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A Walmart Discount Story

A manager at Walmart aims to decide whether to offer discounts on
products at d, time point.

e A discount: reduce per-unit profit v.s. increase overall sales.
* (Goal: a policy can maximize total profits.

e Question: When to put discounts on what product?



A Walmart Discount Story

Mathematical Formulation

 Consider two profit matrices:
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Mathematical Formulation

 Consider two profit matrices:

« M,: Profit matrix with discount

On Wednesday,
The total profit from selling guitars with
discount is $4000
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Mathematical Formulation

 Consider two profit matrices:

« M,: Profit matrix without discount

On Wednesday,
The total profit from selling guitars witho
discount is $2000
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A Walmart Discount Story

Mathematical Formulation

e A bandit problem with two arms (w/o discount)

* Suppose a customer arrives on Wednesday to buy a guitar:

» Push arm 1 (have a discount) if M(Wed, Guitar) > M,(Wed, Guitar).

* Approaches for estimating two matrices are needed.



A San Francisco Parking Story

» SF government plans to implement dynamic pricing for parking lots across
blocks during d, time periods.

* High price: reduce parking on overcrowded blocks.
* | ow price: attract parking on undercrowded blocks.

* (Goal: Achieve moderate occupancy rates across more blocks throughout
major time periods.

e Question: when and where to put the high parking price?



Mathematical Formulation

* A matrix describing the target
occupancy rate that is given:

The government hopes to

Control the occupancy rate at The Castro -
To be around 70% Castro

A San Francisco Parking Story
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Mathematical Formulation

e Consider two deviation matrices.

M, : the deviation matrix under high
pricing strategy.

6 Thg >
Castro

The occupancy rate at The Castro
Under high parking prices
Deviates the ‘ideal’ 70% by 10% (in abs value)
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Mathematical Formulation

e Consider two deviation matrices.

« M,: the deviation matrix under low
pricing strategy.

The occupancy rate at The Castro
Under low parking prices
Deviates the ‘ideal’ 70% by 5% (in abs value)
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A San Francisco Parking Story

Mathematical Formulation

* A bandit problem with two arms: (high/low parking price.)

e Suppose a car wants to park at the Castro at 8 am:

» Push armO if M(Castro, 8am) < M,(Castro, 8am).

* Approaches for estimating two matrices are needed.



Matrix Completion Bandit:
Problem Formulation



Problem Formulation

« Consider a sequence of random pairs {7, XT}§:=1’ where r, € R and X_ uniformly sampled from

E = {ejekT,j €ldl,keldl}.
e 1. time 7 reward; X_:time 7 request.
K arms associated with a matrix M, € R
o 1 =t(M, X)) + & = (M, X)) + &,
« At each time 7, only a noisy entry of M can be observed.

« Optimal policy: argmax; _; 5 [Mk]j1,j2'
¢ d1d2 > > T

« rank(M) < < T.



Problem formulation

e A two-armed matrix completion bandit problem.

* Online algorithm for matrix estimation.

e €-greedy policy and regret analysis.

* Policy Inference procedure.



Methodology



Methodology

 Two armed bandit with M, and M, € | 4% poth are of rank .
: _ I '
» L. and R d; by r and d, by r orthogonal matrices.
» /\.: r by r diagonal matrix.
. 1/2 P 1/2
® Ul « — LlAl o ‘/l o — RZAZ .
- M;=UV,.



Methodology

An offline approach

e Letn, =Pla,=1).

« M, estimated by:

L 1{a. =1
ming]ft(U, V) — Z{T—}(VT_ < XT’ UVT> )29
’ Il

U,V
=1 t

. Subjectto U'U = V'V.

« M, estimated similarly.



Methodology

An c¢-greedy online approach

« At the time 7 — 1, some key elements are needed:

 The previous estimators MO,T—I and M lz—1-
» The exploration probability €_ at time 7.

» [he updating steplength 77 at time .

A\

b

e m.=Pla =1|X
2

i=0,1)=(—e)I{{M;,_, — My, ,X,) >0} +

—1° =10



Methodology

An c¢-greedy online approach

Let 7 (U, V) = La, = 1}(r — (X, UVT))?.

iz

~/ - A\ ]T /\ VaN

° Ul,T — Ul,T—l o ntVUll,T(Ul,T—l’ Vl,r—l)
~ o /\ ]T /\ /\

° Vl,T — Vl,T—l o ;/,Z‘VVZI,T(VI,T—I’ Vl,T—l)
9 T vZh

° MI,T o Ul,TVI,T'

 Obtain lA]LT, ‘A/LT by doing SVD for Ml,r



Methodology

An c¢-greedy online approach

Algorithm 1 e-greedy two-arm MCB with online gradient descent

Input: exploration probabilities {e;}+>1; step sizes {n; }:+>1; initializations with balanced factor-
1zation ]\70,0 = ﬁO,OVOTOv 1/\4\1,0 = (71,0‘71T0
Output: ]/VI\O,T, ]/VI\LT.
fort=1,2,---,T do
Observe a new request X;
Calculate m;, = (1 — st)]l((]\/fl,t_l — M\o,t—bXt) > O) + &
Sample an action a; ~ Bernoulli(7;) and get a reward 7y

if a; =1 then

Update by
ﬁl,t B ﬁl,t—l e ((ﬁl,t—lf}ﬂ;_lth) — Tt)Xtvl,t—l
‘71,t Vl,t—l Tt ((ﬁl,t—lvl—,rt_l,Xﬁ — tt)XJ(/jl,t—l

Set ﬁl,t — El,tlfii,/f and f/\'u = ﬁl,tlf\:i/tz, where El,tﬁl,ﬁ{t is the thin SVD of A/Zl,t = (71,571}

else
Update by
ﬁO,t . ﬁo,t—l B Mt . ((ﬁO,t—l‘?th_laXt> — Tt)Xt%,t—l
‘70,t ‘70,1‘,—1 1 —m ((ﬁo,t—l‘,}oﬂ_l, Xt) — tt)XtTﬁo,t—1

~ o~

Set Up,e = Lo Ay, and Vo = RogAy'?, where Lo Ao Ry, is the thin SVD of Mo, = Uy, V).
end if

b

end for




Methodology

An c¢-greedy online approach

e How to obtain initial estimators?

* Explore-Then-Commit Scheme.

 Time horizon: T.

T, T'77 T

Explore Phase with | Run Algorithm 1 with

constant probability accurate initial estimator




Methodology

Policy Inference

A manager wants to decide on a marketing

strategy fora g

roup

of requests.

e Confidence in the decision's correctness.
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Methodology

Policy Inference

A manager wants to decide on a marketing

strategy fora g

roup

of requests.

e Confidence in the decision's correctness.
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Methodology

Policy Inference: Debiasing

1
T-T,

T T
n d,d 1{a, =0} n
Z MO,t—l + = 2 t—(rt_ <M0,t—1’Xt>)Xt‘

“1IPW __
. My " =

A 1 . dd, < 1{a =1) A
M{PW: T _ T Z Ml,t 1T 2 tT(rr_ <M1,t—1’Xt>)Xt‘
10 t



Methodology

Policy Inference: Debiasing

= 1{a, =0}

Base estimator 1 I 1{a, =0}




Methodology

Policy Inference: Debiasing

» Consider the rank constrain of M. :

. il,ﬁl: matrices formed by top-r left(right) singular vectors of M{P W

. Asymptotic distribution of (M, — M,,, Q) TBD.



Theoretical Results



Theoretical Results

Notation

e ||-||: £, norm for vectors and spectral norm for matrices.
e ||-]| 7 Frobenius norm.
maximum absolute entry value.

1l max

o ||*ll5. max: maximum row-wise £, norm.

. O = {UeR™UU=1).

 U,: Orthogonal complement of U.



Theoretical Results

Notation
lmax
, K=
/lmin

» Incoherence condition: Recall M; = LA;R;, i = 0,1

dl dZ
. /’t(Mi) .= Max THLI'HZ,max’ 7||RiH2,max '

o« max{u(My), u(M;)} < .

* Uy, K are bounded constants.

. 0y = Var(§,), o7 = Var(§, ).



Theorem 1

Matrix Estimation

» Assume the following conditions (¢, C, - .

T <d™
e |[Myog— Myllp+ [|My g — M|l < coh

e Foranytr=1,2...T:

2

C, are some constants):

min °

2
0§ +01

A 2 rloe?d
. min{ min dldzlogdl} > Clz (1 Ama)” 1108 L

=1

maX— < C Z
* TE|1] €

dy

T



Theorem 1

Matrix Estimation

. With probability at least 1 — 8td—*":

A A n.A rlog®d; ~ (11,4..)°
M. — M. 2 < CilIM.n— M. ZHt_ 1 — & min + C 02 T/'max
o H 1,1 zHF 3” 1,0 ZHF T—l( 4d1d2) 4~ d2 ; €,
~ /12- 1”3 7]7/1 73 10g2 dl t (7/]’[/1 X)2
. ”Mi,t o Mi”max < CS — H?zl(l - mm) T C4012 2 Z —
d1d2 4d1d2 d1d2 1 €;



Theorem 1

Matrix Estimation

. With probability at least 1 — 8¢d "

M, — M| < G5|IM; o — M,||2ITE_ (1 1y ¥ Second term

T—

* Correspond to the convergence of gradient descent.

 Depends on step size.



Theorem 1

Matrix Estimation

. With probability at least 1 — 8td~>":

< First Term|+

max

|M;, — M|

* Correspond to stochastic noise and random sampling,

 Depend on noise, exploration and stepsize.



Corollary 1

Matrix Estimation: A specific rate.

¢ Some extra assumptions:

|
. Fixy e l0,1), e & (O,E).

* Exploration-Then-Commit Scheme:
’ TO — COTl_}/ log{/lmin(go A 01)}-
» (Explore)Whent < Ty €, =¢€,n, =1 := cdldz/(Tl_?’/l

max) )

e (CommityWhenT, <t<T:¢,=ct"",n=¢€n.



Corollary 1

Matrix Estimation: A specific rate.

A2 dd, log” d
T>Cr’d"'""Mlog’d,, —=_ > Cz—r 1% A
' : of + 6} T'-7

* We obtain the following rates:

n rdid, log* d,
o M7= M|l < C3‘71°2T’
rd, log* d,

? 2 2
o |IM; 17— Mi|[.x < G50

max



Corollary 1

Matrix Estimation: A specific rate.

’ 2 2
o M= Milly < Goj————

’ y >
e IM; 17— M| < C50;

max

. A Frobenius norm at Op(

A sup norm rate at ép(rdl/ Ty,



Corollary 1

Matrix Estimation: A specific rate.

2
. rdid
A Frobenius norm at O ( 1 2) Implicit Regularization in Nonconvex Statistical Estimation:
* P Tl —Y Gradient Descent Converges Linearly for Phase Retrieval,
J Matrix Completion, and Blind Deconvolution
~ raq , . e .
. A SUp norm rate at Op( ) . Cong Ma, Kaizheng Wang .Yuejle Chi Yuxin Chen?
Tl —Y November 2017; Revised July 2019

* |n the offline setting of Ma et al (2017):
. Assuming T > > r°d,; log’ d, .

| rdid, log d,
. The optimal (up to log factors) Frobenius rate: Op( - ).

rd; logd,
. The optimal (up tp log factors) sup norm rate : Op( - ).




Regret Analysis

Key Ideas
T
 Rp:=E | ) max (M,X)—(M,X)|.
— 1€{0,1}
T T
RS IMy = Ml D €6+ ), max U V7, = M|

— — 1€{0,1}

 Wrong decision made by exploration + estimation error.



Regret Analysis

Theorem 2

 Based on conditions in Corollary 1.

e Define:

. R < (s [n—,erl—}/ + T2, /rd, log? d1] .



Regret Analysis

Theorem 2 Remarks

max-*

« ¥ = 0: Trivial bound O(T).

+ Pick y such that 7' = (6/m)*d, : A O(T*°d;") bound.



Asymptotical Normality

1

T T
T_T § , Ml,t—l T 2 , t (r; — <M1,t—1’Xt>)Xt‘
— 40

M{PW —
1 — TO TT;

. 121,1%1: matrices formed by top-r left(right) singular vectors of M{P W

» Goal: Asymptotic distribution of (M, — M,, Q).



Asymptotical Normality

Extra Notation

o Ml — LlAlRT, Ll e | dIXI”, Rl e | dZXF.

o LlJ_ & \. dlx(dl_r), COl(LlJ_) — COZC(LI) .

« R, € R2X%G™D col(R, ) = col(R,) .

 When considering offline noisy matrix completion, Xia and Yuan (2021) and
Ma et al (2023) give:

! M ~ ¢Z||P 2 P =0—-L,, LI OR, R!
R var({M;, Q)) ~ of|| MI(Q)HFa ana Ml(Q)- 0 1L OR Ry
| R/




Asymptotical Normality

Extra Definitions

+ Variance of M ; - Effective sample size + IPW variance inflation.

« Assume 0 be the reward gap between optimal/sub-optimal gaps.
« Q) ={XeX; M, —M,,X) > o} — Effective sample size.
e Q0)={Xe;(My—M,,X)> 6} — IPW variance inflation.
« Qy(8) = {Q,(5) UQd)}.

o Po(M):M;;=0ifee; & Q.



Asymptotical Normality

Arm Optimality Condition

1
V(M1 0D R o71Py Q)

. Given

. ||PQ1PM1(Q)||12;: variance induced by effective sample size.
. HPQOPMI(Q)HI%: variance induced by IPW variance inflation.

« Arm Optimality Assumption: there exists 0 > 0, such that

. HPQ@PMZ.(Q)H%/min{ HPQOPMI.(Q)H%aHPQIPMZ.(Q)H%} =o(1),i = 1,2.



Asymptotical Normality

* Under conditions of Corollary 1 and Arm optimality condition.
. §2 = T7||Pg Py (O + C,||Po Py (|

. S3 = T7||Po Py (DI + C,||Po Py (|

 Some regularity conditions omitted.

Wy, 0) = My Q) o (M1, 0) = (M, Q) o

GOS()\ / dldz/Tl_y 0151\ / dldz/Tl_y



Asymptotical Normality

Key Elements Estimation

a0 ) ) ) T
. 83 = (IPa, Pi(QIHT + C 1Py, P (@I} =
— 10

o2 __ A A 2 I
. 85 = (IPg, Pt (QIHT + ClIPg, P QD=
— 10



Asymptotical Normality
Theorem 4 and Corollary 2

e Under conditions in Theorem 3, the above estimator are consistent, and we
have

(M; — My, Q) — (M, — M,, Q)

" /(832 + 625%)d,dy/ T 7

— N(O,1).



Simulation

Basic Settings
* dl — d2 — 300
¢« r=72.

« My, M, generated from uniform distribution.
T = 60000,7, = 20000.

. Four settings: (M, €€ ), (M, e,e5 ), (My— M,,e,e)), (My, ee, —ese; ).



Simulation

Policy Inference
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Simulation
Regret Analysis

« Wheny =1/3:
. T vary from 40000 to 80000, T, = 13.5T"7 .
« Wheny =1/4

. T vary from 20000 to 60000, T, = 4.5T"77 .

. Theoretical Regret: O(T*?) when y = 1/3 and O(T**) when y = 1/4.

 Run 100 simulations and plot average cumulative return.



Simulation
Regret Analysis

50000 70000 A
45000 1 60000+
I o
o 40000 - o 200001
Q Q
oY o’
oy 40000 -
0000 - 30000 -
T Y 14 T 4 Y Y
1300 1500 1700 2000 2500 3000 3500
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Real Data Analysis

San Francisco Parking Problem

o SFPark pilot project: effectively manage parking towards availability targets in SF.
* Adjust price by hour, day, and block.

* Target occupancy rate: between 60% and 80%.

* |Implementation period: 6 to 8 weeks.

* |f meet target rate: unchanged.

» Larger than 80%: increase hourly price.

* |Lower than 60%: decrease hourly price.



Real Data Analysis

San Francisco Parking Problem

 Dataset: includes hourly occupancy rate and price for each block at every

hour.

A B

1 BLOCK_ID STREET_NAME
436 20200 02ND ST
437 20204 02ND ST
438 20204 02ND ST
439 36004 CLEMENT ST
440 36006 CLEMENT ST
441 41321 FILBERT ST
442 56303 MCALLISTER ST
443 47100 HARRISON ST
444 47105 HARRISON ST
445 56304 MCALLISTER ST
446 56304 MCALLISTER ST
447 33103 BRYANT ST
448 41522 FILLMORE ST
449 41522 FILLMORE ST
450 41524 FILLMORE ST
451 41529 FILLMORE ST
452 41530 FILLMORE ST
453 41530 FILLMORE ST
454 50001 JACKSON ST

(&
BLOCK_NUM

o & B O

2

[}

w b b U1 O W

22
22
24
29
30
30

D

STREET_BLOCK
02NDSTO

02ND ST 400

02ND ST 400
CLEMENT ST 400
CLEMENT ST 600
FILBERT ST 2100
MCALLISTER ST 300
HARRISON ST O
HARRISON ST 500
MCALLISTER ST 400
MCALLISTER ST 400
BRYANT ST 300
FILLMORE ST 2200
FILLMORE ST 2200
FILLMORE ST 2400
FILLMORE ST 2900
FILLMORE ST 3000
FILLMORE ST 3000

1 JACKSON ST 100

E

AREA_TYPE
Pilot
Pilot
Pilot
Control
Control
Pilot
Pilot
Pilot
Pilot
Pilot
Pilot
Pilot
Pilot
Pilot
Pilot
Control
Control
Control
Pilot

F

PM_DISTRICT_NAME RATE

Downtown

South Embarcadero
South Embarcadero
Inner Richmond
Inner Richmond
Marina

Civic Center

South Embarcadero
South Embarcadero
Civic Center

Civic Center

South Embarcadero
Fillmore

Fillmore

Fillmore

Union

Union

Union

Downtown

G

3.5
1.25
1.25

1.5

2

3.25

H

START TIME_DT
7/6/12 14:00
7/6/12 8:00
7/6/12 10:00
7/6/12 8:00
7/6/12 16:00
7/6/12 3:00
7/6/12 11:00
4/19/13 4:00
4/19/13 13:00
4/19/13 7:00
4/19/13 11:00
4/19/13 2:00
4/19/13 3:00
4/19/13 9:00
4/19/13 8:00
4/19/13 11:00
4/19/13 5:00
4/19/13 8:00
4/19/13 4:00



Real Data Analysis

San Francisco Parking Problem

Focus on the Downtown area, 2011 to 2012.

Four price adjustment times: Aug 1st, Oct 11th, Dec 13th, Feb 14th. (Five periods)

d; = 34 blocks.

d, = 22 time points,

(/7 am to 6 pm on weekdays & weekends)
M: target deviation matrix.

M,, M, :Low/high parking price.

Each hour corresponds to one request.

T = 105,825.

r = 5 from rough estimation.

7am

8am

9am

10am

11am

6pm

Haight
Street

The
Castro

Union
Square

Mission
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Real Data Analysis

San Francisco Parking Problem

e An estimation workflow:

. Ablockj, € |d,] at hour j, € [d,], X, = ejlejf.

» Pick action a,, if inside target range (60% to 80%): r, = 0. Else r, = — 0.1.

» Discard the observation whose observed action # online algorithm action.



Real Data Analysis

San Francisco Parking Problem

* A representative block: 02ND ST 200. Time 7 8 9 10 11

p-value 0.282 0.016 0.009 0.002 0.304

Hy: (My— My, e;e) <O0.

-
Qo
"
©
®
- R
O
Q.

)
© 0.7 / 1
i d Jay -
> ANk < 2 Time 12 13 14 15 16 17
c 0.6 4
S - p-value <0.001 <0.001 <0.001 0.773 <0.001 0.999
O : 5 T
44 :
Hy: (M, — M, eje; ) <0.
031 L Ll L] L] L] L] L ] L ] 1 ] Ll L]
7 8 9 10 11 12 13 14 15 16 17 Low parking price before 11am and high parking price after

Time 12 pm is optimal!



Real Data Analysis

San Francisco Parking Problem

 SFPark vs MCBandit.

 Comparing overall performance through a percentage of reaching the target.
e Calculating MCBandit performance:

 Keep the data whose action aligns with the observed action.

 Replace others by “nearest neighbors”.



Real Data Analysis

San Francisco Parking Problem

0.38
() :

> 0.36 policy

S 0.34 MCBandit
O

O SFPark
2 0.32

-
oy
-



Summary

* An online algorithm for matrix completion bandit.

* Optimal estimation bound (up to log factors).
. Regret bound O(T'~7 + dll/ 2TUANZy

* An inference procedure (online adaption from Xia and Yuan 2021 and Ma et al
2023) for making policy inferences.



