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Refresher

Recall in Chapter 5 (Intro RL): [ _ | . E)
H H
@ We consider thefMDP}settmg M = {%@ : R,ﬁw d1
(G 0«3{_9 h=1 h=1
@ (S x A - A(S) is transition probability at h
§ X A+ A() is reward distribution at h YA

° 1 c A(S) is |n|t|al state distribution C
o S (resp. A) is state space (resp. action space)

@ The online regime interacts with unknown MDP
for each t € [T], under selected policy

trajectory (data)@Z?(Sf, i, i),

@ Target: minimize the total regret ) it' ,,,,,

@ Regret bound under Tabular MDP derived depends OO and@

~—
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Refresher ||

[1]Chapter 6 introduced a general decisio?{making framework, here we

focus back on MDP only; trivially assum Z,’Ll r, € [0,1],

NM=Ngys ={m:7m= (M1, ,7H),7mh: S = A(A)}

Also recall state value function ate-acti e function

VhMﬂT(S) — EM,W { rhy ‘ = 5}

I—h

Qi (s,a) = M | z \h

=h+1

\/

Question: When the MDP is no Ionger tabular (i.e. large ]S\) can we still
derive an effective regret bound that doesn’t depend on this?
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Realizability as assumption

© Model realizability: Have access to a model class M of MDPs that

contains—the trie MDP (V™)

Qo VMnjcti\on realizability: Have access to a clas

value functions (@ functions) that contains the optimal function
QM**for the underlying MDP.

© Policy realizability: Have access to a class I1 of policies that contains
the optimal policy mp«

Remark: 1 =2 =3
@ ldeally when 1 (resp. 2, 3) holds, we'll be able to bound the regret

with (M])(resp. Q) []). o\

o For example(2), uch that w.p 1 — 9, find policy «

such that E[Reg] g@using poly(|A|, H,log |Q],1/e,1/J) episodes.

\_/\/ s ) .
U 5lpes) 2 TR - -

f state-action




Realizability as assumption |l

(-\‘ - N
(:q {_\— 3L 8

':____/ o O O value
= SESEOI] ™ oo

L° @ F={f(-;6):0€6}

Claim: With this single assumption, this is not achievable.

Proposition (1)

(Krishnamurthy et al.): For any@ d H € N, there exists a class of
horizon-H MDPs M_with |S| = S{|A| = 2 3'18( log |M| = log(S), yet any
algorithm must have o @f() P

@g] =

This implied neither of the three assumption suffices, since the setting
considers model realizability already.
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Realizability as assumption Ill

(Quick Proof Sketch)

@ [2]ldea: Since |S| unbounded, the construction use th-H
complete tree to emulate Multi-armed bandit with(|.A|" H
arms)

@ Recall that sample complexity lower bound for MAB™is it
m/\/\/\/\/\/\/\/\ €

@ Thus, without any restriction (function approximation), the
exploration algorithms have exponential sample complexity - it
suffices to show function approximation does not help.
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Realizability as assumption |V

(Quick Proof Sketch cont'd)

@ By definition,\ QJis a collection of@frgm/all MDPs in family (note
any state as leaf node could be chosen to be rewarding)

@ Smallest possible@that let Q realizable will be log |Q| = Hlog |A|.

@ Restricting Q doesn't really help! |A\ﬁ

Thus, we would like to explore more possible assumptions in addition to
realizability, which could possibly enables 1. extrapolation across state
space, 2. determine some effective states that algo mainly learn from
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Linear-Q* model

One intuitive assumption is the linearity of the underlying Q-function wrt
true model M

o ¢(s,a) € BS(1) is a known feature (analogue to structured bandit ch)
o O € BY(1) is unknown parameter

Or equivalently assume QM* € Q, where
Q = {Qu(s, ) = (¢(s, ), 0h) |0 € BS(1)vh]

Unfortunately, the regret is still lower bounded by exponential term.

Proposition (2)

(Weisz et al.)For any d € N and H € N sufficiently large, any algorithm
for the Linear-Q* model must have

E[Reg] = min {QQ(d), ZQ(H)}

RL-Chapter7
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Low-Rank MDP

Another proper but bit stronger assumptign is the assertion of linearity
behind transition probabilities ?5@)&\@\\1

PY (s'|s,a) = <{ﬁ(s, a)/,u;\,” (sY),) and E[r,|s,a] = <qb(5, a)(w}

-

o ¢(s,a) € BS(1) known feature map, u (s') € RY unknown feature
o wM ¢ BY(+/d) unknown parameter

For simplicity further assume st’es ‘,uﬁ” (s")

H < v/d and stepwise &

cumulative reward in [0, 1].

Remark: The transition matrix has rank at most d, regardless of |.4| and
|S|. That's namely why the structure low-rank MDP.

Remark: It generalize tabular MDP, where ¢(s, a) = es , and

(11 (5))5., = PV (s' | 5, 3). —_—

//\_

Liu (UIUC) RL-Chapter7 07/2024




Property of Low-Rank MDP

(Linearity of Bellman backup) For any low-rank MDP M € M and any
QR:S xA— R and any h € [H], the Bellman operator is linear in ¢ :

Q) (s,3) = (#(s, a),@ (1)

for some 92?” e RY. In particular, this implies that for any policy

w = (m1,...,7y), functions Q,ﬁwﬂr are linear in ¢ for every h. Finally, for
Q:S x A—[0,1], it holds that HegH <2Vd

y

Importance: 1. Connect linear structure w/ optimality 2. Implies low-rank

being stronger than linear-Q*
Proof...
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Proof (Lemma 1)

First ob £ 0 ( 4 N&yGD}
() e NS A 2

<¢(s a), w >—|—Z<¢(s a), ,u,, (s )>ma§xQ(5’,a/)

@R
X@& \Q <qb(5 a), wy, +Z,uh maxQ(s a)>
SR >
Also o (5,0) ( ) CQ(&\/

<2V d

98] < Jwi’] +

Zuﬁ” (s") @ (s)
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LSVI-UCB

@ ldea: Construct optimisity that C_Qf,(s, a) > QLW’*(S, a) for all s, a, h.
@ Challenge: Unlike UCB-VI, empirically estimate trans prob no longer

make sense given the large |S| (nor feasible regarding unknown p ).
@ Trick: Take adv. of Lemma 1, use Least S O regress
__ Nt
Y =\rp + maxs Qf, 1 (Sht1,a) onto X =(¢ (sp, an)/
LSVI-UCB
Input: R,p >0 /\
fort=1,....T do ?
Let Q% ., =0.
fort =R

Compute least-squares estimator

t : i i i At i 2
0y, = arg man((¢(5h’ah),9) — Th — max Q41 (Sh1, a)) )

BS(p) ‘i<t J—

and let Aﬁl(s,a)' <¢(s,a),§§l>. . fobw(ﬁ“" ‘ ~———‘ _

Define ) y) cs, 04)
@ T = Py
‘ ComEute bonus:

Compute\optimistic value function:

Qi(s,0) = {Qi(5,0) + by (5,00} AL

b;,a(s’ a) = \/RHQS(S, a) “(22)—1-

Set Vi (s) = max,e4 Q' (s,a) and 7. (s) = arg max,c 4 Q% (s, a).

Collect trajectory (st,at,rt),..., (a:, 05, ) according to 7.
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LSVI-UCB |

Remark: here Qf belongs to class Q :=

1(s:8) = {(0,6(s, 2)) + VRI6(5,)lm)-2 | AL+ 0] < 2V, omin(T) > 1

Proposition (3)

(Regret bound) If any § > 0, if we se@ c-d?log(HT /) for a
sufficiently large numerical constant ¢ and p = 2v/d, LSVI-UCB has that

with probability at least 1 — 0, IRE

Reg < (H)/d3 - T log(HT /3)

Proof idea
@ Regression: closure between {77,’\”(_\)};11 (s,a) and Qi(s, a).

@ Ensure optimism (and feasibility of Q)
© Analysis of regréti\\_/
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tg bean‘ t with < oo. Let xy,..7, nd for each g € G, let y1(g), .-~ ,y7(8) € R be
1-su Gauss:an outcomes satisfying E [yi(g) | xi] = T (X, f E F C {f X — R)? In addition, assume that

y1(g), - .., yT(g) are conditionally independent given xy, . . .yx7. For any latent g € G, define the least-squares solution
—/ ==

f € arg min (vi( )—f(X:))
¢ fge}“ Z e

With probability at least 1 — &, simultaneously for all g € G,

Fl (6

Z @' log(|f||9|/5)

With probability at least 1 — &, we have that for all t and h,

Z (@ (shoah) = [7@h1a] (shoah) )" < o2 toa(HT/5)

i<t

e I B e s e e

07/2024 17 / 41
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Proof (Lemma 2)

e Denote empirical norm ||f||5 = % Z,Ll f(Xi)2

~ |2 ~
o Fifirst observe H Yy — ngT <Yy — fg||2T by optimality @
o\, AT él
ollows

B\ (Algebro
2<Yg—fg,fg—fg>T,. then
W

- f—f
f—fH < ofnax\ Y, — fu. g >
e, @ R Ay
o) Noteeing centered 1-subGaussian, and right term is vector

with Euclidean length /T (why?)

@ Thus algebraic conclusion regarding sub-Gaussian vector tells us

@ This implies

RHS < Cy/log(|F|/0)/ T

Take union bound across G vyields the result.
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Proof (Lemma 3)

Analoguely use lemma 2: fix h and t, consider data (5,’,, Ay Sho1s r,’,)

@ O matches ¢

r;; + max, Q(s;',Jrl a) matches y;(Q)
¢ (s, al,) matches x'

Again apply Lemma 1, we check
E[(Q) | x] = EY 7} + max Q (s}.1,a) | sh, 3]
= [72"Q] (sh» ah) = (& (sh, ah) . 6q) = fe ()

Thus the regression will be well-specified as long as we choose

/J/%T- F ={4(s,3) = (¢(s, ), 6) : |6]] <2Vd}

@ A proper choice of scale € achieves e-discretized ¢

war
(d) and O (d?)

covering of Q and F, whose order can be shown O
resp. Union bound over T and H yields the result.
! and H yields the result.

Liu (UIUC)

RL-Chapter7



Optimism
Generalize the result from da to arbitrary (s, a) pair.
\_/_\—/\-/

Lemma (4)

< \/d2log(HT /5) - ||é(s, a)|| ey~
/F /V"‘\ (=) )

Qi(s,a) = Q' (s, aﬂ 3)
- ——

y

Liu (UIUC) RL-Chapter7
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Proof (Lemma 4)

Proof for (2), (using Lemma 1) use the linearity of Bellman backup.
Algebraically

|©;;<s a) - [T,,Mc‘o;;H} (s. a)) (@(s, )0, — 04|
(=) 72 6(s,2), (Z5) "2 (65 — 03) )]

:iz
E

< [l6(s, )l gy - 5 — 05 . %mkq
h
“4 .
Decompose the second term? gives _ e
BT (3 3 §(5.0)¢.0) <7)- 2 )
0= 03| A D (@ (sh ah) — [T Qfsa] (sho b))+ (05 — 65

<t

< d?log(HT/6)
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Proof (Lemma 4, cont.)

Proof for (3), use result from (2) inductively

- M
o Base case: Vi =V, =

@ Inductively: Suppose Vh+1 > Vh+1, by monotonicity of Bellman

Operator TMVE | > TMV h+1 = Q . Thus
M—/\/W

> @f, — ThM \_/h+1 Q;,,w’*
> bt by QM

This directly implies Q}; > Qfl;w "

07/2024 22 /41
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Proof (Finishing)

Denote the true model M, then at time ¢

M (m) + FY (77) [< By md v1 fM (7t)  Ceptiamte)
1 1
_ ZE M.t 5h7 ap) ['Th Q@)

ell
Hooo NI &M{MHM)
s@zﬁw 16 (51 ) 5,
h=1

The regret follows

Reg < VR3]S EM™ |10 (on an) ;)|

Apply Hoeffding (w/ union bound) and elliptic lemma gives the desired
result. This completes the proof.
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Intuition of Bellman Rank

We try to relax the linear structure behind @ in low-rank MDP.

@ Intuition: Fix h € [H], for any function(Q)e QO and (m
the Bellman residual wrt Q under 7 to

between some embedding of m and Q.

@ Example: In low-rank MDP, the Bellman residual writes
M {Qh (Sh,an) — rn — max Qh+1 (Sht1, 8)]

(R o ol 5 — i~ %) ~ (0.0

o View the Bellman residual as I x Q matrix &Ex(-,-) € R1M*€ with

[1, decompose
be the linear combination

4 Qo 20— 1+ g @ 511, 9)]

In the example, it's immediate rank (Ex(+,-)) < d.
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Bellman Rank

- ®EQ
= @
. :
/ﬂ

76 (s .

T e H]_. ................. gh f,ﬂ- —
e Ea :I:l—’:}“‘" [f(zh,an) — T — I{Pé’j( f(zh+1,a)]
induced from F:
Or := {z — argmax|f(z,-) : f € F}

Definition

For an MDP M with value function class @ and policy class I1, the
Bellman rank is defined as

dg(M) = e rank ({5h(7Ta Q)}WEH,QEQ)

Remark: Regime of low Bellman rank implicitly control the distribution
shifts in MDP M. (71379
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Examples of Bellman Rank |

There're several examples of models with low Bellman Rank.
Tabular MDP: M with |§| < Sand |A| < A R

€(m. Q) = E"7 [@n (5. 21) (1 + max Ques (/vlL

— Z dM " (s, a)EM [Qh s,a) — (rh + max Qna1 (Shi1, a )) S, =S5,a, = a

V) Aoh = 20 %h
\_v——- — \/
i ) Wi (&)
Take XM(T(') RSA as the first term and WM(Q) € R>* as the second yields
En(m, Q) = (XM (), WM(Q)). It follows
dg(M) < SA
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Examples of Bellman Rank Il

Low Occupancy Complexity: For MDP M, there exists(aﬁture map
R

M(s, a) € R such that for all 7, there exists 9,/:”’” c(RY guch that
dms, a) = (¢M s,a), 9,’:”’77 both terms unknown

Use similar trick we have

@= Ul [Qh(sh, an) — ('I‘h 5 max Qn+1(Sh+1, a))] &

- Zd” Tls;a) BY [Qh(s a) — (T'h =+ max Qh+l(3h+1aal)> | sh = s,ap = a]

- E <¢M (S, a 9;‘:'7? EY Qh(sya) - (rh T mE,LX Qh+1 (SlH—l’a’)) I Sp = S,ap = Q
a
s,a = =

< }':1 W’Zd)u S a E"J Qh(s, a) -— (rh R mz;,thH(shH,a’)) | Sp = S,ap = a >
— s,a @ 4/ .
f \/

Then clearly dg(M) < d. Comment: This model generalize low-rank MDP
and tabular MDP, for allowing non-linear function approximation as long
as definition above holds.
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Examples of Bellman Rank Il

Linear Quadratic Regulator (LQR): S = A @

The dynamics are assumed sp1 = AMs, + BMa, +(¢p, where ot

Ch ~ N(0,1), and s; ~ N (0, /), and ry :@;QMsh — a) RMay, for some
(usually known) matrices QY, RM >~ 0.

A classic result gives linear optimal control and quadratic value function

mim.n(s) =K'sjand QY (s,a) =((s,a) ' P} (s, a

It can then be shown dg(M) < d? + 1. (idea: match 7 with the quadratic
structure of @ towards Bellman residual)

RL-Chapter7 07/2024 29 /41
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BiLinUCB Algorithm (Intro)

@ Setting: MDP with low Bellman rank + realizabilit@
- —_—
o Try derive PAC ("Probably Approxi

matel ! rantee (in
replacement of regret), measured by ¥ (7p+) — FM (%) T\e. concern

only the final performance

o Learning regime: Want to ensure fM" () — fM*O <Ofor some
e < 1 using pon( ) # episodes

\/Remark This is easier: for some algo with E[ Reg | < V(T _—

PAC with O episodes; the other way glves E| Re%] < V33
(PAC \k DC*_ @(rgocﬁef:

@ et )

Dw(we‘_% Bcrft[’l Opnuer Satithy -, ({708( )] < TECQ@ J.Q —— &
=
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BiLinUCB Algorithm

Algorithm intuition

o Takes K iterations, each consists n episodes (fartch)

e Maintains a confidence set QX C Q where w.h.p QM * ¢ Q"
@ For each iteration: (bt Dot —

@ Compute optimistic-on-average value function

(b G, > Q@ oh QF —/arg maxEs ~a, [Q1 (51, 7@ (51))] 2\/

Qe QK

and the corresponding policy 7% := mo« (That's why here we "search
for o[timism" instea?of "construct optimism")

@ Use(current batch n ¢pisodes to estimate Bellman residual wrt 7% for

all @ € 9, namely {EA,’,‘(Q)}h "

© Then with some threshold(fixedpchoose thosith low
has BR of 0.

estimated Bellman residual, since optimally Q">
Wy &
——
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BiLinUCB Algorithm

Statement (pseudo)

BiLinUCB
Input: 8 > 0, iteration count K € N, batch size n € N.
FTeos
for iteration k= 1,..., K do
Compute optimistic value function:

Qk = arg max}Esl""dI [Q](Sl, WQ(sl))]' )

QeQk
and let 7* := ka./

for{=1,...,ndo Y
Execute 7* for an episode and observe trajectory (si",ay",71"), ..., (85, a5, 75 )-

Compute confidence set l/

P
Q! = {Q e 2| Y (@) <0 Vh e [H]} (7.26)

1<k

where

n

. 1 i i
(@) = 7 Y- (Qulegt a5 — i — maxQnsa (s 0) ).

=1

Xrh e 1t k.l
where V* := =3, h 1%r -

Let
Return 7™ = w*. ¢

= arg ma,xke[K] Vi

’
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Main Result from BiLinUCB

Proposition (4)

Suppose that M* has Bellman rank d and QM * € Q. For any e > 0 and ¢ > 0,
3

if we set n > H418UC1/0) )¢ > Hdlog(1 4 n/d), and|S o c - K|°g|Q|+lzg(HK/5),

then BiLinUCB learns a policy 7 such

M () — (%) <[
with probability at least 1 — 0, and does so using

5 (H“d2 Iog(}Q!/é))

82

Equivalently
Reg S 0, ((H4d2 |Og(‘Q‘/5))1/3 . T2/3)

episodes.

Q: What's the new trick here? How Bellman rank comes into play?
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(Q)H2 < 1. The general pipeline

For simplicity assume HX,’,\”* ()],
IS

@ Justify the validity of O each time of construction

Q Verifg/ the optimism of constructed value function

© Back to the main result

log | Q|+log(HK/J)

- erec >0 s

probability at least 1 — o, for

For any 0 > 0, if we se B—C K

sufficiently large absolute constan
all k € [K] : 1. All Q € QK have

> (&n (o Q))2 B/ vh e [H]

i<k A

T
2. QM x c gk,
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Proof (Lemma 5)

@ First by Hoeffding and Union bound, it's direct w.p. 1 — 9, for all
k € |[K],he[H] and Q € O,
/—\/\/\/_""\-—"

s
7

‘gﬁ((g)—gh (Wk,Q)‘ < C-

\/log(IQ\HK/5)

® Then by AM-GM inequality for all k € [K]

(1) is then immediate by definition of O
@ Similarly observe for all k, h, Q € O

> (8(@) < y+ 23 (6 (. Q) — £4(@)
i<k i<k — %j&k q_

(2) is then immediate by noting &j, (7?, Y =0 Vr
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Justify optimism

2. For all k, Q¥ is optimistic in the-s

ESlNdl [Qf (5177TQ (51))] > EslNdl [Q{VI*,* (5177TM* (51))} — fM (ﬂ-/\/’*)

Liu (UIUC) RL-Chapter7 07/2024



Proof (Lemma 6)

@ Recall bilinear class property 3 XM (7), WM (Q) € RY s.t.
En(m, Q) = (X" (m), W' (Q))

@ By Lemm and sorplg calculation, we have

(&) )@w"“ (@)

,
Z <X’V’ WMH(Q)) = z; (& (7', Q) @
@ Use Lemma(5) again tha.i’v%eflt follows

Es g, [Qr (51,70 (51))] @Eswdl [@1 (51, 7@ (51))]

> Egeay | Q) ™ (51,71 (1))

=M (7).
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Proof (Finishing)

Step 1: Suboptimality of 7 for all k
Use the result that Q* is optimistic above, and set /3 directly as Lemma(5), we
have w.p. 1 — 0 Herg wn

=

fM* (7TM*) — fM* (ﬂ'k) < EslNd1 Qf (51’ TQk (51)] — fM* <7Tk) ) Beﬁlgéw

M*
_ § E Qh Sh,an) — rh — max Qr i1 (Shr1, a)[

h=l =
)J—Fzﬁ- : m sl

=D (X" () Wi (@) ol

h=1 —— _—

H
sk M* ( Ak
= h§::1 HX" (m )||(>\/+zg)‘1 Wi (Q )HA/JFZII;
<\ —A
Then observe || WM (@) /s < )\Wh QMo BA N2+ B2 the
h — p—
general bound follows (A2 + 31/2) . (MzE) It left to
h

manage 2nd term.

Liu (UIUC) RL-Chapter7 07/2024 38 /41



Proof (Finishing) cont'd

A technical lemma helps.

Lemma (7)
For any A > 0, as long as K > Hd log (1 + A\ 'K/d

that |

) 2
HX” (Wk)H(/\/ by S
h

, there exists k € [K] such

dlog (1+ A\ "'K/d)
KJ/W' e [H].

Proof omitted for noj/being structurally necessary - book page 144. (using elliptic

potential , eXplain... e S Pesfl- (17 - - = Ej((‘ (I°¢ . .
= f)and lef K 2 Hdlog(1 + n/d), th¢ lemma applied. It follows <
v ¥’/
) . Halog (1+ 8-1K)d) -
MY () — £ (Wk)SH\/B- g( J:( / ) SO(H3/2\/dIg(|nQI/5)) <.

@ It's then trivial to see the closure between # and 7%, which completes the
proof.

@ Let
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What's not covered

o@as example of model with low Bellman rank

@ Block MDP (V-type Bellman rank) (if time allows)
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