Online Decision Making with High-Dimensional Covariates

Siyu Xie

Department of Statistics, Northwestern University

March 8, 2024

Outline

- Introduction
- Problem Formulation
 - Notation
 - Assumptions
- 3 LASSO Bandit Algorithm
 - Additional Notation
 - LASSO Estimation
 - Description of Algorithm
- 4 Key Steps of the Analysis
- 5 Empirical Results

Outline

- Introduction
- 2 Problem Formulation
 - Notation
 - Assumptions
- 3 LASSO Bandit Algorithm
 - Additional Notation
 - LASSO Estimation
 - Description of Algorithm
- 4 Key Steps of the Analysis
- 5 Empirical Results

LASSO Bandit - Motivation

- Sparsity LASSO identifies a sparse subset of predictive covariates, which is an effective approach for treatment effect estimation in practice.
- Asymptotic performance some techniques create substantial bias in our estimates to increase predictive accuracy for small sample sizes.
- Data-poor regimes the performance of all existing algorithms scales polynomially in the number of covariates d, and provides no theoretical guarantees when the number of users is of order d.

Main Contributions

- Adapted LASSO to the bandit setting and tune the resulting bias-variance trade-off over time to transit from data-poor to data-rich regimes.
- Proved theoretical guarantees that the algorithm achieves good performance as soon as the number of users T is polyogarithmic in d, which is an exponential improvement over existing theory.
- Empirically demonstrated the potential benefit in a medical decision-making context with real patient data.

Outline

- Introduction
- 2 Problem Formulation
 - Notation
 - Assumptions
- 3 LASSO Bandit Algorithm
 - Additional Notation
 - LASSO Estimation
 - Description of Algorithm
- 4 Key Steps of the Analysis
- Empirical Results

Notation

- [n]: the set $\{1, 2, ..., n\}$;
- β_I : for any index set $I \subset [d]$, the vector obtained by setting the elements of β that are not in I to zero, $\beta_I \in \mathbb{R}^d$.
- supp(v): the set of indices corresponding to nonzero entries of v.
- T: the number of (unknown) time steps.
- K: the number of arms.
- reward $X_t^{\top} \beta_i + \epsilon_{i,t}$, where $\epsilon_{i,t}$ are independent σ subgaussian random variables.
- r_t : expected regret. $r_t = \mathbb{E}\left[\max_j(X_t^{\top}\beta_j) X_t^{\top}\beta_i\right]$
- s₀: sparsity parameter.

Assumptions

- Assumption 1 (Parameter set). There exist positive constants x_{\max} and b such that $\|x\|_{\infty} \leq x_{\max}$ for all $x \in \mathcal{X}$ and $\|\beta_i\|_1 \leq b$ for all $i \in [K]$. The former implies that any realization of the random variable X_t satisfies $\|X_t\|_{\infty} \leq x_{\max}$ for all t.
- Assumption 2 (Margin condition). There exists a constant $C_0 \in \mathbb{R}^+$ such that for all i and j in [K] where $i \neq j$, $\Pr\left[0 < \left|X^\top \left(\beta_i \beta_j\right)\right| \leq \kappa\right] \leq C_0 \kappa$ for all $\kappa \in \mathbb{R}^+$.

Assumptions

- Assumption 3 (Arm optimality). Let \mathcal{K}_{opt} and \mathcal{K}_{sub} be mutually exclusive sets that include all K arms. Then there exists some h>0 such that:
 - (a) sub-optimal arms $i \in \mathcal{K}_{\mathrm{sub}}$ satisfy $x^{\top}\beta_i < \max_{j \neq i} x^{\top}\beta_j h$ for every $x \in \mathcal{X}$; and (b) for a constant $p_* > 0$, each optimal arm $i \in \mathcal{K}_{\mathrm{opt}}$ has a corresponding set

$$U_i \equiv \left\{ x \in \mathcal{X} \mid x^{\top} \beta_i > \max_{j \neq i} x^{\top} \beta_j + h \right\}$$

such that $\min_{i \in \mathcal{K}_{\text{opt}}} \Pr[X \in U_i] \ge p_*$.

Assumption 3: Arm Optimality

Our third assumption is a less restrictive version of an assumption introduced in Goldenshluger and Zeevi (2013). In particular, we assume that our K arms can be split into two sets:

- a. Sub-optimal arms \mathcal{K}_{sub} that are strictly sub-optimal for all covariate vectors in \mathcal{X} , i.e., there exists a constant $h_{\text{sub}} > 0$ such that for each $i \in \mathcal{K}_{\text{sub}}, x^{\top}\beta_i < \max_{j \neq i} x^{\top}\beta_j h_{\text{sub}}$ for every $x \in \mathcal{X}$.
- b. A non-empty set of optimal arms \mathcal{K}_{opt} that are strictly optimal with positive probability for some covariate vectors $x \in \mathcal{X}$, i.e., there exists a constant $h_{opt} > 0$ and some region $U_i \subset \mathcal{X}$ (with $\Pr[X \in U_i] = p_i > 0$) for each $i \in \mathcal{K}_{opt}$ such that $x^\top \beta_i > \max_{i \neq j} x^\top \beta_i + h_{opt}$ for all covariate vectors x in U_i .

Assumption 4: Compatibility Condition

Definition 2 (Compatibility Condition)

For any set of indices $I \subset [d]$ and a positive and deterministic constant ϕ , define the set of matrices

$$\mathcal{C}(I,\phi) \equiv \{ M \in \mathbb{R}_{\geq 0}^{d \times d} \mid \forall v \in \mathbb{R}^d \text{ s.t. } \|v_{I^c}\|_1 \leq 3 \|v_I\|_1,$$
 we have $\|v_I\|_1^2 \leq |I| \left(v^\top M v\right)/\phi^2 \}.$

• Assumption 4 (Compatibility condition). There exists a constant $\phi_0 > 0$ such that for each $i \in \mathcal{K}_{\text{opt}}$, $\Sigma_i \in \mathcal{C}$ (supp (β_i) , ϕ_0), where we define $\Sigma_i \equiv \mathbb{E}\left[XX^\top \mid X \in U_i\right]$.

Outline

- Introduction
- 2 Problem Formulation
 - Notation
 - Assumptions
- 3 LASSO Bandit Algorithm
 - Additional Notation
 - LASSO Estimation
 - Description of Algorithm
- 4 Key Steps of the Analysis
- 5 Empirical Results

Additional Notation

- design matrix **X**: $T \times d$ matrix whose rows are X_t .
- Y_i : length of T vector of observations $X_t^{\top} \beta_i + \epsilon_{i,t}$.
- all-sample set S_i : $S_i = \{t | \pi_t = i\} \subset [T]$, set of times when arm i was played.
- $\mathbf{X}(\mathcal{S}')$: $|\mathcal{S}'| \times d$ submatrix of \mathbf{X} whose rows are X_t for each $t \in \mathcal{S}'$.
- $Y_i(\mathcal{S}')$: defined similarly, when $\mathcal{S}' \subset \mathcal{S}_i$, it is length $|\mathcal{S}'|$ vector of corresponding observed rewards $Y_i(t)$. Note that since $\pi_t = i$ for each $t \in \mathcal{S}'$, $Y_i(\mathcal{S}')$ has no missing entries.
- $\hat{\Sigma}(\mathbf{Z}) = \mathbf{Z}^{\top}\mathbf{Z}/n$: its sample covariance matrix.
- $\hat{\Sigma}(A)$ to refer to $\hat{\Sigma}(\mathbf{Z}(A))$.
- $\hat{\beta}(S', \lambda)$: simpler notation of $\hat{\beta}_{\mathbf{X}(S'), Y(S'), \lambda}$ (LASSO estimator).

LASSO Estimation

Definition 3 (LASSO).

Given a regularization parameter $\lambda \geq 0$, the LASSO estimator is

$$\hat{\beta}_{\mathbf{X},Y}(\lambda) \equiv \arg\min_{\beta'} \left\{ \frac{\|Y - \mathbf{X}\beta'\|_2^2}{n} + \lambda \left\|\beta'\right\|_1 \right\}$$

The LASSO estimator satisfies the following tail inequality.

LASSO Estimation

Proposition 1 (LASSO Tail Inequality for Adapted Observations).

Let X_t denote the t^{th} row of \mathbf{X} and Y(t) denote the t^{th} entry of Y. The sequence $\{X_t: t=1,\ldots,n\}$ forms an adapted sequence of observations, i.e., X_t may depend on past regressors and their resulting observations $\{X_{t'}, Y(t')\}_{t'=1}^{t-1}$. Also, assume that all realizations of random vectors X_t satisfy $\|X_t\|_{\infty} \leq x_{\text{max}}$. Then for any $\phi>0$ and $\chi>0$, if $\lambda=\lambda(\chi,\phi)\equiv\chi\phi^2/(4s_0)$, we have

$$\Pr\left[\left\|\hat{\beta}_{\mathbf{X},Y}(\lambda) - \beta\right\|_{1} > \chi\right] \leq 2 \exp\left[-C_{1}(\phi)n\chi^{2} + \log d\right] + \Pr\left[\hat{\Sigma}(\mathbf{X}) \notin \mathcal{C}(\operatorname{supp}(\beta), \phi)\right],$$

where $C_1(\phi) \equiv \phi^4/\left(512s_0^2\sigma^2x_{\mathsf{max}}^2\right)$.

LASSO for bandit setting

We then consider estimating the parameter β_i for each arm $i \in [K]$. Using any subset of past samples $\mathcal{S}' \subset \mathcal{S}_i$ (arm i was played) and any λ , we can use the corresponding LASSO estimator $\hat{\beta}(\mathcal{S}',\lambda)$, to estimate β_i . In order to prove regret bounds, we need to establish convergence guarantees for such estimates.

From Proposition 1 , in order to bound the error $\left\|\hat{\beta}\left(\mathcal{S}',\lambda\right)-\beta_i\right\|_1$ for each arm $i\in[K]$, we need to

- ensure with high probability $\hat{\Sigma}\left(\mathcal{S}'\right) \in \mathcal{C}\left(\mathsf{supp}\left(eta_{i}
 ight), \phi\right)$ for some constant ϕ
- ullet appropriately choose parameters λ over time to control the rate of convergence

Thus, the main challenge in the algorithm and analysis is constructing and maintaining sets \mathcal{S}' such that with high probability $\hat{\Sigma}(\mathcal{S}') \in \mathcal{C}\left(\text{supp}\left(\beta_i\right), \phi\right)$, (although the rows of $\mathbf{X}\left(\mathcal{S}'\right)$ are not i.i.d.) with sufficiently fast convergence rates.

- The LASSO Bandit takes as input the forced sampling parameter $q \in \mathbb{Z}^+$ (which is used to construct the forced-sample sets), a localization parameter h > 0 (defined in Assumption 3)³, as well as initial regularization parameters $\lambda_1, \lambda_{2,0}$.
- These parameters will be specified in Theorem 1 .

Forced-Sample Sets

We prescribe a set of times when we forced-sample arm i (regardless of the observed covariates X_t):

$$\mathcal{T}_i \equiv \{ (2^n - 1) \cdot Kq + j \mid n \in \{0, 1, 2, \ldots\} \text{ and } j \in \{q(i - 1) + 1, q(i - 1) + 2, \ldots, qi\}.$$

Thus, the set of forced samples from arm i up to time t is $\mathcal{T}_{i,t} \equiv \mathcal{T}_i \cap [t]$, with size $\mathcal{O}(q \log t)$.

All-Sample Sets

As before, let $\mathcal{S}_{i,t}=\{t'\mid \pi_{t'}=i \text{ and } 1\leq t'\leq t\}$ denote the set of times we play arm i up to time t. Note that by definition $\mathcal{T}_{i,t}\subset\mathcal{S}_{i,t}$. At any time t, the LASSO Bandit maintains two sets of parameter estimates for each β_i :

- **1** the forced-sample estimate $\hat{\beta}\left(\mathcal{T}_{i,t-1},\lambda_1\right)$ based only on forced samples observed from arm i,
- 2 the all-sample estimate $\hat{\beta}\left(S_{i,t-1},\lambda_{2,t}\right)$ based on all samples observed from arm i.

Execution

- If the current time t is in \mathcal{T}_i for some arm i, then arm i is played.
- Otherwise, two actions are possible.
 - First, we use the forced-sample estimates to find the highest estimated reward achievable across all *K* arms.
 - We then select the subset of arms $\hat{\mathcal{K}} \subset [K]$ whose estimated rewards are within h/2 of the maximum achievable.
 - After this pre-processing step, we use the all-sample estimates to choose the arm with the highest estimated reward within the set $\hat{\mathcal{K}}$.

Algorithm

Algorithm LASSO Bandit

```
Input parameters: q, h, \lambda_1, \lambda_{2,0}
Initialize \mathcal{T}_{i,0} and \mathcal{S}_{i,0} by the empty set, and \hat{\beta}(\mathcal{T}_{i,0}, \lambda_1) and \hat{\beta}(\mathcal{S}_{i,0}, \lambda_{2,0}) by 0 in \mathbb{R}^d for all i in [K]
Use q to construct force-sample sets \mathcal{T}_i using Eq. (2) for all i in [K]
```

for $t \in [T]$ do

Observe user covariates $X_t \sim \mathcal{P}_X$

if $t \in \mathcal{T}_i$ for any i then

 $\pi_t \leftarrow i \text{ (forced-sampling)}$

else

$$\hat{\mathcal{K}} = \left\{ i \in [K] \mid X_t^{\top} \hat{\beta}(\mathcal{T}_{i,t-1}, \lambda_1) \ge \max_{j \in [K]} X_t^{\top} \hat{\beta}(\mathcal{T}_{j,t-1}, \lambda_1) - h/2 \right\} \text{ is the set of near-optimal arms according to the forced-sample estimators}$$

 $\pi_t \leftarrow \arg\max_{i \in \hat{\mathcal{K}}} X_t^{\top} \hat{\beta}(\mathcal{S}_{i,t-1}, \lambda_{2,t-1})$ is the best arm within $\hat{\mathcal{K}}$ according to the all-sample estimators

end if

Update all-sample sets $S_{\pi_t,t} \leftarrow S_{\pi_t,t-1} \cup \{t\}$ and regularization $\lambda_{2,t} \leftarrow \lambda_{2,0} \sqrt{\frac{\log t + \log d}{t}}$ Play arm π_t , observe $Y(t) = X_t^{\top} \beta_{\pi_t} + \varepsilon_{i,t}$

end for

³ Note that if some \bar{h} satisfies Assumption 3, then any $h \in (0, \bar{h}]$ also satisfies the assumption. Therefore, a conservatively small value can be chosen in practice, but this will be reflected in the constant in the regret bound.

Regret Analysis of LASSO Bandit

Theorem 1

When $q \geq 4 \lceil q_0 \rceil$, $K \geq 2, d > 2, t \geq C_5$, and we take $\lambda_1 = \left(\phi_0^2 p_* h\right) / \left(64 s_0 x_{\text{max}}\right)$ and $\lambda_{2,0} = \left[\phi_0^2 / \left(2 s_0\right)\right] \sqrt{1/\left(p_* C_1\right)}$, we have the following (non-asymptotic) upper bound on the expected cumulative regret of the LASSO Bandit at time T by:

$$R_{T} \leq C_{3}(\log T)^{2} + [2Kbx_{\max}(6q+4) + C_{3}\log d]\log T + (2bx_{\max}C_{5} + 2Kbx_{\max} + C_{4})$$

$$= \mathcal{O}\left(s_{0}^{2}[\log T + \log d]^{2}\right)$$

where the constants $C_1(\phi_0)$, $C_2(\phi_0)$, $C_3(\phi_0, p_*)$, $C_4(\phi_0, p_*)$, and C_5 are given by

$$\begin{split} C_{1}\left(\phi_{0}\right) &\equiv \frac{\phi_{0}^{4}}{512s_{0}^{2}\sigma^{2}x_{\text{max}}^{2}}, \quad C_{2}\left(\phi_{0}\right) \equiv \text{min}\left(\frac{1}{2}, \frac{\phi_{0}^{2}}{256s_{0}x_{\text{max}}^{2}}\right), \quad C_{3}\left(\phi_{0}, p_{*}\right) \equiv \frac{1024KC_{0}x_{\text{max}}^{2}}{p_{*}^{3}C_{1}}, \\ C_{4}\left(\phi_{0}, p_{*}\right) &\equiv \frac{8Kbx_{\text{max}}}{1 - \exp\left[-\frac{p_{*}^{2}C_{2}^{2}}{32}\right]}, \quad C_{5} \equiv \min\left\{t \in \mathbb{Z}^{+} \mid t \geq 24Kq\log t + 4(Kq)^{2}\right\}, \end{split}$$

and we take $q_0 \equiv \max\left\{ rac{20}{p_*}, rac{4}{p_* C_2^2}, rac{12 \log d}{p_* C_2^2}, rac{1024 \chi_{\max}^2 \log d}{h^2 p_*^2 C_1}
ight\} = \mathcal{O}\left(s_0^2 \log d
ight).$

Outline

- Introduction
- 2 Problem Formulation
 - Notation
 - Assumptions
- LASSO Bandit Algorithm
 - Additional Notation
 - LASSO Estimation
 - Description of Algorithm
- Mey Steps of the Analysis
- 5 Empirical Results

Key Steps of the Analysis

In this section, we outline the proof strategy of Theorem 1.

- Prove a new general LASSO tail inequality that holds even when the rows of the design matrix are not iid (Section 4.1).
- Use this result to obtain convergence guarantees for the forced-sample (Section 4.2) and all sample estimators (Section 4.3) under a fixed regularization path.
- Sum up the expected regret from the errors in the estimators.

A LASSO Tail Inequality for Non-i.i.d. Data

- Letting $\Sigma \equiv \mathbb{E}_{Z \sim \mathcal{P}_Z} \left[Z Z^\top \right]$, we further assume that $\Sigma \in \mathcal{C} \left(\operatorname{supp}(\beta), \phi_1 \right)$ for a constant $\phi_1 \in \mathbb{R}^+$.
- We will show that if the number $|\mathcal{A}'|$ of i.i.d. samples is sufficiently large, then we can prove a convergence guarantee for the LASSO estimator $\hat{\beta}(\mathcal{A},\lambda)$ trained on samples in \mathcal{A} , which includes non-i.i.d. samples.

A LASSO Tail Inequality for Non-i.i.d. Data

Section 4.1

Lemma 1

For any $\chi > 0$, if d > 1, $|\mathcal{A}'|/|\mathcal{A}| \ge p/2$, $|\mathcal{A}| \ge 6 \log d/\left(pC_2\left(\phi_1\right)^2\right)$, and $\lambda = \lambda\left(\chi, \phi_1\sqrt{p}/2\right) = \chi\phi_1^2p/\left(16s_0\right)$, then the following tail inequality holds:

$$\begin{aligned} & \Pr\left[\| \hat{\beta}(\mathcal{A}, \lambda) - \beta \|_1 > \chi \right] \\ & \leq 2 \exp\left[-C_1 \left(\frac{\phi_1 \sqrt{\rho}}{2} \right) |\mathcal{A}| \chi^2 + \log d \right] \\ & + \exp\left[-\rho C_2 \left(\phi_1 \right)^2 |\mathcal{A}| / 2 \right]. \end{aligned}$$

LASSO Tail Inequality for the Forced Sample Estimator Section 4.2

Proposition 2

Proposition 2. For all $i \in [K]$, the forced sample estimator $\hat{\beta}(\mathcal{T}_{i,t}, \lambda_1)$ satisfies

$$\Pr\left[\left\|\hat{\beta}\left(\mathcal{T}_{i,t},\lambda_{1}\right)-\beta_{i}\right\|_{1}>\frac{h}{4x_{\max}}\right]\leq\frac{5}{t^{4}}$$

when $\lambda_1 = \phi_0^2 p_* h / (64 s_0 x_{\text{max}})$, $t \ge (Kq)^2$, $q \ge 4 \lceil q_0 \rceil$, and q_0 satisfies the definition in Section 3.3.

Section 4.3

- The challenge is that the all-sample sets $S_{i,t}$ depend on choices made online by the algorithm.
- The algorithm selects arm i at time t based both on X_t and on previous observations $\{X_{t'}\}_{1 \le t' \le t}$.
- ullet As a consequence, the variables $\{X_t \mid t \in \mathcal{S}_{i,t}\}$ may be correlated.
- We resolve this by showing that
 - (a) our algorithm uses the forced-sample estimator $\mathcal{O}(T)$ times with high probability, and
 - (b) a constant fraction of the samples where we use the forced-sample estimator are i.i.d. from the regions U_i . We then invoke Lemma 1 with a modified \mathcal{A}' such that $|\mathcal{A}'| = \mathcal{O}(\mathcal{T})$.

Section 4.3

In particular, we define the event

$$A_{t} \equiv \left\{ \left\| \hat{\beta} \left(\mathcal{T}_{i,t}, \lambda_{1} \right) - \beta_{i} \right\|_{1} \leq \frac{h}{4x_{\text{max}}}, \quad \forall i \in [K] \right\}.$$

Since the event A_t only depends on forced-samples, the random variables $\{X_t \mid A_{t-1} \text{ holds }\}$ are i.i.d. (with distribution \mathcal{P}_X). Furthermore, if we let

$$\mathcal{S}'_{i,t} \equiv \{t' \in [t] \mid A_{t'-1} \text{ holds, } X_{t'} \in U_i, \text{ and}$$

$$t' \notin \cup_{j \in [K]} \mathcal{T}_{j,t} \}$$

then the random variables $\left\{X_{t'} \mid t' \in \mathcal{S}_{i,t}'\right\}$ are i.i.d.

Section 4.3

Proposition 3

The all-sample estimator $\hat{\beta}\left(\mathcal{S}_{i,t},\lambda_{2,t}\right)$ for $i \in \mathcal{K}_{opt}$ satisfies the tail inequality

$$\Pr\left[\left\|\hat{\beta}\left(\mathcal{S}_{i,t}, \lambda_{2,t}\right) - \beta_{i}\right\|_{1} > 16\sqrt{\frac{\log t + \log d}{p_{*}^{3}C_{1}\left(\phi_{0}\right)t}}\right]$$

$$< \frac{2}{t} + 2\exp\left[-\frac{p_{*}^{2}C_{2}\left(\phi_{0}\right)^{2}}{32} \cdot t\right]$$

when $\lambda_{2,t} = \left[\phi_0^2/(2s_0)\right] \sqrt{(\log t + \log d)/(p_*C_1(\phi_0)t)}$ and $t \ge C_5$.

Section 4.3

- Note that the all-sample estimator tail inequality only holds for optimal arms \mathcal{K}_{opt} while the forced-sample estimator tail inequality holds for all arms [K].
- However, the algorithm requires a preprocessing step using the forced sample estimator to
 - (a) ensure that we obtain O(T) i.i.d. samples for each $i \in \mathcal{K}_{opt}$ and
 - (b) to prune out suboptimal arms \mathcal{K}_{sub} with high probability.

Bounding the Cumulative Expected Regret

We divide the time periods [T] into three groups:

- **1** Initialization $(t \leq C_5)$, or forced sampling $(t \in \mathcal{T}_{i,T} \text{ for some } i \in [K])$.
- 2 Times $t > C_5$ when the event A_{t-1} does not hold.
- **③** Times $t > C_5$ when the event A_{t-1} holds and we do not perform forced sampling; that is, the LASSO Bandit plays the estimated best arm from $\hat{\mathcal{K}}$ (chosen by the forced-sampling estimator) using the all-sample estimator.

Proof of Main Result

Theorem 1

When $q \geq 4 \lceil q_0 \rceil$, $K \geq 2, d > 2$, $t \geq C_5$, and we take $\lambda_1 = \left(\phi_0^2 p_* h\right) / \left(64 s_0 x_{\text{max}}\right)$ and $\lambda_{2,0} = \left[\phi_0^2 / \left(2 s_0\right)\right] \sqrt{1/\left(p_* C_1\right)}$, we have the following (non-asymptotic) upper bound on the expected cumulative regret of the LASSO Bandit at time T by:

$$R_{T} \leq C_{3}(\log T)^{2} + [2Kbx_{\max}(6q+4) + C_{3}\log d]\log T + (2bx_{\max}C_{5} + 2Kbx_{\max} + C_{4})$$

$$= \mathcal{O}\left(s_{0}^{2}[\log T + \log d]^{2}\right)$$

where the constants $C_1(\phi_0)$, $C_2(\phi_0)$, $C_3(\phi_0, p_*)$, $C_4(\phi_0, p_*)$, and C_5 are given by

$$\begin{split} C_{1}\left(\phi_{0}\right) &\equiv \frac{\phi_{0}^{4}}{512s_{0}^{2}\sigma^{2}x_{\text{max}}^{2}}, \quad C_{2}\left(\phi_{0}\right) \equiv \text{min}\left(\frac{1}{2}, \frac{\phi_{0}^{2}}{256s_{0}x_{\text{max}}^{2}}\right), \quad C_{3}\left(\phi_{0}, p_{*}\right) \equiv \frac{1024KC_{0}x_{\text{max}}^{2}}{p_{*}^{3}C_{1}}, \\ C_{4}\left(\phi_{0}, p_{*}\right) &\equiv \frac{8Kbx_{\text{max}}}{1 - \exp\left[-\frac{p_{*}^{2}C_{2}^{2}}{32}\right]}, \quad C_{5} \equiv \min\left\{t \in \mathbb{Z}^{+} \mid t \geq 24Kq\log t + 4(Kq)^{2}\right\}, \end{split}$$

and we take $q_0 \equiv \max\left\{ rac{20}{p_*}, rac{4}{p_* C_2^2}, rac{12 \log d}{p_* C_2^2}, rac{1024 x_{\max}^2 \log d}{h^2 p_*^2 C_1}
ight\} = \mathcal{O}\left(s_0^2 \log d\right).$

Proof of Main Result

Proof of Theorem 1

The total expected cumulative regret of the LASSO Bandit up to time T is upper-bounded by summing all the terms from Lemmas EC.15, EC.17, and EC.20:

$$R_{T} \leq 2bx_{\max} \left(6qK \log T + C_{5}\right) + 2Kbx_{\max}$$

$$Regret from (b)$$

$$+ \left(8Kbx_{\max} + C_{3} \log d\right) \log T + C_{3} (\log T)^{2} + C_{4}$$

$$= C_{3} (\log T)^{2} + \left[2Kbx_{\max}(6q + 4) + C_{3} \log d\right] \log T$$

$$+ \left(2bx_{\max}C_{5} + 2Kbx_{\max} + C_{4}\right)$$

$$= \log T \left[C_{3} \log T + 2Kbx_{\max}(6q + 4) + C_{3} \log d\right]$$

$$+ \left(2bx_{\max}C_{5} + 2Kbx_{\max} + C_{4}\right).$$

Proof of Main Result

Proof of Theorem 1 (Cont'd)

Now, using $q = \mathcal{O}\left(s_0^2 \log d\right)$, and the fact that $C_0, \ldots, C_5, b, x_{\text{max}}$, and ϕ_0 are constants.

$$R_T = \mathcal{O}\left(\log T \left[\log T + s_0^2 \log d\right]\right) = \mathcal{O}\left(s_0^2 [\log T + \log d]^2\right)$$

Outline

- Introduction
- 2 Problem Formulation
 - Notation
 - Assumptions
- 3 LASSO Bandit Algorithm
 - Additional Notation
 - LASSO Estimation
 - Description of Algorithm
- 4 Key Steps of the Analysis
- 5 Empirical Results

- We compare the LASSO Bandit against
 - a the UCB-based algorithmOFUL-LS (Abbasi-Yadkori et al.2011), which is an improved version of the algorithm sug-gested in Dani et al. (2008),
 - b a sparse variant OFUL-EG for high-dimensional settings (Abbasi-Yadkori2012, Abbasi-Yadkori et al.2012), and
 - c the OLSBandit by Goldenshluger and Zeevi (2013). Our re-sultsdemonstrate thattheLASSO Bandit significantlyoutperforms these benchmarks. Separately, wefindthat the LASSO Bandit is robust to changes in inputparameters by even an order of magnitude

- We consider three scenarios for K, d, and s_0 : a) K = 2, d = 100, $s_0 = 5$; (b) K = 10, d = 1000, $s_0 = 2$; and (c) K = 50, d = 20, $s_0 = 2$.
- In each case, we consider K arms (treatments) and d user covariates, where only a randomly chosen subset of s_0 covariates are predictive of the reward for each treatment,
 - for each $i \in [K]$, the arm parameters β_i are set to zero except for s_0 randomly selected components that are drawn from a uniform distribution on [0,1].
 - Note that the OFUL-EG algorithm requires an additional technical assumption that $\sum_{i=1}^K \lVert \beta_i \rVert_1 = 1$. We scale our β_i 's accordingly so that this assumption is met.
- Next, at each time t, user covariates Xt are independently sampled from a Gaussian distribution $N(\mathbf{0}_d, \mathbf{I}_d)$ and truncated so that $\|X_t\|_{\infty} = 1$.
- Finally, we set the noise variance to be $\sigma^2 = 0.052$.

- (a) LASSO Bandit may be useful even in low-dimensional regime
 - because other algorithms continue to overfit the arm parameters.

10000

(a)
$$K = 2$$
, $d = 100$, $s_0 = 5$

(a)
$$K = 2$$
, $d = 100$, $s_0 = 5$ (b) $K = 10$, $d = 1000$, $s_0 = 2$ (c) $K = 50$, $d = 20$, $s_0 = 2$

(c)
$$K = 50, d = 20, s_0 = 2$$

- Gap between the LASSO Bandit and the other algorithm increases significantly.
 - Because benchmark algorithms do not take advantage of sparsity and perform exploration for at least O(Kd) samples in order to define linear regression estimates for each arm.

- (a) K = 2, d = 100, $s_0 = 5$ (b) K = 10, d = 1000, $s_0 = 2$ (c) K = 50, d = 20, $s_0 = 2$

- Performance gap decreases.
 - LASSO Bandit does not provide any improvement over existing algorithms in K, and
 - provides limited improvement when the number of covariates is very small.