Isometries and Morphisms of Real Trees

M. J. Dunwoody

Introduction

Tits [T] introduced the idea of an R-tree, which is a non-empty metric space in
which any two points are joined by a unique arc, and in which every arc is isometric to
a closed interval in the real line R. Alternatively an R-tree is a O-hyperbolic space. A
tree in the combinatorial sense can be regarded as a 1-dimensional simplicial complex.
The polyhedron of this complex will be an R-tree - called a simplicial R-tree. However
not every R-tree is like this. A point p of an R-tree T is called regular if T — p has two
components. If the points of T" which are not regular form a discrete subspace of T" then
the R-tree is simplicial . It is fairly easy to construct examples of R-trees where the set of
non-regular points is not discrete. There are good introductory accounts of groups acting
on R-trees in [Be], and [Sh], and of the more general theory of groups acting on A-trees in
[C]. We assume that all our actions are by isometries. It is a classical result that a group
is free if and only if it has a free action on a simplicial tree. As the real line R is an R-tree
and R acts on itself freely by translations, any free abelian group has a free action on an
R-tree. Harrison (see [C]) proved that a 2-generator group that acts freely on an R-tree
is free or free abelian. Morgan and Shalen [MS] showed that the fundamental group of
any compact surface other than the projective plane and the Klein bottle has a free action
on an R-tree. Rips showed that the only finitely generated groups that act freely on an
R-tree are free products of free abelian groups and surface groups. Rips never published
his proof, but there are proofs of more general results by Bestvina -Feighn [BF] and by
Gaboriau-Levitt-Paulin (see [P] or [C]).

In his seminal work [St] Stallings showed that a finitely generated group with more
than one end splits over a finite subgroup. In [D1] I showed that a finitely presented group
is accessible. This means that a finitely presented group G has a decomposition as the
fundamental group of a graph of groups in which vertex groups are one ended and edge
groups are finite. This decomposition provides information about every action of G on a
simplicial tree with finite edge groups. Thus, let S be the Bass-Serre G-tree associated with
the decomposition described and let T" be an arbitrary G-tree with finite edge stabilizers,
then there is a G-morphism 6 : S — T. We say that any action is resolved by the action
on S. In [D2, D3] I gave examples of inaccessible groups. These are finitely generated
groups - but not finitely presented - for which there is no such G-tree S. These groups do
have actions on a special sort of R-tree (a realization of a protree) but there appears to
be no such action which resolves all the other actions. In [D3] it is shown that there are
inaccessible groups with two generators. In these examples the action of each generator
on the R-tree is elliptic, i.e. each generator fixes a point.

In this paper we investigate two generator group actions on R-trees in which each
generator induces a hyperbolic isometry. We also require that the axes intersect and the
two hyperbolic lengths are independent over the rationals. The axes will intersect in a
closed segment of length A which may be co. We are able to classify such actions, and the
groups G which act in this way. If the action is faithful, i.e. the identity element 1 is the
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only element fixing every point of the tree, then G is either free or has a presentation
G =<a,bl(a" b tab)" =1 >

for some n =1,2,.... If n =1 then G is free abelian and the action is by translation on
the real line R. If the action has small arc stabilizers, i.e. the stabilizer does not contain
a non-abelian free subgroup, then in fact arc stabilizers are trivial and either the group
is not free and there is exactly one such action for each set of values of n,#¢(a), ¢(b) with
A =/l(a)+L(b). or G is free, and A < ¢(a)+£(b) and the action is uniquely determined by
the values A, £(a), £(b). The action is free and simplicial if and only if A < ¢(a)+£(b). This
means, of course, that if a group G acts on an R-tree with small arc stabilizers and a,b
are hyperbolic elements with rationally independent hyperbolic lengths, then if the axes
of a,b have a long intersection (> ¢(a) + £(b)), then in fact the axes coincide. In [BF] this
result is important in the proof, and is proved only for stable actions. In [D4] the result is
proved in the case when arc stabilizers are slender. Skora [Sk] showed that every action of
an orbifold group on an R-tree with small arc stabilizers is geometric, i.e. it is associated
with a measured lamination on the appropriate surface. In the case of 2-generator orbifold
groups this can be deduced from our results.

The results involve a construction of an action of a free group F' = F,, on an R-tree
via a Morse function on a simplicial tree. We are mainly interested when F' has rank n = 2.
However the construction works for all n. In the final section some results are obtained
when n = 3. Thus we investigate actions of F3 on an R-tree for which there are three
hyperbolic isometries whose axes share a common segment. In particular we investigate
the case when the axes of each pair of the three isometries intersect in the same common
segment, and the three hyperbolic lengths are independent over the rationals.

Pairs of isometries
Let S be a G-tree, i.e. an R-tree on which the group G acts by isometries and let T be
an H-tree. A morphism 6 :S — T is amap S — T (also denoted 6) and a homomorphism
G — H (also denoted ) with the following properties:-
(i) Every segment [s,s’] of S can be subdivided into finitely many subsegments [s, s'| =
[s,81]U[s1,82] U...U[sk—1, Sk] so that on each subsegment 6 restricts to an isometry.
(ii) The map 0 : S — T is equivariant with respect to the group actions, i.e.

0(gs) =6(g)0(s),g € G,s € S.

Let F be a free group with free generating set {x1,x2,....2,},n>2. Let ¢: F - R
be a homomorphism with dense image which has rank n. (Here we regard R as a group
under addition.) We also assume ¢(z;) > 0,5 = 1,2,...,n. Let T be the simplicial F-
tree with one orbit of vertices and n orbits of edges. Choose a vertex v € VT' and edges
e1,e9,...,¢e, representing the distinct orbits of edges. Suppose also that e; has vertices
v,v; where v; = z;v and that e; is isometric with the closed interval [0, ¢(x;)]. We extend
¢ toamap ¢ : T'— R, by putting ¢(v) = 0,¢(fv) = ¢(f) and extending ¢ linearly to
edges. Then ¢ is a morphism of R-trees. We regard ¢ as a height function on 7.
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Let A € R, A > 0. Define a relation ~ on T as follows.

Let s,t € T and let [s,t] be the geodesic joining them. Then s ~ t if ¢(s) = ¢(t) and
o(s) — A < ¢(x) < ¢(s) for each = € [s,1].

It is easy to see that ~ is an equivalence relation. We will show that we can put a
metric on 7'/ ~ so that it is an R-tree and there is a morphism 7" — T/ ~. Let s,t € T
be points such that s ~ t. We show that the image of [s,t] is a finite simplicial tree
and describe its structure. Consider the function ¢ on [s,t]. We know that ¢(s) — A <
p(x) < ¢(s) = ¢(t) for each = € [s,t]. Clearly s,t will be local maxima for ¢. Let
s=M <mp < My <mg < ... < mp_1 < M, =1t be the sequence of local maxima
and minima as one traverses [s,t]. Now ¢ is monotone on each subinterval and so no two
points of a subinterval lie in the same equivalence class. We use induction on k£ to show
that the image of [s, t] is a tree with a root r which is the image of s,¢ and any other local
maxima M for which ¢(M) = ¢(s). The local minima map to vertices of valency one. If
k = 2, then m; is the midpoint of [s,t] the map [s,t] — [s,t]/ ~ is a folding of [s,t] onto
[m1,t]. Thus the result is true for k = 2. If k£ > 2 then there is at least one internal local
maxima. Let M; be an internal local maxima for which ¢ takes its largest value. There are
unique points s',¢" in [s,m;]| and [my_1,t] respectively for which ¢(s") = ¢(t') = ¢(M;).
By induction, the image of [/, M;] and [M;,t'] are the folded trees as described above.
If s =" sothat t = ¢/ and ¢(s) = ¢(M;) then the two trees are joined by their roots
to give the folded tree for [s,t]. If s # s’ then again join the two trees by their roots to
give a tree with root r’ representing the folded tree for [s’,t'] then add an extra segment
[r, 7] isometric with both [s,s] and [¢,#] to give the folded tree for [s,t¢]. This folding is
illustrated in Fig 1.

mo mo
ms ms3

Figl

Note the relation ~ satisfies the following:-
If s~tand x ~y, but s ¢ x, and s,t, z,y are all points of a segment which is ordered
as a closed interval then either [z,y] C [s,t] or [z,y] N [s,t] =0 or [s,t] C [z,y].
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We now show that an arbitrary segment is folded into a finite tree. We have already
proved this if the end points are in the same equivalence class. Let [s,t] be a segment. If
x oy for every distinct x,y of [s,t[ then the map [s,t] — [s,t]/ ~ is a bijection. Suppose
then that x ~ y for some distinct pair z,y. We can choose x closest to s which has
this property, and choose y furthest from x so that it is in the same equivalence class.
The property of ~ stated above means that [z,y|/ ~ injects into [s,t]/ ~ and the only
intersection with [s,t]/ ~ is at the identified image of x and y. The result follows easily
again by induction on the number of minima in the image of [s,t]. If f € F then fx ~ fy
if and only if x ~ y. It follows that there is an action of F' on T/ ~. If we allow A = oo,
then the action of F on T/ ~ is that presented in [B] Example 3. In this case the action
is abelian, in the terminology of [C], and F' fixes a unique end of 7'/ ~. Note though that
the action of F' on T'/ ~ is faithful, i.e. if f # 1, then there is exists a point z € T/ ~
for which fz # z. If ¢(f) # 0, then this is true for any z € T/ ~. If ¢(f) = 0, let
a = a(f) =max{¢(u)lu € [v, fv]}. If @ > 0 then we can take z = v. If & = 0, then choose
n > 1 so that 1" fa7 when written in reduced form has z; as its final letter. For this
n,a(zy " fz7)) > ¢(x1) > 0. Thus v % 7" fzfv and so zfv # fzfv, and we can take
z = ztv.

We now consider the case n = 2. Let S be an R-tree on which the group G acts.
Suppose G is generated by a,b and that the action of G is faithful, and T is minimal.
We assume a,b induce hyperbolic isometries of lengths ¢(a),¢(b) which are independent
over the rationals. We also require that the axes intersect coherently (i.e. if [d,u| is the
intersection of the axes, then orienting this segment from d to u is the orientation induced
by positive translation by both a and b). Let A be the length of the segment [d, u]. We have
seen that there is a morphism ¢ : 7' — R in which ¢(z1) = £(a), ¢(x2) = £(b). There is also
a morphism 6 : T' — S in which 6(z1) = a,0(x2) = b. Clearly there is a homomorphism
of groups 0 : F — G in which 0(z1) = a,0(xz2) = b.. We can get a morphism of trees
by mapping v to d, then mapping fv to 6(f)d and mapping the orbits of the edges eq, ey
equivariantly and isometrically.

In this case (n = 2) in Fig 1 the subsegments are also initial subsegments of segments
corresponding to subwords in which the indices of ;1 and x9 are all positive or all negative
and these are mapped isometrically by 6. This is because there is folding at a subword
a~'b at d, i.e. a segment corresponding to the word xflxg has a minima at v and it folds
in the morphism. There can be no folding at subwords aa, bb, ab or ba as, for example, if
there is folding at an ab subword, then since there is folding at a~!b, which is the same as
folding at b~1a, and there will be folding at aa = (ab)(b~'a), and folding at aa does not
occur as it is mapped to part of a translate of the axis of a.

Thus any folding that occurs in the morphism # must be at a maxima or minima for
the height function ¢. It follows that the morphism ¢ factors through 6. In particular
there is a homomorphism from G to a free abelian rank 2 group. This seems to be of
sufficient interest to warrant recording as the conclusion of a theorem.

Theorem 1. Let S be a G-tree and suppose G is generated by hyperbolic isometries a, b
with lengths ¢(a), ¢(b) whose axes intersect in a segment with more than one element. Let
T be the simplicial F-tree with two orbits of edges of lengths ¢(a),f(b) and one orbit of
edges. The morphism ¢ : T — R in which ¢(x1) = l(a), p(x2) = £(b) factors through S. If
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¢(a),l(b) are independent over the rationals, then G made abelian is free abelian of rank
two.

Also the morphism 6 : T — S factors through 7'/ ~, where A, the length of the
intersection of the axes, is the A used to define the relation ~. To prove this we need to
show that if s ~ t,s,t € T, then 0(s) = 6(t). We refer back to our consideration of ~
and Fig 1. We use induction on k, where k — 1 is the number of minima for ¢ restricted
to [s,t]. If k = 2, then the two segments correspond to words with positive indices in x;
and x5 If one segment was a positive power of x; and the other a positive power of xo,
then 6(s) = 0(t), since they map to a translate of the shared part of the axis of a and the
axis of b. If the first segment, say, is an initial subsegment of a segment corresponding to
a product of more than one positive power of ;1 and x5, then we use induction on the
number of different positive powers. One end (the initial part) starts at a translate of v.
If the first part of the segment corresponds to a power of x; then the first part of the
other segment correspond to power of x5. Suppose the last change in the first segment is
from a power of x; to a power of x5 and it occurs at the point z of the segment. Then
z = fv for some v. The segment [z.s] in T is the f-translate of [v, f~!s] which is part of
the axis of z1 in T. Its length is less that A. Let [v, f~!s’] be the segment of the same
length, which is part of the axis x5 in 7. Then §(f~'s) = 0(f~1s’) and so both s ~ s’
and 6(s) = 0(s’). Thus we can replace s by s’ and the first segment corresponds to a word
with fewer different positive powers of 1 and x5.

If A < {(a)+ ¢(b) then the action is free and simplicial. This is proved in [C].
We give a proof here. We will show that in this case the F-morphism 7'/ ~— S is an
isomorphism. This proves Harrison’s Theorem (see [C]). Since it shows that if we have
two hyperbolic isometries a,b of an R-tree whose axes intersect in a segment of length A
where A < {(a)+£(b), then a, b generate a free group of isometries. First consider the case
when A < min(£(a), £(b)). We construct a simplicial tree X with the right properties.

Let X be the graph as shown in Fig 2. Make this into an R-graph by giving « the
topology of a segment of length ¢(a) — A, 3 the topology of a segment of length ¢(b) — A and
4 the topology of a segment of length A The fundamental group G of X acts on the R-
tree which is the universal cover X of X and is generated by two hyperbolic isometries a, b
whose axes intersect in a segment of length A. Also if we have two hyperbolic isometries
a,b of an R-tree S whose axes intersect in a segment of length A, and such that S is
minimal for the group G generated by a,b, then there will be a morphism p : X — S, in
which p(a) = a and p(b) = b. It is also clear that there will be no folding in this morphism,
i.e. segments are mapped isometrically, and so, since S is minimal, p is bijective and G is
freely generated by a,b. Also the obvious morphism 7' — X factors through T/ ~ and the
morphism (7'/ ~) — X must be an isometry.

Consider now the case when ¢(a) + £(b) > A > min(¢(a), £(b)). Assume £(a) > £(b) so
that A > £(b). In [C] Lemma 3.3.4 it is shown that, in this situation, ab~! is a hyperbolic
isometry which meets the axis of b coherently in a segment whose right hand end point
is the same as that of the intersection of the axes of a and b. £(ab~!) = £(a) — £(b), and
A(ab=t,b) = A(a,b) — £(b). Notice, as is pointed out in [D], that £(a) + £(b) — A(a,b) =
{(ab™1) + £(b) — A(ab™1,b). Conversely if a,ab™! satisfy these derived conditions stated,
then a, b will satisfy the original conditions. It follows that by carrying out a sequence of
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Fig 2

Nielsen operations on the pair a,b one will eventually arrive at a pair of generators a’, b’
for G for which A(a’,b') < min(4(a’),¢(b")). By the case already discussed, a’,b" freely
generate G and so a,b freely generate GG. It can also be seen from this analysis that the
action when A < ¢(a) + ¢(b) is unique, and it is the action on 7'/ ~ described in the first
paragraph.

Perhaps the most interesting case for our construction 7/ ~ occurs when ¢(z1) +
¢(x2) = A. This is illustrated in Fig 3. The bottom dotted line indicates points at height
¢(x1) + ¢(x2). The points intersecting this line on the left of the diagram are identified to
give the point p on the right of the diagram. Thus p is fixed by the element wlxgxl_lxgl.
Arc stabilizers in T/ ~ are trivial. In T'/ ~, there are infinitely many directions at p lying
above p, on which z1zo2] 25! acts transitively. In our diagram zizex] 'zy 'y = 2. (In
the diagram ¢(x3) < ¢(z1) and the x7 edges point upwards to the left.) There are also
infinitely many directions lying below p , on which 113‘1$2.CE1_1£C2_ 1 acts transitively. If we
have two hyperbolic isometries a,b of an R-tree S whose axes intersect in a segment of
length ¢(a) + ¢(b) = A, and such that S is minimal for the group G generated by a,b,
then there will be a morphism 6 : X — S. We will see that this morphism need not be an
isometry, but it will be if arc stabilizers in S are trivial. If ¢(a) + ¢(b) < A, then there
will be a morphism 6 : X — S and arc stabilizers in both X and S are not small.

If ¢(z1) + ¢(z2) < A, then we show that any arc in 7'/ ~ has an infinitely generated
stabilizer. Note that a direction above p will now be fixed by zizo27 25" as  and y are
identified if the height above p is less than A — ¢(x1) — ¢(z2). But note that we have
also shown that by using Nielsen moves on the pair 1,z we can produce infinitely many
hyporbolic elements h for which ¢(h) < A — ¢(x1) — ¢(x2). Also the axis of h will share
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Fig 3

the segment of length A — ¢(x1) + ¢(z2) lying above p also lying in the axis of z; and xs.
But then hajzory oy 'h~! will also fix the direction above p fixed by zxoz] 25 .
Recall that we have two hyperbolic isometries a, b of an R-tree S whose axes intersect
in a segment of length A, and such that S is minimal for the group G generated by a, b.
We also assume that the normal subgroup of G consisting of all elements fixing every
point of S is trivial, i.e. the natural map of G into the isometry group of S is faithful. If
{(a) + £(b) < A, then ¢ = aba='b~! is an elliptic element and in fact will fix a segment
of the axis A, of a of length A — ¢(a) — ¢(b). Let C be the subgroup of G generated by
¢ Let S’ be the subtree of S which is the minimal C-subtree containing A,. The action
of C' on S’ is simplicial and trivial (i.e. there is a point fixed by all of C') and the orbit
space Y = C\S’ is homeomorphic to R. Thus we can subdivide Y into finitely many
segments, two of which will be non-compact. Two points in the interior of a particular
segment correspond to orbits of points with the same stabilizers in C'. Bass-Serre theory
tells us that the action on S’ is specified by this division into segments and the labelling of
the segments with the corresponding subgroups of C. There will be one segment labelled
by C' and moving up (or down) from this segment the labels will give a finite decreasing
chain of subgroups of C'. A subgroup is conveniently specified by its index in C. Thus
one obtains a sequence 1 = vy < v; < vs,... < v, where vy,vs,...,v,_1 are positive
integers and w, is either a positive integer or oo and v; divides v;41 fort=1,2,...,r — 1.
We assume that every integer divides co. Similarly moving down we have a sequence
1 =0p <91 <dg <...<ds with similar properties. If we attach lengths to the compact
segments then we get a complete description of the tree S’. This is illustrated in Fig 4.
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We choose a point p in the intersection of the two axes. Choose p to be the point with
smallest height, fixed by ¢, unless s = 0, in which case no such p exists, in which case we
take p to be the point of largest height. Note that p will be at height ¢(a) + ¢(b) above
the point of lowest height where the two axes intersect. We assign the segment with index
v; the length u;. and the segment with index d; the length d;. Note that by our choice of
dop = 0 unless s = 0, in which case ug = 0 and dy = .

We show now that there is an F-tree in which F' is freely generated by a,b with
C =< ¢ >,c = aba"'b~'and the C-subtree S’ has the structure given by any such set of
data.

|
v | U, =00
|
|
U2 U2
U1 Uy

vo =1 | up=A - ¢(a) — ¢(b)

(51 dl

(52 d2

First take the F-tree Ty = T/ ~ where ~ is for A = ¢(a) + ¢(b) Since each ~-
equivalence class consists of points with the same values under ¢, it is clear that we can
regard ¢ as defined also on T;. Also segments in 77 can be divided into finitely many
subsegments - just as in 7" - in which ¢ is monotone. Consider a point at which ¢ changes
from being decreasing to increasing. This point will be a translate r of p, and will be fixed
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by a conjugate ¢; of ¢. The two incident segments (on which ¢ is decreasing and then
increasing) represent directions at r and there will be a smallest positive power ¢} which
takes one of these directions to the other. We say that the change in direction has index
u.

We define a relation ~ on T} as follows.

Let s,t € Ty and let [s,t] be the geodesic joining them. Then s ~ if ¢(s) = ¢(t) and
each internal local maxima M; for which ¢(M;) > ¢(s) satisfies

if ¢(M;) — ¢(s) > up + w1 + ... u;_1, then the index of M; is divisible by v,

and each internal local minima m; satisfies if ¢(s) — ¢(m;) > do+di + ... d;, then the
index of m; is divisible by d;,

In a similar way to that of ~ one can show that T = T}/ ~ is an F-tree. In T,
consider the axis of ;. Let s be a point lying height ug + w1 + ...+ u; below p. Consider
the segment [s, c%is]. This is a path on which ¢ has a unique maximum at p with index
v;. Clearly ¢(p) — ¢(s) =wo+u1 +...+uj >up+u; +...+u;j_1 and so the condition
is satisfied for j and s ~ c¢¥s. if ¢(s') < ¢(s), i.e. if ¢’ is a point lying further below p
the condition would not be satisfied for j + 1 and so s’ % ¢%s’. Thus ug +u1 + ... + u,
is the length of the largest segment of the z-axis fixed by c¢"7. It follows easily that the
C-subtree S’ of T has the required structure.

One can use a similar argument to that for 77 to show that if S is any G-tree in which
the C subtree S’ has a structure with a given set of data then the morphism 6; : Ty — S
factors through Tp where the data for &~ is that determined by S’. But the morphism
To — S must be an isometry. This is because if it is not injective then there must be
folding in some “up-down” path of Tb which would only be achieved by extra folding
than that given by ~ in 7;. But we will show that this would give different data for
the subtree S’. Let w : T} — T3 be the natural morphism. We know that there is a
morphism ¢ : T, — R which factors through S. Consider an “up-down” path in 75,
i.e. a geodesic [s,t] split up into subsegments on which ¢ is monotone. Consider a local
maxima M. Either this comes from a local maxima in 77 or there are points s', ¢’ € T}
such that 7(s") = 7w(t') = M and there are small subsegments [s”.s'], [t,t"] of [s,t] which
are mapped by 7 to segments of T5 which intersect only in M. Since the condition for ~
is satisfied by s’,# but for no other pair chosen one from each of these segments, there
must be a local maxima M, € [s’,¢'] with index divisible by v;, but not by v;41, for which
d(M;)—¢(s") = up+u1+...+u;. It is conceivable that this happens for two different M{s
for the same local maxima M. Thus for every maxima M we can associate at least one
index v;. Similarly we can associate at least one index d; with each local minima of [s, t].
If the morphism Ty — S is not injective then there will be folding for some segment [s, t]
at some local maxima or minima. But if this is a maxima with associated index v; then
the value of u; can be increased in the relation ~ and we will still get an R-tree T/ ~
through which 6 : T; — S factors. When we consider the restriction to the respective
(C-subtrees we see that this cannot happen.

Thus the morphism 6’ : T, — S is injective. Since S is minimal with respect to
the action of G which is generated by a,b, it follows that ¢’ is an isometry. Also G is
isomorphic to F/N where N consists of all elements that fix every element of 77. If we
examine the action of C' on S we see that N will contain ¢™ where m is the least common



multiple of the labels - provided they are finite - of the non-compact segments of Y. If
either of these labels is oo then N is trivial. To see this recall that we have shown that if
S’ has no compact segments, i.e. it consists of two non-compact segments, one of which is
stabilized by ¢ and the other has trivial stabilizer, then the action of F' on T'/ ~ is faithful.
If the data for T has either non-compact segment with trivial stabilizer the the morphism
T — T’ factors through 7'/ ~ and so the action on 7" is faithful. Otherwise N contains ¢
where m is the least common multiple of the labels m,,, M, of the non-compact segments
of Y. The action of F' on the upper ends of the translates of the axis of a is that of F
on the cosets of < ¢+ >. Similarly the action on F' on the lower ends is that of F' on
the cosets of < ¢™4 >. It follows that if N’ is the normal closure of ¢, then F//N’ acts
faithfully on 7" and so N = N’. Notice that even after factoring out N to make the action
on S faithful, arc stabilizers will not be small. This is because the only small subgroups
of a Fuchsian group are cyclic.

We summarize our results.

Theorem 2. Let G be a group generated by elements a,b and let T be an R-tree on
which G acts faithfully by isometries. Suppose a,b are hyperbolic with lengths {(a), £(b)
respectively which are independent over the rationals. Suppose the axes of a and b meet
coherently in a non-empty segment of length A.
(i) If A < {(a) + ¢(b) then G is freely generated by a and b and the action is uniquely
determined by the values A, {¢(a) and £(b).
(ii) If A > {(a) + £(b) then either G is freely generated by a,b or

G =<a,b|(aba" b H" =1 >

for somen =1,2,.... If n =1 then G is free abelian and the action is by translation
on the real line R. In every case ¢ = aba~'b~! is an elliptic element. If arc stabilizers
are small, then in fact they are trivial : if G is free or if n > 1, then A = £(a) + £(b)
and there is only one such action for each such G and for each pair of values of {(a)
and ((b).

(iii) There are non-small actions for any value of A > ¢(a)+¥¢(b). Let C =< ¢ >, then such
an action is determined by the structure of the minimal C'-subtree of T' containing the
axis of a. This subtree is simplicial and can be specified by a finite set of data.

Triples of isometries

Now we examine the case n > 3. In fact we consider the case n = 3. This can be
generalized to n > 3 fairly easily. Thus F' is freely generated by x1, x2, x3. For small values
of A, T'/ ~ will be simplicial. For large values it will not be simplicial, and so a natural
question is for what value of A does the transition takes place.

Lemma 1. Let S be an R-tree, and let a,b,c be hyperbolic isometries with axes A, B,C
and lengths ((a) > ((b) > {(c). Suppose ANB = ANC = BNC be a segment
[d,u] of positive length A > {(c) and if we orient this segment from d to u, this is the
positive translation direction for all three isometries, i.e. they meet coherently. Then
a’ =ac™1,b =bc™!,c = c are also hyperbolic isometries meeting coherently. If A’, B', C’
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are the corresponding axes, then A’ N B' = A NC’' = B'NC’ is a segment [d’',u] of
length A" = A — {(c). Also l(a’) = l(a) — £(c),L(b') = £(b) — £(c),L(c") = £(c) so that
0a)+ L)+ 4(d) —2A" = l(a) + £(b) + £(c) — 2A.

Proof. this follows easily from [C] Lemma 3.3.4.

The above lemma suggests a process of repeatedly carrying out Nielsen moves so that
the hyerbolic lengths of the triple of isometries and A are reduced. What happens to this
data is given in the following Lemma.

Lemma 2 . Lets; = (x;,¥i,2i,d;),i = 1,2,... be a sequence of 4-tuples of real numbers
defined inductively as follows:-
(i) x1,y1,21,d;1 are positive real numbers with x1 > y; > z1and x1,y;, 21 are independent
over the rationals.
(ii) The 3-tuple (x;11,Yi+1, zi+1) consists of the real numbers x; — z;,y; — z;, z; arranged
in decreasing order, and d;+1 = d; — 2;.

Then the sequence s; tends to a limit s = (x,0,0,d), in which x > 0. Also x > 0 if
and only if for some j and every v > j,x; > y; + 2;. If this happens, then for each such i,
r=x; —y; — 2 and d =d; —y; — 2;.

If x = 0 then 2d = 2d; — (z; + y; + z;) for every i

The proof is left as an exercise.

It follows from Lemma 1 that if we have a triple of isometries (a, b, ¢) satisfying the
hypotheses of the Lemma 1, and for which the lengths are independent over the rationals,
then we can use Nielsen moves to get a new triple of isometries (ac™1,bc™1, ¢), satisfying
the same hypotheses, except we may now have A < ¢(c¢). Of course we rearrange the triple
so that lengths are decreasing.

The lengths of two isometries of the triple and A are reduced by the same amount.
Thus the data (z1 = ¢(a),y1 = €(b),z1 = £(b),d; = A) is changed to (x2,ys, 22,ds) and
this will be the data for the situation of Lemma 1 unless dy < z5. If we keep repeating
this process then we obtain a sequence of data as in Lemma 2 We will investigate when
we end up with di < 2. From Lemma 2 this will happen if for some ¢, x; > y; + z; > d;
or if there is no such i and 2A = 2d; < (z1 +y1 + 21). If A < ¢(c), then we can adapt
the argument for pairs of isometries to show that in this case a, b, ¢ are free generators of
a subgroup G of the group of isometries of S. Also G acts simplicially on a subtree of
S which is uniquely specified by the data ¢(a),£(b),#(c), A, and it is the tree T/ ~. One
argues using a space X, as in Fig 2, with an extra 1-cell v joining the same pair of points
as the other 1-cells.

We show in the following example that there are triples of values for x; = f(a),y; =
0(b), z1 = £(c) for which the sequence never give a 3-tuple in which z; > y; + z;.
Example. Let 1 = 1—a+a?,y; = a, 2 = 1, in which « is the real root of 23 —2x% 42z —2.
2o = 1,y = a® —a,2s = a — 1. Let s/; be the 3-tuple which is the first three terms of
si, then (1,0? —a,a—1) = (a —1)(1 — a + a?),a,1), and s's = (o — 1)s’; As in the
original triple 1 < y; + 2; this will be the case at any stage in the sequence of moves,
since s’; = (a — 1)"!s’;. We know from the Lemma that 2d = 2A — (¢(a) + £(b) + £(c) =
2d; — (x; +y; +x;). If d < 0 then eventually z, > d,, and the action is simplicial. If d = 0,
ie. if A =1(2+4 a?), then one has a non-simplicial action, which seems to be free and a
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Levitt type action. This contrasts with the case n = 2, when the commutator aba='b~!
was elliptic.

The action given by this example is constructed in a different way in [L] p.661.
If A > 1(2+a?), then the action is not free. To see this note that d > 0 and for large

values of i,d; > x; + y;. It follows from our discussion for n = 2 that stabilizers are not

small.
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