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Motivating example (Bernoulli Bandit)

There are  actionsA

Each action  ( ) produces a success with 
unknown probability .

a 1 ≤ a ≤ k
θa ∈ [0,1]

If we pick an action, we receive either a success or a failure.

Want to maximize the cumulative number of 
successes over  periods.T
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Motivating example (Bernoulli Bandit)

Web-browser (Edge) should choose which banner ads (arms) should be displayed.

A success is associated either with a click on the ad.

 represents the click rate among the population of users who uses this browser.θa

Contextual bandit…
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More formally….

We consider a stochastic bandit, which is a collection of distributions 

, where  is the set of available actions.{ℙa : a ∈ 𝒜} 𝒜

The learner and the environment (Nature) interact sequentially over  rounds.T

For each round , the learner chooses an action .t ∈ {1,2,…, T} At ∈ 𝒜

The environment samples a reward  from a distribution  and reveals it to 

the learner.

Rt ∈ ℝ ℙAt
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More formally….

We consider a stochastic bandit, which is a collection of distributions 

, where  is the set of available actions.{ℙa : a ∈ 𝒜} 𝒜

The (unknown) conditional distribution  is .Rt |A1, R1, …, Rt−1, At ℙAt

The (learner-chosen) conditional law of action  given  isAt A1, X1, …, At−1, Xt−1

πt( ⋅ |A1, X1, …, At−1, Xt−1)
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Regret

We measure the learner’s performance via regret to the best action

a⋆ ∈ arg min
a∈𝒜

𝔼[Rt |At = a] = 𝔼a[R] = μa,

Reg(π) = T ⋅ 𝔼[R |A = a⋆] −
T

∑
t=1

𝔼[Rt]

Here,  is implicitly included in the RHS, that is,  is generated by following the 

policy .

π Rt

π
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Regret

Reg(π) = T ⋅ 𝔼[R |A = a⋆] −
T

∑
t=1

𝔼[Rt]

Goal: Develop algorithms that enjoy sublinear regret, i.e. 

1
T

Reg(π) → 0, T → ∞ .

Important Principle: Exploit vs Explore

We do not know the reward for each arm at the initial time.

 Algorithms should discover the action/arm with the largest mean using the data.⇒
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Simple Greedy-Algorthim which exemplifies the need for exploration.

At time , we compute an empirical estimate for the reward mean of an action t a

̂μa(t) =
1

Na(t) ∑
s≤t

Rs1(As = a), Na(t) = ∑
s≤t

1(As = a) .

. Decision 1 gives , and Decision 2 gives .𝒜 = {1,2} 1/2 Ber(3/4)

After initializing by playing each decision a single time to ensure , the 

algorithm will get stuck on Decision 1 with probability 1/4, leading to regret .

Na > 0
Ω(T )

At = arg max
a∈𝒜

̂μa(t − 1)
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Decomposition of the Regret

Define , sub optimality gap or action gap or immediate regret.Δa = μ⋆ − μa

Reg(π) = T ⋅ 𝔼[R |A = a⋆]

=:μa⋆=:μ⋆

−
T

∑
t=1

𝔼[Rt]

Na(t) = ∑
s≤t

1(As = a)Reg(π) = ∑
a∈𝒜

Δa𝔼{Na(T )}
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Explore-Then-Commit (ETC) Algorithm

Explore the problem by playing each arm a fixed number of times, then exploits.

Intuitively…

When  is too small (too exploiting), then an estimate of mean of each 

arm is not reliable.

m

̂μa(t) =
1

Na(t) ∑
s≤t

Rs1(As = a), Na(t) = ∑
s≤t

1(As = a) .

When  is too large (too exploring), then we waste times for choosing 

obviously wrong choice.

m

a a
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Explore-Then-Commit (ETC) Algorithm

When bandits are 1-subGaussian and . Recall .1 ≤ m ≤ T/k Δa = μ⋆ − μa

Reg(πETC) ≤ m
k

∑
a=1

Δa + (T − mk)
k

∑
a=1

Δa exp( −
mΔ2

a

4 ) .

This illustrates rigorously the trade-off between exploration and exploitation.

If  is large  The policy explores for too long  The first term increases.m ⇒ ⇒

If  is small  The policy exploits too early  It may choose wrong arms, so the 

second term increases.

m ⇒ ⇒
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Explore-Then-Commit (ETC) Algorithm

When bandits are 1-subGaussian and . Recall .1 ≤ m ≤ T/k Δa = μ⋆ − μa

Reg(πETC) ≤ m
k

∑
a=1

Δa + (T − mk)
k

∑
a=1

Δa exp( −
mΔ2

a

4 ) .

If we assume that there are only two arms, and 1 is optimal, , thenΔ = Δ2

Reg(πETC) ≤ Δ + C T

when we choose an optimal choice of  asm

m = max {1,⌈ 4
Δ2

log( TΔ2

4 )⌉}



 Explore-Then-Commit Algorithm

16

Explore-Then-Commit (ETC) Algorithm

When bandits are 1-subGaussian and . Recall .1 ≤ m ≤ T/k Δa = μ⋆ − μa

Reg(πETC) ≤ Δ + C T

⚠ Caveat…..

m = max {1,⌈ 4
Δ2

log( TΔ2

4 )⌉}

The regret bound is close to optimal, but to achieve this, we need to know 

1. The knowledge of the horizon , so it is not an online setting.T
2. The knowledge of the sub optimality gap , which is not (obviously) unknown.Δ
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Explore-Then-Commit (ETC) Algorithm

When bandits are 1-subGaussian and . Recall .1 ≤ m ≤ T/k Δa = μ⋆ − μa

Proof 𝔼{Na(T )} = m + (T − mk)ℙ(Amk+1 = a)

≤ m + (T − mk)ℙ{ ̂μa(mk) ≥ max
j≠a

̂μj(mk)}
ℙ{ ̂μa(mk) ≥ max

j≠a
̂μj(mk)} ≤ ℙ{ ̂μa(mk) ≥ ̂μ1(mk)}

= ℙ{ ̂μa(mk) − μa − ̂μ1(mk) + μ1 ≥ Δa}
≤ exp( −

mΔ2
a

4 )

Reg(πETC) =
k

∑
a=1

Δa𝔼{Na(T )} ≤ m
k

∑
a=1

Δa + (T − mk)
k

∑
a=1

Δa exp( −
mΔ2

a

4 ) .
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-Greedy Algorithmϵ

Let  be the exploration parameter. ϵ ∈ (0,1)

̂μa(t) =
1

Na(t) ∑
s≤t

Rs1(As = a), Na(t) = ∑
s≤t

1(As = a) .

1. At each time , we compute the estimated reward values for each 

arm ,

t + 1, t ≥ 0
1 ≤ a ≤ k

2. With probability , the algorithm choose the greedy decision1 − ϵ

At+1 = arg max
a∈𝒜

̂μa(t)

3. With probability , ϵ

At+1 ∼ Unif({1,2,…, k})
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-Greedy Algorithmϵ

It allows (forces) the learner to get information uniformly for all arms.

But the algorithm continually explores all arms, even though we may expect or be 

certain to rule out some actions with very low reward after a relatively small amount 

of explorations.
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Sublinearity of -Greedy Algorithmϵ
Assume that , and  is subGaussian. Then, for any , by 

choosing  appropriately, the -Greedy algorithm ensures that with probability at 

least ,

μ⋆ = μ1 ∈ [0,1] Rt T
ϵ ϵ

1 − δ

̂Reg = T ⋅ μ⋆ −
T

∑
t=1

𝔼At∼πt(RAt) ≲ k1/3T2/3 log1/3(kT/δ)

Proof
For convenience, we denote . Then,̂At+1 ∈ arg max

a∈𝒜
̂μt(a)

̂Reg = (1 − ϵ)
T

∑
t=1

μ⋆ − μ ̂At
+ ϵ

T

∑
t=1

𝔼At∼Unif(μ⋆ − μAt
)

≤
T

∑
t=1

μ⋆ − μ ̂At
+ ϵT
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Sublinearity of -Greedy Algorithmϵ

Now, fix . By the definition of , we gett ̂At

̂Reg = (1 − ϵ)
T

∑
t=1

μ⋆ − μ ̂At
+ ϵ

T

∑
t=1

𝔼At∼Unif(μ⋆ − μAt
)

≤
T

∑
t=1

μ⋆ − μ ̂At
+ ϵT

μ⋆ − μ ̂At
= μ1 − ̂μa(t − 1) + ̂μa(t − 1) − ̂μ ̂At

(t − 1) + ̂μ ̂At
(t − 1) − μ ̂At

≤ 2 max
a∈𝒜

|μa − ̂μa(t − 1) |
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Sublinearity of -Greedy Algorithmϵ

Now, we show that the event 

ℰt := { max
a∈𝒜

|μa − ̂μa(t) | ≲
k log(kT/δ)

ϵt }
occurs for all  with probability at least .t 1 − δ

̂Reg ≲
T

∑
t=1

A log(AT/δ)
ϵt

+ ϵT

≤
AT log(AT/δ)

ϵ
+ ϵT

ϵ ≍ (k log(kT/δ)
T )1/3
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Sublinearity of -Greedy Algorithmϵ

ℰt := { max
a∈𝒜

|μa − ̂μa(t) | ≲
k log(kT/δ)

ϵt }
Note the following Hoeffding’s inequality:

1
N

N

∑
t=1

Zi − 𝔼[Z] ≲ σ
log(T/δ)

2N
with probability at least , where  is a random variable.1 − δ N ∈ {1,2,…, T}

Now, recall . Then, with probability at least , for all  

and  uniformly

Na(t) = ∑
s≤t

1(As = a) 1 − δ a

t
|μa − ̂μa(t) | ≤

2 log(2AT2/δ)
Na(t − 1)
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Thus, it suffices to show that  is sufficiently large.Na(t) = ∑
s≤t

1(As = a)

Define  to be a random variable whose value indicates whether the 

algorithm explore uniformly at step .

et ∈ {0,1}
t

ma(t) = ∑
s≤t

1(As = a, es = 1)

which counts the number of  such that we chose  with the exploration step at 

time .

s ≤ t a
s

ma(t) = ∑
s≤t

1(As = a, es = 1) ≤ Na(t)
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Let , so that . Note that .Za(t) = 1(At = a, et = 1) ma(t) = ∑
s≤t

Za(s) Za(t) ∼ Ber(ϵ/k)

ma(t) = ∑
s≤t

1(As = a, es = 1)

Using Bernstein’s inequality, and , we have with ,𝔼{Za(t)} = ϵt/k 1 − 2e−u

ma(t) −
ϵt
k

≤ 2Var(Ber(ϵ/k)tu +
u
e

≤
ϵt
2k

+
4u
3

Setting , and taking union bound, we have for all  and ,u = log(2kT/δ) a t

ma(t) ≥
ϵt
2A

−
4 log(2kT/δ)

3
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Thus, we have

Na(t) ≥ ma(t) ≥
ϵt
2A

−
4 log(2kT/δ)

3
≳

ϵt
k

|μa − ̂μa(t) | ≤
2 log(2AT2/δ)

Na(t − 1)
≲

k log(kT/δ)
ϵt

,

which establishes that  occurs with high probability.ℰt
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Motivation 

UCB algorithm is based on the principle of optimism in the face of uncertainty.

In the presence of uncertainty, we take an optimistic view as if the environment is 

as nice as possible.

Suppose that with high probability, Tesla’s stock will increase 5% in a best-case 

scenario, and decrease -10% in a worst-case scenario.

For an (extremely) optimistic person, she will have a long position. 

For an (extremely) pessimistic person, she will have a short position. 

In the multi-armed setting, we assign to each arm a value, called the upper 

confidence bound which is an overestimate of the unknown mean  with high 

probability.

μa
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Algorithm 

1. At round , the learner calculate the upper confidence bound for each arm :t a

UCBa(t − 1,δ) = {
∞  if Na(t − 1) = 0

̂μa(t − 1) + 2 log(1/δ)
Na(t − 1)  otherwise. 

2. Choose action . At ∈ arg max
a∈𝒜

UCBa(t − 1,δ)

3. Observe reward , and update upper confidence bounds.Rt
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Algorithm 

UCBa(t − 1,δ) = {
∞  if Na(t − 1) = 0

̂μa(t − 1) + 2 log(1/δ)
Na(t − 1)  otherwise. 

The algorithm will choose arm  at round  ifa t

(i) it is promising because  is large, or̂μa(t − 1)

(ii) it is not well explored because  is small.Na(t − 1)
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Theoretical Guarantee
Assume the random variables are subGaussian, and choose the confidence level 

.δ = 1/T2

Reg ≤ 3
k

∑
a=1

Δa + ∑
a:Δa>0

16 log(T )
Δa

Introduction of some notation

Let  be a collection of independent random variables, (Rta)t≥1,1≤a≤k Rta ∼ R |A = a

̂μas =
1
s

s

∑
t=1

Xta

Then, the reward in round  is , .t Rt = RNa(t)At
̂μa(t) = ̂μaNa(t)
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Proof
As it is before, we start from , so it suffices to bound the 

expectation of counts.

Reg =
k

∑
a=1

Δa𝔼{Na(t)}

Ga = {μ1 < min
1≤t≤T

UCB1(t, δ)}⋂{ ̂μaua
+

2 log(1/δ)
ua

< μ1}
Here,  is a constant to be determined later.ua

1. Under ,  is never underestimated by the upper confidence bound for all time.Ga μ1

2. Under , after  observations of rewards from the arm , the UCB is below the 

mean of the best arm 1.

Ga ua a
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Proof
Ga = {μ1 < min

1≤t≤T
UCB1(t, δ)}⋂{ ̂μaua

+
2 log(1/δ)

ua
< μ1}

Note that when  occurs, arm  will be selected at most  times, .Ga a ua Na(T ) ≤ ua

 Suppose , then  s.t.  and .∵ Na(T ) > ua ∃t ∈ [T ] Na(t − 1) = ua At = a

UCBa(t − 1,δ) = ̂μa(t − 1) +
2 log(1/δ)
Na(t − 1)

= ̂μa(t − 1) +
2 log(1/δ)

ua

< μ1 < UCB1(t − 1,δ)

Then… the arm  cannot be chosen at the round , contraction.a t
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Proof
Ga = {μ1 < min

1≤t≤T
UCB1(t, δ)}⋂{ ̂μaua

+
2 log(1/δ)

ua
< μ1}

Calculate the probability .ℙ(Gc
a)

ℙ{μ1 ≥ min
t∈[T]

UCB1(t, δ)} ≤ ℙ[ ⋃
s∈[T]

{μ1 ≥ ̂μ1s +
2 log(1/δ)

s }]
≤

T

∑
s=1

ℙ{μ1 ≥ ̂μ1s +
2 log(1/δ)

s } ≤ nδ .
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Proof
Ga = {μ1 < min

1≤t≤T
UCB1(t, δ)}⋂{ ̂μaua

+
2 log(1/δ)

ua
< μ1}

Calculate the probability .ℙ(Gc
a)

We assume that  is chosen large enough that ua

Δa −
2 log(1/δ)

ua
≥

1
2

Δa .

We choose the smallest integer satisfying the inequality, so that ua = ⌈8 log(1/δ)
Δ2

a ⌉
ℙ{ ̂μaua

+
2 log(1/δ)

ua
≥ μ1} = ℙ{ ̂μaua

− μa ≥ Δa −
2 log(1/δ)

ua }
≤ ℙ( ̂μaua

− μa ≥
1
2

Δa) ≤ exp( −
uaΔ2

a

8 ) .
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Proof
Ga = {μ1 < min

1≤t≤T
UCB1(t, δ)}⋂{ ̂μaua

+
2 log(1/δ)

ua
< μ1}

Calculate the probability .ℙ(Gc
a) ≤ nδ + exp( −

uaΔ2
a

8 )

𝔼{Na(T )} = 𝔼{1(Ga)Na(T )} + 𝔼{1(Gc
a)Na(T )} ≤ ua + ℙ(Gc

a)T

≤ ua + T{Tδ + exp( −
uaΔ2

a

8 )}
≤ 3 +

16 log T
Δ2

a
.
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Bound without inverse of gaps Reg ≤ 8 Tk log(T ) + 3
k

∑
a=1

Δa .

Recall that we obtain

𝔼{Na(T )} ≤ 3 +
16 log T

Δ2
a

For a truncation level  which will be determined later, we haveΔ > 0

Reg =
k

∑
a=1

Δa𝔼{Na(T )} = ∑
a:Δa<Δ

Δa𝔼{Na(T )} + ∑
a:Δa≥Δ

Δa𝔼{Na(T )}

≤ TΔ + ∑
a:Δa≥Δ

{3Δa +
16 log T

Δa }
≤ TΔ +

16k log T
Δ

+ 3∑
a

Δa
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Comparison with ETC algorithm

The theoretical bound for UCB and ETC are similar. 

But for achieving the optimal bound for ETC, we need to know the sub optimality gaps 

a priori.



Upper Confidence Bound Algorithm

40

UCB does not necessitate the knowledge of the true sub-optimality gaps.

But still… the algorithm has to choose , which means that the horizon (end 
of the round) must be known in advance.

δ = 1/T2

Thus, the algorithm is not appropriate to the online setting.
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Improved UCB algorithm

The algorithm will choose arm  at round  ifa t

(i) it is promising because  is large, or̂μa(t − 1)

(ii) it is not well explored because  is small.Na(t − 1)

UCBa(t − 1,δ) = {
∞  if Na(t − 1) = 0

̂μa(t − 1) + 2 log(1 + t log2(t))
Na(t − 1)  otherwise. 

log(1/δ) ⇒ log(1 + t log2(t))
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Improved UCB algorithm

The improved UCB algorithm satisfies

Reg ≲
k

∑
a=1

Δa + kT log T

Note that this algorithm does not require the knowledge of the true suboptimality 

gaps nor the horizon.

Can we remove the logarithmic term in the regret bound?
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MOSS algorithm

Then, it can be shown that

UCBa(t − 1,δ) = {
∞  if Na(t − 1) = 0

̂μa(t − 1) + 4
Na(t − 1) log+( T

kNa(t − 1) )  otherwise. 

Reg ≲ kT +
k

∑
a=1

Δa .

However, the algorithm is not an ultimate one because

1. it is suboptimal relative to UCB in certain regimes;

2. the variance of the regret of the algorithm is usually too large, so it is unstable.
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History

Thompson Sampling is the first algorithm for bandits proposed by Thompson 

[1933].

Thompson only considers Bernoulli case with two arms without theoretical 

guarantees, but Thompson argued the validity intuitively and gave hand-calculated 

empirical analysis.

For almost 8 decades, it is not popular (unknown) until a large number of authors 

independently rediscovered the algorithm and establish theoretical guarantees 

after 2000s.
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Simple Example Consider the Bernoulli bandits setting with  arms.k

 for .R |A = a ∼ Ber(μa) 1 ≤ a ≤ k

The learner has a prior belief over each , e.g., , which are 

independent among .

μa μa ∼ Beta(αa, βa)
a

If , then we update the distribution of  by the Bayes’ rule, remaining the 

other distributions of  the same.

At = a μa

a′ ≠ a

(αa, βa) = { (αa, βa)  if At ≠ a
(αa, βa) + (Rt,1 − Rt)  if At = a

Sample  for each , then ̂μa ∼ Beta(αa, βa) 1 ≤ a ≤ k

At+1 = arg min
1≤a≤k

̂μa .
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Difference with the previous algorithm?

(αa, βa) = { (αa, βa)  if At ≠ a
(αa, βa) + (Rt,1 − Rt)  if At = a

Suppose that for all ,  at the initial step. (Uniform distribution)a (αa, βa) = (1,1)

Then, .αa + βa = ∑
s≤t

1(As = a) + 2, αa = ∑
s≤t

Rs1(As = a) + 1

Thus, Greedy-Algorithm just choose .At ∈ arg max
a

(αa − 1)/(αa + βa − 2)

Note that 𝔼{Z} = αa/(αa + βa), Z ∼ Beta(αa, βa) .
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General form of Thompson Sampling (in a Frequentist perspective)

Follow-the-perturbed-leader algorithm

0. Choose  to be the (prior) cumulative distribution functions of 

the mean reward.

F1,1, F2,1, …, Fk,1

1. For 1 ≤ t ≤ T

2. Sample  independently for each .θa(t) ∼ Fa,t a

3. Choose .At = arg max
a

θa(t)

4. The reward  reveals, and update Rt

Fa,t+1 = Fa,t  if  a ≠ At FAt,t+1 = Update(FAt,t, At, Rt)  if  a = At



Thompson Sampling

49

Regret bound of Thompson Sampling

Assume the arm  is optimal, and let  be arbitrary, . Then,1 ϵ ∈ ℝ a ≠ 1

𝔼{Na(T )} ≤ 1 + 𝔼{
T−1

∑
s=0

( 1
G1,s

− 1)} + 𝔼{
T−1

∑
s=0

1(Ga,s > 1/T )}
where .Ga,s = Ga,s(ϵ) = 1 − Fa,s(μ1 − ϵ)

The first sum is related to the likelihood that the the sample from the  is nearly 

optimistic.

F1,s

.G1,s = ℙ(Z > μ1 − ϵ), Z ∼ F1,s

Thus, if  is large (the summand in the first sum is small), it is likely 

to get larger  with large possibility of 

G1,s

θ1(s) As = 1
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Regret bound of Thompson Sampling

Assume the arm  is optimal, and let  be arbitrary, . Then,1 ϵ ∈ ℝ a ≠ 1

𝔼{Na(T )} ≤ 1 + 𝔼{
T−1

∑
s=0

( 1
G1,s

− 1)} + 𝔼{
T−1

∑
s=0

1(Ga,s > 1/T )}
where .Ga,s = Ga,s(ϵ) = 1 − Fa,s(μ1 − ϵ)

The second sum measures the likelihood that the sample from arm  is close to .a μ1

.Ga,s = ℙ(Z > μ1 − ϵ), Z ∼ Fa,s

Thus, if  is small (the summand in the second sum is small), it is 

likely that .

Ga,s

As ≠ a
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Proof

𝔼{Na(T )} ≤ 1 + 𝔼{
T−1

∑
s=0

( 1
G1,s

− 1)} + 𝔼{
T−1

∑
s=0

1(Ga,s > 1/T )}
Let  and . ℱt = σ(A1, R1, …, At, Rt) Ea(t) = {θa(t) ≤ μ1 − ϵ}

ℙ(θ1(t) > μ1 − ϵ |ℱt−1) = G1,N1(t−1)

𝔼{Na(T )} = 𝔼{
T

∑
t=1

1(At = a)}
= 𝔼{

T

∑
t=1

1(At = a, Ea(t))} + 𝔼{
T

∑
t=1

1(At = a, Ec
a(t))}
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Recall   and . 

.

ℱt = σ(A1, R1, …, At, Rt) Ea(t) = {θa(t) ≤ μ1 − ϵ}
A′ t = arg max

a≠1
θa(t)

ℙ(At = 1,Ea(t) |ℱt−1) ≥ ℙ{A′ t = a, Ea(t), θ1(t) ≥ μ1 − ϵ |ℱt−1}
= ℙ{θ1(t) ≥ μ1 − ϵ |ℱt−1}ℙ{A′ t = a, Ea(t) |ℱt−1}

≥
G1,N1(t−1)

1 − G1,N1(t−1)
ℙ(At = a, Ea(t) |ℱt−1) .

Here, the last inequality follows by the observation that if  occurs, 

then . That is,

{At = a} ∩ Ea(t)
{A′ t = a} ∩ Ea(t) ∩ {θ1(t) ≤ μ1 − ϵ}

ℙ(At = a, Ea(t) |ℱt−1) ≤ [1 − ℙ{θ1(t) > μ1 − ϵ |ℱt−1}]ℙ(A′ t = a, Ea(t) |ℱt−1)
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Thus, summing up the probabilities, we have

ℙ(At = 1,Ea(t) |ℱt−1) ≥
G1,N1(t−1)

1 − G1,N1(t−1)
ℙ(At = a, Ea(t) |ℱt−1) .

𝔼[
T

∑
t=1

1{At = a, Ea(t)}] ≤ 𝔼[
T

∑
t=1

( 1
G1,N1(t−1)

− 1)1(At = 1)]
≤ 𝔼{

T−1

∑
s=0

( 1
G1,s

− 1)}
Here, the last step follows from the fact that if , then 

. 

N1(t − 1) = s,1(At = 1)
N1(t) = s + 1 ≠ s
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Now, to bound the second term, define the following subset

𝒯 = {t ∈ [T] : 1 − Fa,Na(t−1)(μ1 − ϵ) > 1/T}

and recall that . Then,Ga,s = 1 − Fa,s(μ1 − ϵ)

∑
t∈𝒯

1(At = a) ≤
T

∑
s=1

1{Ga,s−1 > 1/T} ∵ by definition... only one s

𝔼[ ∑
t∉𝒯

1{Ec
a(t)}] ≤ 𝔼( ∑

t∉𝒯

1/T) ∵ by the definition of 𝒯 and Ec
a(t)

𝔼{Na(T )} = 𝔼{
T

∑
t=1

1(At = a, Ea(t))} + 𝔼{
T

∑
t=1

1(At = a, Ec
a(t))}

Ea(t) = {θa(t) ≤ μ1 − ϵ}
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Now, to bound the second term, define

𝔼[
T

∑
t=1

1{At = a, Ec
a(t)}} ≤ 𝔼{ ∑

t∈𝒯

1(At = a)} + 𝔼[ ∑
t∉𝒯

1{Ec
a(t)}]

≤ 𝔼[
T−1

∑
s=0

1{1 − Fa,s(μ1 − ϵ) > 1/T}] + 𝔼( ∑
t∉𝒯

1/T)
≤ 𝔼{

T−1

∑
s=0

1(Ga,s > 1/T )} + 1.



Thompson Sampling

56

How…. can we use this general result?

𝔼{Na(T )} ≤ 1 + 𝔼{
T−1

∑
s=0

( 1
G1,s

− 1)} + 𝔼{
T−1

∑
s=0

1(Ga,s > 1/T )}

Choose  to be the Dirac measure at infinity and let  be 

the cumulative distribution function of the Gaussian . Moreover, 

assume that the reward follows a sub-gaussian distribution. Then,

Fa,1 = δ∞ Update(Fa,t, At, Rt)

𝒩( ̂μa(t),1/t)

One example

Reg ≲ kT log T
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Abandon almost all assumptions on the data-generating process compared to the 

stochastic bandit setting.

Adversarial Bandits

A -armed adversarial bandit is an arbitrary sequence of reward vectors , 

where 

k (rt)T
t=1

rt ∈ [0,1]k

In each round, the learner chooses a distribution over the actions , and receives 

, that is,  -th component of the vector .

[k]
Rt = rt,At

At rt

The regret for given reward vectors is the expected loss in revenue of the policy 

relative to the best fixed action.

Reg(π, x) = max
a∈[k]

T

∑
t=1

rt,a − 𝔼(
T

∑
t=1

Rt)
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The worst-case regret over all environment is

Adversarial Bandits

Reg(π) = sup
r∈[0,1]T×k

Reg(π, r)

By the adversarial property, it can be shown that  for any 

deterministic algorithm such as ETC, UCB, Greedy, and Thompson.

Reg(π) ≥ T(1 − 1/k)

Thus, the sublinear worst-case regret is only attainable by using a randomized 

policy.
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We need to determine Pt,a = ℙπ(At = a |A1, R1, …, At−1, Rt−1)

Exponential-weighted algorithm for Exploration and Exploitation (Exp3) 
Algorithm

Let  be any unbiased estimator of  and let .R̂s,a Rs,a
̂St,a =

t

∑
s=1

R̂s,a

Then, we determine the probability with exponentially weighting with some learning 

rate .η > 0

Pt,a =
exp(η ̂St−1,a)

∑a′ ∈𝒜 exp(η ̂St−1,a′ )

In the following, we will choose  R̂t,a = 1 −
1(At = a)

Pta
(1 − Rt) . ≤ 1
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Exponential-weighted algorithm for Exploration and Exploitation (Exp3) 
Algorithm
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Regret Analysis of Exp3

Let , . Then,r ∈ [0,1]T×k η = log(k)/(Tk) ∈ (0,1)

Reg(π, x) ≤ 2 kT log(k)

Proof

Note that Reg(π, x) = max
1≤a≤k

Rega, Rega =
T

∑
t=1

rt,a − 𝔼(
T

∑
t=1

Rt) .

Thus, for the remainder of the proof, we fix , say a 1

𝔼( ̂ST,a) =
T

∑
t=1

rt,a,  and  𝔼t−1(Rt) =
k

∑
a=1

Pt,art,a =
k

∑
a=1

Pt,a𝔼t−1(R̂t,a) .
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Define . Then, by the above property,̂ST = ∑
t

∑
a

Pt,aR̂t,a

Rega = 𝔼( ̂ST,a) − 𝔼(∑
t

∑
a

Pt,aR̂t,a) = 𝔼( ̂ST,a − ̂ST)

To bound the RHS, let . By convention, .Wt =
k

∑
a=1

exp(η ̂St,a) ̂S0,a = 0,W0 = k

exp(η ̂ST,1) ≤
k

∑
a=1

exp(η ̂ST,1) = WT = W0ΠT
t=1

Wt

Wt−1
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The ratio is written as

Wt

Wt−1
=

k

∑
a=1

exp(η ̂St−1,a)
Wt−1

exp(ηR̂t,a) =
k

∑
a=1

Pt,a exp(ηR̂t,a) .

Using  and  for ,ex ≤ 1 + x + x2,  for x ≤ 1 1 + x ≤ ex x ∈ ℝ

Wt

Wt−1
≤ 1 + η

k

∑
a=1

Pt,aR̂t,a + η2
k

∑
a=1

Pt,aR̂2
t,a

≤ exp(η
k

∑
a=1

Pt,aR̂t,a + η2
k

∑
a=1

Pt,aR̂2
t,a) .
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exp(η ̂ST,1) ≤ k exp(η ̂ST + η2 ∑
t

∑
a

Pt,aR̂2
t,a) .

̂ST,1 − ̂ST ≤
log(k)

η
+ η∑

t
∑

a

Pt,aR̂2
t,a .
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̂ST,1 − ̂ST ≤
log(k)

η
+ η∑

t
∑

a

Pt,aR̂2
t,a . R̂t,a = 1 −

1(At = a)
Pta

(1 − Rt) .

Let . Then,Yt = 1 − Rt, yt,a = 1 − rt,a

𝔼(
k

∑
a=1

Pt,aR̂2
t,a) = 𝔼[

k

∑
a=1

{Pt,a − 2 ⋅ 1(At = a)Yt +
1(At = a)Y2

t

Pt,a }]
= 𝔼[1 − 2Yt + 𝔼t−1{

k

∑
a=1

1(At = a)Y2
t

Pt,a }]
= 𝔼[1 − 2Yt + 𝔼t−1{

k

∑
a=1

1(At = a)y2
t,a

Pt,a }]
= 𝔼{1 − 2Yt +

k

∑
a=1

y2
t,a} = 𝔼{(1 − Yt)2 + ∑

a≠At

y2
t,a} ≤ k .
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What is the limitation of the previous analysis?

Most analysis only concerns about the bound for the regret expectation.

Actually, many well-developed algorithm turn to yield regrets 

which have heavy-tails.

Thus, non-asymptotic analysis of previous algorithms, or 

proposing well-behaving algorithm in a non-asymptotic 

viewpoint might be another interesting problem.


