Online Policy Learning and Inference by Matrix Completion

Duan, Li and Xia (2024)

Contents

- Motivation Examples
- Methodology
- Theoretical Results
- Simulation Studies
- Real Data Analysis

- A manager at Walmart aims to decide whether to offer discounts on d_1 products at d_2 time point.
- A discount: reduce per-unit profit v.s. increase overall sales.
- Goal: a policy can maximize total profits.
- Question: When to put discounts on what product?

Mathematical Formulation

- Consider two profit matrices:
- M_1 : Profit matrix with discount

	Mon	Tue	Wed	Thr	Fri	Sat	Sun
O.							

Mathematical Formulation

- Consider two profit matrices:
- M_1 : Profit matrix with discount

On Wednesday,
The total profit from selling guitars with
discount is \$4000

	Mon	Tue	Wed	Thr	Fri	Sat	Sun
			\$4000				
0.							

Mathematical Formulation

- Consider two profit matrices:
- M_0 : Profit matrix without discount

On Wednesday,
The total profit from selling guitars without discount is \$2000

	Mon	Tue	Wed	Thr	Fri	Sat	Sun
			\$2000				
0.							

Mathematical Formulation

- A bandit problem with two arms (w/o discount)
- Suppose a customer arrives on Wednesday to buy a guitar:
- Push arm 1 (have a discount) if $M_1({
 m Wed},{
 m Guitar})>M_0({
 m Wed},{
 m Guitar})$.
- Approaches for estimating two matrices are needed.

- SF government plans to implement dynamic pricing for parking lots across d_1 blocks during d_2 time periods.
- High price: reduce parking on overcrowded blocks.
- Low price: attract parking on undercrowded blocks.
- Goal: Achieve moderate occupancy rates across more blocks throughout major time periods.
- Question: when and where to put the high parking price?

Mathematical Formulation

 A matrix describing the target occupancy rate that is given:

The government hopes to

Control the occupancy rate at The Castro

To be around 70%

	7am	8am	9am	10am	11am	 7pm
Haight Street						
The Castro		70%				
Union Square						
Mission Street						

Mathematical Formulation

- Consider two deviation matrices.
- M_1 : the deviation matrix under high pricing strategy.

The occupancy rate at The Castro
Under high parking prices
Deviates the 'ideal' 70% by 10% (in abs value)

	7am	8am	9am	10am	11am	 7pm
Haight Street						
The Castro		10%				
Union Square						
Mission Street						

Mathematical Formulation

- Consider two deviation matrices.
- M_2 : the deviation matrix under low pricing strategy.

The occupancy rate at The Castro
Under low parking prices
Deviates the 'ideal' 70% by 5% (in abs value)

	7am	8am	9am	10am	11am	 7pm
Haight Street						
The Castro		5%				
Union Square						
Mission Street						

Mathematical Formulation

- A bandit problem with two arms: (high/low parking price.)
- Suppose a car wants to park at the Castro at 8 am:
- Push arm0 if M_0 (Castro, 8am) $< M_0$ (Castro, 8am).
- Approaches for estimating two matrices are needed.

Matrix Completion Bandit: Problem Formulation

Problem Formulation

- Consider a sequence of random pairs $\{r_{\tau}, X_{\tau}\}_{\tau=1}^t$, where $r_{\tau} \in \mathbb{R}$ and X_{τ} uniformly sampled from $\mathscr{E} = \{e_j e_k^T, j \in [d_1], k \in [d_2]\}$.
- r_{τ} : time τ reward; X_{τ} : time τ request.
- K arms associated with a matrix $M_k \in \mathbb{R}^{d_1 \times d_2}$.
- $r_{\tau} = \operatorname{tr}(M_{a_{\tau}}^T X_{\tau}) + \xi_{\tau} := \langle M_{a_{\tau}}, X_{\tau} \rangle + \xi_{\tau}$.
- At each time τ , only a noisy entry of M can be observed.
- Optimal policy: $\operatorname{argmax}_{k \in 1, 2...K} [M_k]_{j_1, j_2}$.
- $d_1d_2 >> T$
- $\operatorname{rank}(M) < < T$.

Problem formulation

- A two-armed matrix completion bandit problem.
- Online algorithm for matrix estimation.
- ϵ -greedy policy and regret analysis.
- Policy Inference procedure.

- Two armed bandit with M_0 and $M_1 \in \mathbb{R}^{d_1 \times d_2}$, both are of rank r .
- SVD: $M_i = L_i \Lambda_i R_i^T$. (i = 0,1)
- L_i and R_i : d_1 by r and d_2 by r orthogonal matrices.
- Λ_i : r by r diagonal matrix.
- $U_i := L_i \Lambda_i^{1/2}, \ V_i := R_i \Lambda_i^{1/2}.$
- $M_i = U_i V_i^T$.

Methodology An offline approach

- Let $\pi_{\tau} = P(a_{\tau} = 1)$.
- M_1 estimated by:

$$\min_{U,V} \mathcal{L}_{1,t}^{\pi}(U,V) = \sum_{\tau=1}^{t} \frac{1\{a_{\tau}=1\}}{\pi_{\tau}} (r_{\tau} - \langle X_{\tau}, UV^{T} \rangle)^{2},$$

- Subject to $U^TU = V^TV$.
- M_0 estimated similarly.

An ϵ -greedy online approach

- At the time $\tau-1$, some key elements are needed:
- The previous estimators $\hat{M}_{0,\tau-1}$ and $\hat{M}_{1,\tau-1}$.
- The exploration probability ϵ_{τ} at time τ .
- The updating steplength η_{τ} at time τ .

•
$$\pi_{\tau} = P(a_{\tau} = 1 \mid \mathcal{H}_{\tau-1}, \hat{M}_{i,\tau-1}, i = 0, 1) = (1 - \epsilon_{\tau}) 1\{\langle \hat{M}_{1,\tau-1} - \hat{M}_{0,\tau-1}, X_{\tau} \rangle > 0\} + \frac{\epsilon_{\tau}}{2}$$

An ϵ -greedy online approach

. Let
$$l_{1,\tau}^\pi(U,V)=\frac{1\{a_\tau=1\}}{\pi_\tau}(r_\tau-\langle X_\tau,UV^T\rangle)^2$$
 .

•
$$\tilde{U}_{1,\tau} = \hat{U}_{1,\tau-1} - \eta_t \nabla_U l_{1,\tau}^{\pi} (\hat{U}_{1,\tau-1}, \hat{V}_{1,\tau-1})$$

•
$$\tilde{V}_{1,\tau} = \hat{V}_{1,\tau-1} - \eta_t \nabla_V l_{1,\tau}^{\pi} (\hat{V}_{1,\tau-1}, \hat{V}_{1,\tau-1})$$

•
$$\hat{M}_{1,\tau} = \tilde{U}_{1,\tau} \tilde{V}_{1,\tau}^T$$

- Obtain $\hat{U}_{1,\tau}, \hat{V}_{1,\tau}$ by doing SVD for $\hat{M}_{1,\tau}.$

Methodology An ϵ -greedy online approach

Algorithm 1 ε -greedy two-arm MCB with online gradient descent

Input: exploration probabilities $\{\varepsilon_t\}_{t\geq 1}$; step sizes $\{\eta_t\}_{t\geq 1}$; initializations with balanced factorization $\widehat{M}_{0,0} = \widehat{U}_{0,0}\widehat{V}_{0,0}^{\top}$, $\widehat{M}_{1,0} = \widehat{U}_{1,0}\widehat{V}_{1,0}^{\top}$

Output: $\widehat{M}_{0,T}$, $\widehat{M}_{1,T}$.

for $t = 1, 2, \dots, T$ do

Observe a new request X_t

Calculate $\pi_t = (1 - \varepsilon_t) \mathbb{1} \left(\langle \widehat{M}_{1,t-1} - \widehat{M}_{0,t-1}, X_t \rangle > 0 \right) + \frac{\varepsilon_t}{2}$

Sample an action $a_t \sim \text{Bernoulli}(\pi_t)$ and get a reward r_t

if $a_t = 1$ then

Update by

$$\begin{pmatrix} \widetilde{U}_{1,t} \\ \widetilde{V}_{1,t} \end{pmatrix} = \begin{pmatrix} \widehat{U}_{1,t-1} \\ \widehat{V}_{1,t-1} \end{pmatrix} - \frac{\eta_t}{\pi_t} \cdot \begin{pmatrix} (\langle \widehat{U}_{1,t-1} \widehat{V}_{1,t-1}^\top, X_t \rangle - r_t) X_t \widehat{V}_{1,t-1} \\ (\langle \widehat{U}_{1,t-1} \widehat{V}_{1,t-1}^\top, X_t \rangle - t_t) X_t^\top \widehat{U}_{1,t-1} \end{pmatrix},$$

Set $\widehat{U}_{1,t} = \widehat{L}_{1,t} \widehat{\Lambda}_{1,t}^{1/2}$ and $\widehat{V}_{1,t} = \widehat{R}_{1,t} \widehat{\Lambda}_{1,t}^{1/2}$, where $\widehat{L}_{1,t} \widehat{\Lambda}_{1,t} \widehat{R}_{1,t}^{\top}$ is the thin SVD of $\widehat{M}_{1,t} = \widetilde{U}_{1,t} \widetilde{V}_{1,t}^{\top}$. else

Update by

$$\begin{pmatrix} \widetilde{U}_{0,t} \\ \widetilde{V}_{0,t} \end{pmatrix} = \begin{pmatrix} \widehat{U}_{0,t-1} \\ \widehat{V}_{0,t-1} \end{pmatrix} - \frac{\eta_t}{1 - \pi_t} \cdot \begin{pmatrix} \left(\langle \widehat{U}_{0,t-1} \widehat{V}_{0,t-1}^\top, X_t \rangle - r_t \right) X_t \widehat{V}_{0,t-1} \\ \left(\langle \widehat{U}_{0,t-1} \widehat{V}_{0,t-1}^\top, X_t \rangle - t_t \right) X_t^\top \widehat{U}_{0,t-1} \end{pmatrix},$$

Set $\widehat{U}_{0,t} = \widehat{L}_{0,t} \widehat{\Lambda}_{0,t}^{1/2}$ and $\widehat{V}_{0,t} = \widehat{R}_{0,t} \widehat{\Lambda}_{0,t}^{1/2}$, where $\widehat{L}_{0,t} \widehat{\Lambda}_{0,t} \widehat{R}_{0,t}^{\top}$ is the thin SVD of $\widehat{M}_{0,t} = \widetilde{U}_{0,t} \widetilde{V}_{0,t}^{\top}$. end if

end for

An ϵ -greedy online approach

- How to obtain initial estimators?
- Explore-Then-Commit Scheme.
- Time horizon: T.

Methodology Policy Inference

A manager wants to decide on a marketing strategy for a group of requests.

Confidence in the decision's correctnes

ess.	Mon	Tue	Wed	Thr	Fri	Sat	Sun
	2						
			3				
0.							

Policy Inference

A manager wants to decide on a marketing strategy for a group of requests.

Confidence in the decision's correctness.

•	Q =	$2e_{1}e_{1}^{T}$	$+3e_2\epsilon$	T
	9 –	2c ₁ c ₁	1 3626	′3 •

- H_0 : $\langle M_1 M_0, Q \rangle = 0$.
- $H_1: \langle M_1 M_0, Q \rangle > 0$.

Policy Inference: Debiasing

$$\hat{M}_0^{IPW} = \frac{1}{T - T_0} \sum_{t=T_0+1}^{T} \hat{M}_{0,t-1} + \frac{d_1 d_2}{T - T_0} \sum_{t=T_0+1}^{T} \frac{1\{a_t = 0\}}{1 - \pi_t} (r_t - \langle \hat{M}_{0,t-1}, X_t \rangle) X_t.$$

$$\hat{M}_{1}^{IPW} = \frac{1}{T - T_{0}} \sum_{t=T_{0}+1}^{T} \hat{M}_{1,t-1} + \frac{d_{1}d_{2}}{T - T_{0}} \sum_{t=T_{0}+1}^{T} \frac{1\{a_{t}=1\}}{\pi_{t}} (r_{t} - \langle \hat{M}_{1,t-1}, X_{t} \rangle) X_{t}.$$

Policy Inference: Debiasing

$$\hat{M}_0^{IPW} = \frac{1}{T - T_0} \sum_{t=T_0+1}^{T} \hat{M}_{0,t-1}$$

$$\hat{M}_{0}^{IPW} = \frac{1}{T - T_{0}} \sum_{t=T_{0}+1}^{T} \hat{M}_{0,t-1} + \frac{d_{1}d_{2}}{T - T_{0}} \sum_{t=T_{0}+1}^{T} \frac{1\{a_{t}=0\}}{1 - \pi_{t}} (r_{t} - \langle \hat{M}_{0,t-1}, X_{t} \rangle) X_{t}.$$

Base estimator

Bias correction term: a rotated score of the

Loss function:
$$\frac{1}{T - T_0} \sum_{t=1}^{T} \frac{1\{a_t = 0\}}{1 - \pi_t} (r_t - \langle \hat{M}_{0,t-1}, X_t \rangle)^2.$$

Methodology Policy Inference: Debiasing

- Consider the rank constrain of M_i :
- \hat{L}_1,\hat{R}_1 : matrices formed by top-r left(right) singular vectors of \hat{M}_1^{IPW} .
- $\hat{M}_1 = \hat{L}_1 \hat{L}_1^T \hat{M}_1^{IPW} \hat{R}_1 \hat{R}_1^T$.
- Asymptotic distribution of $\langle \hat{M}_1 \hat{M}_0, Q \rangle$ TBD.

Theoretical Results

Theoretical Results

Notation

- $\|\cdot\|$: ℓ_2 norm for vectors and spectral norm for matrices.
- $||\cdot||_F$: Frobenius norm.
- $\|\cdot\|_{\max}$: maximum absolute entry value.
- $||\cdot||_{2, \max}$: maximum row-wise ℓ_2 norm.
- $\mathbb{O}^{d\times r} := \{U \in \mathbb{R}^{d\times r}; U^TU = I_r\}$.
- U_1 : Orthogonal complement of U.

Theoretical Results

Notation

$$\kappa := \frac{\lambda_{\max}}{\lambda_{\min}}.$$

• Incoherence condition: Recall $M_i = L_i \Lambda_i R_i, \ i=0,1$

•
$$\mu(M_i) := \max \left\{ \sqrt{\frac{d_1}{r}} \|L_i\|_{2,max}, \sqrt{\frac{d_2}{r}} \|R_i\|_{2,max} \right\}.$$

- $\max\{\mu(M_0), \mu(M_1)\} \le \mu_0$.
- μ_0 , κ are bounded constants.

•
$$\sigma_0^2 = Var(\xi_{0,t}), \, \sigma_1^2 = Var(\xi_{1,t}).$$

Matrix Estimation

- Assume the following conditions $(c_0, C_1, \dots C_4)$ are some constants):
- $T \le d_1^{100}$.
- $\|\hat{M}_{0,0} M_0\|_F + \|\hat{M}_{1,0} M_1\|_F \le c_0 \lambda_{\min}$.
- For any t = 1,2....T:

•
$$\min \left\{ \frac{\lambda_{\min}^2}{\sigma_0^2 + \sigma_1^2}, d_1 d_2 \log d_1 \right\} \ge C_1 \sum_{\tau=1}^t \frac{(\eta_\tau \lambda_{\max})^2}{\epsilon_\tau} \frac{r \log^2 d_1}{d_2}.$$

$$\max_{\tau \in [t]} \frac{\eta_{\tau}^2}{\epsilon_{\tau}^2} \leq C_2 \sum_{\tau=1}^t \frac{\eta_{\tau}^2}{\epsilon_{\tau}}.$$

Matrix Estimation

• With probability at least $1 - 8td^{-200}$:

$$\|\hat{M}_{i,t} - M_i\|_F^2 \le C_3 \|\hat{M}_{i,0} - M_i\|_F^2 \Pi_{\tau=1}^t (1 - \frac{\eta_\tau \lambda_{\min}}{4d_1 d_2}) + C_4 \sigma_i^2 \frac{r \log^2 d_1}{d_2} \sum_{\tau=1}^t \frac{(\eta_\tau \lambda_{\max})^2}{\epsilon_\tau}$$

$$\|\hat{M}_{i,t} - M_i\|_{\max} \le C_3 \frac{\lambda_{\min}^2 r^3}{d_1 d_2} \Pi_{i=1}^t (1 - \frac{\eta_\tau \lambda_{\min}}{4 d_1 d_2}) + C_4 \sigma_i^2 \frac{r^3 \log^2 d_1}{d_1 d_2^2} \sum_{\tau=1}^t \frac{(\eta_\tau \lambda_{\max})^2}{\epsilon_t}$$

Matrix Estimation

• With probability at least $1 - 8td^{-200}$:

$$\|\hat{M}_{i,t} - M_i\|_F^2 \leq C_3 \|\hat{M}_{i,0} - M_i\|_F^2 \Pi_{\tau=1}^t (1 - \frac{\eta_\tau \lambda_{\min}}{4d_1 d_2}) + \text{Second term}$$

$$\|\hat{M}_{i,t} - M_i\|_{\max} \leq C_3 \frac{\lambda_{\min}^2 r^3}{d_1 d_2} \Pi_{\tau=1}^t (1 - \frac{\eta_\tau \lambda_{\min}}{4d_1 d_2}) + \text{Second term}$$

- Correspond to the convergence of gradient descent.
- Depends on step size.

Matrix Estimation

• With probability at least $1 - 8td^{-200}$:

$$\begin{split} & \|\hat{M}_{i,t} - M_i\|_F^2 \leq \text{First Term} + C_2 \sigma_i^2 \frac{r \log^2 d_1}{d_2} \sum_{\tau=1}^t \frac{\eta_\tau \lambda_{\max})^2}{\epsilon_\tau} \\ & \|\hat{M}_{i,t} - M_i\|_{\max} \leq \text{First Term} + C_1 \sigma_i^2 \frac{r^3 \log^2 d_1}{d_1 d_2^2} \sum_{\tau=1}^t \frac{(\eta_\tau \lambda_{\max})^2}{\epsilon_t} \end{split}$$

- Correspond to stochastic noise and random sampling,
- Depend on noise, exploration and stepsize.

Corollary 1

Matrix Estimation: A specific rate.

• Some extra assumptions:

• Fix
$$\gamma \in [0,1)$$
, $\epsilon \in (0,\frac{1}{2})$.

- Exploration-Then-Commit Scheme:
- $T_0 = C_0 T^{1-\gamma} \log\{\lambda_{\min}(\sigma_0 \wedge \sigma_1)\}.$
- (Explore) When $t \leq T_0$: $\epsilon_t = \epsilon$, $\eta_t = \eta := cd_1d_2/(T^{1-\gamma}\lambda_{\max})$.
- (Commit) When $T_0 \le t \le T$: $\epsilon_t = c_2 t^{-\gamma}$, $\eta_t = \epsilon_t \eta$.

Corollary 1

Matrix Estimation: A specific rate.

•
$$T \ge C_1 r^3 d_1^{1/(1-\gamma)} \log^2 d_1$$
, $\frac{\lambda_{\min}^2}{\sigma_0^2 + \sigma_1^2} \ge C_2 \frac{r d_1^2 d_2 \log^2 d_1}{T^{1-\gamma}}$.

• We obtain the following rates:

$$\|\hat{M}_{i,T} - M_i\|_F^2 \le C_3 \sigma_i^2 \frac{rd_1^2 d_2 \log^4 d_1}{T^{1-r}},$$

•
$$\|\hat{M}_{i,T} - M_i\|_{\max}^2 \le C_3 \sigma_i^2 \frac{rd_1 \log^4 d_1}{T^{1-\gamma}}$$
.

Corollary 1

Matrix Estimation: A specific rate.

$$\|\hat{M}_{i,T} - M_i\|_F^2 \le C_3 \sigma_i^2 \frac{r d_1^2 d_2 \log^4 d_1}{T^{1-\gamma}},$$

•
$$\|\hat{M}_{i,T} - M_i\|_{\max}^2 \le C_3 \sigma_i^2 \frac{rd_1 \log^4 d_1}{T^{1-\gamma}}$$
.

- . A Frobenius norm at $\tilde{O}_p(\frac{rd_1^2d_2}{T^{1-\gamma}})$.
- A sup norm rate at $\tilde{O}_p(rd_1/T^{1-\gamma})$.

Corollary 1

Matrix Estimation: A specific rate.

- . A Frobenius norm at $\tilde{O}_p(\frac{rd_1^2d_2}{T^{1-\gamma}})$.
- . A sup norm rate at $\tilde{O}_p(\frac{rd_1}{T^{1-\gamma}})$.
- In the offline setting of Ma et al (2017):
- Assuming $T >> r^3 d_1 \log^3 d_1$.
- . The optimal (up to log factors) Frobenius rate: $O_p(\frac{rd_1^2d_2\log d_1}{T}).$
- . The optimal (up tp log factors) sup norm rate : $O_p(\frac{rd_1\log d_1}{T})$.

Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix Completion, and Blind Deconvolution

Cong Ma* Kaizheng Wang* Yuejie Chi[†] Yuxin Chen[‡]
November 2017; Revised July 2019

Regret Analysis

Key Ideas

$$R_T := \mathbb{E}\left[\sum_{t=1}^T \max_{i \in \{0,1\}} \langle M_i, X_t \rangle - \langle M_{a_t}, X_t \rangle\right].$$

$$R_T \lesssim \|M_1 - M_0\|_{\max} \sum_{t=1}^{T} \epsilon_t + \sum_{t=1}^{T} \max_{i \in \{0,1\}} \|\hat{U}_{i,t} \hat{V}_{i,t}^T - M_i\|_{\max}.$$

Wrong decision made by exploration + estimation error.

Regret Analysis

Theorem 2

- Based on conditions in Corollary 1.
- Define:
- $\bar{m} = ||M_0||_{\text{max}} + ||M_1||_{\text{max}}$.
- $\bar{\sigma} = \max\{\sigma_0, \sigma_1\}$.
- $R_T \le C_5 \left[\bar{m}rT^{1-\gamma} + \bar{\sigma}T^{(1+\gamma)/2} \sqrt{rd_1} \log^2 d_1 \right]$.

Regret Analysis

Theorem 2 Remarks

$$R_{T} \lesssim \|M_{1} - M_{0}\|_{\max} \sum_{t=1}^{T} \epsilon_{t} - \sum_{i=1}^{T} \max_{i \in \{0,1\}} \|\hat{U}_{i,t} \hat{V}_{i,t}^{T} - M_{i}\|_{\max}.$$

$$R_{T} \leq C_{5} \left[\bar{m}rT^{1-\gamma} + \bar{\sigma}T^{(1+\gamma)/2} \sqrt{rd_{1}} \log^{2} d_{1} \right]$$

- $\gamma = 0$: Trivial bound O(T).
- Pick γ such that $T^{1-3\gamma}=(\bar{\sigma}/\bar{m})^2d_1$: A $\tilde{O}(T^{2/3}d_1^{1/3})$ bound.

$$\hat{M}_{1}^{IPW} = \frac{1}{T - T_{0}} \sum_{t=T_{0}+1}^{T} \hat{M}_{1,t-1} + \frac{d_{1}d_{2}}{T - T_{0}} \sum_{t=T_{0}+1}^{T} \frac{1\{a_{t}=1\}}{\pi_{t}} (r_{t} - \langle \hat{M}_{1,t-1}, X_{t} \rangle) X_{t}.$$

- \hat{L}_1,\hat{R}_1 : matrices formed by top-r left(right) singular vectors of \hat{M}_1^{IPW} .
- $\hat{M}_1 = \hat{L}_1 \hat{L}_1^T \hat{M}_1^{IPW} \hat{R}_1 \hat{R}_1^T$.
- Goal: Asymptotic distribution of $\langle \hat{M}_1 \hat{M}_0, Q \rangle$.

Extra Notation

- $M_1 = L_1 \Lambda_1 R_1^T$, $L_1 \in \mathbb{R}^{d_1 \times r}$, $R_1 \in \mathbb{R}^{d_2 \times r}$.
- $L_{1\perp} \in \mathbb{R}^{d_1 \times (d_1 r)}$, $col(L_{1\perp}) = col^c(L_1)$.
- $R_{1\perp} \in \mathbb{R}^{d_2 \times (d_2 r)}$, $col(R_{1\perp}) = col^c(R_1)$.
- When considering offline noisy matrix completion, Xia and Yuan (2021) and Ma et al (2023) give:

•
$$\frac{T}{d_1d_2}var(\langle M_1,Q\rangle)pprox \sigma_1^2\|P_{M_1}(Q)\|_F^2$$
, and $P_{M_1}(Q):=Q-L_1\bot L_1^T QR_1\bot R_1^T$.

Extra Definitions

- Variance of \hat{M}_1 : Effective sample size + IPW variance inflation.
- Assume δ be the reward gap between optimal/sub-optimal gaps.
- $\Omega_1(\delta) = \{X \in \mathcal{X}; \langle M_1 M_0, X \rangle > \delta\} \to \text{Effective sample size.}$
- $\Omega_0(\delta) = \{X \in \mathcal{X}; \langle M_0 M_1, X \rangle > \delta\} \rightarrow \text{IPW variance inflation.}$
- $\Omega_{\varnothing}(\delta) = \{\Omega_1(\delta) \cup \Omega_0(\delta)\}^c$.
- $P_{\Omega}(M): M_{i,j} = 0 \text{ if } e_i e_j^T \notin \Omega.$

Arm Optimality Condition

. Given
$$\frac{T}{d_1d_2}var(\langle M_1,Q\rangle)\approx \sigma_1^2\|P_{M_1}(Q)\|_F^2,$$

- $||P_{\Omega_1}P_{M_1}(Q)||_F^2$: variance induced by effective sample size.
- $||P_{\Omega_0}P_{M_1}(Q)||_F^2$: variance induced by IPW variance inflation.
- Arm Optimality Assumption: there exists $\delta > 0$, such that
- $\quad \|P_{\Omega_{\varnothing}}P_{M_{i}}(Q)\|_{F}^{2}/\min\{\|P_{\Omega_{0}}P_{M_{i}}(Q)\|_{F}^{2},\|P_{\Omega_{1}}P_{M_{i}}(Q)\|_{F}^{2}\}=o(1), i=1,2.$

Under conditions of Corollary 1 and Arm optimality condition.

•
$$S_1^2 = T^{-\gamma} \|P_{\Omega_1} P_{M_1}(Q)\|_F^2 + C_{\gamma} \|P_{\Omega_0} P_{M_1}(Q)\|_F^2$$
.

•
$$S_0^2 = T^{-\gamma} \|P_{\Omega_0} P_{M_0}(Q)\|_F^2 + C_{\gamma} \|P_{\Omega_1} P_{M_0}(Q)\|_F^2$$
.

• Some regularity conditions omitted.

$$\frac{\langle \hat{M}_0, Q \rangle - \langle M_0, Q \rangle}{\sigma_0 S_0 \sqrt{d_1 d_2 / T^{1-\gamma}}} \to N(0, 1), \frac{\langle \hat{M}_1, Q \rangle - \langle M_1, Q \rangle}{\sigma_1 S_1 \sqrt{d_1 d_2 / T^{1-\gamma}}} \to N(0, 1).$$

Key Elements Estimation

$$\hat{\sigma}_0^2 = \frac{1}{T - T_0} \sum_{t=T_0+1}^T \frac{1\{a_t = 0\}}{1 - \pi_t} (r_t - \langle \hat{M}_{0,t-1}, X_t \rangle)^2.$$

$$\hat{\sigma}_{1}^{2} = \frac{1}{T - T_{0}} \sum_{t=T_{0}+1}^{T} \frac{1\{a_{t}=1\}}{\pi_{t}} (r_{t} - \langle \hat{M}_{1,t-1}, X_{t} \rangle)^{2}.$$

$$\hat{S}_0^2 = (\|P_{\hat{\Omega}_{0,T}} P_{\hat{M}_0}(Q)\|_F^2 / T^\gamma + C_\gamma \|P_{\hat{\Omega}_{1,T}} P_{\hat{M}_0}(Q)\|_F^2) \frac{T}{T - T_0}.$$

$$\hat{S}_{0}^{2} = (\|P_{\hat{\Omega}_{1,T}}P_{\hat{M}_{1}}(Q)\|_{F}^{2}/T^{\gamma} + C_{\gamma}\|P_{\hat{\Omega}_{0,T}}P_{\hat{M}_{1}}(Q)\|_{F}^{2})\frac{T}{T - T_{0}}.$$

Theorem 4 and Corollary 2

Under conditions in Theorem 3, the above estimator are consistent, and we have

$$\frac{\langle \hat{M}_1 - \hat{M}_0, Q \rangle - \langle M_1 - M_0, Q \rangle}{\sqrt{(\hat{\sigma}_0^2 \hat{S}_0^2 + \hat{\sigma}_1^2 \hat{S}_1^2) d_1 d_2 / T^{1-\gamma}}} \to N(0,1).$$

Simulation

Basic Settings

- $d_1 = d_2 = 300$.
- r = 2.
- M_0, M_1 generated from uniform distribution.
- $T = 60000, T_0 = 20000.$
- Four settings: $\langle M_0, e_1 e_5^T \rangle$, $\langle M_0, e_1 e_5^T \rangle$, $\langle M_0 M_1, e_1 e_r^T \rangle$, $\langle M_0, e_1 e_r^T e_2 e_2^T \rangle$.

Simulation Policy Inference

Simulation

Regret Analysis

- When $\gamma = 1/3$:
- T vary from 40000 to 80000, $T_0 = 13.5 T^{1-\gamma}$.
- When $\gamma = 1/4$:
- T vary from 20000 to 60000, $T_0 = 4.5 T^{1-\gamma}$.
- Theoretical Regret: $O(T^{2/3})$ when $\gamma=1/3$ and $O(T^{3/4})$ when $\gamma=1/4$.
- Run 100 simulations and plot average cumulative return.

Simulation Regret Analysis

- SFPark pilot project: effectively manage parking towards availability targets in SF.
- Adjust price by hour, day, and block.
- Target occupancy rate: between 60% and 80%.
- Implementation period: 6 to 8 weeks.
- If meet target rate: unchanged.
- Larger than 80%: increase hourly price.
- Lower than 60%: decrease hourly price.

 Dataset: includes hourly occupancy rate and price for each block at every hour.

> D G BLOCK_ID STREET NAME **BLOCK NUM** STREET_BLOCK AREA_TYPE PM_DISTRICT_NAME RATE START_TIME_DT 436 7/6/12 14:00 20200 02ND ST 0 02ND ST 0 Pilot 3.5 Downtown 7/6/12 8:00 South Embarcadero 437 20204 02ND ST 4 02ND ST 400 1.25 Pilot 7/6/12 10:00 20204 02ND ST South Embarcadero 438 4 02ND ST 400 1.25 Pilot 7/6/12 8:00 Inner Richmond 439 36004 CLEMENT ST 4 CLEMENT ST 400 Control **Inner Richmond** 7/6/12 16:00 36006 CLEMENT ST 6 CLEMENT ST 600 Control 440 7/6/12 3:00 441 41321 FILBERT ST 21 FILBERT ST 2100 Marina Pilot 7/6/12 11:00 56303 MCALLISTER ST Civic Center 442 3 MCALLISTER ST 300 Pilot 4/19/13 4:00 South Embarcadero 443 47100 HARRISON ST 0 HARRISON ST 0 Pilot 4/19/13 13:00 47105 HARRISON ST 5 HARRISON ST 500 South Embarcadero 1.5 444 Pilot 4/19/13 7:00 445 56304 MCALLISTER ST 4 MCALLISTER ST 400 Civic Center Pilot 4/19/13 11:00 Civic Center 56304 MCALLISTER ST 4 MCALLISTER ST 400 446 Pilot 4/19/13 2:00 33103 BRYANT ST 3 BRYANT ST 300 South Embarcadero 447 Pilot 4/19/13 3:00 448 41522 FILLMORE ST 22 FILLMORE ST 2200 Fillmore Pilot 4/19/13 9:00 449 41522 FILLMORE ST 22 FILLMORE ST 2200 Fillmore 3.25 Pilot 4/19/13 8:00 450 41524 FILLMORE ST 24 FILLMORE ST 2400 Fillmore 451 41529 FILLMORE ST 29 FILLMORE ST 2900 4/19/13 11:00 Union Control 4/19/13 5:00 41530 FILLMORE ST Union 452 30 FILLMORE ST 3000 Control Union 4/19/13 8:00 453 41530 FILLMORE ST 30 FILLMORE ST 3000 Control 4/19/13 4:00 454 50001 JACKSON ST 1 JACKSON ST 100 Pilot Downtown

- Focus on the Downtown area, 2011 to 2012.
- Four price adjustment times: Aug 1st, Oct 11th, Dec 13th, Feb 14th. (Five periods)
- $d_1 = 34$ blocks.
- $d_2 = 22$ time points,
- (7 am to 6 pm on weekdays & weekends)
- *M*: target deviation matrix.
- M_0, M_1 :Low/high parking price.
- Each hour corresponds to one request.
- T = 105,825.
- r = 5 from rough estimation.

	7am	8am	9am	10am	11am	 6pm
Haight Street						
The Castro						
Union Square						
Mission Street						

- An estimation workflow:
- A block $j_1 \in [d_1]$ at hour $j_2 \in [d_2]$, $X_t = e_{j_1} e_{j_2}^T$.
- Pick action a_t , if inside target range (60% to 80%): $r_t = 0$. Else $r_t = -0.1$.
- Discard the observation whose observed action \neq online algorithm action.

Real Data Analysis

San Francisco Parking Problem

A representative block: 02ND ST 200.

Time	7	8	9	10	11
p-value	0.282	0.016	0.009	0.002	0.304

$$H_0: \langle M_0 - M_1, e_{j_1} e_{j_2}^T \rangle \leq 0.$$

$$H_0: \langle M_1 - M_0, e_{j_1} e_{j_2}^T \rangle \leq 0.$$

Low parking price before 11am and high parking price after 12 pm is optimal!

- SFPark vs MCBandit.
- Comparing overall performance through a percentage of reaching the target.
- Calculating MCBandit performance:
- Keep the data whose action aligns with the observed action.
- Replace others by "nearest neighbors".

Summary

- An online algorithm for matrix completion bandit.
- Optimal estimation bound (up to log factors).
- Regret bound $O(T^{1-\gamma} + d_1^{1/2}T^{(1+\gamma)/2})$.
- An inference procedure (online adaption from Xia and Yuan 2021 and Ma et al 2023) for making policy inferences.