


Ch6
·

General Decision Making
· Introduce a unified framework for decision

making , including structure bandit problem,
contextual bandit problem etc.

· Show that the Decision - Estimation Crefficient

CDEC) and associatal meta-algorithm (E2D)
extend to this general framents al also
show that boudness of the DEC is sufficient

-

-
for low reject (constitute a fun-and necessary

damental limit)

Setting: Focus on a framsank called Decision

Making with StructuralObservations (50)

· for t= 1 ,
6

, . . .,T round , the learner

select a decision + E II
, the decision space

· Nature selects reward vtER and observation
- -

-

ot O based on it t reward space
-

observation space



· Both ut and of are observed by the learner

SmokeyAssumptions :

Asuption 1 (Stochastic Rewards and Observations) :

-

It and On are independently generatel via
(rt , ot) ~ M+ ( . /+t)

where M* -> X(RX O) is the underlying
true model.

Ksuptim2 (Realizability) : The learner has access

to a flexine enough motel classM ,

where M*
E&

(Here . M could be of linear models ,
read retrks,

Vanlam forest ,
al other function approxiation)

batives : For a model MEM ,
**
C) is

the expectation under (r . 0) ~ M(T)
,

let

fM(π) = IEM -T(r)
be theenread freioi ; all let



TTM = anymax fM(+).
#E

be theop_mldecision. with maximal expected serad ;
cal also let

Fm = SfM/MEMY
be the medclass of mean rewad frams.

Findly , for evalation of the learner's performance, we

conside-tto the openl decision for MA

Reg = Ent-pt[f
**

(Tm*) - fM
*

(i
-

]
whe ptEO(l) is the learner's distration over decisions

at round t
.
(Shuthed f

*
= fi*, T *

= T*)

Rak : Compared to basic bandit problem ,
Utw M lit")
-

without the observations
,
al the mean veral is E(UITT)

only ,
while reguet is f

*
( **) - -*(i)
& Extopt[f

*

(H4)]
Es

That is ,
observation provided extra information gain,



-

#es· Some Examples /

(Exampled) Structal Bandits . When O =303 ,
i . e.

-

20 observations ,
DMSO reduces to Structu Bandits

problem. We can start with a set of models / al

then define induce class Fal , serving as the clos

F of mean reward functions before . Different FM will
include different structul bandit problems such as linear.

componentic ,
etc.

(Example 2) Contextual Bandits .
In Context Bandit

,
newal

-

Ut ~ M*. 1*, ret) for some coraite set
,

al

f*(x. +) = (E)V/x , i) for vrM
*
( . /tr) ·

Think of it as futius mapping set to an action in

= [A] .

On roul t
,
the decision-maker selects a

mapping It
: XX -[A] ,

al the Context Ot = set is
-

observedfor each roud .

This is basily observing set, the-



Select T(xt)-[A] , which is called behaved decising
rule in decision theory)· Let O

= XX be the space

of context , I = [A] be the set ofactions ,

al I :

# -> [A] be the space of decisions. Then
.
(r. xsvM/IT)

has : ~OM for some context don ,
veRm(. , ital)

for some reward don RM .
Here

,
DM force is put of

MLreating be as 0
, observation).

-Example3) Online reinforce met learning. For online vin-
frent leaning ,

learner selects a randomized ,
non-station-

any policy
= It H) , n : S - (A)

E Irns

Beginning from state S , wditXIS) , for h = 1. ...

an - Th(Sn)
UnwRM(Sn , an) ,

RyM : SXA-OIR
(rowaldsn)

al Sun ~PMIsh , an) , PuM : SXA-01S]
(transition Kerrels



then fM(i) = ET/Un)
stuls for MDPSS , A . PLM, Ra

*
3

Here , let's take It = Iras
, Utzal

ot = It = Is t, at , vit) , .... ISF, ar, V) ,
the

truetry of learning . Their

(V2 , 0x) =( Unt, It) (Ri , 1 uM14)"π
can be considered as M1 . It) for som den M

ad +
E Erns.

2. DEC for Gened Decision MakingI

Optimally explore and make decisions for/ is cometal

to underfunding the optimal statistical complexity for SM.
As seen before, any notion ofcomplexity needs to captive
(i) Simple problems like multi-armed barlit
(ii) problems with structural feedback where observations
or strutues in the noise can provide extra information



& Decision Estimation Coefficiently
↑

For M , reference model MEM al Upo Iscalar) · DEL
-

forgenedecision making is regretof decision
--

=MITI
where DECI , 0) =SIF-g5dr infunction gain from obs.

for
,
& 5 . Also , define

dep (M) = Sup dee (M · ↑)
MECO(M)

where CO(M) is the convex hallfM .

as did for c0(5)

Rak : Compared to structured bundit problem ,

the major
difference is that instal of

""
and considering fitty)ma

- f(it) ,
i . e restricts on a class of renal futions, have

the gened DEC is defined over JU (mode class for both

seran all observations).
Also

,
rather them measury the infonction gain via



flit)-flit) ,
have we conside inforation gain from

metching the day over rewards and observations of
and MCfor learner's denisimTt) . Extup [DA(MITS , MIT)
(i) incorporates observations of or et in reinforcent
learning

his even for barlit problems ,
it measures the distance

betweendsus rather tran the means.

#EZD Algorithm for Gened Decision Making /

Estimation to Decisions (ELD) for gened densin making
is readily extended from structured bandit problems.

Parameter Uo (given)
For EF1 .

...T do

ITObtain At from online escimation orale with
-

(ii r , 0
,

... (T24 , 0
by minimizing deep (M . it) ple

pt =

arminSu (fM-f
It

- U . DF (MIT), MLTS)]



suple-Idecisio
# pt al eplate esulation with ICit , Ut , ot)

.

Emk : i) Rather attempting to estimate the reval fution

f*, one estimate the clalying model M
* (details later)
-

i) OFOM ->T -D

StH = (h , V : 01 ,
. . . (TE ,

We
, ott).

Proposition1 126 in the hotel: Rumy EZD , the regret is

bod by DEC al estination error
,
which is defined here

Est=[D(M*,Mt]as H

That is , for 530 ,
ELD admits

Reg <Sup de (M) .T+E
almost surely , where It is any set st. MEM for all
tEIT]

#not: Reg = Entrp-[f
*

(πm+) - fM
*

(tYY



- UlEntwpt(DI (M*cit)
,

MEc+Y))]S
s

+ VEstH
For eaht , as M

* EJ (Assuptim 2)

#Eitrpt[DA(M
*
(AY

,

M(t))]

Sup Entpt[fMm)-f]
by def of pt in ELD

- UEpt-pt [DICMCIty,
MECnt]

-

= inf sup Emp (fM(tm) - fMcT)-U. DA (MC)
,MED

PEL(I) MEJU

= deep (/ . Mt) · Sunny over to

Deg 1Sup dey (M,M)T+E
Bank : One can opdinge over 0 above ,

to yiel

Reg < inf[Sudey (MM) .T+UEsti



Lif[Sude(MT,UE
For any finte class M .

Theareraged exponential weights (*)

algorithm with the log loss achieves Esep blog DMI/5)
W . p at least 1-8 .

We can take/Y=co//)
., WLOG·

Then , for any finite class .

W .. p . H,

Reg = deep(/) . F + Vlog (1/I /6)·

Review : ExponentiaWeights is a main online learning
algorithm

, applicable to finite ches. At each
time,

the algorithm compute a don gt- &(F) ,
where

E

OCF) < expl-yEl/fisis , yis) for yo . Spe-
cifically ,

I
for t 1, -

,
T do

Icompute gt above. loss function
Let ft = Efuge(f) P

#osarrect t
,More



IEe4, Multi-armed bandit with Gaussian.

Lewards) Let = [A]
.
R = IR

,
O = Spy

(no observations) · Define
MMAB-G = > M : M(H) = NCfT) . 1)

f:t -> [0 . 13)
Consider &E/. From results of multi-armal bandit
problem , deF . FD &# ,

it is this sufficient
to argue that the squand Hellinger-distance for
Gaussian reduces to syme difference between the means

.

In fat. DE (MIT). (T)

Dx(M(T)((T))
= [(fM(π) - fM(π))2

On the other have , DI(MITT) , MIT)
= 1 - exp)-t (f

*
(x) - f

*()]]



so that DI (MIT) , MCT)
= c - (fM(π) - fM(π))

as I-e" = (re") ze for xEIO . 1. Here

these two inequalities give
de (MMA-G)< #

By Proposition I, then for /NMAB-G.

Reg & + VEstH
-

Review : (#) As densities of any two des 1 and &,
P. 5 . Satisfies (P-81 = ILiP+g) (P-5gs/ =/P-V)
a TV (I, O) = SIP-E1do

;
it follows that

H (p , Q) = TV (1 . 0)
So Di (11 , 01 = Dir (IIIQ) by Pinsker's ingutily.
-

Let V=Est ,
the

Rey & EstH



(Example 5.

Bandit problems with Strated wrise)
-

Let I = [A]
,
R= IR

,
O =4)

·
Define

MinAB-sn = ( M , . . . Ma]0]
where Mict) : = N(E , 1) for It al Mici)
= Ber 13/4) for T = i· Define (T) =N(F , 1).

for all ITE l = [A]

The valuable information contained in the reward don.
is reflected in the Hellinger divergers,

which attains

the maximum when comparing a continue don to a

dispute one,

DI(Misi) , Mitt) = 2I (i= i)

Notice that the maximum over M in the definition

of deep (MMAB-SN ,
M) is NOT attened at M = M,

as both the divergence al "reget"term will beyear,



regardless of P .

Take p= unit [A] ,

for any
MES M1

,

. . . MA]

CTTrp [fN(πm) - f *(π)] = 2b)4 -4)
as fM(T) = ((((r/i)) = (1-1) It
and Ty = angmax

I= [A]
fM(π) = 3/4

al de (M , m) = (1-1) (-1) -UF
= [(U)

as sup IEtrp[DrYIM ; It , MIT)] = #MEM

Here decy(MMAB-si, M) I (V
With Proposition I,

Reg = I (U-)
. T+ DEStH

Let U = A
,

we have

Reg = A. Est H



13Some structural Properties of DEC!
Without ports ,

we list a few structural properties
of DEC ,

which are useful in practice for computing
the DEL of specific model class.

#ropety& (Proposition 4 in Note . Squee loss is

sufficient for sturtued bandit problem)
Consider any structural

bardit problem with decision

space II , function ches 7- (I-0 .1) ·
Cro obsers)

al EP). Device

Mg = SM) fMEF , M(it) is I-sub-Gaussime

uπ]
Let
deco1F . f)= sup l pifi-fl- r(f(Ti)--J(T))2]

Then
, dec (F) = de (Mq) < dee171



for 4 , 270.

#Centy2 (Proposition 42 in Note , Filthing imcelerat

information)
Adding observations that are nurcled to the model.

does not change the DEC !
Consider M with observation space O, ,

all a class of
conditions don D over another observation space O2 ,

where

FDEDhmCIIEO(O2)
.

For MEM ,

al DE

D
.

Let (MQD) (T1) be the model that given itI,
(nM(t) , @D(IT) · then Ir , 10, 021) is
obtained. Set MQD = 3 MOD : MEM , DeDY
Then for #MEM . DES

de (MQD , MQB) = decj(M . M)

Brynty3 (Proposition 43 in Nee .
Data Processing)

Passing observations through a channel ver reduce



DEC
.

Cusde / with O .

Let

p : 0 - 0

be a given mapping . Define PoM as the model.

that given decision it
, sample (V . 0) ~M(TT)

or (w , 0) ~M2 : 1 iT)
,
then observes/prids

(r . Pro)) :
Let

PoM = SPOMIMER]
For all -M .

we have

deep(M .,
) def (poM , pon)

This is an immliate consequence oftheprocessing
ineplity for Hellinger-distance that
-

Di((POM) (T) , (Poin) (T))
= DI(MITT) ,

in (T))
.



Eee2. 4 Online Estimation with DPP

Estimation of mode) M is more challege comparing
to regression problem , such as extincting the reward

function. As we have seen before , estimating M
*
Nirt

the Hallinger distance can be solved using online conlitinal
-

densityestimation unti log loss.

Given 1 ,
Ut

. Ot) , log loss for M is

e(m) =ly(
where MM1 . ITT) is the contitional density for (2 . 0)

under model M
. Define

Reyk= le(Mt) - infey (m)
MEM

Then , a bord on the log-loss regret yields an
immediate bound on the Hellinger estination error.

as follows.



-ema1/21 in Lecture) : For any online estination

alguithmi such as averaged weights, wherever Assuption
holds

, IE [Regp] = [D(M*

(it) Il
+(π+))]

so that
IECEstH] <E [Regoc] 1)

Also. VGE01) .

W . p .
at last If

Esty [Regic + 2 ly(15) (F)
-

Does not scale withT !

Prof: By assuption, due to Mgt of log-loss.
Tzlt
E,

log(Mt)- (M4 Reg 12

So by Assumption 2 tat M
* EM.

E [Dk (M
*(ht))M*

(i+))]
< IE [Regicn]

By Definition of EStH ,
all fort tut DICI · 0)

& DixCIIIQ)
, (E) follows.



To prove (1) ,
we employ the fail bond for

intingales (Revew : - red-value v.V. (Xt]et· adopted to

FitrtimFWT ext)j+(4)
Define Ze = 5 (e (M) - leg(M*

).
Applying fail board for martingales to (2t) teT
W . p. at least 18,

-log (Et(e )) < ze + lo (Y)

= Hy(t-leg(n
*)

Fixt , define
+lg(s)

yt = (8t , ot)
,

let UC . 1 it) be any contitial dominating measure for
mintal MM*, Notze

(Ez(e- /it) =Et[ T



=Sm**/)
=Imagit) widgi)
= 1- [PI(M*

(H) ,
M#)

Heme , Eyle-E) = 1 -E [DRLM*CIT)
,

+ (π+))]

al my -log (1-2) Is for 1710 . 13 ,

t [DL (M
*

(nt) , +(t))]
= Z (ly(Mt - le (M* 1) +log(s)

#

Rak :
Lemma 1 is useful as regret minimation.

w sinwelstele ,

such a avea

Rega = log(M) for finite class M.



Also· for linear mod where mM(r, ·(ii)= <Pr. 0 , iT),
07

for some feature map of EIR&

Regi = O(dlogH)

&ec3 · Optilityfor GeneDensim
MalaI

Classical question : for a given class of models M.

What is the best regretthat can be achiev.

by ANY algorithm ?

Answer :
Minimax optimality- for a model class

M . define minimax regret as

m(M,T) = inf sup
M*

PERegCT)]
P...., PT MEM

Whee : is pt = pt) . /fe+) is the algontrn for step t
as a fution of histry Get

ii) Reg (T) makes its depentance onT explicitly.



An algontum is unimoxopend if it achieves

Me (SU .T) up to a constant free from MalT.

3. 1 .

Constraind DEC

How to lower bond the minimax regret for any
model class M interms of DEC for M?.

Working on "ConstraineDEL" instead of de(M)
in Proposition I . Which is called the feet DEC .

Here

for 530 .
Contained DEC is defined by

de (M .

M=Msa
where dec(M) = sup des (Mosis , M)&

McM)

Rank :
Similar to deepfel) .

instal of subtracting the

information gain due to observations , dea (M) puts a



hard constraint on the inforatio gain. Both of them

bins the max learner/player towards mode where the

gain is small.

Offset/tradition DEC can be viewed as a

Lagrangian relaxation of DEC with constrants as

decs (M . M) = inf SupSETpIf(Tul -f
*

IT)]
pta()M (IETp[DIMITS .

in(i))]
=22]

=it Su inflEpifMli)-J(H)
-U(IETp[D(MIT) ,

MITS]]- [] 3xO

EintiSufM(πm)
-f M(π)]

#ETTp[DICMIT))]-IYx0
id)+
It is easy

to see fat deep (M) - dajy (M)



Rank Some classes the constrand DEC is meaningfully-

smaller then the offset DEC. However , if we restirt

to a "localized" sub-class of models that are not
[S

too far" from M
,

we may have

&position 2126
in Nice) : Given a motel M and

parameter L , define
Ma(M) = >M +M : fuctul = fMcTim) - &Y

Fw all so al VI 4/2,

does (M) = C zup Supdec(Mars (in) , M)
rICS MECOM)

with <15 . U) = G . US.

(The lengthy proof is refered to Foste, Golowish &
Han , 2023)

key message of Proposition 2 is that for wall-behaved

model clos such as multi-armed bandits
,
linear barlits,



deep(Mazr) (M). ) dec(/ , mn)

Whenever deap (M .
)-US? i. e

, localization
does not change the complexity. So. lower bord in terms

of constrained DEC immediately implies that in terms

of the offset DEC . (Though refined EID may
lead to fighted uppe boul for some cases).
3. 2 Lower Band/

#petio 3 (20 in Note ,
DEC lower bond) : Let

C

& F for co sufficiently small. For all T

Sit . dee (M) = 102T
for any algorithm . E MEM that

IE [Reg(T)] In dec(M) ·
T

.

Rak :0 For any algoritm & model class M
.

the optimal



regret must scale with the Constrained
.
DEC in the

wast-case. For example , by Exaple 4. (multi-armed

Iclitwith A tims).

des (M .↑)
By results in See 3.

dec <M . M) =if sce( . M) + U22310
2

so dec (M) < SA .

Their

IE [Reg(i)] - for :

② Combining Propositions 2 & 3. We have

Corollay 115 in Nee , lower bord basd on localized
-

#et DEC) : Fix TEIN · for any algorithm
there exists model MEM for which

[RegIT)] I sup Sup deep(Man) , mi)
22F MECOM)

With x (T . 2) = c . 2/ -



③ In Foster , Golowich & Han (2023)
,
the authors design

an algorithm based on a refire raint of EZD,
S .
t

.

the

upper
bond on right is base on theConstrand DEC

&position 4 129 in Note) : For a finite class M.

= with sufficiently small c
.

Unle
T

techngul conditions .
I an algontm set

IE <Reg(T)] - de(M) ·T

W . p .

at least 1-6. (Though the exists a log M1
gap , for clys with finite

leg /M) , does is neussy&

sufficient to lower but rejet
&of Propsiting 3 :

Basic idea of establishing any lower

boud is similar : finding a pair of models M and at set.

is any algorithm achieving low regret must be able
to distinguish Mal i



ii) Mal in ar difficult to distinguish statistically
i . e

,
some information - theoretic differenc between them

is small

=> Algorithm must have large regut on either

Mor /Similar Rea in Hajek 1973).
some simplifications :

1) EC sit Dic(Min)() MIN)) =CDFIMIT ,

for all M , M'E/d an TEI M'(π))

2) Rather than proving a lower bon sacking with
-dec(M) =Se)
decCMUSA] . ↑) ,

me

focuses on a weaker one that scales with supdees lMEM
-

Fix Taul an alguitum ,
define by a sequence of

mappings pl, ..., pT wher pt = pt2 . 1ft") ·

Let

IPM denote the don over It for the algentum when

M is the true model , al doote EEM
the expectation.



Each pt is a RV as a fution of Htt ,
we

can consider its expected value moder M . For any MEM,

let Pm = M[Fpt]e (H)
be the algorithm's average action don when M is the

true model
.OGoal is to show that we can find
allM For which the algorithm's reject is at last

as large as the lowerbowlSupde(--

Fix &20 all arbitrary model MEM ,
set

M= argmax [Empan If M(TM) -XMCT/ETPar (E)
M ↓

dec IDECMIT · MIT) a
Model M should be considered as the "worst-case

alcentive" to M , but only for the algontum fixed

now
.
Next ,weII show that the algorithm needs to



Iare large regret on either M or M .
To this end,

define-) = fM(TIm)-fMCIT) ,
We will establish :

① for all models M .
(as Regit)= +typt)

(1) #M [Reg(T)]= TPmIgMIT)]
so

,
to prove lower boul on Reg , we need to show

fact either TMIgMC)] or Etpm(ginc)] is
large .

② E-PIgMIT)] < dee (M ,
in) : =<(2)

by the definition of deas of by the constation of
Mabove in (7) ,

M is the best response to a potentially sub-

optimal Choice Pm .
Then

,

it remains to fill in thegap

fast &M is about M and Pm is about M.

(Pin and Pm]
③ Using the chain rule of KL-divergence.

DkCM/lIM) -MITpt PR(M1) MIT))



simplication & GEM[ZENT-pEDILMIN, MInt))]

= CT . Trem[DrY (M (i), MIT)]
Here

,

the first equality follows from the when rule .

Apply the chain rule to Sequence TTiZ'
· - TTT

,
ET

,
with

zt = (Ut , ot). Then

Dar (1m/l (*)
=IEM[DCHY(ETHE)11 AM(tIt,it)

+ Di (1pm (i
+ (H+) 11 R(++H+))]

=I [Di (M(t) /I M(t))]

asIt is free from the model it condition on Gett.

(Review : Chain Rule for KL Divergence :

F
Let (N1 ·

F , ) ,

... (xn
· Fr) be a squence ofi

Xmeasurable spaces .

Let X= t. F=At/



For each i. Let 1"(1) alQ"(1) be probability
kernels from (X+ , [it) to (X· (i).
Let I and O be the dous of X.... n

ume

Xi ~I" ( · (iii) and Xiv@C . /X :c) , respectively .

Then
,

it holds that

Dk((IQ) : Ep[Dr("(1Xit)11@"C(X : = 1)]
An easier way to undestal Chin rule of KL divergene is

considering # (X.Y) .

Q(X . Y) . then

Di (I (X.Y)11@(X .Y) = [P(#(Y(X=x)(IQ(Y(x=x)))
+ Dk(((X)(1Q(X))

= Dx(P(Y(X)(IQ(Y(X)) +Dx(((X)/Q(X)
·
- -

(indecs)-

-
-

Now
,

we can chouse S= 4/ET for 400 suffictly small
S .
t .

(3) TUCR *, 1M) -
> Dic [IM/l 1M) = too

.

Iis ,

with non-trivial probability ,
the algontim fixed

hereits to separate Mal M.



① Finally ,
as ve [0 . 1]

,

II

EnrPa[f" (i) - f
*
(i)]

& TPm[TV (M() , MIT))]

(4) =EDMD (MITT))]
E E

.

See . Define GM = STEI/gMc) = -/0Y ,
where

X = dec (M . M). Notice that

lETpIgMIT)]> Pm(IT # Gin)
(Marka)

2 (P# GM)
- TV (m . Pm)

15)
2 To (PMT*Gm) - (10)

as TV(Pm . Ph) < TV (IM , 1M) = to by
above choice of E in 13) all data-processing ingulity
& Review : Data processing ingelity in Notes : DIMIT) , MIT)]

I



=> F((POMI(T) , (POM) (T1)] , fixed P ; also held for iv

Next ,
assume that

e.g. Proposition 43)

(b) IETP[ginc)] = T ,

otherwise , we are done by 1). Our goal is to

show that une 16) , PE(#Gm) = 12 , which

will imply that Trpm[gNIT] <~X by 15).

Step
2

: Adding (6) and (2)

fM(πm) - f
*
(πm)

= ETTPy[fM(tm) - fM Im]
= +-Pm[f" (m) - f (i) + fM(π)

- fM(π) + fM(T) - fm(m)]
= ETNPm[fu-fM(T)-fu(πu) +f

Y()]
-

gM(n)
+ E TrPm[fM(T)-fEC)] ga



= PET-p[gM(-gLTY
- ET-Pi[If

"C-fM(T)]

2 to - Ep[HM(t)-fM)] ·

By (4) , LETT[IfMIT)-fMns1] =S ,
so

fM(tm) - fM(π) = 70 = 2

As long as EE too ,
which is by the condition

that dece(M) = 10 T ,

fM(π(m) - fM(πm) =E
#3: Observe that if IE GM ,

IfM(TT) - f() I+ =IfM(TM) - fM(π) - Fol +
> IfM (tm) - -*(i) - Pol

+



77

by Step 2
. Using 14) again,

22 /Empm[lfMIT)-fMcTs1 +]

2700 . PuITTE Gm) (Markov)
Since 20/0 by assumption ,

we have

= 0. Pm/teGm) ·

i. e Po (TT-Gm) = Ky . Combing this with 15)
gives

# ER(RegIT)] = TrpmIg" (IT)]

2 Fo(1- F - to)
2
20

Finally ,
notice that the choice of MEM is arbitrary :

We are free to chose M to maximize dec(M . M)



33Examples-
Conside a few concrete world classes to demonstrate.

(Example 4 Continued
,

Multi-armed bandit with Gaussian

awar) What is the contrained DEC for this case?

Set M(t) = NE , 1) ,
let SM , ... MAYEM be

a sub-family of models that Mich) = N(fMich) . 1)

where fMich) = I + 01/T= i) for parameter 0.

For all i , Emp[O(Mica), MST))] <Epi

(Hellinge distance for Grussian is square difference in
means as seen before) all

lETrpt fMiCTTmi) - fMich)]
=(1-pril)<

Then. deci (M . /)

= inf supClEmpIfM (Tm) - f
M (H)])

PEG(T) M
Trp[Di(MIT) . MIn))]e32]



= int max (l-pip

For any p ,
Ei s .

+ p(i) - A .

Choose 0
:A

then this choice for i satisfies pli) ** -52.

Hence
, dec(M . M) = ( + plis) <

A
as 1-pli) ? 1/2 . By Proposition 3,

#[Reg] = (AT)

Rak :
One can genelize this to any M that "embeds"

the multi-armed bandit problem in a certain sense

&usition 5 : Given reference model i
, suppre that

a class M contains a sub-class (M1.
- MNY al

a collation of decisions it .

- TN .

that for each i

(i) DH* (MiC) . M(T)) <B2(T=Tti)

(ii) fMiCtMi) - fMiCH) =XICTT+Ai)



Then. dec (M , m) =. (P/N)
Notice Conditions (i) & (ii) are exactly the two basic

techs to derive any lower bund
.

ExamplesContinued
,
Barlits with structed noise)

Reall that M= S M, . . .

, May with Mi(T)=Nell

# it i) + Ber 1/4) [li= #) .

If we consider refere
model M() = NCE , 1) .

their by Proposition 5
above

,
x = 1/4 .

al B2= 2.

↑

(fMi(tmi) - fMi(T) = 14 if Fi)
Thus , dec(MMAB-SN) J [15:#A ) , yielding

IE (Reg) in OLA)
by Proposition 3.

(Example 6 .

Linea Barlit and Lipschity bandit)
Linear = F = (T+(0, p(t) > /OED)



# ↳ BIL1) . 4 : I - IR1 is known
feature map

M is set of all reward dsys withfMeF.
and 1-sub-Gaussian noise. Then

dec? (M) I s A

al IECRey) i T

Liphity : F = St :- [0 . 13 /f is t Lip wrtp]
It is a metric space with

metic p.

M is set of all rewad dous with fMEF.
a 1-sub-Gaussian noise

.

Assume

covering st. No # . 2) ? Yad for do

Then ,

de (M) i s
al ECReg) ~ Th


