
Multi-Armed Bandits

Myeonghun Yu

January 26, 2024

University of California—San Diego

Outline

2

Introduction

Explore-Then-Commit Algorithm

-Greedy Algorithm

Upper Confidence Bound Algorithm

Thompson Sampling

Exp3 Algorithm

ϵ

Outline

3

Introduction

Explore-Then-Commit Algorithm

-Greedy Algorithm

Upper Confidence Bound Algorithm

Thompson Sampling

Exp3 Algorithm

ϵ

Introduction

4

Motivating example (Bernoulli Bandit)

There are actionsA

Each action () produces a success with
unknown probability .

a 1 ≤ a ≤ k
θa ∈ [0,1]

If we pick an action, we receive either a success or a failure.

Want to maximize the cumulative number of
successes over periods.T

Introduction

5

Motivating example (Bernoulli Bandit)

Web-browser (Edge) should choose which banner ads (arms) should be displayed.

A success is associated either with a click on the ad.

 represents the click rate among the population of users who uses this browser.θa

Contextual bandit…

Introduction

6

More formally….

We consider a stochastic bandit, which is a collection of distributions

, where is the set of available actions.{ℙa : a ∈ 𝒜} 𝒜

The learner and the environment (Nature) interact sequentially over rounds.T

For each round , the learner chooses an action .t ∈ {1,2,…, T} At ∈ 𝒜

The environment samples a reward from a distribution and reveals it to

the learner.

Rt ∈ ℝ ℙAt

Introduction

7

More formally….

We consider a stochastic bandit, which is a collection of distributions

, where is the set of available actions.{ℙa : a ∈ 𝒜} 𝒜

The (unknown) conditional distribution is .Rt |A1, R1, …, Rt−1, At ℙAt

The (learner-chosen) conditional law of action given isAt A1, X1, …, At−1, Xt−1

πt(⋅ |A1, X1, …, At−1, Xt−1)

Introduction

8

Regret

We measure the learner’s performance via regret to the best action

a⋆ ∈ arg min
a∈𝒜

𝔼[Rt |At = a] = 𝔼a[R] = μa,

Reg(π) = T ⋅ 𝔼[R |A = a⋆] −
T

∑
t=1

𝔼[Rt]

Here, is implicitly included in the RHS, that is, is generated by following the

policy .

π Rt

π

Introduction

9

Regret

Reg(π) = T ⋅ 𝔼[R |A = a⋆] −
T

∑
t=1

𝔼[Rt]

Goal: Develop algorithms that enjoy sublinear regret, i.e.

1
T

Reg(π) → 0, T → ∞ .

Important Principle: Exploit vs Explore

We do not know the reward for each arm at the initial time.

 Algorithms should discover the action/arm with the largest mean using the data.⇒

Introduction

10

Simple Greedy-Algorthim which exemplifies the need for exploration.

At time , we compute an empirical estimate for the reward mean of an action t a

̂μa(t) =
1

Na(t) ∑
s≤t

Rs1(As = a), Na(t) = ∑
s≤t

1(As = a) .

. Decision 1 gives , and Decision 2 gives .𝒜 = {1,2} 1/2 Ber(3/4)

After initializing by playing each decision a single time to ensure , the

algorithm will get stuck on Decision 1 with probability 1/4, leading to regret .

Na > 0
Ω(T)

At = arg max
a∈𝒜

̂μa(t − 1)

Introduction

11

Decomposition of the Regret

Define , sub optimality gap or action gap or immediate regret.Δa = μ⋆ − μa

Reg(π) = T ⋅ 𝔼[R |A = a⋆]

=:μa⋆=:μ⋆

−
T

∑
t=1

𝔼[Rt]

Na(t) = ∑
s≤t

1(As = a)Reg(π) = ∑
a∈𝒜

Δa𝔼{Na(T)}

Outline

12

Introduction

Explore-Then-Commit Algorithm

-Greedy Algorithm

Upper Confidence Bound Algorithm

Thompson Sampling

Exp3 Algorithm

ϵ

 Explore-Then-Commit Algorithm

13

Explore-Then-Commit (ETC) Algorithm

Explore the problem by playing each arm a fixed number of times, then exploits.

Intuitively…

When is too small (too exploiting), then an estimate of mean of each

arm is not reliable.

m

̂μa(t) =
1

Na(t) ∑
s≤t

Rs1(As = a), Na(t) = ∑
s≤t

1(As = a) .

When is too large (too exploring), then we waste times for choosing

obviously wrong choice.

m

a a

 Explore-Then-Commit Algorithm

14

Explore-Then-Commit (ETC) Algorithm

When bandits are 1-subGaussian and . Recall .1 ≤ m ≤ T/k Δa = μ⋆ − μa

Reg(πETC) ≤ m
k

∑
a=1

Δa + (T − mk)
k

∑
a=1

Δa exp(−
mΔ2

a

4) .

This illustrates rigorously the trade-off between exploration and exploitation.

If is large The policy explores for too long The first term increases.m ⇒ ⇒

If is small The policy exploits too early It may choose wrong arms, so the

second term increases.

m ⇒ ⇒

 Explore-Then-Commit Algorithm

15

Explore-Then-Commit (ETC) Algorithm

When bandits are 1-subGaussian and . Recall .1 ≤ m ≤ T/k Δa = μ⋆ − μa

Reg(πETC) ≤ m
k

∑
a=1

Δa + (T − mk)
k

∑
a=1

Δa exp(−
mΔ2

a

4) .

If we assume that there are only two arms, and 1 is optimal, , thenΔ = Δ2

Reg(πETC) ≤ Δ + C T

when we choose an optimal choice of asm

m = max {1,⌈ 4
Δ2

log(TΔ2

4)⌉}

 Explore-Then-Commit Algorithm

16

Explore-Then-Commit (ETC) Algorithm

When bandits are 1-subGaussian and . Recall .1 ≤ m ≤ T/k Δa = μ⋆ − μa

Reg(πETC) ≤ Δ + C T

⚠ Caveat…..

m = max {1,⌈ 4
Δ2

log(TΔ2

4)⌉}

The regret bound is close to optimal, but to achieve this, we need to know

1. The knowledge of the horizon , so it is not an online setting.T
2. The knowledge of the sub optimality gap , which is not (obviously) unknown.Δ

 Explore-Then-Commit Algorithm

17

Explore-Then-Commit (ETC) Algorithm

When bandits are 1-subGaussian and . Recall .1 ≤ m ≤ T/k Δa = μ⋆ − μa

Proof 𝔼{Na(T)} = m + (T − mk)ℙ(Amk+1 = a)

≤ m + (T − mk)ℙ{ ̂μa(mk) ≥ max
j≠a

̂μj(mk)}
ℙ{ ̂μa(mk) ≥ max

j≠a
̂μj(mk)} ≤ ℙ{ ̂μa(mk) ≥ ̂μ1(mk)}

= ℙ{ ̂μa(mk) − μa − ̂μ1(mk) + μ1 ≥ Δa}
≤ exp(−

mΔ2
a

4)

Reg(πETC) =
k

∑
a=1

Δa𝔼{Na(T)} ≤ m
k

∑
a=1

Δa + (T − mk)
k

∑
a=1

Δa exp(−
mΔ2

a

4) .

Outline

18

Introduction

Explore-Then-Commit Algorithm

-Greedy Algorithm

Upper Confidence Bound Algorithm

Thompson Sampling

Exp3 Algorithm

ϵ

-Greedy Algorithmϵ

19

-Greedy Algorithmϵ

Let be the exploration parameter. ϵ ∈ (0,1)

̂μa(t) =
1

Na(t) ∑
s≤t

Rs1(As = a), Na(t) = ∑
s≤t

1(As = a) .

1. At each time , we compute the estimated reward values for each

arm ,

t + 1, t ≥ 0
1 ≤ a ≤ k

2. With probability , the algorithm choose the greedy decision1 − ϵ

At+1 = arg max
a∈𝒜

̂μa(t)

3. With probability , ϵ

At+1 ∼ Unif({1,2,…, k})

-Greedy Algorithmϵ

20

-Greedy Algorithmϵ

It allows (forces) the learner to get information uniformly for all arms.

But the algorithm continually explores all arms, even though we may expect or be

certain to rule out some actions with very low reward after a relatively small amount

of explorations.

-Greedy Algorithmϵ

21

Sublinearity of -Greedy Algorithmϵ
Assume that , and is subGaussian. Then, for any , by

choosing appropriately, the -Greedy algorithm ensures that with probability at

least ,

μ⋆ = μ1 ∈ [0,1] Rt T
ϵ ϵ

1 − δ

̂Reg = T ⋅ μ⋆ −
T

∑
t=1

𝔼At∼πt(RAt) ≲ k1/3T2/3 log1/3(kT/δ)

Proof
For convenience, we denote . Then,̂At+1 ∈ arg max

a∈𝒜
̂μt(a)

̂Reg = (1 − ϵ)
T

∑
t=1

μ⋆ − μ ̂At
+ ϵ

T

∑
t=1

𝔼At∼Unif(μ⋆ − μAt
)

≤
T

∑
t=1

μ⋆ − μ ̂At
+ ϵT

-Greedy Algorithmϵ

22

Sublinearity of -Greedy Algorithmϵ

Now, fix . By the definition of , we gett ̂At

̂Reg = (1 − ϵ)
T

∑
t=1

μ⋆ − μ ̂At
+ ϵ

T

∑
t=1

𝔼At∼Unif(μ⋆ − μAt
)

≤
T

∑
t=1

μ⋆ − μ ̂At
+ ϵT

μ⋆ − μ ̂At
= μ1 − ̂μa(t − 1) + ̂μa(t − 1) − ̂μ ̂At

(t − 1) + ̂μ ̂At
(t − 1) − μ ̂At

≤ 2 max
a∈𝒜

|μa − ̂μa(t − 1) |

-Greedy Algorithmϵ

23

Sublinearity of -Greedy Algorithmϵ

Now, we show that the event

ℰt := { max
a∈𝒜

|μa − ̂μa(t) | ≲
k log(kT/δ)

ϵt }
occurs for all with probability at least .t 1 − δ

̂Reg ≲
T

∑
t=1

A log(AT/δ)
ϵt

+ ϵT

≤
AT log(AT/δ)

ϵ
+ ϵT

ϵ ≍ (k log(kT/δ)
T)1/3

-Greedy Algorithmϵ

24

Sublinearity of -Greedy Algorithmϵ

ℰt := { max
a∈𝒜

|μa − ̂μa(t) | ≲
k log(kT/δ)

ϵt }
Note the following Hoeffding’s inequality:

1
N

N

∑
t=1

Zi − 𝔼[Z] ≲ σ
log(T/δ)

2N
with probability at least , where is a random variable.1 − δ N ∈ {1,2,…, T}

Now, recall . Then, with probability at least , for all

and uniformly

Na(t) = ∑
s≤t

1(As = a) 1 − δ a

t
|μa − ̂μa(t) | ≤

2 log(2AT2/δ)
Na(t − 1)

-Greedy Algorithmϵ

25

Thus, it suffices to show that is sufficiently large.Na(t) = ∑
s≤t

1(As = a)

Define to be a random variable whose value indicates whether the

algorithm explore uniformly at step .

et ∈ {0,1}
t

ma(t) = ∑
s≤t

1(As = a, es = 1)

which counts the number of such that we chose with the exploration step at

time .

s ≤ t a
s

ma(t) = ∑
s≤t

1(As = a, es = 1) ≤ Na(t)

-Greedy Algorithmϵ

26

Let , so that . Note that .Za(t) = 1(At = a, et = 1) ma(t) = ∑
s≤t

Za(s) Za(t) ∼ Ber(ϵ/k)

ma(t) = ∑
s≤t

1(As = a, es = 1)

Using Bernstein’s inequality, and , we have with ,𝔼{Za(t)} = ϵt/k 1 − 2e−u

ma(t) −
ϵt
k

≤ 2Var(Ber(ϵ/k)tu +
u
e

≤
ϵt
2k

+
4u
3

Setting , and taking union bound, we have for all and ,u = log(2kT/δ) a t

ma(t) ≥
ϵt
2A

−
4 log(2kT/δ)

3

-Greedy Algorithmϵ

27

Thus, we have

Na(t) ≥ ma(t) ≥
ϵt
2A

−
4 log(2kT/δ)

3
≳

ϵt
k

|μa − ̂μa(t) | ≤
2 log(2AT2/δ)

Na(t − 1)
≲

k log(kT/δ)
ϵt

,

which establishes that occurs with high probability.ℰt

Outline

28

Introduction

Explore-Then-Commit Algorithm

-Greedy Algorithm

Upper Confidence Bound Algorithm

Thompson Sampling

Exp3 Algorithm

ϵ

Upper Confidence Bound Algorithm

29

Motivation

UCB algorithm is based on the principle of optimism in the face of uncertainty.

In the presence of uncertainty, we take an optimistic view as if the environment is

as nice as possible.

Suppose that with high probability, Tesla’s stock will increase 5% in a best-case

scenario, and decrease -10% in a worst-case scenario.

For an (extremely) optimistic person, she will have a long position.

For an (extremely) pessimistic person, she will have a short position.

In the multi-armed setting, we assign to each arm a value, called the upper

confidence bound which is an overestimate of the unknown mean with high

probability.

μa

Upper Confidence Bound Algorithm

30

Algorithm

1. At round , the learner calculate the upper confidence bound for each arm :t a

UCBa(t − 1,δ) = {
∞ if Na(t − 1) = 0

̂μa(t − 1) + 2 log(1/δ)
Na(t − 1) otherwise.

2. Choose action . At ∈ arg max
a∈𝒜

UCBa(t − 1,δ)

3. Observe reward , and update upper confidence bounds.Rt

Upper Confidence Bound Algorithm

31

Algorithm

UCBa(t − 1,δ) = {
∞ if Na(t − 1) = 0

̂μa(t − 1) + 2 log(1/δ)
Na(t − 1) otherwise.

The algorithm will choose arm at round ifa t

(i) it is promising because is large, or̂μa(t − 1)

(ii) it is not well explored because is small.Na(t − 1)

Upper Confidence Bound Algorithm

32

Theoretical Guarantee
Assume the random variables are subGaussian, and choose the confidence level

.δ = 1/T2

Reg ≤ 3
k

∑
a=1

Δa + ∑
a:Δa>0

16 log(T)
Δa

Introduction of some notation

Let be a collection of independent random variables, (Rta)t≥1,1≤a≤k Rta ∼ R |A = a

̂μas =
1
s

s

∑
t=1

Xta

Then, the reward in round is , .t Rt = RNa(t)At
̂μa(t) = ̂μaNa(t)

Upper Confidence Bound Algorithm

33

Proof
As it is before, we start from , so it suffices to bound the

expectation of counts.

Reg =
k

∑
a=1

Δa𝔼{Na(t)}

Ga = {μ1 < min
1≤t≤T

UCB1(t, δ)}⋂{ ̂μaua
+

2 log(1/δ)
ua

< μ1}
Here, is a constant to be determined later.ua

1. Under , is never underestimated by the upper confidence bound for all time.Ga μ1

2. Under , after observations of rewards from the arm , the UCB is below the

mean of the best arm 1.

Ga ua a

Upper Confidence Bound Algorithm

34

Proof
Ga = {μ1 < min

1≤t≤T
UCB1(t, δ)}⋂{ ̂μaua

+
2 log(1/δ)

ua
< μ1}

Note that when occurs, arm will be selected at most times, .Ga a ua Na(T) ≤ ua

 Suppose , then s.t. and .∵ Na(T) > ua ∃t ∈ [T] Na(t − 1) = ua At = a

UCBa(t − 1,δ) = ̂μa(t − 1) +
2 log(1/δ)
Na(t − 1)

= ̂μa(t − 1) +
2 log(1/δ)

ua

< μ1 < UCB1(t − 1,δ)

Then… the arm cannot be chosen at the round , contraction.a t

Upper Confidence Bound Algorithm

35

Proof
Ga = {μ1 < min

1≤t≤T
UCB1(t, δ)}⋂{ ̂μaua

+
2 log(1/δ)

ua
< μ1}

Calculate the probability .ℙ(Gc
a)

ℙ{μ1 ≥ min
t∈[T]

UCB1(t, δ)} ≤ ℙ[⋃
s∈[T]

{μ1 ≥ ̂μ1s +
2 log(1/δ)

s }]
≤

T

∑
s=1

ℙ{μ1 ≥ ̂μ1s +
2 log(1/δ)

s } ≤ nδ .

Upper Confidence Bound Algorithm

36

Proof
Ga = {μ1 < min

1≤t≤T
UCB1(t, δ)}⋂{ ̂μaua

+
2 log(1/δ)

ua
< μ1}

Calculate the probability .ℙ(Gc
a)

We assume that is chosen large enough that ua

Δa −
2 log(1/δ)

ua
≥

1
2

Δa .

We choose the smallest integer satisfying the inequality, so that ua = ⌈8 log(1/δ)
Δ2

a ⌉
ℙ{ ̂μaua

+
2 log(1/δ)

ua
≥ μ1} = ℙ{ ̂μaua

− μa ≥ Δa −
2 log(1/δ)

ua }
≤ ℙ(̂μaua

− μa ≥
1
2

Δa) ≤ exp(−
uaΔ2

a

8) .

Upper Confidence Bound Algorithm

37

Proof
Ga = {μ1 < min

1≤t≤T
UCB1(t, δ)}⋂{ ̂μaua

+
2 log(1/δ)

ua
< μ1}

Calculate the probability .ℙ(Gc
a) ≤ nδ + exp(−

uaΔ2
a

8)

𝔼{Na(T)} = 𝔼{1(Ga)Na(T)} + 𝔼{1(Gc
a)Na(T)} ≤ ua + ℙ(Gc

a)T

≤ ua + T{Tδ + exp(−
uaΔ2

a

8)}
≤ 3 +

16 log T
Δ2

a
.

Upper Confidence Bound Algorithm

38

Bound without inverse of gaps Reg ≤ 8 Tk log(T) + 3
k

∑
a=1

Δa .

Recall that we obtain

𝔼{Na(T)} ≤ 3 +
16 log T

Δ2
a

For a truncation level which will be determined later, we haveΔ > 0

Reg =
k

∑
a=1

Δa𝔼{Na(T)} = ∑
a:Δa<Δ

Δa𝔼{Na(T)} + ∑
a:Δa≥Δ

Δa𝔼{Na(T)}

≤ TΔ + ∑
a:Δa≥Δ

{3Δa +
16 log T

Δa }
≤ TΔ +

16k log T
Δ

+ 3∑
a

Δa

Upper Confidence Bound Algorithm

39

Comparison with ETC algorithm

The theoretical bound for UCB and ETC are similar.

But for achieving the optimal bound for ETC, we need to know the sub optimality gaps

a priori.

Upper Confidence Bound Algorithm

40

UCB does not necessitate the knowledge of the true sub-optimality gaps.

But still… the algorithm has to choose , which means that the horizon (end
of the round) must be known in advance.

δ = 1/T2

Thus, the algorithm is not appropriate to the online setting.

Upper Confidence Bound Algorithm

41

Improved UCB algorithm

The algorithm will choose arm at round ifa t

(i) it is promising because is large, or̂μa(t − 1)

(ii) it is not well explored because is small.Na(t − 1)

UCBa(t − 1,δ) = {
∞ if Na(t − 1) = 0

̂μa(t − 1) + 2 log(1 + t log2(t))
Na(t − 1) otherwise.

log(1/δ) ⇒ log(1 + t log2(t))

Upper Confidence Bound Algorithm

42

Improved UCB algorithm

The improved UCB algorithm satisfies

Reg ≲
k

∑
a=1

Δa + kT log T

Note that this algorithm does not require the knowledge of the true suboptimality

gaps nor the horizon.

Can we remove the logarithmic term in the regret bound?

Upper Confidence Bound Algorithm

43

MOSS algorithm

Then, it can be shown that

UCBa(t − 1,δ) = {
∞ if Na(t − 1) = 0

̂μa(t − 1) + 4
Na(t − 1) log+(T

kNa(t − 1)) otherwise.

Reg ≲ kT +
k

∑
a=1

Δa .

However, the algorithm is not an ultimate one because

1. it is suboptimal relative to UCB in certain regimes;

2. the variance of the regret of the algorithm is usually too large, so it is unstable.

Outline

44

Introduction

Explore-Then-Commit Algorithm

-Greedy Algorithm

Upper Confidence Bound Algorithm

Thompson Sampling

Exp3 Algorithm

ϵ

Thompson Sampling

45

History

Thompson Sampling is the first algorithm for bandits proposed by Thompson

[1933].

Thompson only considers Bernoulli case with two arms without theoretical

guarantees, but Thompson argued the validity intuitively and gave hand-calculated

empirical analysis.

For almost 8 decades, it is not popular (unknown) until a large number of authors

independently rediscovered the algorithm and establish theoretical guarantees

after 2000s.

Thompson Sampling

46

Simple Example Consider the Bernoulli bandits setting with arms.k

 for .R |A = a ∼ Ber(μa) 1 ≤ a ≤ k

The learner has a prior belief over each , e.g., , which are

independent among .

μa μa ∼ Beta(αa, βa)
a

If , then we update the distribution of by the Bayes’ rule, remaining the

other distributions of the same.

At = a μa

a′ ≠ a

(αa, βa) = { (αa, βa) if At ≠ a
(αa, βa) + (Rt,1 − Rt) if At = a

Sample for each , then ̂μa ∼ Beta(αa, βa) 1 ≤ a ≤ k

At+1 = arg min
1≤a≤k

̂μa .

Thompson Sampling

47

Difference with the previous algorithm?

(αa, βa) = { (αa, βa) if At ≠ a
(αa, βa) + (Rt,1 − Rt) if At = a

Suppose that for all , at the initial step. (Uniform distribution)a (αa, βa) = (1,1)

Then, .αa + βa = ∑
s≤t

1(As = a) + 2, αa = ∑
s≤t

Rs1(As = a) + 1

Thus, Greedy-Algorithm just choose .At ∈ arg max
a

(αa − 1)/(αa + βa − 2)

Note that 𝔼{Z} = αa/(αa + βa), Z ∼ Beta(αa, βa) .

Thompson Sampling

48

General form of Thompson Sampling (in a Frequentist perspective)

Follow-the-perturbed-leader algorithm

0. Choose to be the (prior) cumulative distribution functions of

the mean reward.

F1,1, F2,1, …, Fk,1

1. For 1 ≤ t ≤ T

2. Sample independently for each .θa(t) ∼ Fa,t a

3. Choose .At = arg max
a

θa(t)

4. The reward reveals, and update Rt

Fa,t+1 = Fa,t if a ≠ At FAt,t+1 = Update(FAt,t, At, Rt) if a = At

Thompson Sampling

49

Regret bound of Thompson Sampling

Assume the arm is optimal, and let be arbitrary, . Then,1 ϵ ∈ ℝ a ≠ 1

𝔼{Na(T)} ≤ 1 + 𝔼{
T−1

∑
s=0

(1
G1,s

− 1)} + 𝔼{
T−1

∑
s=0

1(Ga,s > 1/T)}
where .Ga,s = Ga,s(ϵ) = 1 − Fa,s(μ1 − ϵ)

The first sum is related to the likelihood that the the sample from the is nearly

optimistic.

F1,s

.G1,s = ℙ(Z > μ1 − ϵ), Z ∼ F1,s

Thus, if is large (the summand in the first sum is small), it is likely

to get larger with large possibility of

G1,s

θ1(s) As = 1

Thompson Sampling

50

Regret bound of Thompson Sampling

Assume the arm is optimal, and let be arbitrary, . Then,1 ϵ ∈ ℝ a ≠ 1

𝔼{Na(T)} ≤ 1 + 𝔼{
T−1

∑
s=0

(1
G1,s

− 1)} + 𝔼{
T−1

∑
s=0

1(Ga,s > 1/T)}
where .Ga,s = Ga,s(ϵ) = 1 − Fa,s(μ1 − ϵ)

The second sum measures the likelihood that the sample from arm is close to .a μ1

.Ga,s = ℙ(Z > μ1 − ϵ), Z ∼ Fa,s

Thus, if is small (the summand in the second sum is small), it is

likely that .

Ga,s

As ≠ a

Thompson Sampling

51

Proof

𝔼{Na(T)} ≤ 1 + 𝔼{
T−1

∑
s=0

(1
G1,s

− 1)} + 𝔼{
T−1

∑
s=0

1(Ga,s > 1/T)}
Let and . ℱt = σ(A1, R1, …, At, Rt) Ea(t) = {θa(t) ≤ μ1 − ϵ}

ℙ(θ1(t) > μ1 − ϵ |ℱt−1) = G1,N1(t−1)

𝔼{Na(T)} = 𝔼{
T

∑
t=1

1(At = a)}
= 𝔼{

T

∑
t=1

1(At = a, Ea(t))} + 𝔼{
T

∑
t=1

1(At = a, Ec
a(t))}

Thompson Sampling

52

Recall and .

.

ℱt = σ(A1, R1, …, At, Rt) Ea(t) = {θa(t) ≤ μ1 − ϵ}
A′ t = arg max

a≠1
θa(t)

ℙ(At = 1,Ea(t) |ℱt−1) ≥ ℙ{A′ t = a, Ea(t), θ1(t) ≥ μ1 − ϵ |ℱt−1}
= ℙ{θ1(t) ≥ μ1 − ϵ |ℱt−1}ℙ{A′ t = a, Ea(t) |ℱt−1}

≥
G1,N1(t−1)

1 − G1,N1(t−1)
ℙ(At = a, Ea(t) |ℱt−1) .

Here, the last inequality follows by the observation that if occurs,

then . That is,

{At = a} ∩ Ea(t)
{A′ t = a} ∩ Ea(t) ∩ {θ1(t) ≤ μ1 − ϵ}

ℙ(At = a, Ea(t) |ℱt−1) ≤ [1 − ℙ{θ1(t) > μ1 − ϵ |ℱt−1}]ℙ(A′ t = a, Ea(t) |ℱt−1)

Thompson Sampling

53

Thus, summing up the probabilities, we have

ℙ(At = 1,Ea(t) |ℱt−1) ≥
G1,N1(t−1)

1 − G1,N1(t−1)
ℙ(At = a, Ea(t) |ℱt−1) .

𝔼[
T

∑
t=1

1{At = a, Ea(t)}] ≤ 𝔼[
T

∑
t=1

(1
G1,N1(t−1)

− 1)1(At = 1)]
≤ 𝔼{

T−1

∑
s=0

(1
G1,s

− 1)}
Here, the last step follows from the fact that if , then

.

N1(t − 1) = s,1(At = 1)
N1(t) = s + 1 ≠ s

Thompson Sampling

54

Now, to bound the second term, define the following subset

𝒯 = {t ∈ [T] : 1 − Fa,Na(t−1)(μ1 − ϵ) > 1/T}

and recall that . Then,Ga,s = 1 − Fa,s(μ1 − ϵ)

∑
t∈𝒯

1(At = a) ≤
T

∑
s=1

1{Ga,s−1 > 1/T} ∵ by definition... only one s

𝔼[∑
t∉𝒯

1{Ec
a(t)}] ≤ 𝔼(∑

t∉𝒯

1/T) ∵ by the definition of 𝒯 and Ec
a(t)

𝔼{Na(T)} = 𝔼{
T

∑
t=1

1(At = a, Ea(t))} + 𝔼{
T

∑
t=1

1(At = a, Ec
a(t))}

Ea(t) = {θa(t) ≤ μ1 − ϵ}

Thompson Sampling

55

Now, to bound the second term, define

𝔼[
T

∑
t=1

1{At = a, Ec
a(t)}} ≤ 𝔼{ ∑

t∈𝒯

1(At = a)} + 𝔼[∑
t∉𝒯

1{Ec
a(t)}]

≤ 𝔼[
T−1

∑
s=0

1{1 − Fa,s(μ1 − ϵ) > 1/T}] + 𝔼(∑
t∉𝒯

1/T)
≤ 𝔼{

T−1

∑
s=0

1(Ga,s > 1/T)} + 1.

Thompson Sampling

56

How…. can we use this general result?

𝔼{Na(T)} ≤ 1 + 𝔼{
T−1

∑
s=0

(1
G1,s

− 1)} + 𝔼{
T−1

∑
s=0

1(Ga,s > 1/T)}

Choose to be the Dirac measure at infinity and let be

the cumulative distribution function of the Gaussian . Moreover,

assume that the reward follows a sub-gaussian distribution. Then,

Fa,1 = δ∞ Update(Fa,t, At, Rt)

𝒩(̂μa(t),1/t)

One example

Reg ≲ kT log T

Outline

57

Introduction

Explore-Then-Commit Algorithm

-Greedy Algorithm

Upper Confidence Bound Algorithm

Thompson Sampling

Exp3 Algorithm

ϵ

Exp3 Algorithm

58

Abandon almost all assumptions on the data-generating process compared to the

stochastic bandit setting.

Adversarial Bandits

A -armed adversarial bandit is an arbitrary sequence of reward vectors ,

where

k (rt)T
t=1

rt ∈ [0,1]k

In each round, the learner chooses a distribution over the actions , and receives

, that is, -th component of the vector .

[k]
Rt = rt,At

At rt

The regret for given reward vectors is the expected loss in revenue of the policy

relative to the best fixed action.

Reg(π, x) = max
a∈[k]

T

∑
t=1

rt,a − 𝔼(
T

∑
t=1

Rt)

Exp3 Algorithm

59

The worst-case regret over all environment is

Adversarial Bandits

Reg(π) = sup
r∈[0,1]T×k

Reg(π, r)

By the adversarial property, it can be shown that for any

deterministic algorithm such as ETC, UCB, Greedy, and Thompson.

Reg(π) ≥ T(1 − 1/k)

Thus, the sublinear worst-case regret is only attainable by using a randomized

policy.

Exp3 Algorithm

60

We need to determine Pt,a = ℙπ(At = a |A1, R1, …, At−1, Rt−1)

Exponential-weighted algorithm for Exploration and Exploitation (Exp3)
Algorithm

Let be any unbiased estimator of and let .R̂s,a Rs,a
̂St,a =

t

∑
s=1

R̂s,a

Then, we determine the probability with exponentially weighting with some learning

rate .η > 0

Pt,a =
exp(η ̂St−1,a)

∑a′ ∈𝒜 exp(η ̂St−1,a′)

In the following, we will choose R̂t,a = 1 −
1(At = a)

Pta
(1 − Rt) . ≤ 1

Exp3 Algorithm

61

Exponential-weighted algorithm for Exploration and Exploitation (Exp3)
Algorithm

Exp3 Algorithm

62

Regret Analysis of Exp3

Let , . Then,r ∈ [0,1]T×k η = log(k)/(Tk) ∈ (0,1)

Reg(π, x) ≤ 2 kT log(k)

Proof

Note that Reg(π, x) = max
1≤a≤k

Rega, Rega =
T

∑
t=1

rt,a − 𝔼(
T

∑
t=1

Rt) .

Thus, for the remainder of the proof, we fix , say a 1

𝔼(̂ST,a) =
T

∑
t=1

rt,a, and 𝔼t−1(Rt) =
k

∑
a=1

Pt,art,a =
k

∑
a=1

Pt,a𝔼t−1(R̂t,a) .

Exp3 Algorithm

63

Define . Then, by the above property,̂ST = ∑
t

∑
a

Pt,aR̂t,a

Rega = 𝔼(̂ST,a) − 𝔼(∑
t

∑
a

Pt,aR̂t,a) = 𝔼(̂ST,a − ̂ST)

To bound the RHS, let . By convention, .Wt =
k

∑
a=1

exp(η ̂St,a) ̂S0,a = 0,W0 = k

exp(η ̂ST,1) ≤
k

∑
a=1

exp(η ̂ST,1) = WT = W0ΠT
t=1

Wt

Wt−1

Exp3 Algorithm

64

The ratio is written as

Wt

Wt−1
=

k

∑
a=1

exp(η ̂St−1,a)
Wt−1

exp(ηR̂t,a) =
k

∑
a=1

Pt,a exp(ηR̂t,a) .

Using and for ,ex ≤ 1 + x + x2, for x ≤ 1 1 + x ≤ ex x ∈ ℝ

Wt

Wt−1
≤ 1 + η

k

∑
a=1

Pt,aR̂t,a + η2
k

∑
a=1

Pt,aR̂2
t,a

≤ exp(η
k

∑
a=1

Pt,aR̂t,a + η2
k

∑
a=1

Pt,aR̂2
t,a) .

Exp3 Algorithm

65

exp(η ̂ST,1) ≤ k exp(η ̂ST + η2 ∑
t

∑
a

Pt,aR̂2
t,a) .

̂ST,1 − ̂ST ≤
log(k)

η
+ η∑

t
∑

a

Pt,aR̂2
t,a .

Exp3 Algorithm

66

̂ST,1 − ̂ST ≤
log(k)

η
+ η∑

t
∑

a

Pt,aR̂2
t,a . R̂t,a = 1 −

1(At = a)
Pta

(1 − Rt) .

Let . Then,Yt = 1 − Rt, yt,a = 1 − rt,a

𝔼(
k

∑
a=1

Pt,aR̂2
t,a) = 𝔼[

k

∑
a=1

{Pt,a − 2 ⋅ 1(At = a)Yt +
1(At = a)Y2

t

Pt,a }]
= 𝔼[1 − 2Yt + 𝔼t−1{

k

∑
a=1

1(At = a)Y2
t

Pt,a }]
= 𝔼[1 − 2Yt + 𝔼t−1{

k

∑
a=1

1(At = a)y2
t,a

Pt,a }]
= 𝔼{1 − 2Yt +

k

∑
a=1

y2
t,a} = 𝔼{(1 − Yt)2 + ∑

a≠At

y2
t,a} ≤ k .

Outline

67

Introduction

Explore-Then-Commit Algorithm

-Greedy Algorithm

Upper Confidence Bound Algorithm

Thompson Sampling

Exp3 Algorithm

One More Thing

ϵ

One More Thing….

68

What is the limitation of the previous analysis?

Most analysis only concerns about the bound for the regret expectation.

Actually, many well-developed algorithm turn to yield regrets

which have heavy-tails.

Thus, non-asymptotic analysis of previous algorithms, or

proposing well-behaving algorithm in a non-asymptotic

viewpoint might be another interesting problem.

