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Chapter 1

Probability

This chapter builds foundations in probability, the main mathematical tool behind

queues and stochastic simulation. Because it is more foundational than an end in

itself, the examination under-emphasizes it. Guidance for the examination is given

in Chapter 5.

1.1 Preliminaries

The expression “x := y” defines x as being equal to y, while “x =: y” defines y as

being equal to x.

1.2 Probability Spaces*

A random experiment involves an outcome that cannot be determined in advance.

The set of all possible outcomes is called the certain event and denoted Ω.

An event is a subset of the certain event. An event A is said to occur if and only

if the observed outcome ω of the experiment is an element of the set A.

Example 1.1 Consider the experiment of flipping a coin once. The two possible

outcomes are “Heads” and “Tails”, and a natural certain event is the set {H, T}.

Given a certain event Ω and an event A, the event that occurs if and only if A

does not occur is called the complement of A and is denoted Ac. That is,

Ac = {ω ∈ Ω : ω /∈ A}.

Given two events A and B, their union is the event “A or B”, also written

A ∪B = {ω ∈ Ω : ω ∈ A or ω ∈ B}.
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The intersection of A and B is the event “A and B”, also written

A ∩B = {ω ∈ Ω : ω ∈ A and ω ∈ B}.

The operations of complement, union, and intersection arise frequently and give new

events, for which we observe the following identities:

(A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc. (1.1)

The first says “not (A or B)” equals “(not A) and (not B)”. The second says “not (A

and B)” equals “(not A) or (not B)”.

The set containing no elements is called the empty event and is denoted ∅. Note

that Ωc = ∅ and ∅c = Ω.

Event A is said to imply event B, written A ⊂ B, if every element of A belongs

to B; in other words, the occurrence of A makes the occurrence of B certain. This is

also written as B ⊃ A.

The union of several (i.e., more than two) events means the occurrence of any one

of the events, and the intersection of several events means the occurrence of all the

events.

Two events A and B are called disjoint if they cannot happen simultaneously;

equivalently, they have no elements in common, i.e.,

A ∩B = ∅,

A family of events is called disjoint if every pair of them are disjoint.

The following is our definition of probability.

Definition 1.2 Let Ω be a certain event and let P be a function that assigns a number

to each event. Then P is called a probability provided that

1. For any event A, 0 ≤ P(A) ≤ 1;

2. P(Ω) = 1;

3. for any sequence A1, A2, . . . of disjoint events,

P(∪∞i=1Ai) =
∞∑
i=1

P(Ai) (1.2)

The following summarises properties of a probability P.

Proposition 1.3 (a) P(∅) = 0.

2



(b) For any event A, P(A) + P(Ac) = 1.

(c) If events A and B satisfy A ⊂ B, then P(A) ≤ P(B).

(d) If events A1, A2, . . . An are disjoint, then P(∪n
i=1Ai) =

∑n
i=1 P(Ai).

Proof. Left as exercise. 2
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1.3 Random Variables and Distributions

Definition 1.4 A random variable (rv) X with values in the set E is a function that

assigns a value X(ω) in E to each outcome ω in Ω.

We will refer to the set E as the support of X. In all cases of interest to us, E is

one of the following: (a) the set of integer numbers; (b) the set of real numbers; (c)

a subset of these sets.

Any set containing a support is also a support, so it is most useful to prescribe the

smallest possible support. An example of a discrete random variable is the number,

X, of successes during n independent trials each having success probability p, i.e.,

X has the Binomial(n, p) distribution. Here, the smallest possible support is the set

{0, 1, . . . , n}.

Example 1.1 (continued) Define X by putting X(H) = 1, X(T ) = −1. Then X

is a random variable with support {−1, 1}.

Notationally, we generally abbreviate P({ω : X(ω) ≤ b}) as P(X ≤ b).

The function F defined by

F (b) = P(X ≤ b), −∞ < b <∞

is called the (Cumulative) Distribution Function of the random variable X. We call

F in short the cdf of X.

Example 1.1 (continued) Suppose the probability of “Heads” is 0.6. We have

P(X = −1) = P({T}) = 1− P({H}) = 0.4, P(X = 1) = P({H}) = 0.6,

and thus the cdf of X is

F (b) = P(X ≤ b) =


0 b < −1,
0.4 −1 ≤ b < 1,
1 1 ≤ b.

(1.3)

A cdf has the following properties.

Proposition 1.5 If F is a cdf of a finite-valued rv, then:

(a) F is nondecreasing.

(b) F is right-continuous .

(c) F (−∞) = limx→−∞ F (x) = 0 .
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(d) F (∞) = limx→∞ F (x) = 1 .

Proof. We only prove (a). If a ≤ b, then

{X ≤ a} ⊂ {X ≤ b} (1.4)

and Proposition 1.3(c) gives

P(X ≤ a) ≤ P(X ≤ b). (1.5)

2

1.3.1 Discrete distributions

In Example 1.1 the support had two points. Consider now the general case of a

discrete rv X with support the ordered points

x1 < x2 < x3 < . . . . (1.6)

Then, for each k = 1, 2, 3, . . ., the cdf at xk is the sum of the probabilities associated

to the values less than or equal to xk:

F (xk) =
∑

j:xj≤xk

P(X = xj) =
∑
j:j≤k

P(X = xj).

Because each term in the sum is non-negative, we have F (x1) ≤ F (x2) ≤ . . .. Thus,

the cdf is the non-decreasing step function

F (x) =



0 x < x1

F (x1) x1 ≤ x < x2

F (x2) x2 ≤ x < x3
...
F (xk) xk ≤ x < xk+1
...

(1.7)

In the opposite direction, the individual probabilities follow from the cdf as P(X =

xk) = F (xk)− F (xk−1) for all k.

1.3.2 Continuous distributions

A major class of non-discrete distributions has a support that is not countable, mean-

ing it cannot be enumerated, i.e., cannot be represented as in (1.6). A typical such

support is any subinterval of the real numbers, i.e, [a, b], with a < b. (Enumerating
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this set is impossible because for any real number x1 > a, there exists a real number

x2 such that a < x2 < x1.)

Suppose further that F is differentiable at x, i.e., the left- and right-derivatives of

F at x are equal, i.e., we can define

F ′(x) = lim
ε→0+

F (x + ε)− F (x)

ε
= lim

ε→0+

F (x)− F (x− ε)

ε
= lim

ε→0+

F (x + ε)− F (x− ε)

2ε
.

(1.8)

The last enumerator is P(x − ε < X ≤ x + ε), so F ′(x) describes the “probabilistic

intensity” of falling “arbitrarily close to x”. For this reason, it is called the probability

density function (pdf) (of F and of the associated rv).

The cdf F and its pdf F ′ are mirrors of each other: they are linked by a differ-

entiation step when going from F to F ′ (by definition); and they are linked by an

integration step when going from F ′ to F (this is said by the Fundamental Theorem

of Calculus (FTC)). The integration link is

F (b) = F (b)− F (−∞) =

∫ b

−∞
F ′(t)dt, −∞ < b <∞. (1.9)

Alternatively, we could calculate the function 1 − F (b) = P(X > b) (called the tail

probability or complementary cdf ) as

1− F (b) = F (∞)− F (b) =

∫ ∞

b

F ′(t)dt, −∞ < b <∞.

The integral in (1.9) is the area under the graph of F ′ between −∞ and b. If F ′

changes form anywhere there, then the integral (area) is typically calculated piecewise.

The following is a minimal example illustrating this.

Example 1.6 Equiprobable outcomes on [2, 4] ∪ [5, 6] (i.e., the union of these real

intervals) are described by the pdf

f(x) =

{
1
3
, 2 ≤ x ≤ 4

1
3
, 5 ≤ x ≤ 6

F (x) is calculated as the area piecewise. The answer is

F (x) =


x−2

3
, 2 ≤ x ≤ 4

2
3
, 4 < x ≤ 5

2
3

+ x−5
3

, 5 < x ≤ 6

The Uniform Distribution Let a < b. The Unif(a, b) distribution has support

[a, b] and constant pdf. Thus, the cdf F satisfies F (a) = 0 and F (b) = 1. The
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constant value of the pdf, call it c, is determined from

1 = F (b) =

∫ b

a

cdt = c(b− a),

i.e., c = 1/(b− a). Thus,

F (x) =

∫ x

a

1

b− a
dt =

x− a

b− a
, a ≤ x ≤ b. (1.10)

In particular, the Unif(0, 1) distribution has cdf F (x) = x and pdf f(x) = 1 with

support [0, 1].

The Exponential Distribution Let λ > 0. We write X ∼ Expon(λ) and read

“X has the exponential distribution with rate λ” to mean that X has support [0,∞)

and has tail probability

P(X > x) = e−λx, x > 0. (1.11)

Equivalently, the cdf is

P(X ≤ x) = 1− e−λx, x ≥ 0,

and the pdf is
d

dx
(1− e−λx) = λe−λx, x > 0.
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1.4 Conditional Probability

Let Ω be a certain event and let P be a probability on it.

Definition 1.7 Let B be an event such that P(B) > 0. For any event A, the condi-

tional probability of A given B, written P(A|B), is a number satisfying

(a) 0 ≤ P(A|B) ≤ 1;

(b) P(A ∩B) = P(A|B)P(B).

Remark 1.8 Fix B such that P(B) > 0. Then, the P(A|B), viewed as a function of

A, satisfies all the conditions in Definition 1.2. That is:

1. 0 ≤ P(A|B) ≤ 1;

2. P(Ω|B) = 1;

3. For any sequence A1, A2, . . . of disjoint events, P(∪∞i=1Ai|B) =
∑∞

i=1 P(Ai|B).

That is, the probability P(·|B) satisfies all the usual properties as the unconditional

probability, P(·).

The intuition is: knowledge that the event B has occurred forces us to revise

the probability of all events. A key exception to this happens when A and B are

independent, as will be seen shortly.

We now give a fundamental idea for probabilistic calculations.

Definition 1.9 (Partition.) The set of events {B1, B2, . . .} is called a partition if it

satisfies:

1. (Disjointness.) Bi ∩Bj = ∅ for all i 6= j (Bi and Bj cannot happen simultane-

ously).

2. (Exhaustiveness.) ∪∞i=1Bi = Ω. (One of the Bi must happen.)

Theorem 1.10 (Law of Total Probability (LTP)). Let B1, B2, . . . be a partition, i.e.,

the Bi are disjoint and exhaustive. Then, for any event A,

P(A) =
∞∑
i=1

P(A|Bi)P(Bi). (1.12)
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Proof. Write

A = ∪∞i=1(A ∩Bi) (1.13)

and take probabilities, noting that the A∩Bi are disjoint because the Bi are disjoint,

to obtain

P(A) =
∞∑
i=1

P(A ∩Bi).

Finally, replace P(A ∩Bi) by P(A|Bi)P(Bi). 2
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1.5 Independence

Definition 1.11 Events A and B are said to be independent if

P(A ∩B) = P(A)P(B). (1.14)

If (1.14) holds, then Definition 1.7 gives P(A|B) = P(A) (and also P(B|A) =

P(B)), i.e., the conditional probabilities equal the unconditional ones. The intuition

behind independence is that the occurrence of one event does not contain information

about the occurrence of the other.

Definition 1.12 The random variables X1 and X2 are said to be independent if

the events {X1 ≤ b1} and {X2 ≤ b2} are independent for all b1, b2. (1.15)

It turns out that (1.15) implies that all “interesting” events about X1 and X2 are

independent (e.g., events where “≤” is replaced by “≥” or by “=” are also indepen-

dent).
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1.6 Mean and Variance, and Sums

Definition 1.13 Suppose X is a discrete random variable with support {1, 2, 3, . . .}
and its distribution is P(X = i) = pi for all i. The expected value (mean) of X is

E[X] = 1p1 + 2p2 + 3p3 + · · · =
∞∑
i=1

ipi. (1.16)

E[X] can be seen to be the area on the (x, y) plane, bounded below by the cdf of

X, bounded above by the line y = 1, and bounded to the left by the line x = 0.

Definition 1.14 Suppose X is a random variable with mean µ. The variance of X

is the mean square deviation of X from its mean µ:

Var(X) = E[(X − µ)2]. (1.17)

Here is how summation of random variables affects the mean and variance.

Fact 1.15 1. For any random variable X and constants a, b,

E[a + bX] = a + bE[X]. (1.18)

2. For any random variables X1 and X2,

E[X1 + X2] = E[X1] + E[X2]. (1.19)

Fact 1.16 If X1 and X2 are independent random variables, then

Var(X1 + X2) = Var(X1) + Var(X2). (1.20)

Properties (1.19) and (1.20) extend to any sum of finitely many random variables,

as can be seen by mathematical induction; that is,

E[X1 + X2 + . . . + Xn] = E[X1] + E[X2] + . . . + E[Xn],

Var(X1 + X2 + . . . + Xn) = Var(X1) + Var(X2) + . . . + Var(Xn) for independent X’s.
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1.7 Probability Generating Functions

Definition 1.17 Let X be a discrete random variable with support {0, 1, . . .} and

probabilities pn := P(X = n), where
∑∞

n=0 pn = 1. The probability generating func-

tion (pgf) of X is the function

G(z) =
∞∑

n=0

pnz
n, 0 ≤ z ≤ 1. (1.21)

The pgf contains the distribution of X, as stated below.

Fact 1.18 The function G and its derivatives of all orders are continuous functions

on [0, 1].

Write the n-order derivative of G as G(n), and put G(0) = G. We have:

G(1)(z) =
d

dz
G(z) =

∞∑
n=0

d

dz
pnz

n =
∞∑

n=1

pnnzn−1, (1.22)

G(2)(z) =
d

dz
G(1)(z) =

∞∑
n=1

d

dz
pnnzn−1 =

∞∑
n=2

pnn(n− 1)zn−2. (1.23)

The derivatives of higher order work analogously. At z = 0, powers 0k appear; they

equal zero unless k = 0, where 00 = 1. That is, we get

G(0) = p0, G(1)(0) = p1, G(2)(0) = 2p2,

and, in the same way, G(n)(0) = n!pn for all n > 0. We now see all of the following:

Fact 1.19 The pgf gives the distribution as

p0 = G(0), pn =
G(n)(0)

n!
, n = 1, 2, . . . . (1.24)

Fact 1.20 G(1) =
∑∞

n=0 pn = 1, directly from (1.21).

Fact 1.21 The pgf determines the mean of X as

E[X] =
∞∑

n=1

pnn = G(1)(1) from (1.22).
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1.8 Two Major Limit Theorems

For independent and identically distributed (iid) random variables X1, X2, . . . , there

are strong theorems about their average and their sum, as the number n being aver-

aged or summed goes to infinity. The first theorem is about the average.

Theorem 1.22 (Strong Law of Large Numbers (SLLN)) If X1, X2, . . . are indepen-

dent and identically distributed (iid) random variables with finite mean µ, then their

average, X̄n = 1
n

∑n
i=1 Xi, converges to µ in a probabilistic sense:

P
(

lim
n→∞

X̄n = µ
)

= 1. (1.25)

In words, the average converges to the mean with probability one, or w.p. 1.

The second theorem is about the sum, Sn = X1 + X2 + · · · + Xn, as n goes to

infinity. Here is an example where the theorem is useful.

Example 1.23 A person, JD, arrives at a single-server system and finds n = 100

customers ahead, one of them already in service. Suppose the individual customer

service (processing) times are iid random variables X1, X2, . . ., with mean µ = 5 and

variance σ2 = 4. Can we approximate JD’s waiting time in queue?

In general, the in-service customer has a remaining service time, Srem, whose

distribution depends on the elapsed time in service (unless service times are exponen-

tially distributed, as we will see). But provided n is not small, the sum of n service

times should not be affected too much by any one. Let us then pretend the in-service

customer’s remaining service time is like a “fresh” one, so JD’s waiting time is the

sum S100 = X1 + X2 + . . . + X100, where the Xi are iid with mean 5 and variance 4.

One approximation could be based, roughly, on the SLLN:

S100 = 100
1

100
(X1 + . . . + X100)︸ ︷︷ ︸

≈µ=5

≈ 500. (1.26)

Using only the mean service time, we got a deterministic approximation of S100.

The Central Limit Theorem, (1.27) below, says that the distribution of Sn is

approximately Normal with mean

E[Sn] = nµ by (1.19)

and variance

Var(Sn) = nσ2 by (1.20).

Thus, S100
approx∼ N(500, 400), where

approx∼ means “is distributed approximately as”,

and N(µ, σ2) denotes a Normal distribution with mean µ and variance σ2.

13



The CLT is recorded below.

Theorem 1.24 (Central Limit Theorem (CLT)) Let X1, X2, . . . be independent and

identically distributed (iid) random variables with mean µ and variance σ2 <∞, and

put Sn = X1 + X2 + · · ·+ Xn. Then

Sn − nµ

σ
√

n

D→ N(0, 1) as n→∞,

where
D→ means convergence in distribution. More practically,

Sn
approx∼ N(nµ, nσ2)

D
= nµ︸︷︷︸

deterministic

+ σ
√

nN(0, 1)︸ ︷︷ ︸
stochastic

as n→∞, (1.27)

where
D
= means equality in distribution 1.

Remarks:

1. No assumption is made about the distribution of the Xi.

2. Assuming µ 6= 0, we can see that as n → ∞, the stochastic effect becomes (in

the limit) negligible relative to the deterministic effect. To see this, divide the

multiplier of the stochastic term N(0, 1) over the deterministic term:

√
nσ

nµ

and note this goes to zero.

1Recall that X ∼ N(0, 1) is equivalent to aX + b ∼ N(b, a2), for any a, b.
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1.9 Questions / Exercises

Indications: “P”: proof; “S”: short answer that refers appropriately to definitions.

1. Two standard dice are thrown, and the outcomes X1, X2 (a number in {1, 2, . . . 6}
for each) are recorded. Assume X1 and X2 are independent. Are X1 and X1+X2

independent random variables? Explain carefully.

2. For a random variable with pdf f(), the expected value can be defined as

µ = E[X] =

∫ ∞

−∞
xf(x)dx. (1.28)

Its variance can then be defined as

Var(X) =

∫ ∞

−∞
(x− µ)2f(x)dx. (1.29)

Compute the mean and variance of the exponential distribution seen in Section
1.3.2. Hint: Note the identity Var(X) = E[(X − µ)2] = E[X2 − 2µX + µ2] =
E[X2]− 2µE[X] + µ2 = E[X2]− µ2.

3. Out of n servers in a system (e.g., persons answering calls at a call center), seen
at a certain time point, say at noon, some are temporarily absent (e.g., they are
at the bathroom). Assume individual-server absences occur independently of
each other with probability p. Let N be the number of absent servers. Express
the mean and variance of N in terms of n and p and use the CLT to approximate
the distribution of N .

4. In Example 1.23, let the number of customers ahead (number of rv’s in the sum)
be n. Express the probability that the approximated (i.e., normally-distributed)
waiting time is at least 10% above its mean, writing it as a function of the N(0, 1)
cdf and n, then compute it explicitly for n = 4, 16, 64, and 256. Determine the
limit of this as n→∞.

5. (S) Suppose a customer arrives at a system where multiple servers each serve
their own queue and chooses to join the shortest queue. Suggest assumptions,
focusing on the customer service times seen as random variables, that would
explain this customer behaviour. Strive for the weakest assumption(s) possible.
Then, assuming shorter waiting is preferred, suggest a situation where join-the-
shortest queue would not necessarily make sense.

6. (P)

(a) Let X and Y be independent random variables, each with support the
integer numbers. Show that

E[XY ] = E[X]E[Y ]. (1.30)

Hint : Put Ai := {X = i} and Bj := {Y = j}. Use the fact that Ai and
Bj are independent events for all i and j.

(b) Suppose X1 and X2 are rvs, and let µ1, µ2 be their respective means.
Observe

Var(X1 + X2) = E[(X1 − µ1 + X2 − µ2)
2].

Show that when X1 and X2 are discrete and independent, the above equals
Var(X1)+Var(X2). Hint: expand the square appropriately, and use prop-
erties of E[], including (1.30).
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7. (P) Throughout, X is a real-valued random variable with cdf F , and b is a
real (number). We give an idea why F is right-continuous at b (the result in
Proposition 1.5(b)). If the events A1, A2, . . . “decrease to” A, meaning that
A1 ⊃ A2 ⊃ A3 ⊃ . . . and A = ∩∞n=1An, then it can be shown that

P(A) = lim
n→∞

P(An). (1.31)

Now, note that the events An = {X ≤ b + 1/n}, n = 1, 2, 3, . . ., decrease to the
event {X ≤ b}. Applying (1.31),

F (b) = P(X ≤ b) = lim
n→∞

P(An) = lim
n→∞

F (b +
1

n
)

i.e., F is right-continuous at b.

(a) If the events A1, A2, . . . “increase to” A, meaning that A1 ⊂ A2 ⊂ A3 ⊂ . . .
and A = ∪∞n=1An, then again (1.31) holds. Using this property, show that

P(X < b) = F (b−) (1.32)

where F (b−) = limx→b− F (x), the left-limit of F at b.

(b) Show that
P(X = b) = F (b)− F (b−). (1.33)

(c) Define X to be a continuous random variable if

P(X = b) = 0, all b. (1.34)

Restate this definition via a property of F , the cdf of X.

1.10 Solutions to Exercises

1. Short argument: as X1 + X2 contains X1, we do not expect X1 and X1 + X2 to
be independent. As a more careful argument, we show one conditional probability
about X1 + X2, given an event about X1, that is different from the unconditional
one: P(X1 + X2 = 8|X1 = 1) = 0, versus the (easily seen) P(X1 + X2 = 8) > 0.
The inequality of the two shows that independence fails.

2. We need the integration-by-parts rule 2∫ b

a

f(x)g′(x)dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′(x)g(x)dx. (1.35)

where f ′(x) = d
dx

f(x), and likewise for g. The calculation is:

E[X] =

∫ ∞

0

yλe−λydy =
1

λ

∫ ∞

0

x︸︷︷︸
f(x)

e−x︸︷︷︸
g′(x)

dx

2This is obtained from f(x)g(x)
∣∣b
a

=
∫ b

a
(fg)′(x)dx =

∫ b

a
f ′(x)g(x)dx +

∫ b

a
f(x)g′(x)dx.
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(change of variable x = λy), where the last integral is

I :=

∫ ∞

0

xe−xdx = x(−e−x)
∣∣∞
0
−
∫ ∞

0

1 · (−e−x)dx = 0 + e−x
∣∣∞
0

= 1,

(by (1.35) with f(x) = x, g(x) = −e−x, a = 0, b =∞). Thus, E[X] = 1/λ.

Now, calculate E[X2] using similar steps:

E[X2] =

∫ ∞

0

y2λe−λydy =
1

λ2

∫ ∞

0

x2︸︷︷︸
f(x)

e−x︸︷︷︸
g′(x)

dx,

(again x = λy), and the last integral is, using (1.35) with f(x) = x2 and g, a, b as
above, ∫ ∞

0

x2e−xdx = x2(−e−x)
∣∣∞
0
−
∫ ∞

0

(2x)(−e−x)dx = 0 + 2I = 2.

Thus, E[X2] = 2/λ2, and now Var(X) = 2/λ2 − (1/λ)2 = 1/λ2.

3. Let Ij be random, taking value 1 if server j is absent, and 0 otherwise. The number
of absent servers is N = I1 + I2 + . . . + In. By assumption, the Ij are independent
and identically distributed, where P(I1 = 1) = p, so P(I1 = 0) = 1− p. The CLT

gives N
approx∼ Normal(E[N ], Var(N)), where

E[N ] = nE[I1]

Var(N) = nVar(I1)

E[I1] = 1 · p + 0 · (1− p) = p

Var(I1) = (1− p)2 · p + (0− p)2(1− p) = p(1− p).

4. By the CLT, the approximated waiting time when there are n customers ahead is
X ∼ N(nµ, nσ2), or equivalently X−nµ√

nσ
∼ N(0, 1).

The exercise inadvertently asked about the event “X is 10% above its mean”. This
event has probability zero, as will be seen. Now we calculate the probability that
“X ≥ 10% above its mean”, i.e., {X ≥ 1.1nµ}.

P(X ≥ 1.1nµ) = P(X > 1.1nµ) = P
(

X − nµ√
nσ

>
0.1nµ√

nσ

)
= 1− Φ

(
0.1nµ√

nσ

)
where Φ() is the N(0, 1) cdf. In the first step we used P(X = 1.1nµ) = 0. 3

As n → ∞, the argument inside Φ goes to ∞, so the P() goes to 1 − Φ(∞) =
0. For calculations, I used matlab and the code “n=[4 16 64 256]; proba= 1
- normcdf(0.1*5*n./(sqrt(4*n)))”. The probabilities are, in order, 0.3085,
0.1587, 0.0228, and 0.00003167.

5. Assume first-come first-serve discipline and let ni be the number of people at server
i upon arrival of a test customer X. Assume X joins one server immediately, and
does not switch to another server. If service times are identically distributed, then,

3this follows from (1.34) and the continuity of the normal distribution.

18



by (1.19), the mean waiting time of X at server i is nib, where b is the mean service
time. Minimising the mean waiting time is then equivalent to minimising ni across
i, i.e., joining the shortest queue. Independence of service times is not necessary
in this argument. If a server tends to be “faster” than others, then the assumption
“identically distributed service times across servers” does not seem sensible. Note:
The argument generalises: if the mean service time (per customer) at server i is
bi, then the mean waiting time at i is nibi, and we could minimise this.

6.(a)

E[XY ] =
∑

i

∑
j

ijP(X = i, Y = j). (1.36)

Using the independence, this equals
∑

i

∑
j ijP(X = i)P(Y = j) =

∑
i iP(X =

i)
∑

j jP(Y = j) = E[X]E[Y ].

Note: it might be more natural to only sum the distinct outcomes of XY , unlike
(1.36) above, but this again results in (1.36), as we now explain. For any k, write
{XY = k} as the union (logical “or”) of disjoint events ∪(i,j):ij=k{X = i, Y = j}
(for example, {XY = 3} = {X = 1, Y = 3} ∪ {X = 3, Y = 1}). Thus
P(XY = k) =

∑
(i,j):ij=k P(X = i, Y = j), and (1.36) follows from

E[XY ] =
∑

k

kP(XY = k)

=
∑

k

∑
(i,j):ij=k

ijP(X = i, Y = j) =
∑

i

∑
j

ijP(X = i, Y = j).

(b) (X1 − µ1 + X2 − µ2)
2 = (X1 − µ1)

2 + (X2 − µ2)
2 + 2(X1 − µ1)(X2 − µ2). The

mean of this equals

E[(X1 − µ1)
2] + E[(X2 − µ2)

2] + 2E[(X1 − µ1)(X2 − µ2)] by (1.19) and (1.18)

= Var(X1) + Var(X2) + 2E[X1 − µ1]E[X2 − µ2] by part (a) and Var() definition

and the rightmost term is zero (E[X1 − µ1] = E[X1]− µ1 = 0).

7.(a) The events An = {X ≤ b− 1/n}, n = 1, 2, . . . increase to the event {X < b}, so
(1.31) gives

P(X < b) = lim
n→∞

P(An),

which is limn F
(
b− 1

n

)
= F (b−).

(b) Now, {X ≤ b} = {X < b} ∪ {X = b}, and the events {X < b} and {X = b}
are disjoint, so, by Proposition 1.3(d), P(X ≤ b) = P(X < b) + P(X = b), i.e.,
F (b) = F (b−) + P(X = b), which is (1.33).

(c) From (1.33) and (1.34) for a fixed b, we have

F (b)− F (b−) = P(X = b) = 0,

i.e., F is left-continuous at b, which is equivalent to F being continuous at b be-
cause F is always right-continuous. The re-stated definition reads: a continuous
random variable is one whose cdf is an everywhere-continuous function.
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Chapter 2

Poisson and Related Processes

2.1 Preliminaries

Function Order If a function f satisfies

lim
h→0

f(h)

h
= 0,

then we write f(h) = o(h). Examples:

• h2: h2

h
= h→ 0, so h2 is o(h)

•
√

h:
√

h
h

= 1√
h
→∞, so

√
h is not o(h).

It is easy to check that:

1. f(h) = o(h)⇒ cf(h) = o(h) for any constant c.

2. f(h) = o(h), g(h) = o(h)⇒ f(h) + g(h) = o(h).

Later on, we encounter expressions such as λh + o(h), where λ > 0. These mean

to say that the o(h) term becomes negligible compared to λh in the limit as h → 0

(o(h)/h tends to zero, whereas λh/h = λ > 0). In particular, the sign in front of o(h)

is irrelevant, as

lim
h→0

λh + o(h)

h
= lim

h

λh− o(h)

h
= lim

h

λh

h
= λ.

(Notation: the limit detail is dropped after first use.)

Expansion of the Exponential Function Expanding the exponential function

around zero via Taylor’s Theorem with remainder of order 2,

ex = 1 + x + o(x). (2.1)
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The Poisson Distribution The discrete random variable N with support {0, 1, 2, . . .}
is said to have the Poisson distribution with mean λ if

P(N = n) = e−λ λn

n!
, n = 0, 1, 2, . . . . (2.2)

We write this in short N ∼ Poisson(λ). A calculation gives E[N ] = λ and Var(N) = λ.

21



2.2 Residual Time and Memoryless Property

We are interested in the time X until a specified event happens, having in mind

events such as customer arrivals and customer service completions. X is modelled as

a positive-real-valued random variable with known distribution.

Suppose an observer knows that, as of s time units ago, the event has not occurred.

Then, the time until the event occurs, called the residual time, is X−s. The observer

is then interested in the conditional distribution of X − s given X > s:

P(X − s > t|X > s) t ≥ 0. (2.3)

For s = 5, for example, this is the function

P(X − 5 > t|X > 5), t ≥ 0.

In general the distribution changes with s, reflecting a “memory” mechanism. A key

exception is described below.

Definition 2.1 A positive-valued random variable X is said to be memoryless if it

satisfies

P(X − s > t|X > s) = P(X > t), s, t ≥ 0. (2.4)

This says that the conditional distribution of X − s given X > s equals the

unconditional distribution of X; we write this in short

(X − s|X > s)
D
= X. (2.5)

Proposition 2.2 X satisfies (2.4) ⇔ X has an exponential distribution.

Proof of the “⇐”: Observe that

P(X − s > t|X > s) = P(X > s + t|X > s) =
P(X > s + t,X > s)

P(X > s)
=

P(X > s + t)

P(X > s)
;

now for X ∼ Expon(λ), i.e., satisfying (1.11), this equals

e−λ(s+t)

e−λs
= e−λt = P(X > t),

i.e. (2.4) holds. The proof of “⇒” is omitted.

Example 2.3 Suppose we are putting out (servicing) fires, and X is the time required

to service a fire, in minutes. Suppose we try to predict when the service will finish

given that service started s minutes ago, and our predictor is the mean remaining

service time,

g(s) = E[X − s|X > s].

First, we give a simulation method for estimating g(s).
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1. Fix s. Obtain random samples of (X − s|X > s), as in (2.6) below, indepen-

dently of others.

2. Calculate ĝ(s) as the sample average. This is an estimate of g(s).

How do we obtain random samples of (X − s|X > s)? The simplest method is:

Sample (randomly) X; if X > s, record X − s; otherwise, reject (no record is kept).

(2.6)

The distribution of X can affect g(s) a lot. Suppose X ∼ N(40, 100), a Normal

distribution with mean 40 and standard deviation 10. 1 million trials of the form

(2.6) gave the following estimates (which are accurate for our purpose):

s ĝ(s)
20 20.5
30 12.9
40 8.0
50 5.2
60 3.7

In contrast, suppose X ∼ Expon(1/40), the Exponential distribution with the

same mean as the Normal, 40. Then, from (2.5), g(s) = E[X] = 40 for all s. This is

very different: for example, for a service that began s = 40 minutes ago, the Normal

gives a mean remaining service time of 8.0, much smaller than the Exponential’s 40.
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2.3 Counting Processes

How do we model events occurring “randomly” over time? Let t denote time, and let

it range from 0 to infinity.

One approach focuses on the (cumulative) count of events over time:

Nt = number of events that occur after time 0 and up to time t, t ≥ 0.

Another approach focuses on the times of events:

Sn = time of occurrence of n-th event, n = 1, 2, . . . , (2.7)

or, equivalently, the inter-event times (times between successive events)

X1 = S1 = time of 1st event

X2 = S2 − S1 = time between 1st and 2nd event

. . . = . . .

Xn = Sn − Sn−1 = time between the (n− 1)-st and n-th event, n = 1, 2, 3, . . .

(Put S0 = 0 so that Xn = Sn − Sn−1 for n = 0 as well.) We make some natural

assumptions:

1. N0 = 0; that is, the counting starts at time zero.

2. Nt is integer-valued, and it is a nondecreasing function of t.

3. Xn > 0 for all n; that is, events occur one at a time–two events cannot happen

at the same time.

As the counts (Nt : t ≥ 0) and the event times (Sn, n = 0, 1, 2, . . .) are alternative

descriptions of the same (random) experiment, they are connected by

{“time of the n-th event” > t} ⇔ {“# events in (0, t]” < n} for all n and t

i.e., we have the equality of events

{Sn > t} = {Nt < n} (2.8)

and

{Nt = n} = {Sn ≤ t < Sn+1} (2.9)

for any n = 0, 1, 2, . . . and t ≥ 0. These event equalities are fundamental to calcula-

tions later on.
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2.4 The Poisson Process

We study a special counting process, the Poisson, that is analytically simple and

commonly used.

2.4.1 Distribution of counts (the Nt process)

For s, t ≥ 0, we have by definition

Ns+t −Ns = # (number of) events that occur after s and up to s + t.

This is the count or increment on (the time interval) (s, s + t].

The description is via the (probabilistic) behaviour of such counts, particularly on

disjoint (non-overlapping) intervals.

Definition 2.4 The counting process (Nt : t ≥ 0) is called a Poisson process of rate

λ if:

1. (Independence) The counts on disjoint intervals are independent rv’s.

2. (Identical distribution, or stationarity) The distribution of Ns+t − Ns depends

on the interval’s length, t, and not the startpoint, s.

3. (Small-interval behaviour)

P(Nh = 1) = λh + o(h), P(Nh ≥ 2) = o(h), as h→ 0. (2.10)

Here is another definition:

Definition 2.5 The counting process (Nt : t ≥ 0) is called a Poisson process of rate

λ if:

1. (Independence) The counts on disjoint intervals are independent rv’s.

2. (Poisson distribution) The count in any interval of length t (t ≥ 0) has the

Poisson distribution with mean λt. That is, for any s, t ≥ 0,

P(Ns+t −Ns = n) = P(Nt = n) = e−λt (λt)n

n!
, n = 0, 1, . . . (2.11)

For s, t ≥ 0, the intervals (0, s] and (s, s + t] are disjoint, so Ns and Ns+t−Ns are

independent.

Theorem 2.6 Definition 2.4 ⇔ Definition 2.5.

25



Proof. Proof of “⇒”. It suffices to show that the functions

pn(t) = P(Nt = n), t ≥ 0, n = 0, 1, 2, . . . ,

are as specified on the right of (2.11). We will show this by writing and solving

differential equations linking the pn(t) and their derivatives, (d/dt)pn(t), across n. As

N0 = 0, these functions at time 0 are:

p0(0) = 1, pn(0) = 0, n = 1, 2, . . . .

We put p−1(t) = 0, all t; this function has no physical meaning and serves to

simplify the notation.

Fix h > 0 and put Dh = Nt+h −Nt. Note Dh
D
= Nh, by the identical-distribution

assumption. Fix n. Then

{Nt+h = n} = {Nt = n, Dh = 0} or {Nt = n− 1, Dh = 1} or {Dh ≥ 2, Nt = n−Dh}
(2.12)

where the “or”’s are between disjoint events (as the value of Dh is different across).

Now note

P(Dh ≥ 2, Nt = n−Dh) ≤ P(Dh ≥ 2) = o(h) by (2.10).

Taking probabilities in (2.12) and using the above gives

pn(t + h) = P(Nt = n, Dh = 0) + P(Nt = n− 1, Dh = 1) + o(h), (2.13)

and the probabilities on the right can be written

P(Nt = n, Dh = 0) = P(Nt = n)P(Dh = 0) by independence

= pn(t)[1− λh + o(h)] by (2.10),

and, similarly,

P(Nt = n− 1, Dh = 1) = P(Nt = n− 1)P(Dh = 1) by independence

= pn−1(t)[λh + o(h)] by (2.10).

Thus (2.13) gives (substitute the above, re-arrange, and divide by h):

pn(t + h)− pn(t)

h
= −

(
λ +

o(h)

h

)
pn(t) +

(
λ +

o(h)

h

)
pn−1(t) +

o(h)

h
.

Now take limits as h ↓ 0 (i.e., h decreases to zero); the o(h)/h terms tend to zero, so

d

dt
pn(t) = −λpn(t) + λpn−1(t), n = 0, 1, 2, . . . . (2.14)
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To solve this set of differential equations, multiply both sides by eλt and re-arrange

to obtain:

λeλtpn−1(t) = eλt d

dt
pn(t) + λeλtpn(t) =

d

dt

(
eλtpn(t)

)
. (2.15)

The above can be solved for pn(t) in the order n = 0, 1, 2, . . ., as follows. For n = 0:

p−1(t) = 0, and analytical integration of (2.15) gives

0 =
d

dt

(
eλtp0(t)

)
⇒ eλtp0(t) = c⇒ p0(t) = ce−λt, t ≥ 0

for some constant c, and the requirement p0(0) = 1 gives c = 1. Now we use induction

on n. Assume

pn−1(t) = e−λt (λt)n−1

(n− 1)!
.

Putting this into the left of (2.15),

λntn−1

(n− 1)!
=

d

dt

(
eλtpn(t)

)
. (2.16)

Integrating analytically,

eλtpn(t) =
λntn

n!
+ c

for some constant c, and the condition pn(0) = 0 gives c = 0. This concludes the

induction step and the proof.

Proof of “⇐”: Using (2.11) and expressing the exponentials as in (2.1), we find

P(Nh = 0) = e−λh,

P(Nh = 1) = e−λhλh = λh + o(h)

P(Nh ≥ 2) = 1− P(Nh = 0)− P(Nh = 1) = 1− e−λh − e−λhλh = o(h).

2

Example 2.7 (Calculating joint probabilities.) Let (Nt : t ≥ 0) be a Poisson process

of rate λ. For times 0 = t0 < t1 < t2 < . . . < tk and natural numbers n1 ≤ n2 ≤ . . . ≤
nk, probabilities of the form

P(Nt1 = n1, Nt2 = n2, . . . , Ntk = nk)

are calculable via the independence and Poisson-distribution properties:

P(Nt1 = n1, Nt2 = n2, . . . , Ntk = nk)

= P(Nt1 −Nt0 = n1, Nt2 −Nt1 = n2 − n1, . . . , Ntk −Ntk−1
= nk − nk−1)

= P(Nt1 −Nt0 = n1)P(Nt2 −Nt1 = n2 − n1) · · ·P(Ntk −Ntk−1
= nk − nk−1)

by independence

=
k∏

i=1

e−λ(ti−ti−1) [λ(ti − ti−1)]
ni−ni−1

(ni − ni−1)!
by (2.11).
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2.4.2 Distribution of Times (the Xn and Sn)

Theorem 2.8 The counting process, N = (Nt : t ≥ 0) is a Poisson process of rate

λ ⇔ The associated inter-event times, X1 = S1, X2 = S2 − S1, X3 = S3 − S2, . . . are

independent exponentially distributed rv’s of rate λ.

Proof. (Partial proof.) Apply (2.8) for n = 1:

{S1 > t} = {Nt = 0}. (2.17)

Taking probabilities,

P(S1 > t) = P(Nt = 0) = e−λt, t ≥ 0

where the last step holds by (2.11). That is, S1 has the Expon(λ) distribution, as

claimed. The remainder is a sketch of the remaining proof. Using the independence

property of the Nt process, it can be shown that S2−S1 is independent of S1; moreover,

using the stationarity property, it can be shown that S2−S1 has the same distribution

as S1. Similarly, one can show that for any n, Sn − Sn−1 is independent of the

corresponding differences for any smaller n, and moreover it has the same distribution

as S1. 2

Now we give the distribution of Sn by taking probabilities in (2.8):

P(Sn > t) = P(Nt < n) = P(∪n−1
k=0{Nt = k}) =

n−1∑
k=0

P(Nt = k) =
n−1∑
k=0

e−λt (λt)k

k!
, t ≥ 0.

(2.18)

(Note in step 3 that the events Nt = k are disjoint across k.) In the last step, we

used the Poisson formula, (2.11). The above distribution is known as Gamma(n, λ)

and also as Erlang-n.
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2.4.3 Simulating a Poisson Process

To simulate a Poisson process, the result from Theorem 2.8 is applied. Specifically, we

simulate the inter-event times by using the fact that for any λ > 0, a random sample

of the Expon(λ) distribution can be obtained as (−1/λ) log(U), where log denotes

natural logarithm and U ∼ Unif(0, 1) denotes a pseudo-random number. Note that

log(U) is always negative, and the result is always positive, as it should.

Method 2.9 (How to sample a Poisson process on a finite interval.) Given T > 0

and λ > 0, the event times of a Poisson process of rate λ on the interval [0, T ] can be

simulated based on the inter-event times, as follows. Set S0 = 0, and for n = 1, 2, . . .,

set Sn = Sn−1+Xn, where Xn, the n-th inter-event time is sampled as (−1/λ) log(Un),

where Un ∼ Unif(0, 1) is independent of all other U ’s; stop as soon as Sn > T .
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2.4.4 Merging Poisson Processes

Suppose we merge the events of two independent Poisson processes of rates λ1 and

λ2 (i.e., all the Nt are independent across the two; or, equivalently, all the Xn, or all

the Sn, are independent across the two). Put

N i
t = number of events of process i that occur up to time t, i = 1, 2

Nt = N1
t + N2

t = number of events of the merged process that occur up to time t

Then the merged process (Nt : t ≥ 0) is Poisson of rate λ1 + λ2. This property

generalises to merging any finite number of processes, by induction. That is:

Proposition 2.10 The merging of the events of independent Poisson processes gives

a Poisson process of rate equal to the sum of the rates of the merged processes.

Sketch of proof (merge two processes for simplicity):

1. The merged process has independent counts on disjoint intervals; this comes

from the independence of counts across the processes being merged and across

disjoint time intervals for the same process.

2. Check that the merged process satisfies (2.10) with the rate claimed.

Application 2.11 Customer JD arrives to find q customers waiting in queue, at

a system of k non-idling servers (servers do not idle if work is available), where

customer service times are independent Expon(µ) rvs. Assuming first-come first-

serve discipline, how long is JD’s waiting time?

1. JD joins the queue in position q + 1 (due to first-come first-serve discipline).

Thus, with time 0 being the time he joins, his waiting time equals the time of

the (q + 1)-st (customer) departure (service completion).

2. While JD waits, each server is working (due to no-server-idling). The inde-

pendent Expon(µ) service times mean that the departures (i.e., the counting

process of departure events) at a particular server is a Poisson processes of rate

µ (Theorem 2.8), and independent of the departures at other servers.

3. Departures from the system are simply the merging of departures at individual

servers, so they form a Poisson process of rate k times µ (Proposition 2.10).

4. The distribution of the time of the (q + 1)-st event of a Poisson process was

derived earlier; see (2.18). So JD’s waiting time has the Gamma(q + 1, kµ)

distribution, that is, tail probability function (2.18) with n = q +1 and λ = kµ.
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2.5 Poisson Process of General Rate Function

So far, the constant λ was the probabilistic rate of an event occurrence in any small

time interval. The forthcoming model replaces this constant by a general (nonnega-

tive) function of time, λ(u), u ≥ 0.

Definition 2.12 The counting process (Nt : t ≥ 0) is called a Poisson process of

(with) rate function λ(t) if:

1. (Independence) The counts on disjoint intervals are independent rv’s.

2. (Small-interval behaviour)

P(Ns+h −Ns = 1) = λ(s)h + o(h), P(Ns+h −Ns ≥ 2) = o(h), as h→ 0.

(2.19)

The term Non-Homogeneous (or time-inhomogeneous) Poisson Process (NHPP)

indicates the rate function is non-constant.

In this case the distribution of Nt is again Poisson, but its mean is now the mean

function

m(t) =

∫ t

0

λ(u)du, (2.20)

that is, the area under the graph of the rate function from 0 to t. By solving differential

equations like those in the proof of Theorem 2.6, we obtain the summary result below:

Proposition 2.13 In a Poisson process of rate function λ(·), the count Ne−Ns has

the Poisson distribution with mean
∫ e

s
λ(u)du = m(e)−m(s). That is,

P(Ne −Ns = n) = e−[m(e)−m(s)] [m(e)−m(s)]n

n!
, n = 0, 1, . . . (2.21)

Proof. Left as Exercise 3. 2

Example: Exam E03 3. Recognise it is an NHPP and identify the rate function;

the solution is then standard, exactly the main result above for s = 0.

2.5.1 Thinning a Poisson Process

Suppose:

1. N = (Nt : t ≥ 0) is a Poisson process of rate K.

2. Conditional on any event of N occurring at time t, accept the event with proba-

bility p(t) and reject it otherwise, doing so independently of anything else. (The

acceptance step is simulated via pseudo-random numbers later.)
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Let Ñt be the number of accepted events occurring up to time t inclusive. Call

(Ñt : t ≥ 0) the thinned process.

Proposition 2.14 (Thinning a Poisson process.) The process (Ñt : t ≥ 0) is a

Poisson process of rate function Kp(t).

Sketch of proof (assume the function p(·) is continuous, for simplicity):

1. The thinned process has independent counts on disjoint intervals; this comes

from the independence of counts of the original process together with the inde-

pendence of the acceptance/rejection random variables from everything else.

2. Check that the thinned process satisfies (2.19) with the rate claimed.

2.5.2 Simulating an NHPP via Thinning

Problem 2.15 Simulate (or sample) on a given time interval [0, T ] a non-homogeneous

Poisson process of given rate function λ(t), 0 ≤ t ≤ T .

If the rate function is piece-wise constant, a simple solution is: simulate a constant-

rate process on each interval where the rate is constant, via Method 2.9.

If the rate function is not piecewise constant (examples include: linear with a

nonzero slope, non-constant polynomial, trigonometric, exponential), then a simple

solution is as follows.

Method 2.16 (The Thinning Method.) To simulate the event times of a Poisson

process of rate function λ(t) on the interval [0, T ], do:

1. Calculate the rate

K = max
0≤t≤T

λ(t) <∞. (2.22)

2. Using Method 2.9, simulate the event times of a Poisson process of constant

rate K on the given interval. That is, set S0 = 0, and for n = 1, 2, . . ., set

Sn = Sn−1 + (−1/K) log(Un), where Un ∼ Unif(0, 1) is independent of other

U ’s, stopping as soon as Sn > T . The set S1, S2, . . . , Sn−1 is a random sample

of the event times of a Poisson process of rate K on the given interval.

3. (Thinning step.) For i = 1, 2, . . . , n − 1, accept Si with probability λ(Si)/K

(reject with the remaining probability; note that λ(Si)/K is always between

0 and 1, by the choice of K). The acceptance/rejection is done by randomly

sampling Vi ∼ Unif(0, 1) independently of everything else and accepting if Vi ≤
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λ(Si)/K. The set of accepted S’s is a random sample of the event times of a

Poisson process of rate function λ(t) on the given interval.

2.6 Estimating a Poisson Process: Brief View

Suppose we want to estimate (construct) the functions λ(t) and m(t) from given event

times s1 < s2 < . . . < sn. Note:

• m() can always be found by integrating λ() as in (2.20).

• Obtaining λ(t) from m() is possible, assuming m is differentiable at t:

λ(t) =
d

dt
m(t).

• A constant rate λ is equivalent to a linear mean function, m(t) = λt.

As a start, consider:

Step-function estimate of m(t).

m̂(t) = observed count up to t = number of s’s that are ≤ t. (2.23)

That is,

m̂(sk) = k, k = 1, 2, . . . n,

and it is constant between sk−1 and sk. Unattractively, it is impossible to infer λ()

by differentiation 1.

One way to get a reasonable estimate of λ() is by a slight revision of the above:

Piece-wise linear estimate of m(t) (linear in-between event times). Define

the function m̃(t) to be as above at the event times, i.e.,

m̃(sk) = k, k = 1, 2, . . . n,

and estimate λ̃ as the slope of m̃:

λ̃(t) =
m̃(sk)− m̃(sk−1)

sk − sk−1

=
1

sk − sk−1

for sk−1 ≤ t < sk. (2.24)

If the λ̃(t) are close between adjacent (sk−1, sk] intervals, we could average them,

loosing little information in the averaging, to simplify the estimate.

1m̂(t) has derivative zero at all points other than the s’s; at the s’s it is not differentiable.
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2.7 Large-t Nt
t via Strong Law of Large Numbers

Let Nt be the count of events up to time t. Assume

A1. Inter-event times are independent, identically distributed, with mean µ > 0.

A2. limt→∞ Nt =∞.

What is the average number of events per unit time, Nt/t, for t large ?

For any t,

SNt ≤ t < SNt+1.

Dividing by Nt,
SNt

Nt

≤ t

Nt

<
SNt+1

Nt + 1

Nt + 1

Nt

. (2.25)

By the SLLN (Theorem 1.22), both the right and left side of (2.25) converge to µ

as t → ∞, with probability one. Hence the middle must converge to the same, with

probability one (the event of convergence of the left and right, call it A, implies

the event of convergence of the middle, call it B; thus 1 = P(A) ≤ P(B), proving

P(B) = 1). We conclude

lim
t→∞

Nt

t
=

1

µ
w.p. 1. (2.26)
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2.8 Exercises

1. Let N = (Nt : t ≥ 0) be a Poisson process of rate λ = 0.4.

i Calculate: (a) P(N5 = 3); (b) P(N5 = 3, N15 = 7); (c) P(N15 = 7|N5 = 3);
(d) P(N5 = 3|N15 = 7).

ii Let X be the time between two successive events of this process. Specify the
distribution of X fully, including its mean. Write P(X ≤ 0.5) and P(X ≤ 2)
explicitly.

iii State, briefly, how the results in (i) change if the process is Poisson of mean
function m() with m(0) = 0 as usual.

2. In Proposition 2.10, two independent Poisson processes of rates λ1 and λ2 are
merged; N i

t is the count of process i up to time t; and Nt = N1
t +N2

t is the count
of the merged process. Show that as h → 0, we have P(Nh = 2) = o(h) and
P(Nh = 1) = (λ1+λ2)h+o(h). Note: similar, slightly more complex calculations
are seen later in (3.1) to (3.3).

3. (NHPP)

(a) (Distribution of Nt.) For the (NHPP) Nt in Definition 2.12, write pn(t) =
P(Nt = n), n = 0, 1, 2, . . . (put p−1(t) = 0 for later convenience), and show
that these functions must satisfy the set of differential equations

d

dt
pn(t) = −λ(t)pn(t) + λ(t)pn−1(t), n = 0, 1, 2, . . . . (2.27)

Then verify that the functions pn(t) = e−m(t)[m(t)]n/n!, n = 0, 1, 2, . . . satisfy
(2.27). Note that (d/dt)m(t) = λ(t). Note p0(0) = 1 and pn(0) = 0 for n > 0,
effectively saying that N0 = 0.

(b) (Distribution of Sn.) Working as for the constant-rate process, show that the
distribution of Sn for the general case above is

P(Sn > t) =
n−1∑
k=0

e−m(t) [m(t)]k

k!
, t ≥ 0

so the distribution of the time of the 1st event, S1, is

P(S1 > t) = e−m(t), t ≥ 0. (2.28)

4. (Simulating Poisson processes.)

(a) Simulate the event times of a Poisson process of rate λ = 2 during [0, T = 2]
based on assumed pseudo-random numbers {.8187, .2466, .5488, .3679, .4066}.

(b) Simulate the event times of the NHPP of rate function λ(t) = 1 + sin(πt),
0 ≤ t ≤ 2, where π

.
= 3.14159, by thinning the process sampled previously.

For the acceptance test, assume pseudo-random numbers 0.7, 0.4, 0.2, 0.6,
adding your own if needed.

(c) It can be shown that a random variable with cdf F (x) can be simulated
by solving for x the equation F (x) = U , where U ∼ Unif(0, 1) (a pseudo-
random number). Using this property together with (2.28), show how the
time of the 1st event of the NHPP in (b) may be simulated. You may use

that
∫ t

0
sin(πu)du = (1/π)[1− cos(πt)].
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2.9 Solutions to Exercises

1. For s ≤ e, Ne − Ns has the Poisson distribution with mean λ(e − s) the rate λ
times the length of the interval, e − s. Recall the Poisson distribution is given in
(2.2).

i (a) Recall the assumption N0 = 0, so N5 = N5 − N0; here e − s = 5, so
N5 ∼ Poisson(2) and thus P(N5 = 3) = e−223/3!.

(b) In calculating this joint probability, note that N5 and N15 refer to overlapping
time intervals, so they are not independent. The “trick” is to write N15 =
N5 + N15 − N5 and use that N15 − N5 is independent of N5 and Poisson(4)-
distributed (e− s = 15− 5 = 10, times rate, 0.4).Thus

P(N5 = 3, N15 = 7) = P(N5 = 3, N15 −N5 = 7− 3)

= P(N5 = 3)P(N15 −N5 = 4)

= e−2 23

3!
e−4 44

4!
.

(c)

P(N15 = 7|N5 = 3) =
P(N15 = 7, N5 = 3)

P(N5 = 3)

= P(N15 −N5 = 4) by (b), the P(N5 = 3) cancels out

= e−4 44

4!
.

(d)

P(N5 = 3|N15 = 7) =
P(N5 = 3, N15 = 7)

P(N15 = 7)
=

e−2 23

3!
e−4 44

4!

e−6 67

7!

.

ii We know X ∼ Expon(0.4), whose mean is 1/0.4 (seen elsewhere). Then

P(X ≤ 1

2
) = 1− e−0.4· 1

2 = 1− e−0.2.

P(X ≤ 2) = 1− e−0.4·2 = 1− e−0.8.

iii In the Poisson process with mean function m(), Ne − Ns has the Poisson dis-
tribution with mean m(e) − m(s), and such counts on disjoint intervals are
independent, as with the constant-rate process. Thus, we only modify the Pois-
son means; the mean of N5 is m(5)−m(0) = m(5) and the mean of N15−N5 is
m(15)−m(5).

2. The key idea is to express the events of interest as (note superscripts are not
powers):

{Nh = 2} = {N1
h = 2, N2

h = 0} ∪ {N1
h = 1, N2

h = 1} ∪ {N1
h = 0, N2

h = 2}
{Nh = 1} = {N1

h = 1, N2
h = 0} ∪ {N1

h = 0, N2
h = 1} (2.29)
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where the events on the right are disjoint. Taking probabilities,

P(Nh = 2) = P(N1
h = 2, N2

h = 0) + P(N1
h = 1, N2

h = 1) + P(N1
h = 0, N2

h = 2)

= P(N1
h = 2)P(N2

h = 0) + P(N2
h = 1)P(N2

h = 1) + P(N1
h = 0)P(N2

h = 2)

by independence.

The first term is ≤ P(N1
h = 2) = o(h); likewise, the third term is ≤ P(N2

h = 2) =
o(h). The middle term is

[λ1h + o(h)][λ2h + o(h)] = o(h)

(terms λiho(h) and λ1λ2h
2 are o(h)), as required. Similarly,

P(Nh = 1) = P(N1
h = 1, N2

h = 0) + P(N1
h = 0, N2

h = 1)

= P(N1
h = 1)P(N2

h = 0) + P(N1
h = 0)P(N2

h = 1) by independence

= [λ1h + o(h)][1− λ2h + o(h)] + [1− λ1h + o(h)][λ2h + o(h)]

= λ1h + λ2h + o(h)

where, again, various original terms are combined into the o(h).

3.(a) The count from t to t + h, denoted Dt,h = Nt+h − Nt, is independent of Nt by
assumption. The essential difference relative to the homogeneous case is that
the distribution of Dt,h depends on both t and h, whereas that of Dh there
depended only on h. The derivation mimics closely the steps from (2.12) to
(2.14), “correcting” for the difference above.

{Nt+h = n} = {Nt = n, Dt,h = 0} or {Nt = n−1, Dt,h = 1} or {Dt,h ≥ 2, Nt = n−Dt,h}

where the events on the right are disjoint, so the left probability is the sum of
the events’ probabilities on the right. Work these out:

P(Dt,h ≥ 2, Nt = n−Dt,h) ≤ P(Dt,h ≥ 2) = o(h) by (2.19),

P(Nt = n, Dt,h = 0) = pn(t)[1− λ(t)h + o(h)] by independence and (2.19),

and

P(Nt = n− 1, Dt,h = 1) = pn−1(t)[λ(t)h + o(h)] by independence and (2.19).

Putting these together,

pn(t + h) = pn(t)[1− λ(t)h + o(h)] + pn−1(t)[λ(t)h + o(h)] + o(h).

Exactly as in the constant-rate case (move pn(t) from right to left, divide by h,
take limits as h→ 0), we get (2.27). To verify, differentiate the given functions
pn(t) = e−m(t)[m(t)]n/n!:

d

dt

(
e−m(t) [m(t)]n

n!

)
=

(
d

dt
e−m(t)

)
[m(t)]n

n!
+ e−m(t) d

dt

[m(t)]n

n!

= −e−m(t)

(
d

dt
m(t)

)
[m(t)]n

n!
+ e−m(t)n[m(t)]n−1

n!

d

dt
m(t)

= −λ(t)pn(t) + λ(t)pn−1(t),

as required.
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(b)

P(Sn > t) = P(Nt < n) =
n−1∑
k=0

P(Nt = k) =
n−1∑
k=0

e−m(t) [m(t)]k

k!
.

4.(a) The event times are simulated iteratively as S0 = 0, Si = Si−1 + Xi for i =
1, 2, . . ., stopping as soon as Si > T = 2, where the inter-event times Xi are
simulated by the formula Xi = (−1/λ) log(Ui), the Ui being Unif(0, 1) random
numbers (Method 2.16). We obtain:

i Ui Xi = −(1/λ) log(Ui) Si = Si−1 + Xi

1 .8187 0.1 0.1
2 .2466 0.7 0.8
3 .5488 0.3 1.1
4 .3679 0.5 1.6
5 .4066 0.45 2.05

(b) Following Method 2.16, compute the maximum: K = max0≤t≤2[1+sin(πt)] = 2.
The event times in (a) may be used as the times to be thinned because they were
sampled with the appropriate rate, 2. Denoting by Vi the given pseudo-random
numbers, calculate:

Si λ(Si)/K Vi Is Vi ≤ λ(Si)/K?
0.1 0.65 0.7 No
0.8 0.79 0.4 Yes
1.1 0.34 0.2 Yes
1.6 0.02 0.6 No

Thus, the simulated process has events at times 0.8 and 1.1 only.

(c) The mean function is

m(t) =

∫ t

0

(1 + sin(πu))du = t + (1/π)[1− cos(πt)].

Aim for the point at which the cdf of S1 equals U :

F (t) = 1− e−m(t) = U ⇔ m(t) = − log(1− U).

The explicit point t is not pursued here.
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Chapter 3

Queues

3.1 Preliminaries

Vectors are column vectors. The transpose of a vector p is denoted pT .

We often take limits as the length h of a time interval goes to zero; we write this

as “limh→0”, or even as “lim” when the condition is obvious.

A probability distribution with support a set E is called in short a distribution on

E.

3.1.1 Queues: Terminology and Global Assumptions

Jobs (customers) arrive at a system at which a number of servers are stationed. A

job may have to wait in a waiting area (queue) until a server becomes available. After

being served in a service area, jobs leave. The system includes both these areas.

1. The times between arrivals are independent identically distributed (iid) random

variables.

2. The service times are random variables and independent of the inter-arrival times.

3. No idling. Server(s) will not idle if jobs are waiting.

4. M/M/c/k means Memoryless inter-arrival times, Memoryless service times, c

Servers, and a maximum of k jobs waiting in queue, where k =∞ if not specified.

“Memoryless” means that these times are exponentially distributed.

5. The inter-arrival times and the service times have means that are positive and

finite.
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3.2 The Birth-Death Process

Denote Xt the number of jobs in the system at time t, also called the state. We are

interested in the (stochastic) process X = (Xt : t ≥ 0). If there is a maximum allowed

number in the system, say k, then Xt takes values in the finite set E = {0, 1, 2, . . . , k},
0 being the lowest state, reflecting an empty system. If there is no such maximum,

then Xt takes values in the infinite set E = {0, 1, 2, . . .}. A birth-death process arises

as follows:

1. Whenever Xt = i, events whose effect is to increase X by one (“births”) occur

according to a Poisson process B = (Bt) of (birth) rate λi (the time TB until the

next birth is an Expon(λi) random variable).

2. In addition, again given Xt = i, events whose effect is to decrease X by one

(“deaths”) occur according to a Poisson process D = (Dt) of (death) rate µi (the

time TD until the next death is an Expon(µi) random variable).

3. These Poisson processes are independent.

The process X moves as follows. The next state of X, as well as the timing of the

state change, are the result of the competition between the birth and death processes.

This means that: (a) Starting from state i, the time when the process X first changes

state, T = min(TB, TD), has an Expon(λi +µi) distribution (as seen in merging); and

(b) The next state is i + 1 with probability λi/(λi + µi) (a birth happens before a

death), or i− 1 with the remaining probability (a death happens before a birth).

For each i, we now derive conditional (transition) probabilities of the future state

of the process given Xt = i, h time units in the future. Put:

• B = number of births (occurring) in (t, t + h], and D = number of deaths.

• N := B + D is the number of events (births plus deaths) in (t, t + h].

Then,

P(Xt+h = i + 1|Xt = i) = P(B −D = 1|Xt = i)

= P(B −D = 1, N = 1|Xt = i) + P(B −D = 1, N ≥ 2|Xt = i)︸ ︷︷ ︸
o(h)

= P(B = 1, D = 0|Xt = i) + o(h)

= P(B = 1|Xt = i)P(D = 0|Xt = i) + o(h)

= [λih + o(h)][1− µih + o(h)] + o(h) = λih + o(h), (3.1)
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P(Xt+h = i− 1|Xt = i)

= P(B −D = −1|Xt = i)

= P(B −D = −1, N = 1|Xt = i) + P(B −D = −1, N ≥ 2|Xt = i)︸ ︷︷ ︸
o(h)

= P(B = 0, D = 1|Xt = i) + o(h)

= P(B = 0|Xt = i)P(D = 1|Xt = i) + o(h)

= [1− λih + o(h)][µih + o(h)] + o(h) = µih + o(h), (3.2)

and X changes by 2 or more with probability that is negligible as h→ 0:

P(Xt+h = j|Xt = i) ≤ P(N ≥ 2|Xt = i) = o(h) for |j − i| ≥ 2. (3.3)

Consequently, X remains at the same state with the probability that remains, i.e.,

P(Xt+h = i|Xt = i) = 1− (λi + µi)h + o(h).

The distribution of Xt can be expressed via differential equations obtained similarly

to those for the Poisson process, (2.14). In these equations, to be seen later for a more

general process, the following limits appear:

qi,j := lim
h→0

P(Xt+h = j|Xt = i)

h
=


λi j = i + 1
µi j = i− 1
0 otherwise (j /∈ {i− 1, i + 1})

 , j 6= i.

(3.4)

The qi,j, sometimes called transition rates or probability rates, are probabilities of

transitions (state changes) relative to time. Note that if a i → j transition requires

at least 2 events in order to happen, then qi,j = 0. On the other hand, if i → j is

caused by a single event, then qi,j is the rate of the underlying process.

The transition rates are sometimes summarised in a transition diagram, as in

Figure 3.1.

0 1 2 n− 1 n n + 1-λ0
�

µ1

-λ1
�

µ2

q q q -λn−1
�

µn

-λn
�
µn+1

q q q

Figure 3.1: Transition diagram of a birth-death process.
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3.3 Continuous-Time Markov Chains (CTMCs)

Definition 3.1 The stochastic process (Xt : t ≥ 0) is called a continuous-time

Markov chain (CTMC) with state space (set of possible states) E if for all i, j, i1, . . . , ik ∈
E, all t ≥ 0, and all p1, p2, . . . pk ≤ s,

P(Xs+t = j|Xp1 = i1, . . . , Xpk
= ik, Xs = i) = P(Xs+t = j|Xs = i). (3.5)

If the right side of (3.5) does not depend on s, then the CTMC is called homogeneous.

In words, given the process’ history up to time s, the conditional distribution of X

at future time points is the same as the conditional distribution given only its present

value, Xs. Yet in other words, we can say that the X process is memoryless, because

its future behaviour depends on its history only through the present; the strict past

is irrelevant. We are mainly interested in homogeneous CTMCs, where

pi,j(t) := P(Xs+t = j|Xs = i)

is a function of i, j and t.

3.3.1 Generator

We assume there exist qi,j such that

qi,j := lim
h→0

pi,j(h)

h
, i, j ∈ E, i 6= j.

That is, qi,j is a “probability rate” of going from i to j. The birth-death process seen

earlier is a special case of a homogeneous CTMC with qi,j being the λi for j = i + 1,

the µi for j = i− 1, and 0 otherwise.

We also define

qi = lim
h→0

P(Xt+h 6= Xt|Xt = i)

h
= lim

h→0

1− pi,i(h)

h

= lim
h→0

∑
j∈E,j 6=i pi,j(h)

h
=

∑
j∈E,j 6=i

(
lim
h→0

pi,j(h)

h

)
=

∑
j∈E,j 6=i

qi,j

where we will always assume the interchange between limit and summation is valid

(it could fail, but only if E is infinite and under further unusual conditions). (We

used that
∑

j∈E pi,j(t) = 1 for all i and t, a consequence of the fact that Xt must take

a value in E.) That is, qi is a “probability rate” of leaving i (to go anywhere else).

We summarise these in the matrix

Q = [qi,j]i,j,∈E
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where we put qi,i = −qi. Q is called the (CTMC) generator and is central to later

calculations. It can be calculated without taking limits, after a little experience.

Example 3.2 A repair shop has two workers named fast (F) and slow (S). Jobs arrive

according to a Poisson process of rate 4. Service times are exponentially distributed

with mean 1/3 and 1/2 at F and S respectively. Whenever both F and S are available

to process a job, preference is given to F. Arrivals that find a job waiting are lost.

Focus on the system state over time, with the following possible states:

Numeric Code State Description
1 empty
2 F working, S idle
3 S working, F idle
4 both servers working, 0 jobs in queue
5 both servers working, 1 job in queue

A detailed derivation of the generator would resemble that done for the birth-death

process in (3.1) to (3.3). Here, a 5 → 4 transition is caused by a departure at F

or S, i.e., an event of the process that merges these two event types, whose rate is

3 + 2 = 5 (merging result). Thus, similar to (3.2), p5,4(h) = 5h + o(h) as h → 0,

so q5,4 = limh→0 p5,4(h)/h = 5. Consider now q5,3. Similar to (3.3), p5,3(h) = o(h)

because 5 → 3 requires at least two departures, so q5,3 = limh→0 p5,3(h)/h = 0. And

so on for other i, j.

Generally, a systematic calculation of the generator can go as follows. For each

type of event (Poisson process), write the corresponding rate, and list all transitions

caused by a single such event in the form “from i to j”, for specified i and j. Here

this gives:

Causing Event Rate List of State Changes
Arrival 4 from 1 to 2, from 2 to 4, from 3 to 4, from 4 to 5
Departure at F 3 from 2 to 1, from 4 to 3, from 5 to 4
Departure at S 2 from 3 to 1, from 4 to 2, from 5 to 4

Then, for each i and j 6= i, locate all i→ j transitions listed and find qi,j as the sum

of the corresponding rates. Here this gives (empty matrix entries indicate zeros):

Q =


−4 4

3 −7 4
2 −6 4

2 3 −9 4
3 + 2 −5
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3.3.2 Time-dependent Distribution and Kolmogorov’s Dif-
ferential System

Assume the process state is known at time 0, e.g., X0 = 5. Put pi(t) = P(Xt = i).

We focus on the vector p(t) = (pi(t))i∈E, which is the distribution at time t of Xt.

The whole distribution is related to that at previous times via

pi(t + h) = P(Xt+h = i)

=
∑
k∈E

P(Xt+h = i, Xt = k)

=
∑
k∈E

P(Xt = k)P(Xt+h = i|Xt = k)

=
∑
k∈E

pk(t)pk,i(h)

= pi(t)pi,i(h) +
∑

k∈E,k 6=i

pk(t)pk,i(h) t, h ≥ 0

(Theorem 1.10, Law of Total Probability). Subtract pi(t) from both left and right,

and divide by h:

pi(t + h)− pi(t)

h
= −pi(t)

1− pi,i(h)

h
+

∑
k∈E,k 6=i

pk(t)
pk,i(h)

h
.

Take limits as h→ 0. In the rightmost term, we assume the limit can pass inside the

sum (which is the case if E is finite), i.e.,

lim
h→0

∑
k∈E,k 6=i

pk(t)
pk,i(h)

h
=

∑
k∈E,k 6=i

pk(t)

(
lim
h→0

pk,i(h)

h

)
=

∑
k∈E,k 6=i

pk(t)qk,i

and arrive at Kolmogorov’s differential system:

p′i(t) = −pi(t)qi +
∑

k∈E,k 6=i

pk(t)qk,i, i ∈ E. (3.6)

where p′i(t) = d
dt

pi(t).

Supposing for example X0 = 5, we would have the initial condition p5(0) = 1 and

pj(0) = 0 for j 6= 5, and p(t) should satisfy (3.6) together with the initial condition.
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3.4 Long-Run Behaviour

With Xt being a count of jobs in the system at time t, or something similar (repair-

shop example), and all events causing changes to X “being” independent Poisson

processes (inter-event times having exponential distributions), (Xt : t ≥ 0) will be a

CTMC.

The theory of (Homogeneous) CTMCs is rich, especially for time going to ∞. It

is built upon a corresponding theory for discrete-time Markov chains (t integer). The

theory is technical and will not be seen in depth. A key summary result, Fact 3.3

below, is our basic supporting theory.

1{A} is the indicator function, valued 1 on the set (event) A and 0 elsewhere. Thus,

for example, 1{Xu=i} indicates if the process X at time u is at state i. Put

T i
t = time from 0 to t that X is in state i =

∫ t

0

1{Xu=i}du. (3.7)

Fact 3.3 The CTMC (Xt : t ≥ 0) corresponding to “interesting” and “stable” queues

converges, regardless of the initial state X0, as follows.

(a)

lim
t→∞

pi(t) = πi, lim
t→∞

p′i(t) = 0, i ∈ E. (3.8)

(b) Putting (3.8) into (3.6), we have the balance equations

πiqi =
∑

k∈E:k 6=i

πkqk,i, i ∈ E (3.9)

(πTQ = 0). If the equation set (3.9) together with the normalising equation∑
i∈E

πi = 1 (3.10)

has a solution (πi)i∈E, then the solution is unique and πi > 0 for all i. This is

called the stationary (or steady-state or limit) distribution of the CTMC.

(c) If a stationary distribution (πi)i∈E exists, then

lim
t→∞

T i
t

t
= πi w.p. 1 for all i ∈ E (3.11)

and as a consequence of πi > 0 we have

lim
t→∞

T i
t =∞, i ∈ E. (3.12)
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Result (3.11) is basic to calculations below. For this reason, we want at least some

idea why it holds. We argue why the corresponding mean converges to πi:

ET i
t = E

[∫ t

0

1{Xu=i}du

]
=

∫ t

0

E[1{Xu=i}]du (interchange of E[] and
∫

assumed valid)

=

∫ t

0

pi(u)du.

Then

lim
t→∞

E
[∫ t

0
1{Xu=i}du

]
t

= lim
t→∞

∫ t

0
pi(u)du

t
= πi,

the last step following from limu→∞ pi(u) = πi, which is said in (3.8).

As πi is the (long-run) fraction of time spent at state i, the balance equation (3.9)

for state i says

(fraction of time at i) × qi =
∑

k∈E,k 6=i

(fraction of time at k) × qk,i

the left side being a “rate out of i” and the right side being a “rate into i”.
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3.4.1 Long-Run Average Cost

Proofs here are non-examinable. (2.26) will be used heavily, for arrival events. 1

Cost a Deterministic Function of System State

Suppose that whenever Xu = i, we incur a cost f(i) per unit time, where f is a given

function (while thinking “cost” may help, f could represent anything, e.g., a gain).

Then the cost per unit time, up to time t, is∫ t

0
f(Xu)du

t
=
∑
i∈E

f(i)

∫ t

0
1{Xu=i}du

t
,

Thus the long-run cost per unit time is

lim
t→∞

∑
i∈E

f(i)

∫ t

0
1{Xu=i}du

t
=
∑
i∈E

f(i)

(
lim
t→∞

∫ t

0
1{Xu=i}du

t

)
=
∑
i∈E

f(i)πi w.p. 1

(3.13)

by (3.11) in the last step, and by assuming that the limit can pass inside the sum,

which is the case if E is finite. This is abbreviated as “average of f(X)”. Note this

is E[f(X)] for the random variable X whose distribution is (πi)i∈E.

We now apply this.

Example 3.2 (continued) Find the following long-run quantities: (a) the average

number of jobs in the system; (b) the average number of busy servers; and (c) the

fraction of time that both servers are busy.

To identify the stationary distribution, solve
∑5

i=1 πi = 1 together with (3.9), i.e.

(the generator was given previously):

State Rate Out = Rate In
1 4π1 = 2π3 + 3π2

2 7π2 = 4π1 + 2π4

3 6π3 = 3π4

4 9π4 = 4π2 + 4π3 + 5π5

5 5π5 = 4π4

Obtaining the solution is then straightforward. 2

(a) Following the cost result (3.13), the average number of jobs in the system is

1 · (π2 + π3) + 2π4 + 3π5 (f(1) = 0; f(2) = f(3) = 1; f(4) = 2; f(5) = 3).

(b) 1 · (π2 + π3) + 2(π4 + π5) (f(1) = 0; f(2) = f(3) = 1; f(4) = f(5) = 2).

(c) π4 +π5 (f is an indicator function, valued 1 at states 4 and 5, and 0 elsewhere).

1Assume all inter-arrival times are finite; then the arrival times Sn are finite for all n; then the
number of events up to t, Nt =

∑∞
n=1 1{Sn≤t}, satisfies limt→∞Nt =∞, verifying the A2 there.

2The solution is the vector (65, 60, 40, 80, 64)/309.
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Cost Events

We consider here costs that arise as counts of certain cost events. In the first model,

while the system state is i, cost events are a Poisson process with rate ci. Put

Ci
t = number of cost events that occur while the state is i, up to time t (3.14)

so Ct =
∑

i∈E Ci
t is the number of cost events up to time t. Write

Ct

t
=
∑
i∈E

Ci
t

T i
t

T i
t

t

and recall T i
t is the time spent at i, see (3.7). The fractions on the right converge:

1. T i
t /t converges (w.p. 1) to the state-i stationary probability, πi, by (3.11).

2. Ci
t/T

i
t converges (w.p. 1) to the underlying rate, ci, by (2.26) (the assumption there

that time goes to ∞ is checked by (3.12)).

Thus

lim
t→∞

Ct

t
=
∑
i∈E

lim
t→∞

Ci
t

T i
t

lim
t→∞

T i
t

t
=
∑
i∈E

ciπi (3.15)

where the “w.p. 1” will be dropped for convenience.

In the second model, assume a cost event is triggered for each arrival if and only

if it finds the system (Xt) in one of the states in a set A (for example, A could have

a single “system is full” state). Let Ct be the number of cost events up to t; then the

average number of cost events per unit time is

Ct

t
=
∑
i∈A

N i
t

Nt

Nt

t
,

where

N i
t = number of arrivals that find the system in state i, up to time t (3.16)

and Nt is the number of arrivals up to time t. As t→∞:

1. Nt/t converges (w.p. 1) to the arrival rate, call it λ, again by (2.26).

2. We will later see a Theorem called PASTA (Poisson Arrivals see Time Averages)

that ensures that
N i

t

Nt
converges (w.p. 1) to the state-i stationary probability, πi.

Thus

lim
t→∞

Ct

t
=
∑
i∈A

lim
t→∞

N i
t

Nt

lim
t→∞

Nt

t
=
∑
i∈A

πiλ. (3.17)
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Example 3.4 Jobs (customers) arrive to a system according to a Poisson process of

rate λ = 5. There are two servers, and service times at either server are exponentially

distributed with mean 1/µ = 1/3 (rate µ = 3), and independent of everything else.

At most two jobs may wait for service, so a job that arrives to find 2 jobs waiting

balks, meaning it does not join the queue. Moreover, each job i abandons, meaning it

leaves without being served, as soon as its waiting time in queue is equal to Yi, where

the Yi are exponentially distributed with mean 1/η = 1/2 (rate η = 2), independently

of everything else.

(The system state, Xt, defined as the number of jobs in the system, thus takes

values in E = {0, 1, 2, 3, 4} and the independent exponential distributions imply that

(Xt : t ≥ 0) is a CTMC.) We want to calculate:

(a) The long-run average number of abandons per unit time.

(b) The long-run average number of balks per unit time.

First, calculate the generator. Single events that cause a state change are the

arrivals, departures of served customers, and (what is new here) abandons, which act

the same way as departures, decreasing the state by one. The balk events do not

change the state.

The rate of abandons depends on the state: when in a state with k jobs in queue

(importantly the state determines k: k = 1 in state 3, k = 2 in state 4, k = 0 in

other states), and since η is given as the rate at which an individual job abandons,

the abandon rate is kη (merging property). Summing the rates of the events causing

the same state transition (as usual), we find the generator is

Q =


λ

µ λ
2µ λ

2µ + η λ
2µ + 2η


(the main diagonal is implicit, and other entries are zero). This is a birth-death

process (i.e., we have zeros everywhere except on the diagonals above and below the

main diagonal). In Section 3.4.2 below, we derive the stationary distribution of a

general birth-death process (with infinite state space); this essentially also shows how

the finite-state space solution can be obtained. So we do not pursue a solution here.

Denote the stationary distribution (πi)
4
i=0.

(a) Following the first cost result, (3.15), the long-run average number of abandons

per unit time is ηπ3 + 2ηπ4 (cost rates c3 = η, c4 = 2η, and 0 at other states).
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(b) Following the second cost result, (3.17), the long-run average number of balks

per unit time is π4λ (A = {4}).

♣ Study the following. E03 2, Two Stations in Tandem. Involves thinning and

thereby a relatively tricky calculation of the generator.
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3.4.2 Explicit Stationary Distributions for Specific Models

Birth-Death Process with Infinite State Space

The generator is in (3.4), so the balance equations become

π0λ0 = π1µ1

πi(λi + µi) = πi−1λi−1 + πi+1µi+1, i = 1, 2, . . . .

}
(3.18)

Solving iteratively gives

πiλi = πi+1µi+1, i = 0, 1, . . . (3.19)

i.e., πi+1 = πiλi/µi+1, from which we obtain (proceeding down to state zero)

πk = πk−1
λk−1

µk

= πk−2
λk−2

µk−1

λk−1

µk

= . . . = π0
λ0λ1 . . . λk−1

µ1µ2 . . . µk

, k = 1, 2, . . . . (3.20)

Normalise, i.e., require (3.10) (substitute the π’s in terms of π0):

∞∑
i=0

πi = π0

(
1 +

λ0

µ1

+
λ0λ1

µ1µ2

+ . . .

)
= π0

(
1 +

∞∑
k=1

λ0λ1 . . . λk−1

µ1µ2 . . . µk

)
= 1. (3.21)

We see that a unique solution (stationary distribution) exists if and only if

1 +
∞∑

k=1

λ0λ1 . . . λk−1

µ1µ2 . . . µk

<∞. (3.22)

It is then given by (3.20), with π0 determined from (3.21).
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Application 3.5 Our standard notation for the M/M/c model will be an arrival rate

denoted λ (i.e., inter-arrival times exponentially distributed with mean 1/λ) and an

individual-server service rate denoted µ (i.e., service times exponentially distributed

with mean 1/µ). With Xt the number of jobs in the system at time t, X = (Xt : t ≥ 0)

is a birth-death process with state space {0, 1, 2, . . .}, as there is infinite waiting space.

As servers are non-idling, µn, the death rate when Xt = n, is the rate of departures

aggregated over all busy servers, i.e., the individual-server departure rate, µ, times

the number of busy servers; thus

µn =

{
nµ n < c
cµ n ≥ c

The birth (arrival) rate is λ, regardless of Xt; that is, λn = λ for all n. Putting

ρ :=
λ

cµ
,

the birth-death solution (3.20) becomes

πn =

{
π0

λn

µ·2µ·3µ···nµ
= π0

cnρn

n!
n ≤ c

πcρ
n−c = π0

ccρn

c!
n ≥ c

(3.23)

(the two branches agree at n = c) and π0 must satisfy

1 =
c−1∑
n=0

πn +
∞∑

n=c

πn = π0

[
c−1∑
n=0

(cρ)n

n!
+

(cρ)c

c!

∞∑
n=c

ρn−c

]
.

Thus, a stationary distribution exists if and only if
∑∞

j=0 ρj < ∞, i.e., if and only if

ρ < 1. In this case,
∑∞

j=0 ρj = 1
1−ρ

, and

π0 =

[
c−1∑
n=0

(cρ)n

n!
+

(cρ)c

c!(1− ρ)

]−1

. (3.24)

For future reference, for c = 1 (M/M/1 model), we get π0 = 1 − ρ (the sum is 1,

the second term is ρ/(1− ρ)), and we find πn = (1− ρ)ρn for all n.

With Xt being the number of jobs in the system in the finite-waiting space model

M/M/c/k and in extensions that allow balks and abandons (with exponentially dis-

tributed patience times), a stationary distribution exists for any ρ (as there are only

c + k + 1 π’s); it is not difficult to compute by using the general birth-death solution

(3.20) and (3.21).

♣ Study the following M/M/c-type problems. • E04 1, except for the question on

waiting times (last paragraph) : M/M/1 versus an M/M/2 with half-as-fast servers,

i.e., same overall speed. • E06 1: compare three separate M/M/1 systems to a

centralised M/M/2 that handles all work.
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Transitions Beyond Infinite-Case Birth-Death, Solvable via PGFs

♣ Study the following.

• Exercise 6. Then recognise that E06 3, E07 2, E10 3 are all similar to this. The

modelling novelty is to allow batch arrivals. An infinite-state-space CTMC arises,

with structure more complex than the birth-death case. Solvable via the pgf of

the stationary distribution, as shown in the exercise.

• E04 2. This is the M/Ek/1 Model, where Ek refers to the Erlang-k distribution,

meaning that the service time is the sum of k independent exponentially distributed

service stages (of known rate each). A reduction to an infinite-state-space CTMC

is done, the state variable now counting stages (in the system) rather than jobs.

The balance equations are exactly as in Exercise 6 (but the state variable has dif-

ferent meaning across the two problems), and thus so is the pgf of the stationary

distribution. In answering questions involving the number of jobs, we must trans-

late from a job count to (a set of) stage counts: for example, if k = 2, then the

state “1 job in the system” is equivalent to “1 stage in the system” or “2 stages in

the system”.
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3.5 Arrivals That See Time Averages

We now state carefully a key theorem that states, under conditions, the equality of

long-run customer averages to associated stationary probabilities.

Theorem 3.6 (Arrivals See Time Averages (ASTA)) Let X = (Xt : t ≥ 0) be

the number of jobs in the system, assumed to be a CTMC with state space E and

stationary distribution (πi)i∈E. Write Tj for the j-th arrival time. Assume that for

all t, the arrival-counting process (essentially the Tj’s) forward from t is independent

of the history of X up to t. Then

lim
n→∞

∑n
j=1 1{XTj

=i}

n
= πi w.p. 1, i ∈ E. (3.25)

Taking expected value of the left side results in the indicator random variables being

replaced by probabilities, so the above gives

lim
n→∞

∑n
j=1 P(XTj

= i)

n
= πi. (3.26)

If the arrivals are a Poisson process, then the theorem’s assumptions are true,

and this special case is called PASTA, the added “P” standing for “Poisson”. In

Exercises and Exams from Year 2007/08 onwards, PASTA is mentioned when used.

In pre-2007/08 exams, PASTA is implicitly assumed without being mentioned.

With deterministic arrival and service times, the ASTA conclusions tend to fail:

although there exists a long-run fraction of time in state i, it tends to differ from the

long-run fraction of arrivals that find the system in this state.
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3.5.1 A Steady-State Delay Distribution

Problem 3.7 Customers arrive to an M/M/1 queue at rate λ = 1/2 per hour.

Service discipline is first come first served (FCFS). Two rates of service are possible.

The faster rate of service is µ = 1 per hour and costs £40 per hour; the slower service

rate is µ = 0.75 per hour and costs £30 per hour. A cost of £200 is incurred for

each customer that waits in queue (i.e., excluding service) more than one hour. Find

which service rate gives the lowest average cost per hour.

We will analyse a slightly more general problem, where we replace the constant

“1” (the “1 hour”) by any s ≥ 0, and assume the M/M/c model for c general. Let

Wj be the delay (time spent in queue) of the j-th job (customer). Write

Ct = number of arrivals up to t that wait more than s =
Nt∑
j=1

1{Wj>s}.

Similar to the cost model that gave (3.17), write

Ct

t
=

Ct

Nt

Nt

t

where Nt is the number of arrivals up to t. Now, as t → ∞, Nt/t converges (w.p.

1) to the arrival rate, as seen in (2.26), and limt→∞ Nt = ∞. We attempt to guess

limt→∞ Ct/Nt from the corresponding (limit of) expected value:

F (s) := lim
t→∞

E
[

Ct

Nt

]
= lim

t→∞
E

[
1

Nt

Nt∑
j=1

1{Wj>s}

]
= lim

n→∞

1

n

n∑
j=1

P(Wj > s), s ≥ 0.

(3.27)

We call F () a steady-state delay distribution (it is usually a proper distribution).

To find F , let Tj be the arrival time of the j-th job, and condition on the number

of jobs it finds on the system, denoted XTj
:

P(Wj > s) =
∞∑

k=0

P(Wj > s|XTj
= k)P(XTj

= k) (3.28)

for any s ≥ 0 (this is the Law of Total Probability (LTP), Theorem 1.10, with partition

events {XTj
= k}, k = 0, 1, 2, . . .).

Supposing the system has c servers, it suffices to sum over k ≥ c, since otherwise

the waiting time is zero; thus

F (s) = lim
n→∞

1

n

n∑
j=1

∞∑
k=0

P(Wj > s|XTj
= c + k)P(XTj

= c + k) by (3.28)

=
∞∑

k=0

P(W > s|X = c + k) ·

(
lim

n→∞

1

n

n∑
j=1

P(XTj
= c + k)

)
(3.29)
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(limit passed inside sum), where we abbreviate Wj as W and XTj
as X, as j does not

affect the probability. Now note that:

• The term in parenthesis, limn→∞
1
n

∑n
j=1 P(XTj

= c + k), equals the stationary

probability that the process X is at state c + k, by PASTA, (3.26).

• The conditional probability has been considered, under the First-Come, First-

Serve (FCFS) discipline, in Application 2.11: given X = c + k with k ≥ 0, W has

a Gamma distribution. Specifically, assuming Expon(µ) service times, plugging

the Gamma result from there and the π’s from (3.23) into (3.29) and simplifying

gives

F (s) =
πc

1− ρ
e−(cµ−λ)s, s ≥ 0, (3.30)

where F (0) = πc/(1 − ρ) =
∑∞

n=c πn is the stationary probability that all servers

are busy. The formula describes the steady-state delay as a mixed distribution

with two components: with probability 1 − F (0), it is zero; with the remaining

probability, F (0), it is distributed as Expon(cµ− λ).

The answers to Problem 3.7 are now direct from (3.30) and the M/M/1 stationary

distribution, given following (3.24). In the slow system, πc/(1− ρ) = ρ = 2/3,

F slow(1) =
2

3
e−

1
4
·1 .

= 0.519,

and the long-run average cost per hour is 30 + 200λF slow(1) = £81.9. Exactly in the

same way, in the fast system, πc/(1− ρ) = ρ = 1/2,

F fast(1) =
1

2
e−

1
2
·1 .

= 0.303

and the long-run average cost per hour is 40 + 200λF fast(1) = £70.3. Thus the faster

system has lower cost.

♣ Study the following. Exams E03 1, E07 3 (last 10 points), E11 4(b) are all

essentially the above analysis.
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3.6 Little’s Law

Little’s Law states the existence of three long-run limits and a link between them.

We need the following.

Nt number of arrivals up to time t
Xt number of jobs present in the system at time t
Wj time spent in the system by job j

Very roughly speaking, the central idea is that there exist (random) times such

that all the processes “probabilistically restart” themselves, independently of the past,

and moreover, the processes go through infinitely many such “independent identically

distributed” cycles. Taking these times as

τi = i-th time the system becomes empty after having been non-empty, i = 1, 2, . . .

where we put τ0 = 0, and putting

Ai =
∫ τi

τi−1
Xudu = “area” of X process during the i-th cycle

Ñi = Nτi
−Nτi−1

= number of arrivals during the i-th cycle

the following is a set of precise supporting assumptions:

A1. The cycle lengths (τi − τi−1)
∞
i=1 are iid. The areas (Ai)

∞
i=1 are iid. The arrival

counts (Ñi)
∞
i=1 are iid.

A2. E[τ1] < ∞ (finite mean cycle length) and E[Ñ1] < ∞ (finite mean number of

arrivals per cycle).

A3. The cycle containing t, Rt := min{i : τi ≥ t}, and the cycle during which job k

arrives, Ck := min{i : Nτi
≥ k}, satisfy

lim
t→∞

Rt =∞, lim
k→∞

Ck =∞, w.p. 1.

Theorem 3.8 (Little’s Law) Assume A1 to A3. Then,

(i) Long-run average number in system:

lim
t→∞

∫ t

0
Xudu

t
=

E[A1]

E[τ1]
=: L w.p. 1. (3.31)

(ii) Long-run average arrival rate:

lim
t→∞

Nt

t
=

E[Ñ1]

E[τ1]
=: λ w.p. 1. (3.32)
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(iii) Long-run average waiting time:

lim
k→∞

∑k
i=1 Wi

k
=

E[A1]

E[Ñ1]
=: W w.p. 1. (3.33)

Thus, in particular, L = λW .

Proof. The proof is non-examinable and given for completeness.

(i) For any t and for n = Rt being the cycle containing t, we have τn−1 ≤ t ≤ τn

and

A1 + . . . + An−1 ≤
∫ t

0

Xudu ≤ A1 + . . . + An.

Dividing the latter inequality by the (reversed) former inequality,

A1 + . . . + An−1

τn

≤
∫ t

0
Xudu

t
≤ A1 + . . . + An

τn−1

. (3.34)

We will take limits of the bounds as t → ∞ and thus n = Rt → ∞. Consider the

lower bound (left side of (3.34)) carefully. The enumerator is a sum of a large number

of A’s, n − 1 of them, and the denominator τn =
∑n

i=1(τi − τi−1) is the sum of n

cycle lengths, suggesting a “Strong Law of Large Numbers” effect for both. Indeed,

as n→∞,

A1 + . . . + An−1

τn

=
A1 + . . . + An−1

n− 1︸ ︷︷ ︸
→E[A1] w.p. 1

n− 1

n︸ ︷︷ ︸
→1

1Pn
i=1(τi−τi−1)

n︸ ︷︷ ︸
→1/E[τ1−τ0]=1/E[τ1] w.p. 1

(3.35)

by using the SLLN for the areas (A’s) and for the cycle lengths (τi − τi−1’s). That

is, the above converges to E[A1]/E[τ1] w.p. 1. Checking that the upper bound (right

side of (3.34)) has the same limit, the proof is complete.

(ii) The ideas are similar to (i). For any t and for n = Rt, we have

Nτn−1

τn

≤ Nt

t
≤ Nτn

τn−1

(3.36)

and the limit of the lower bound as t→∞ (thus n = Rt →∞) is

lim
n→∞

Nτn−1

τn

= lim
n→∞

Ñ1 + . . . + Ñn−1

n− 1

n− 1

n

n

τn

= E[Ñ1]
1

E[τ1]
w.p. 1 (3.37)

by using the SLLN for the Ñ ’s and for the cycle lengths. Checking that the upper

bound (right side of (3.36)) has the same limit, the proof is complete.

(iii). Since a job always departs by the end of the cycle during which it arrives,

we have
Nτn∑
i=1

Wi = A1 + . . . + An for all n.
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Consider the k-th arrival and let n = Ck be the cycle during which it occurs. Then,

Nτn−1 ≤ k ≤ Nτn , and

A1 + . . . + An−1

Nτn

=

∑Nτn−1

i=1 Wi

Nτn

≤
∑k

i=1 Wi

k
≤
∑Nτn

i=1 Wi

Nτn−1

=
A1 + . . . + An

Nτn−1

. (3.38)

The limit of the lower bound as k →∞ (thus n = Ck →∞) is

lim
n→∞

A1 + . . . + An−1

Nτn

= lim
n→∞

A1 + . . . + An−1

τn

lim
n→∞

τn

Nτn

=
E[A1]

E[τ1]

E[τ1]

E[Ñ1]
=

E[A1]

E[Ñ1]
w.p. 1

(the first limit is proved in (3.35) and the second limit is essentially proved in (3.37)).

Checking that the upper bound (right side of (3.38)) has the same limit, the proof is

complete. 2

Application 3.9 Based on the π’s in (3.23) for the M/M/c model, we give formulas

for certain (long-run) averages for the system and for the queue only (i.e., excluding

service), using Little’s Law to go from average numbers to average waiting times

(for which we previously had no theory). The long-run average number of jobs in the

M/M/c queue, call it Lq, is (apply (3.13) with cost function “# in queue”, f(n) = n−c

for n ≥ c and 0 otherwise):

Lq = average # in queue =
∞∑

n=c

(n− c)πn = πc

∞∑
j=1

jρj = πc
ρ

(1− ρ)2
.3 (3.39)

Let W and Wq be the (long-run) average waiting times in the system and in queue,

respectively. These are linked as follows: for any job j, the time in the system is the

sum of Wj,q = time in queue plus Sj = time in service. Then

W := lim
n→∞

1

n

n∑
j=1

Wj = lim
n→∞

1

n

n∑
j=1

Wj,q + lim
n→∞

1

n

n∑
j=1

Sj = Wq +
1

µ
w.p. 1, (3.40)

the Wq arising by definition, and 1/µ arising by the SLLN for the Sj. Then, letting

L = average # in system =
∑∞

n=1 nπn we have the links

L = λW (Little’s Law for the system)

= λ

(
Wq +

1

µ

)
= Lq +

λ

µ
(via Little’s Law for the queue). (3.41)

3For ρ < 1, we have
∑k

i=1 iρi = ρ
∑k

i=1
d
dρρi = ρ d

dρ

∑k
i=0 ρi = ρ d

dρ
1−ρk+1

1−ρ = ρ 1−(k+1)ρk+kρk+1

(1−ρ)2 ;
taking limits as k →∞, we have

∑∞
i=1 iρi = ρ

(1−ρ)2 .
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♣ Study the following problems, which involve average waiting times and Little’s

Law. • E04 1 remainder on waiting times. • Exercise 3. Comparison of M/M/1

versus M/M/2 (each server has the same speed) in terms of a (long-run average) cost

that has waiting and staffing components.
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3.7 Exercises

Recall: (i) ex =
∑∞

k=0
xk

k!
. (ii) For 0 ≤ ρ < 1,

∑∞
i=0 ρi = 1/(1− ρ).

1. (Random Balking.) Consider an M/M/1 queue with arrival rate λ and service
rate µ. An arrival that finds i jobs in the system acts randomly, independently of
everything else, as follows: with probability pi, it joins the system; with probability
1− pi, it balks, i.e., does not join. Let Xt be the number of jobs in the system at
time t. (i) Determine limh→0 P(Xt+h = i + 1|Xt = i)/h carefully, showing all your
work. (ii) Identify qij := limh→0 P(Xt+h = j|Xt = i) for all i 6= j; no derivation
is required. Given that (Xt) is a birth-death process, identify the birth and death
rates. (iii) For the case pi = 1/(i + 1) for all i = 0, 1, . . ., find the stationary
distribution of (Xt) in terms of λ and µ.

2. (Number of servers adapts to the number of customers in the system.) Customers
arrive at a system according to a Poisson process of rate λ. With X the number
of customers in the system, assume that the number of servers is one whenever
X ≤ m and two whenever X > m. Assume service times are Expon(µ). Show
that the stationary distribution of X has the form

πk =

{
π0(2ρ)k k = 1, 2, . . . ,m
π0(2ρ)mρk−m k = m + 1, m + 2, . . .

(3.42)

where ρ = λ/(2µ), identifying results you use without proof. How can π0 be
determined?

3. Customers arrive at a system at rate 5 per hour, and the average time to service
them is 1/6 hours. It costs 8x per hour to have x customers in the system (waiting
cost) plus 5c per hour to have c servers (server cost). Find the c in {1, 2} that
minimises the long-run average cost. State any assumptions made. Hint: Use
(3.41) and the M/M/c stationary distribution, (3.23).

4. For the M/M/c model with arrivals of rate λ and with Expon(µ) service times,
verify (3.30) by combining Application 2.11 (waiting time when encountering k
customers in queue has the Gamma(k+1, cµ) distribution, see (2.18)) and the fact
(from Example 3.5) πc+k = πcρ

k for k = 0, 1, . . ., where ρ = λ/(cµ). Hint : In the
resulting doubly-indexed sum, change the order of summation.

5. (Failure of ASTA Conclusions in a deterministic queue.) Let Xt be the number of
jobs in a single-server system at time t, where X0 = 0, arrivals occur at times 0,
10, 20, 30, . . ., and service times are 9 for each job. Here, the function (Xt : t ≥ 0)
is deterministic. State it and determine the following limits:

(a) The long-run fraction of arrivals that find the server busy.

(b) The long-run fraction of time the server is busy.

Does the ASTA Theorem apply in this case?

6. (Solving certain balance equations via probability generating functions.) Jobs
arrive in a system in batches of size b > 1, with batch-arrival events occurring
according to a Poisson process of rate λ. There is one server at which service times
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are Expon(µ) rv’s, independent of everything else. There is infinite waiting space.
Let Xt be the number of jobs in the system at time t.

(i) Given that (Xt) is a CTMC with values in {0, 1, 2, . . .}, briefly argue that its
stationary distribution {πi}∞i=0, when it exists, satisfies the following.

State Rate Out = Rate In
0 π0λ = π1µ

i (1 ≤ i < b) πi(λ + µ) = πi+1µ

i (b ≤ i) πi(λ + µ) = πi+1µ + πi−bλ

(ii) Let G(z) =
∑∞

i=0 πiz
i be the probability generating function (pgf) of the

distribution {πi}∞i=0. Show that G(z) = N(z)
D(z)

, where N(z) = µπ0(1 − z) and

D(z) = λzb+1− (λ + µ)z + µ. Hint: Multiply the state-i equation above by zi, for
each i, then sum over all i (from 0 to ∞), then make appropriate “corrections”.

(iii) To find π0 we require 1 =
∑∞

i=0 πi = G(1) (normalising equation). It is given
that G(1) = limz↑1 G(z) (z increases to 1; continuity of G(), Fact 1.18). Using
L’Hopital’s rule, work out the limit as a function of π0, and thus show that

π0 = 1− bλ

µ
.

Note that the remaining πi’s are then determined by (1.24).

3.8 Solutions to Exercises

1. Short answer to (i). Arrivals happen with rate λ. When Xt = i, an arrival joins
with probability pi, so “customer-joins-the-system” events happen with rate λpi.

Full answer to (i). Let A = # of arrivals in (t, t + h] and D = # of departures in
the same interval. I indicates if a given arrival joins (1-yes, 0-no), I is independent
of everything else, and P(I = 1|Xt = i) = pi. Then, intending h→ 0,

P(Xt+h = i + 1|Xt = i)

= P(A = 1, D = 0, I = 1|Xt = i) + P(A + D ≥ 2 and other conditions|Xt = i)︸ ︷︷ ︸
o(h)

= P(A = 1|Xt = i)P(D = 0|Xt = i)P(I = 1|Xt = i) + o(h) by independence

= [λh + o(h)][1− µh + o(h)]pi + o(h)

= λpih + o(h)

where we need not specify the “other conditions”. Thus

lim
h→0

P(Xt+h = i + 1|Xt = i)

h
= lim

h→0

(
λpi +

o(h)

h

)
= λpi.

Note: The thinning Proposition 2.14 is a similar idea.
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(ii) The set of values that Xt may take is {0, 1, 2, . . .}. In (i) we showed qij = λpi

for j = i + 1 and all i. Similar to the derivations (3.1) to (3.3), we see that qij = µ
for all i > 0 and j = i − 1; and qij = 0 for all other i 6= j. That is, (Xt) is a
birth-death process with birth rates λi = λpi for all i and death rates µi = µ for
all i > 0.

(iii) From the general birth-death solution (3.20) and pi = 1/(i + 1) we have

πk = π0
λ · (λ/2) · (λ/3) · · · (λ/k)

µk
= π0

ρk

k!
, k = 1, 2, . . . .

where ρ = λ/µ. Normalising gives π0 =
(
1 +

∑∞
k=1

ρk

k!

)−1

= (eρ)−1 = e−ρ.

2. With Xt the number of customers in the system at time t, (Xt) is a birth-death
process taking values in {0, 1, 2, . . .}, with birth rates λn = λ for all n, and death
rates µn = µ for n ≤ m and µn = 2µ for n > m. Then, using the standard
birth-death result (3.20), we obtain the stated equations. To determine π0, insert
the πi from (3.42) into the normalising equation

∑∞
i=0 πi = 1 and solve for π0.

3. We assume that inter-arrival and service times are exponentially distributed and
independent. Then, the one-server and two-server systems are the M/M/1 and
M/M/2 model, respectively. In our standard notation, λ = 5 and µ = 6.

By “cost” we mean long-run average cost per hour, in £. The waiting cost is 8L,
where L, the long-run average number of customers in the system, is a known
function of ρ = λ/(cµ), via Lq, from (3.39) and (3.41). The cost is 8L + 5c.

M/M/1 calculation. Using (3.23), that is, the stationary distribution for the
M/M/c model, for c = 1, we have π1 = (1 − ρ)ρ. Then, by (3.39), Lq =
π1ρ/(1 − ρ)2 = ρ2/(1 − ρ); and (3.41) becomes L = ρ2/(1 − ρ) + ρ = ρ/(1 − ρ).
Then, ρ = λ/µ = 5/6, L = 5, and the cost is 8L + 5 · 1 = 45.

M/M/2 calculation. Again by (3.23), this time for c = 2, we have π2 = π02ρ
2,

where, from (3.24),

π0 =

[
1 + 2ρ +

2ρ2

1− ρ

]−1

=
1− ρ

1 + ρ
.

Then (3.39) becomes

Lq = π2
ρ

(1− ρ)2
= (π02ρ

2)
ρ

(1− ρ)2
=

2ρ3

1− ρ2

and (3.41) becomes

L =
2ρ3

1− ρ2
+ 2ρ =

2ρ

1− ρ2
.

We have ρ = λ/(2µ) = 5/12, L = 120/119
.
= 1.0084, and the total cost is 8L+5·2 .

=
18.067. Thus, the 2-server system has lower cost.

4. First, the conditional probability in (3.29) is

P(W > s|X = c + k) =
k∑

i=0

e−cµs (cµs)i

i!
, s ≥ 0, k = 0, 1, . . . .
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(Application 2.11; Gamma(k + 1, cµ) tail probability, (2.18)). Recall that we have
used ASTA to claim that limn→∞

1
n

∑n
j=1 P(XTj

= c + k) = πc+k. Now, by (3.23)

we have πc+k = πcρ
k for k = 0, 1, . . ., where ρ = λ/(cµ). Thus (3.29) becomes

F (s) =
∞∑

k=0

k∑
i=0

e−cµs (cµs)i

i!
· πcρ

k

= πce
−cµs

∞∑
i=0

(cµs)i

i!

∞∑
k=i

ρk (reversed the summation order)

= πce
−cµs

∞∑
i=0

(cµs)i

i!

ρi

1− ρ
=

πc

1− ρ
e−(cµ−λ)s. (ex =

∑∞
i=0

xi

i!
for x = cµsρ = λs)

5. For t from 0 to 9, we have Xt = 1, then for t from 9 to 10, we have Xt = 0;
and this pattern of “cycles”, of length 10 each, repeats forever. (We choose to not
specify if Xt is 0 or 1 at times when it jumps from one to the other, as this does
not matter.) Thus:

(a) All arriving jobs find the server is idle (Xt = 0 just before each arrival time).

(b) The long-run fraction of time that the server is busy (equivalently that Xt = 1)
is 9/10.

The (a) and (b) above are, respectively, the left and right side in the ASTA The-
orem’s conclusion, (3.25). The theorem does not apply here.

6. (i) State changes occur as follows: when at state i, a batch-arrival event changes
the state to i + b, while a service-completion event changes the state to i− 1; thus
the generator entries are: qi,i+b = λ for all i; qi,i−1 = µ for all i > 0; and qij = 0 for
other i 6= j. The stated equations are the usual balance equations (3.9) associated
to this generator.

(ii) Multiplying and summing as suggested gives

λπ0 + (λ + µ)
∞∑
i=1

πiz
i

︸ ︷︷ ︸
=G(z)−π0

= µ
∞∑
i=0

πi+1z
i + λ

∞∑
i=b

πi−bz
i

= µ
1

z

∞∑
i=0

πi+1z
i+1

︸ ︷︷ ︸
=G(z)−π0

+λzb

∞∑
i=b

πi−bz
i−b

︸ ︷︷ ︸
=G(z)

.

The key idea above is that each of the infinite sums in the first equation gives G(z)
after the “correction” steps seen in the second equation. Now, re-arrange to solve
for G:

G(z)
(
λ + µ− µ

z
− λzb

)
= µπ0

(
1− 1

z

)
⇒ G(z) =

µπ0(1− z)

λzb+1 − (λ + µ)z + µ
.

(iii) The derivatives of N() and D() are N ′(z) = −µπ0 and D′(z) = (b+1)λzb−λ−
µ. Using L’Hopital’s rule, 1 = G(1) = limz↑1 G(z) = N ′(1)

D′(1)
= −µπ0

bλ−µ
⇒ π0 = 1− bλ

µ
.
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Chapter 4

Sampling from Distributions

We study some general methods for simulating (sampling) a value from a given uni-

variate distribution, with support contained in the real numbers. The source of

randomness is a pseudo-random number generator, assumed to return independent

samples from the Unif(0, 1) distribution, defined after (1.10).

4.1 Preliminaries

F will generally denote a cdf. Given a cdf F , we write “X ∼ F” to mean “X is a

sample of the rv whose cdf is F”. Given a pdf f , we write “X ∼ f” to mean “X is

a sample of the rv whose pdf is f”. The notions of “inf” (infimum) and “min” are

taken to coincide. Likewise, “sup” (supremum) and “max” will coincide.

4.2 Inversion

Definition 4.1 The inverse of the cdf F is the function

F−1(u) = inf{x : F (x) ≥ u} = min{x : F (x) ≥ u}, 0 < u < 1.

To give a more explicit definition of the inverse, note first that any cdf F has a

left limit everywhere (as it is non-decreasing), i.e., for any real a we can put

F (a−) = lim
x→a−

F (x).

Definition 4.2 Let F be a cdf.

(a) If F is continuous and strictly increasing on an interval (a, b), then, for any u in

(F (a), F (b)), define F−1(u) as the unique x in (a, b) that solves F (x) = u.

(b) If F has a jump at a, i.e., F (a−) < F (a), then, for any u in (F (a−), F (a)], define

F−1(u) = a.
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Remark 4.3 In case (a), the existence of x follows from the Intermediate Value

Theorem, and the uniqueness results from the strictly-increasing assumption. In this

case, F (F−1(u)) = u for all u in (0,1). In case (b), where F has a jump at a, note that

F (F−1(u)) = F (a) > u for u in (F (a−), F (a)), so F−1 is not the standard inverse

function.

The inversion method returns F−1(U), where U ∼ Unif(0, 1), and determined by

a pseudo-random-number generator. We now show the method’s correctness.

Proposition 4.4 Let F be a cdf and let F−1 be its inverse. If U ∼ Unif(0, 1), then

F−1(U) has cdf F .

Proof. The key fact is the equivalence

F (x) ≥ u⇔ x ≥ F−1(u) (4.1)

which is a consequence of the fact that F is a nondecreasing, right-continuous function.

We omit a detailed proof of (4.1). Now

P(F−1(U) ≤ x) = P(U ≤ F (x)) by (4.1)

= F (x) since U ∼ Unif(0, 1)

i.e., F−1(U) has cdf F . 2

Remark 4.5 On a computer, provided only that we can evaluate F (x) at any x,

F−1(u) can easily be computed for any u, via a bracketing/bisection method, for

example. This method is simple, but beyond our scope.

4.2.1 Calculating the Inverse Explicitly: Examples

Inversion of a discrete cdf. Section 1.3.1 explained that a discrete distribution

can always be reduced to ordered support points x1 < x2 < x3 < . . ., each x occurring

with positive probability, and the corresponding cdf F satisfies F (x1) < F (x2) <

F (x3) < . . .. Here, the inverse of F is (Definition 4.2(b)):

F−1(u) =



x1 0 < u ≤ F (x1)
x2 F (x1) < u ≤ F (x2)
...
xk F (xk−1) < u ≤ F (xk)
...

The inverse of some simple continuous cdf’s is calculated explicitly below.
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Example 4.6 Consider the Unif(5, 8) distribution. By (1.10), the cdf is

F (x) =
x− 5

3
, 5 ≤ x ≤ 8.

Definition 4.2(a) applies on the entire support, so solve

x− 5

3
= u⇔ x = 5 + 3u = F−1(u).

Example 4.7 In Example 1.6 we found that X =“equiprobable outcome on [2, 4] ∪
[5, 6]” has cdf

F (x) =


x−2

3
, 2 ≤ x ≤ 4

2
3
, 4 < x ≤ 5

2
3

+ x−5
3

, 5 < x ≤ 6

This cdf is continuous, so its inverse is found by solving F (x) = u (Definition 4.2(a)).

For u in (F (2), F (4)), x must be between 2 and 4, so solve

x− 2

3
= u⇔ x = 2 + 3u = F−1(u).

For u in (F (5), F (6)), x must be between 5 and 6, so solve

2

3
+

x− 5

3
= u⇔ x = 3 + 3u = F−1(u).

Finally, F−1(2/3) = 4. In summary,

F−1(u) =

{
2 + 3u, u ≤ 2

3

3 + 3u, u > 2
3

Example 4.8 Consider the Expon(λ) distribution. Recall that the cdf is

F (x) = 1− e−λx, x ≥ 0.

Definition 4.2(a) applies on the entire support, so solve

1− e−λx = u⇔ x = −1

λ
log(1− u) = F−1(u).

♣ Study the following. • Exercise 1 (part (b) = inversion of Geometric distribution

= E11 3(a)). • E04 4(i). Triangular distribution with support parametrised by some

α. Helps emphasise that in solving F (x) = u, only x in the support are relevant.

Failing to apply this restriction, as F (x) is a quadratic, there are two solutions, and

the one outside the support is irrelevant. • E03 4 (inversion part, first 5 lines). • E10

2(c) (mixture of exponentials with disjoint support).
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4.3 Acceptance-Rejection

4.3.1 Method and Theory

The problem is to sample from a given distribution with pdf f and support S. That

is, the output X should satisfy, for all x ∈ S,

lim
ε→0+

P(x− ε < X ≤ x + ε)

2ε
= f(x), or, less precisely, P(X ∈ dx) = f(x)dx (4.2)

where dx means an infinitesimal (i.e., arbitrarily small) interval containing x.

The acceptance-rejection (A/R) method samples from another pdf, g (it is assumed

known how to sample from g) and rejects samples in a way so that accepted samples

have the desired pdf, f . There is the key requirement that there exists a finite

constant K such that

a(x) :=
f(x)

Kg(x)
≤ 1 for all x ∈ S (4.3)

The need for this is explained in Remark 4.9 below. The sampling works as follows:

1. Sample Y ∼ g and U ∼ Unif(0, 1), independently of any other samples.

2. If U ≤ a(Y ), set X ← Y (accept) and exit. Otherwise (reject), return to step 1.

Note that the output X is the Y conditioned by the acceptance event

A = {U ≤ a(Y )} .

g is called the instrumental (trial, candidate, proposal) pdf, and Kg the envelope.

That X has pdf f can be seen roughly as follows:

P(X ∈ dx) = P(Y ∈ dx|A) =
P((Y ∈ dx) ∩ A)

P(A)
=

P (A|Y ∈ dx) P(Y ∈ dx)

P(A)

=
P
(
U ≤ a(Y )

∣∣Y ∈ dx
)
g(x)dx

P(A)
=

a(x)g(x)dx

P(A)
=

f(x)

KP(A)
dx.

For simplicity, assume the above is a pdf; then it must integrate to one, so

1 =

∫
S

f(x)

KP(A)
dx =

1

KP(A)

∫
S

f(x)dx︸ ︷︷ ︸
=1

=
1

KP(A)

(as the pdf f has support S). That is, the “less precisely” form in the right of (4.2)

is true. Moreover, we see that

P(A) =
1

K
(4.4)

and that K ≥ 1 always.
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Remark 4.9 The step P(U ≤ a(Y )|Y ∈ dx) = a(x) in the proof holds only if

a(x) ≤ 1 for all x (since a(x) > 1 cannot be a probability). This is why (4.3) is

required.

A more careful proof of correctness of A/R shows the left of (4.2), as follows.

Lemma 4.10 Assume that a() satisfies

|Y − x| ≤ ε ⇒ a(x)−Mε ≤ a(Y ) ≤ a(x) + Mε

where M <∞ can be taken as the maximum of the absolute derivative (slope) of a().

Then

lim
ε→0+

P(|Y − x| ≤ ε|A)

2ε
=

f(x)

KP(A)
(4.5)

provided that f(x) > 0 and g(x) <∞, hence a(x) > 0.

Proof. Write the conditional probability in (4.5) as P(B)/P(A), where

B = {|Y − x| ≤ ε, U ≤ a(Y )}.

The main idea is to bound the event B by a subset and a superset whose probabilities

tend to the correct limit. The bounds are

{|Y − x| ≤ ε, U ≤ a(x)−Mε} ⊂ B ⊂ {|Y − x| ≤ ε, U ≤ a(x) + Mε}.

Taking probabilities,

P(|Y − x| ≤ ε, U ≤ a(x)−Mε) ≤ P(B) ≤ P(|Y − x| ≤ ε, U ≤ a(x) + Mε)

⇒ P(|Y − x| ≤ ε)P(U ≤ a(x)−Mε) ≤ P(B) ≤ P(|Y − x| ≤ ε)P(U ≤ a(x) + Mε)

⇒ P(|Y − x| ≤ ε)[a(x)−Mε] ≤ P(B) ≤ P(|Y − x| ≤ ε)[a(x) + Mε]

by the independence of Y and U , and by then using that U ∼ Unif(0, 1). Dividing

by 2εP(A) throughout, we have lower and upper bounds for our target:

P(|Y − x| ≤ ε)[a(x)−Mε]

2εP(A)
≤ P(B)

2εP(A)
≤ P(|Y − x| ≤ ε)[a(x) + Mε]

2εP(A)
. (4.6)

Now, take limits as ε→ 0+ and observe:

• limε→0+ P(|Y − x| ≤ ε)/2ε = g(x), as Y has pdf g;

• limε→0+[a(x)−Mε] = limε→0+[a(x) + Mε] = a(x) > 0.

Thus, both the lower and upper bound in (4.6) converge to g(x)a(x)/P(A) = f(x)/[KP(A)],

and thus so does the middle. 2
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4.3.2 Feasibility and Efficiency

Each trial is accepted with probability P(A) = 1
K

, independently of other trials. Thus,

the number of trials until acceptance has the Geometric(P(A)) distribution, whose

mean is 1/P(A) = K. Let us think “maximum sampling efficiency” equals “minimum

mean number of trials until acceptance”, i.e., “maximum P(A)”, i.e., “minimum K”.

The constraint (4.3) on K can be rewritten as K ≥ supx∈S
f(x)
g(x)

= maxx∈S
f(x)
g(x)

, so the

minimum K that satisfies the constraint is

K = sup
x∈S

f(x)

g(x)
= max

x∈S

f(x)

g(x)
. (4.7)

The A/R method always requires setup, meaning choosing g and then determining

K by solving this maximisation problem. A considerable limitation is that if the K

in (4.7) is infinite, then A/R is impossible for this f and g; see Example 4.13 below.

♣ Study the following. • E07 4. Develops an A/R sampler for the target density

proportional to xα−1e−x, x > 0 (the Gamma(α, 1) distribution), for the case α < 1.

Note the density goes to ∞ as x → 0. The problem statement gives the envelope,

and the problem is then straightforward. Choosing the envelope was a more subtle

problem, which was not asked here, because of the requirement of the existence of a

finite K; this was achieved by the envelope choice (up to a proportionality constant)

xα−1 for x < 1, and e−x (the Expon(1) pdf) for x > 1. The envelope is sampled by

inversion (that is, inverting the associated cdf).

Example 4.11 The pdf to sample from is

f(x) =

{
2
25

(6− x) for 1 ≤ x ≤ 6
0 otherwise.

This is the Triangular(1,1,6) distribution, the three parameters being minimum,

mode, and maximum. Let g be the pdf of the Unif(1,6) distribution), i.e., the constant

1/5 on [1, 6]. As setup, we must find (4.7). Focus on f(x)
g(x)

= 2(6−x)
5

in the support of

f , i.e., [1, 6], and see that it attains the maximum value of 2 at x = 1. Thus, K = 2,

a(x) = (6 − x)/5, and P(A) = 1/K = 1/2. To see the sampling in action, suppose

the sampled (Y, U) pairs are (4.9, 0.3) and (1.7, 0.8). Then calculate:

Y U a(Y ) Is U ≤ a(Y )?
4.9 0.3 0.22 No
1.7 0.8 0.86 Yes

Here, two trials were needed until acceptance. The number 1.7 is a random sample

from the pdf f .
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When f and g involve the exponential function, it is typically easier to optimise

log(f/g) (log = “natural logarithm”, the inverse function to the exponential one)

rather than f/g, as the former has simpler derivatives. A maximiser of f/g is also a

maximiser of log(f/g), and vice versa. The following is a simple illustration of this.

Example 4.12 Suppose we want to sample from the pdf f(x) = (2/π)1/2e−x2/2 with

support (0,∞). (This is the pdf of |Z|, where | · | denotes absolute value and Z ∼
N(0, 1), the standard normal distribution (mean 0, variance 1).) Consider acceptance-

rejection with g the pdf of the Expon(1) distribution, i.e., g(x) = e−x on (0,∞). To

find the optimal K, maximise log[f(x)/g(x)] = log(2/π)/2 + x−x2/2 on (0,∞). The

maximiser is x = 1, giving K = (2e/π)1/2 and acceptance probability 1/K ≈ 0.76.

We write f(x) ∝ h(x) on a given support S to mean that f(x) = h(x)/c, where

c =
∫
S h(t)dt does not matter in the argument.

Example 4.13 The Gamma(α, λ) distribution (shape α > 0, scale λ > 0), seen

earlier for α integer, has pdf f(x) ∝ xα−1e−λx with support x > 0. Consider A/R

with f and g being Gamma with respective shapes a, b and common scale. Then

f(x)/g(x) ∝ xa−b. If we choose b < a, then maxx>0 xa−b = ∞, since xa−b → ∞ as

x → ∞, and A/R is impossible. If we choose b > a, then maxx>0 xa−b = ∞, now

because xa−b →∞ as x→ 0, so again A/R is impossible.

A general case where A/R is possible is when the pdf f has support (a, b) with a

and b both finite, and moreover f is bounded, i.e., maxa<x<b f(x) <∞. An example

of such f is the Beta(α, β) distribution for α, β > 1, where f(x) ∝ xα−1(1 − x)β−1

with support (0, 1). For any f as above, we can choose g(x) = 1/(b−a) on [a, b], that

is, the Unif(a, b) pdf (which is easy to sample from). Then, f(x)/g(x) = (b− a)f(x),

and (4.7) gives K = (b− a) maxa<x<b f(x), which is finite because both terms in the

product are finite by assumption.

♣ Study the following. • E03 4. Both the support and the density f are bounded,

so feasibility of A/R is ensured. • E08 4. A triangular distribution, which is sampled

by inversion, forms the envelope of an A/R sampler for a Beta distribution (the cdf of

that beta is a cubic polynomial, so inversion would require solving a cubic equation).

• Exercise 3. Illustrates an involved A/R setup. We consider a whole family of g’s;

for each of them we find the usual K as in (4.7); with K now being a function of g,

we use the (g,K) pair resulting in the smallest K.
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4.4 Exercises

1. Describe in full the inversion method of simulating each of the distributions below.

(a) Uniform on the interval (−5, 5).

(b) Suppose we do independent trials, where each trial succeeds with probability p,
and let X be the number of trials up to and including the first success. Then
X is said to have the Geometric(p) distribution. Derive the cdf of X and then
describe how X can be sampled by the inversion method.

2. Based on the definition of the Geometric(p) distribution given above, give a method
for simulating it based only on an unlimited supply of Unif(0, 1) pseudo-random
numbers. Hint: Simulate the success indicators; neither inversion nor acceptance-
rejection is needed.

3. We want to sample from the Gamma(a, 1) distribution whose pdf is

fa(x) =
1

Γ(a)
xa−1e−x, x > 0

where Γ(a) =
∫∞

0
xa−1e−xdx. Consider acceptance-rejection methods based on the

family of trial pdf’s
gλ(x) = λe−λx,

where λ may depend on a. For given a > 1, show that across envelopes of the
form Kgλ, 0 < λ < 1, the choice λ = 1/a maximises the acceptance probability.

Then state the resulting acceptance probability. Hint: By maximising fa(x)
gλ(x)

across

x, determine the corresponding best A/R constant, K = K∗(a, λ). Then, with a
being fixed, minimise K∗(a, λ) across λ. It will be easier to work with logarithms
of functions when seeking the min or max.

4.5 Solutions to Exercises

1. In each case, we first write down the cdf F explicitly, and then find the inverse
F−1 explicitly. Having done that, the random sample from F is F−1(U), where U
is a Unif(0, 1) (pseudo)-random number.

(a) Let f be the pdf. The uniform distribution on [−5, 5] has pdf that is a constant
c > 0 on this interval and 0 elsewhere. Find c:

1 =

∫ ∞

−∞
c dt =

∫ 5

−5

c dt = 10c⇒ c =
1

10
.

That is,

f(t) =

{
1
10

, a ≤ x ≤ b
0 otherwise

Thus, the cdf is

F (x) =

∫ x

−∞
f(t) dt =

∫ x

−5

1

10
dt =

x + 5

10
for −5 ≤ x ≤ 5.
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Find the inverse by solving for x:

x + 5

10
= u⇔ x = −5 + 10u = F−1(u).

(b) (i) Find the cdf. To this end, the easiest way is:

P(X > k) = P(first k trials failed) = (1− p)k, k = 0, 1, 2, . . . .

The cdf, F , is

F (k) = P(X ≤ k) = 1− P(X > k) = 1− (1− p)k, k = 0, 1, 2, . . . .

(ii) To state the inverse explicitly, we need to find the smallest integer k satisfying

1− (1− p)k ≥ u⇔ (1− p)k ≤ 1− u⇔ k log(1− p) ≤ log(1− u)⇔ k ≥ log(1− u)

log(1− p)
.

(In the last step, the division by log(1 − p) < 0 changed the direction of in-

equality.) Thus, F−1(u) =
⌈

log(1−u)
log(1−p)

⌉
, where dxe is the standard ceiling function

(smallest integer that is ≥ x). Inversion returns F−1(U), where U ∼ Unif(0, 1).

2. Let Ui ∼ Unif(0, 1), i = 1, 2, . . ., and independent (determined by a pseudo-
random-number generator). Return the first i such that Ui ≤ p.

3. For fixed a and λ, the smallest possible K is K∗(a, λ) = maxx:x>0 ra,λ(x), where

ra,λ(x) :=
fa(x)

gλ(x)
=

xa−1e(λ−1)x

λΓ(a)
, x > 0

Maximise log ra,λ(x) over the support of fa, i.e., x > 0:

log ra,λ(x) = (a− 1) log x + (λ− 1)x− log[λΓ(a)]

d log ra,λ

dx
=

a− 1

x
+ (λ− 1) = 0⇒ x∗(a, λ) =

a− 1

1− λ
d2

dx2
log ra,λ = −(a− 1)

1

x2
< 0.

Thus the x∗(a, λ) above is the maximiser. (Note that the given constraints on a
and λ imply x∗ > 0, which is in the support. If it was not in the support, it would
be irrelevant; it is the maximum over the support that matters.)

For fixed a, maximising the acceptance probability is equivalent to minimising the
A/R constant K∗(a, λ) over λ; first, form the logarithm:

log K∗(a, λ) = log ra,λ(x
∗)

= (a− 1) log(a− 1)− (a− 1) log(1− λ) + (1− a)− log λ− log Γ(a).

Now minimise this over 0 < λ < 1:

∂ log K∗

∂λ
=

a− 1

1− λ
− 1

λ
= 0⇒ λ∗(a) =

1

a
∂2 log K∗

∂2λ
=

a− 1

(1− λ)2
+

1

λ2
> 0.
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Thus λ∗(a) above is the minimiser. Putting K∗(a) = K∗(a, λ∗), i.e., the constant
associated to the best trial pdf, gλ∗(a), we have

log K∗(a) := log K∗(a, λ∗(a))

= (a− 1) log(a− 1)− (a− 1) log

(
a− 1

a

)
+ (1− a) + log a− log Γ(a)

= a log a + (1− a)− log Γ(a) after cancellations

i.e., K∗(a) = aae1−a/Γ(a). The acceptance probability is, as always, 1/K∗(a).
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Chapter 5

Guidance for Exam Preparation

Questions 1 and 2 are compulsory. Of Questions 3 and 4, only the best answer will
count.
Generally, it is good to state clearly any assumptions made or missing information so
as to show what you know, even if incomplete.
More detail is given below for each question. Listed is the material (including past
exam papers) that can be given higher priority. “E04 4(i)” means “Exam of June
2004, Question 4(i)”, and so on.

Question 1 (a): 9 points. The Exponential Distribution and Section 2.2, par-
ticularly the memoryless property (2.4), its derivation and significance. Exam E11
4(a).

Question 1 (b): Modelling, 31 points. A modelling question, typically involving
the following.

1. Identify an appropriate CTMC, its generator, and the equations that determine
the stationary distribution, assuming one exists. A classic model is a birth-death
process with finite or infinite state space.

2. Given the stationary distribution of this CTMC, calculate performance by applying
some or all of (3.13), (3.15), (3.17), and Little’s Law in the form L = λW .

Examples 3.2 and 3.4 and Application 3.9. Chapter-3 Exercise 2. WORKING
E03 2: Two Stations in Tandem. E08 3: Finite-state-space CTMC; the policy of
preferring A over B together with the question “find the long-run fraction of time A
is busy” suggest that the state should indicate the idle/busy state of each server sep-
arately. E04 1: M/M/1 versus an M/M/2 with half-as-fast servers, i.e., same overall
speed. E06 1: Centralised versus decentralised M/M/ systems. E08 1: M/M/1. E11
1: M/M/2. Chapter-3 Exercise 3: A comparison of M/M/1 versus M/M/2 involving
waiting and server costs.
WORKING - END

The following problems should be studied only with regard to obtaining the bal-
ance equations. The explicit stationary distribution (solution to these equations) via
probability generating functions (pgf’s) is not examinable. E04 2, M/Ek/1 Model.
Exercise 6, E06 3, E07 2, E10 3: batch arrivals.
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Question 2: Chapter 4, 26 points.

1. Section 4.2, especially Definitions 4.1 and 4.2 and Proposition 4.4. Exams E10
2(a)-(b), E11 3(b).

2. Applying the inversion method. Exercise 1. Exams E03 4, E04 4(i), E07 4, E08 4,
E10 2(c), E11 2(a), E11 3(a).

3. Section 4.3. Exam E11 3(c).

4. Applying the acceptance-rejection method. Exercise 3. Exams E03 4, E06 4(b)
excluding the “discuss” part, E07 4, E08 4, E09 2(b), E10 4(a), E11 2(b).

Question 3: Chapter 2, 34 points. Emphasis on definitions and on analysis
similar or identical to the notes. Study in priority order:

1. The Poisson-process basics: Definitions 2.4 and 2.5, calculations as in Example 2.7
and Exercise 1. Proof of “⇒” part in Theorem 2.6, which essentially is the proof
of (2.11). Section 2.4.2. Exams E04 3, E07 3 (first 15 points).

2. Merging of Poisson processes, Section 2.4.4, especially Proposition 2.10 and Exer-
cise 2. Poisson process of general rate function, Section 2.5. Exercises 3, 4. To
solve E03 3, recognise it is an NHPP and identify the rate function; the solution
is then standard, obtained exactly as in Exercise 3. Exam E10 4(b).

3. Convergence as in Section 2.7.

Typical partial question:

Consider a certain randomly occurring event, and let Nt be the number of events
that occur up to time t. State appropriate conditions about the Nt such that
(Nt : t ≥ 0) is a Poisson process. The conditions are about: (i) independence;
(ii) stationarity, meaning that certain distributions do not depend on time; and
(iii) the probabilities that one and two events occur, respectively, in an interval
of length h, as h→ 0. (11 points)

Question 4: Chapter 3, 34 points. Emphasis on definitions and on analysis
similar or identical to the notes. Study in priority order:

1. Continuous-Time Markov chains, Section 3.3. The birth-death process, Section 3.2.
Derivation of Kolmogorov-type differential equations (3.6), or something similar.
Exam E06 2.

2. Long-run behaviour, Sections 3.4 and 3.5, especially Section 3.5.1. Exams E03 1,
E07 3 (last 10 points), E11 4(b).

3. Careful statement of Little’s Law, as in Theorem 3.8.

Typical partial question:
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Put Xt for the number of jobs in a system at time t, and assume that for h ≥ 0
we have Xt+h = Xt+B−D, where, conditional on Xt = i, the random variables
B and D (counts of new “births” and “deaths” during (t, t + h], respectively)
are independent with

P(B = 1|Xt = i) = λih + o(h), P(B ≥ 2|Xt = i) = o(h)

P(D = 1|Xt = i) = µih + o(h), P(D ≥ 2|Xt = i) = o(h), i > 0.

1. Determine, showing all your work,

lim
h→0

P(Xt+h = i + 1|Xt = i)

h

for any i. (8 points)

2. Determine, showing all your work,

lim
h→0

P(Xt+h = j|Xt = i)

h

for |j − i| ≥ 2, i.e., the target state j differs from the starting state i by 2 or
more. (9 points)
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