandit may be useful even in low-dimensional regime

because other algorithms continue to overfit the arm parameters.
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Empirical Results

(b) Gap between the LASSO Bandit and the other algorithm increases
significantly.

Because benchmark algorithms do not take advantage of sparsity and
perform exploration for at least O(Kd) samples in order to define linear
regression estimates for each arm.
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Empirical Results

(c) Performance gap decreases.

LASSO Bandit does not provide any improvement over existing
algorithms in K , and
provides limited improvement when the number of covariates is very
small.
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