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For many complex stochastic systems, purely mathematical methods of analysis are un-

available, and deterministic numerical methods have extremely limited utility. By making

it feasible to analyze the performance of such systems, simulation has become one of the

most widely applied tools of operations research. Direct simulation, however, may require

excessive run lengths (or replication counts) to yield estimators with acceptable precision,

thus becoming prohibitively expensive. A diversity of variance reduction techniques (VRTs)

have been developed to improve the efficiency of simulations—that is, to reduce the comput-

ing effort necessary to obtain some specified precision. For a survey of variance reduction

techniques, see Wilson (1984), Nelson (1987), and L’Ecuyer (1994).

Relatively little work has been directed toward integrating the most widely used variance

reduction techniques into an overall strategy that can exploit various sources of efficiency

improvement simultaneously. Kleijnen (1975) combined the techniques of antithetic variates

(AV) and common random numbers (CRN) to estimate the mean difference between the

responses of two systems. He showed by simple examples that some implementations of

the combined technique (AV+CRN) may be inferior to either antithetic variates or common

random numbers used alone. For each of the variance reduction techniques under con-

sideration (AV, CRN, and AV+CRN), Kleijnen proposed a scheme for optimally allocating

replications to the two systems; and when using these schemes, he found experimentally that

his combined technique (AV+CRN) was superior to antithetic variates or common random

numbers used alone. Burt, Gaver, and Perlas (1970) combined the techniques of antithetic

variates and control variates (CV) for the simulation of activity networks, and experimen-

tally they found the combined technique (AV+CV) to provide more precise results than

either antithetic variates or control variates used alone. Loulou and Beale (1976) observed

similar improvements in efficiency when they combined antithetic variates with a version of

systematic sampling for the simulation of activity networks.

Few attempts have been made either to quantify the efficiency improvements resulting

from integrated variance reduction strategies or to establish general conditions under which

those integrated strategies are preferable to direct simulation or standard variance reduc-

tion techniques used alone. Schruben and Margolin (1978) considered the estimation of a

simulation metamodel—that is, a linear regression model of a simulation-generated perfor-

mance measure expressed in terms of a vector of design variables for the target system.

Schruben and Margolin provided conditions under which the techniques of antithetic vari-

ates and common random numbers jointly yield guaranteed efficiency improvements com-

pared to (a) using common random number streams at all design points in a simulation

experiment, and (b) using independent sets of random number streams at different design
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points. Extending this work, Tew and Wilson (1994) incorporated control variates into the

Schruben-Margolin scheme and established conditions under which their combined approach

is superior to (i) the original Schruben-Margolin scheme, (ii) control variates used alone,

and (iii) direct simulation using independent random number streams at each design point.

In this paper, we develop strategies for jointly applying certain well-known variance re-

duction techniques to estimate the expected value of a univariate response in a finite-horizon

simulation experiment. These strategies incorporate the following variance reduction tech-

niques in pairs: conditional expectation, control variates, and correlation induction. Al-

though our general definition of correlation induction encompasses several related variance

reduction techniques such as common random numbers and antithetic variates, we focus

much of our analysis on a special case of correlation induction known as Latin hypercube

sampling (LHS). For each integrated variance reduction strategy, we formulate and justify

conditions on the structure and operation of the simulation under which that strategy will

yield a smaller response variance than its constituent variance reduction techniques will

yield individually. We also derive asymptotic variance comparisons between many of the

methods that are discussed, with emphasis on integrated strategies that incorporate Latin

hypercube sampling. Finally, we present Monte Carlo evidence that large efficiency gains

can be achieved by applying these integrated variance reduction strategies to the simulation

of stochastic activity networks.

This paper is organized as follows. In Section 1 we define our notation and review the basic

variance reduction techniques that will be used as building blocks for the integrated variance

reduction strategies. In Section 2 we formulate and analyze the integrated strategies. In

Section 3 we provide asymptotic variance comparisons for all of the strategies that involve

Latin hypercube sampling. Applications to simulation of stochastic activity networks are

detailed in Section 4, including implementation of the integrated strategies and validation

of their underlying assumptions; moreover, Section 4 contains an experimental performance

evaluation of all of the methods previously discussed. In Section 5 we summarize the main

findings of this work, and we recommend directions for future research. Although this paper

is based on Avramidis (1993), some of our results were also presented in Avramidis and

Wilson (1993b).

1. NOTATION AND BACKGROUND

The basic problem is to estimate the expected value θ of a stochastic simulation response Y .

For an appropriate choice of Y , this problem includes estimating noncentral moments and
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probabilities; but it does not include estimating, for example, central moments or quantiles.

We assume throughout this paper that E[Y 2] < ∞ so that θ ≡ E[Y ] and σ2
Y ≡ Var[Y ] are

both finite. The response is assumed to have the form Y = f(V1, . . . , Vp), where the function

f(·) has a fixed number of inputs; and the input random variates {V1, . . . , Vp} have a known

probabilistic structure. By this we merely mean that we have a way of generating the random

vector V ≡ (V1, . . . , Vp) so that it has the correct distribution. The input random variates are

generated as V = H(U), where the random vector U ≡ (U1, . . . , Ud) with fixed dimension

d is composed of independent random numbers that are uniformly distributed on the unit

interval (0, 1); and H is a sampling plan that describes the variate-generation scheme used in

the simulation. At some points in this paper, it is convenient to view Y as a function of the

vector V of input random variates, whereas elsewhere we prefer to view Y as a function of the

vector U of input random numbers. In the latter situation, we write Y = f [H(U)] ≡ y(U).

Throughout this paper, the word function will mean a Borel measurable function, taking

either real scalar values or real vector values. While bold symbols will usually be used to

represent vectors and matrices, nonbold symbols will usually be used to represent functions

and scalar quantities. All vectors will be row vectors unless otherwise stated.

Example 1. Figure 1 depicts a stochastic activity network with source node 1 and sink

node 4. The input random variates are {V1, . . . , V5}, where Vj is the duration of activity
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Figure 1. A stochastic activity network.

(arc) j for j = 1, . . . , 5. Thus p = 5 in this example. Let T denote the longest directed path

from the source node to the sink node so that

T = max{V1 + V2, V1 + V3 + V5, V4 + V5} ; (1)

and suppose the objective is to estimate θ = Pr{T ≤ t} for a given cutoff time t. The

corresponding response is Y = 1{T ≤ t}, the indicator function of the event {T ≤ t}.
Suppose that the random variates V1, V4, and V5 are mutually independent with known
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distributions and that the random vector (V2, V3) is independent of V1, V4, and V5 with a

known bivariate distribution. Consider the sampling plan H defined by

V1 = H1(U1, U2), V2 = H2(U3), V3 = H3(U3, U4), V4 = H4(U5), and V5 = H5(U6), (2)

where {U1, . . . , U6} are independent random numbers andH1(·), . . . , H5(·) are given functions

that can be evaluated readily. Here we do not use the method of inversion to generate all

input variates; instead V1 is generated by some other method that requires two random

numbers. Moreover, V3 is generated conditional on V2; and thus V3 is also a function of two

random numbers. With the sampling plan (2), we have d = 6; and the response function

y(·) has the form

y(u1, . . . , u6) =
1, if max {H1(u1, u2) + H2(u3),

H1(u1, u2) + H3(u3, u4) + H5(u6), H4(u5) + H5(u6)} ≤ t ,

0, otherwise.

In a direct-simulation experiment, we perform n independent replications that yield inde-

pendent identically distributed (i.i.d.) observations of the response {Yi : i = 1, . . . , n}. The

direct-simulation estimator is the corresponding sample mean Ȳ (n), which is unbiased and

has variance n−1σ2
Y . The aim of variance reduction techniques is to identify an alternative

estimator θ̂(n) based on n replications (which are not necessarily i.i.d.) such that

E
[
θ̂(n)

]
= θ and Var

[
θ̂(n)

]
< Var

[
Ȳ (n)

]
.

Sometimes we also consider biased estimators; in this situation, the reason for preferring

θ̂(n) over Ȳ (n) is usually a reduction in mean square error,

MSE
[
θ̂(n)

]
≡ E

{[
θ̂(n)− θ

]2
}
< Var

[
Ȳ (n)

]
.

In addition to analyzing the behavior of a new estimator θ̂(n) for fixed values of the

sample size n, we will analyze also the asymptotic behavior of θ̂(n) as n tends to infinity.

Even when θ̂(n) is based on n dependent simulation runs, typically a central limit theorem

(CLT) holds so that

n1/2
[
θ̂(n)− θ

] D−→ N(0, σ2) as n→∞, (3)

where
D−→ denotes convergence in distribution (Wolff 1989, p. 43) and N(µ, σ2) denotes a

normal random variable with mean µ and variance σ2. We then say that θ̂(n) has asymptotic
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mean θ and asymptotic variance parameter σ2. Suppose that we have two estimators θ̂1(n)

and θ̂2(n) satisfying CLTs of the form (3) with respective variance parameters σ2
1 and σ2

2

such that σ2
1 ≤ σ2

2. We then say that θ̂1 asymptotically dominates θ̂2. For any given finite

sample size n, this does not guarantee that either the bias or the variance of θ̂1(n) has

smaller magnitude than the corresponding characteristic of θ̂2(n). However, asymptotic

dominance is a reasonable criterion for comparing estimators when it is difficult to obtain

exact expressions for the bias and variance of each estimator at each sample size n. For

simplicity, we will occasionally suppress the argument n in the discussion of alternative

simulation-based estimators θ̂1 and θ̂2 when no confusion can result from this usage.

We choose to compare estimators in terms of their finite-sample variances and their asymp-

totic variance parameters without considering their computing costs. This is done mainly

because the computing cost associated with each estimator is hard to quantify, since it de-

pends on the specific configuration of hardware and software that is used as well as other

machine-dependent characteristics. Fortunately, in many complex simulations (for which

variance reduction techniques are most needed), the computing cost is fairly insensitive to

the type of estimator used; and therefore such a comparison is appropriate (Fishman 1989).

Next we review the VRTs that will be used as the building blocks for our integrated variance

reduction strategies.

1.1. Conditional Expectation (CE)

Suppose we can identify an auxiliary random vector X generated on each replication of

the simulation such that we can evaluate the conditional expectation ζ(x) ≡ E[Y |X = x]

analytically or numerically for each possible value of x. Thus the random variable Z ≡
ζ(X) is an alternative estimator of θ based on a single replication. From the results {Xi :

i = 1, . . . , n} of n independent replications, we compute the corresponding random sample

{Zi = ζ(Xi) : i = 1, . . . , n}; and the conditional-expectation (CE) estimator of θ is

θ̂CE(n) ≡ n−1
n∑

i=1

Zi .

The double expectation theorem (Bickel and Doksum 1977, p. 6) and the conditional variance

relation (Wolff 1989, p. 34) respectively imply that

E[Z] = E[ E(Y |X) ] = θ and σ2
Z ≡ Var[Z] = σ2

Y − E[ Var(Y |X) ] . (4)

It follows immediately that θ̂CE(n) is an unbiased estimator of θ. It also follows from (4)

that Var[θ̂CE(n)] ≤ Var[Ȳ (n)], with equality holding if and only if Y is a function of X alone

so that Var(Y |X) vanishes with probability one.
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Example 1 (continued). Suppose that the following cumulative distribution functions

(c.d.f.’s) can be evaluated analytically or numerically: F2,3(·, ·) is the joint c.d.f. of the input

random vector (V2, V3), and F4(·) is the c.d.f. of V4. Then we can readily compute the

conditional expectation of Y = 1{T ≤ t} given X ≡ (X1, X2) ≡ (V1, V5). We have

ζ(x1, x2) = Pr{T ≤ t|X1 ≡ V1 = x1, X2 ≡ V5 = x2}

= Pr{V2 ≤ t− x1, V3 ≤ t− x1 − x2, V4 ≤ t− x2}

= F2,3(t− x1, t− x1 − x2) · F4(t− x2)

so that

Z ≡ ζ(X) = F2,3(t−X1, t−X1 −X2) · F4(t−X2)

= F2,3(t− V1, t− V1 − V5) · F4(t− V5) . (5)

1.2. Correlation Induction (CI)

To estimate the expected response of a single simulated system, we often use correlation-

induction methods such as antithetic variates to obtain negatively correlated replications of

the response, thereby reducing the variance of the sample mean response. On the other hand

to compare several simulated systems with respect to their expected responses, we often use

the correlation-induction method of common random numbers to obtain positively corre-

lated responses from each simulated system, thereby reducing the variance of the difference

between each pair of responses. Since this paper is limited to the analysis of a single sys-

tem, we concentrate our attention on correlation-induction techniques that yield negatively

correlated responses.

To achieve maximum generality for our results on integrated variance reduction strategies

that are presented in Sections 2.1 and 2.2, here we describe a method for obtaining negatively

correlated replications of an arbitrary random output W observed in the simulation. (Since

we will apply the following development not only to the original response Y but also to other

simulation-generated outputs, we let the symbol W denote a generic simulation output to

which a correlation-induction strategy will be applied.) We view W as a function of the

input random numbers,

W = w(Uj : j ∈ IW ),

where IW is a subset of {1, . . . , d}, and the function w(·) is defined by the simulation code.

A useful condition that often guarantees negative induced correlation is based on the

notion of negative quadrant dependence defined by Lehmann (1966). We say that the distri-
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bution of the bivariate random vector (A1, A2)
T is negatively quadrant dependent (n.q.d.)

if

Pr{A1 ≤ a1, A2 ≤ a2} ≤ Pr{A1 ≤ a1} · Pr{A2 ≤ a2} for all a1, a2.

(Throughout this paper, the roman superscript T denotes the transpose of a vector or matrix,

whereas the italic letter T denotes a network completion time like (1); and since T is never

used as a superscript, no confusion should arise from our use of these symbols.) We will

exploit the concept of negative quadrant dependence in Result 1 below to provide the desired

sufficient condition for negatively correlated simulation responses. Moreover, we use this

concept to define a special class G of distributions for the random-number inputs. Every

distribution G ∈ G must have the following correlation-induction properties:

CI1 For some k ≥ 2, the distribution G is k-variate with univariate marginals that are

uniform on the unit interval (0, 1).

CI2 Each bivariate marginal of G is n.q.d.

CI3 All bivariate marginals of G are the same.

When it is desirable to indicate explicitly that a distribution in G is k-variate, we will write

“G(k) ∈ G” rather than “G ∈ G.” Throughout this paper, we let G
(k)
IR denote the distribution

of k independent random numbers. It is clear that G
(k)
IR has properties CI1–CI3 so that

G
(k)
IR ∈ G.

First we describe a general scheme for obtaining some stochastic dependence between

replications of the response W = w(Uj : j ∈ IW ) ; and then we state conditions on the

function w(·) under which this scheme yields negatively correlated replications. To generate

k dependent replications of the simulation output W , we choose a k-variate distribution

G(k) ∈ G and a set LW ⊆ IW consisting of the indices of the arguments of w(·) that will be

used for inducing dependence. Let U
(i)
j denote the jth input random number used in the ith

replication, where i = 1, . . . , k and j ∈ IW . We obtain k dependent replications,

W (i) = w
(
U

(i)
j : j ∈ IW

)
for i = 1, . . . , k, (6)

by sampling the column vectors of input random numbers,

Uj ≡
[
U

(1)
j , . . . , U

(k)
j

]T
for j ∈ IW , (7)

according to a scheme satisfying the following conditions—

SC1 For every index j ∈ LW , the random vector Uj has distribution G(k).
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SC2 For every index j ∈ IW − LW , the random vector Uj has distribution G
(k)
IR .

SC3 The column vectors U1, . . . ,Ud are mutually independent.

Sampling condition SC1 specifies that we induce dependence between the outputs
{
W (i) : i =

1, . . . , k
}

by arranging a negative quadrant dependence between the jth random numbers

sampled on each pair of replications, provided j ∈ LW . Sampling condition SC2 specifies

that for each j 6∈ LW , the jth random number should be sampled independently on different

replications. Finally sampling condition SC3 requires mutual independence of the random

numbers used within the ith replication to generate the output W (i); and this guarantees

that each W (i) has the correct distribution.

Example 1 (continued). Suppose that the output of immediate interest is W = V1 + V2,

the duration of the first path from node 1 to node 4 in the definition (1) of the response T .

The sampling plan (2) implies

W = w(U1, U2, U3) = H1(U1, U2) +H2(U3)

so that IW = {1, 2, 3}. Suppose moreover that we wish to obtain 4 dependent replications of

W by using some quadrivariate distribution G(4) ∈ G to generate 4 dependent replications of

V1 while using G
(4)
IR to generate 4 independent replications of V2; thus we have LW = {1, 2}.

For simplicity in this illustration of the method of correlation induction, we ignore the

other activities in the network and their corresponding random-number inputs; and then the

simulation experiment would involve sampling an array of 12 random numbers as depicted

below.

independent columns︷ ︸︸ ︷
U1 U2 U3

o o o
G(4) G(4) G

(4)
IR

↓ ↓ ↓

U
(1)
1 U

(1)
2 U

(1)
3

U
(2)
1 U

(2)
2 U

(2)
3

U
(3)
1 U

(3)
2 U

(3)
3

U
(4)
1 U

(4)
2 U

(4)
3



→ W (1)

→ W (2)

→ W (3)

→ W (4)


dependent rows yield

dependent responses

In this correlation-induction scheme, we observe the following characteristics: (a) each row of

the array
[
U

(i)
j

]
corresponds to a replication of the simulation; (b) the first two columns (U1
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and U2) of the array are sampled from the distribution G(4) so that each of these columns

consists of negatively quadrant dependent random numbers; (c) the third column (U3) is

sampled from the distribution G
(4)
IR so that it consists of independent random numbers; and

(d) the three columns are mutually independent random vectors. The effect of this scheme

is that the resulting replications of the response W are dependent.

Having generated k dependent replications of W as in (6), we define the average

WCI

(
G(k), LW

)
≡ k−1

k∑
i=1

W (i), (8)

where we make explicit the dependence of WCI on the distribution G(k) and the index set

LW where G(k) is applied. The mean and variance of the estimator WCI

(
G(k), LW

)
are easily

derived. Clearly, for any G(k) ∈ G and LW ⊆ IW ,

E
[
WCI

(
G(k), LW

)]
= E[W ], (9)

and

Var
[
WCI

(
G(k), LW

)]
= k−2


k∑

i=1

Var
[
W (i)

]
+ 2

k−1∑
i=1

k∑
`=i+1

Cov
[
W (i), W (`)

]
= k−1Var(W )

[
1 + (k − 1)ρW

(
G(k), LW

)]
, (10)

where

ρW

(
G(k), LW

)
≡ Corr

[
W (1), W (2)

]
. (11)

Now we state conditions on the response function (6) under which the dependence-

induction scheme (7) is guaranteed to yield negatively correlated replications. The next

result follows easily from Theorem 1(iii) and Lemma 3 of Lehmann (1966). It will be used

often in the remainder of the paper.

Result 1. If G(k) has property CI2, if
{
W (i) : i = 1, . . . , k

}
is generated as in (6) and (7)

subject to conditions SC1–SC3, and if w(·) is a monotone function of each argument with

index in LW , then for i, ` = 1, . . . , k and i 6= `, we have Cov
[
W (i), W (`)

]
≤ 0, with equality

holding if and only if W (i) and W (`) are independent.

Thus WCI

(
G(k), LW

)
has no larger variance than W̄ (k), the average of k independent repli-

cations of W , whenever w(·) is a monotone function of each random-number input Uj with

index j ∈ LW ; no assumption is needed with respect to the behavior of w(·) as a function of

Uj for j 6∈ LW .
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Remark 1. Property CI3 was used merely to obtain the second equality in display (10).

Assuming only that G(k) has properties CI1 and CI2, we still obtain (9); and it follows from

Result 1 and the first equality in display (10) that Var
[
WCI

(
G(k), LW

)]
≤ Var

[
W̄ (k)

]
. We

chose to include property CI3 in the definition of G because this property frequently holds

in practice and because it yields a simplified variance expression in the second equality of

display (10).

Finally we formulate θ̂CI

(
G(k), n

)
, the correlation-induction (CI) estimator of θ based on

the k-variate distribution G(k) and n simulation runs. Specifically, θ̂CI

(
G(k), n

)
is obtained

by averaging m = n/k i.i.d. replications of the statistic YCI

(
G(k), LY

)
, where we take LY =

IY = {1, . . . , d}; and to obtain a single observation of YCI

(
G(k), {1, . . . , d}

)
, we average k

negatively correlated responses, where all d random-number inputs are used for correlation

induction. In terms of the notation in (6) and (8), the correlation-induction estimator of θ

is defined formally as

θ̂CI

(
G(k), n

)
≡ m−1

m∑
`=1

Ỹ`, where m = n/k and
{
Ỹ`

}m

`=1

i.i.d.
∼ YCI

(
G(k), {1, . . . , d}

)
. (12)

To simplify the exposition, we assume throughout this paper that n is an integral multiple

of k. Next we review two important special cases of the method of correlation induction.

1.2.1. Antithetic Variates (AV)

To generate k = 2 correlated replications by the method of antithetic variates, we sample

the random numbers {U?
j : j = 1, . . . , d} independently and compute the column vectors of

(7) according to the relation

Uj =
(
U?

j , 1− U?
j

)T
for j = 1, 2, . . . , d . (13)

We let G
(2)
AV denote the distribution of Uj. It is straightforward to check that G

(2)
AV satisfies

conditions CI1–CI3 so that G
(2)
AV ∈ G. Since LY = IY , the method of antithetic variates is

clearly a special case of the general correlation-induction scheme described by (6) and (7).

If the simulation response y(·) is a monotone function of each of its random-number inputs,

then it follows that

Var
[
θ̂CI

(
G

(2)
AV, n

)]
≤ Var

[
Ȳ (n)

]
. (14)

More generally, relation (14) holds if the method of antithetic variates is applied only to the

random-number inputs on which y(·) depends monotonically while all other random-number
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inputs are sampled independently—thus it is not necessary for the simulation response to

be a monotonic function of all of its random-number inputs in order to achieve a variance

reduction using this correlation-induction technique. For example in a queueing network

simulation, the method of antithetic variates could be applied to the random-number inputs

driving the service times at different stations that are generated by monotonic transforma-

tions (such as inversion), while all other random-number inputs (such as those driving the

selection of routes) could be sampled independently; and then Result 1 guarantees reduced

variance for the estimator of mean flowtime. Of course a similar remark applies to all other

correlation-induction techniques discussed in this paper.

1.2.2. Latin Hypercube Sampling (LHS)

To generate k correlated replications via Latin hypercube sampling, we compute the input

random numbers according to the relation

U
(i)
j =

πj(i)− 1 + U?
ij

k
for i = 1, . . . , k and j = 1, . . . , d, (15)

where

(a) π1(·), . . . , πd(·) are permutations of the integers {1, . . . , k} that are randomly sampled

with replacement from the set of k! such permutations, with πj(i) denoting the ith

element in the jth randomly sampled permutation; and

(b) {U?
ij : j = 1, . . . , d, i = 1, . . . , k} are random numbers sampled independently of each

other and of the permutations π1(·), . . . , πd(·).

We let G
(k)
LH denote the distribution of each k-dimensional column vector of input random

numbers generated in this way so that

Uj ∼ G
(k)
LH if Uj =

[
U

(1)
j , . . . , U

(k)
j

]T
is generated according to (15).

The key property of LHS is that for each j (j = 1, . . . , d), the components of the column

vector Uj form a stratified sample of size k from the uniform distribution on the unit interval

(0, 1) such that there is a single observation in each stratum and the observations within the

sample are negatively quadrant dependent; moreover, different stratified samples of size k are

independent. Since πj(·) is a random permutation of the integers {1, . . . , k}, each element

πj(i) for i = 1, . . . , k has the discrete uniform distribution on the set {1, . . . , k}; and thus in

the definition (15), the variate πj(i) randomly indexes a subinterval (stratum) of the form

12



(
(`−1)/k, `/k

]
for some ` ∈ {1, . . . , k}. Since U?

ij is a random number sampled independently

of πj(i), we see that U
(i)
j is uniformly distributed in the subinterval indexed by πj(i); and

it follows that U
(i)
j is uniformly distributed on the unit interval (0, 1). Moreover, since

πj(·) is a permutation of {1, . . . , k}, every subinterval (stratum) of the form
(
(`− 1)/k, `/k

]
for ` = 1, . . . , k contains exactly one of the negatively quadrant dependent random numbers{
U

(i)
j : i = 1, . . . , k

}
so that the components of Uj constitute a stratified sample of the uniform

distribution on (0, 1). Finally, we notice that the column vectors U1, . . . , Ud are independent

since the random permutations {πj(·) : j = 1, . . . , d} and the random numbers {U?
ij : i =

1, . . . , k; j = 1, . . . , d} are all generated independently.

McKay, Beckman, and Conover (1979) invented LHS and showed that if y(·) is a monotone

function of each of its arguments, then Var
[
θ̂CI

(
G

(k)
LH, n

)]
≤ Var

[
Ȳ (n)

]
. A slightly simpler

proof of their result can be obtained by showing that G
(k)
LH ∈ G and then applying Result 1.

These authors assumed that the input random variates are mutually independent and that

each input random variate is generated by inversion; and in follow-up work on the large-

sample properties of LHS, Stein (1987) and Owen (1992) adopted the same assumptions.

We define a more general LHS estimator in which a specified subset {Vj : j ∈ J} of the

input random variates must be sampled by inversion, where J is a (possibly empty) subset

of {1, . . . , p}; and any valid sampling scheme may be used to generate the remaining input

variates
{
Vj : j ∈ {1, . . . , p} − J

}
. Suppose that for a given index set J ⊆ {1, . . . , p}, the

following independence properties hold:

IP1 The input random variates {Vj : j ∈ J} are mutually independent.

IP2 The vectors (Vj : j ∈ J) and (Vj : j ∈ J ′) are independent, where J ′ ≡ {1, . . . , p}−J .

Given an index set J with properties IP1 and IP2, we define the Latin hypercube sampling

estimator θ̂LH(HJ , n) to be the correlation-induction estimator θ̂CI

(
G

(n)
LH, n

)
based on a sam-

pling plan HJ of the form

Vj =

 F−1
j (Uj), j ∈ J,

Hj(Uτ : τ ∈ {1, . . . , d} − J), j ∈ J ′,
(16)

where F−1
j (·) is the inverse c.d.f. of Vj for j ∈ J ; and the remaining part of the sampling

plan consists of functions {Hj(·) : j ∈ J ′} that are selected by the user to yield the correct

joint distribution for the random vector (Vj : j ∈ J ′).
If the input random variates are independent with readily evaluated inverse c.d.f.’s, then

we can take J = Jp ≡ {1, . . . , p} (and J ′ = ∅) in (16) to obtain the sampling plan HJp ;

13



and the resulting estimator θ̂LH(HJp , n) is the usual Latin hypercube sampling estimator

studied by McKay, Beckman, and Conover (1979), Stein (1987), and Owen (1992). On the

other hand, irrespective of the joint distribution of the input random variates we can always

take J = ∅ (and J ′ = Jp) in (16) to obtain the sampling plan H∅; and this yields the most

general formulation of Latin hypercube sampling considered in this paper. Clearly for any

J ⊆ {1, . . . , p}, the estimator θ̂LH(HJ , n) is a special case of the estimator θ̂LH(H∅, n).

1.3. Control Variates (CV)

Suppose we can identify a 1 × q vector of concomitant random variables C = (C1, . . . , Cq)

that are generated by the simulation and that have a known, finite expectation µC ≡ E[C]

as well as a strong linear association with Y . When using the method of control variates, we

try to predict the unknown deviation Y − θ as a linear combination of the known deviation

C− µC in order to adjust the response accordingly; thus for an appropriate 1× q vector b

of control coefficients, we have the controlled response

YCV ≡ Y − b(C− µC)T.

If b is constant, then YCV is an unbiased estimator of θ. Let σY C ≡ Cov(Y, C) denote the

1 × q vector of covariances [Cov(Y,C1), . . . , Cov(Y,Cq)] and let ΣC ≡ Var(C) denote the

q × q variance-covariance matrix of C, where we assume that ΣC is positive definite.

The variance of YCV is minimized by the optimal control coefficient vector

b∗ = σY CΣ−1
C (17)

(Lavenberg, Moeller, and Welch 1982). Although in some applications ΣC may be known,

σY C is almost always unknown, and therefore b∗ must be estimated. Suppose we have

available n i.i.d. observations {(Yi,Ci) : i = 1, . . . , n}. The most commonly used control

coefficient vector is the sample analog of b∗,

b̂ = SY CS−1
C ,

where SY C is the 1 × q vector of sample covariances
[
Ĉov(Y, C1), . . . , Ĉov(Y, Cq)

]
and SC

is the sample variance-covariance matrix of C.

The control-variates (CV) estimator based on the sample {(Yi, Ci) : i = 1, . . . , n} is then

defined as

θ̂CV(n) ≡ Ȳ − b̂
(
C̄− µC

)T
,

14



where Ȳ and C̄ are the sample means of {Yi : i = 1, . . . , n} and {Ci : i = 1, . . . , n},
respectively. If (Y, C) has a multivariate normal distribution, then θ̂CV(n) is an unbiased

estimator of θ with variance

Var
[
θ̂CV(n)

]
= n−1σ2

Y

(
1−R2

Y C

) n− 2

n− q − 2
,

where R2
Y C = σY CΣ−1

C σT
Y C/σ

2
Y is the squared coefficient of multiple correlation between Y

and C (Lavenberg, Moeller, and Welch 1982). Without some additional assumptions about

the distribution of (Y, C), there is no guarantee that θ̂CV(n) is unbiased or that it has smaller

MSE or smaller variance than Ȳ (n). However, Nelson (1990) pointed out that irrespective

of the distribution of (Y, C), we have the following central limit theorem for the method of

control variates:

n1/2
[
θ̂CV(n)− θ

] D−→ N
[
0, σ2

Y

(
1−R2

Y C

)]
as n→∞. (18)

Thus θ̂CV(n) asymptotically dominates Ȳ (n). Observe that the asymptotic behavior of

θ̂CV(n) depends on the joint distribution of Y and C only through RY C. The asymptotic

property (18) is the main guarantee when using the method of control variates, since in some

applications the normality assumption is not even approximately satisfied. Tew and Wilson

(1992, pp. 91–92) describe a practical method for checking the assumption of multivariate

normality. Nelson (1990) provides a comprehensive discussion of remedies for the problems

arising in applications of the method of control variates. See also Avramidis and Wilson

(1993a).

2. INTEGRATED VARIANCE REDUCTION STRATEGIES

Building on the individual VRTs reviewed in Section 1, we formulate and analyze inte-

grated variance reduction strategies that are based on joint application of the following pairs

of individual VRTs: (a) conditional expectation and correlation induction (Section 2.1);

(b) correlation induction and control variates (Section 2.2); and (c) conditional expectation

and control variates (Section 2.3).

2.1. Conditional Expectation and Correlation Induction (CE+CI)

We begin by expressing the conditioning vector X as a function of the input random numbers,

X = x(Uj : j ∈ IX) for some IX ⊆ {1, . . . , d}, (19)
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where IX is the set of indices of the random numbers on which X depends. As seen in

Section 1.1, the random variable Z ≡ E[Y |X] ≡ ζ(X) is another unbiased estimator of θ

based on a single replication of the simulation; and the variance of Z does not exceed the

variance of Y . Thus we may view Z as the new response of interest, and we seek an even more

precise estimator by applying the technique of correlation induction to the new response.

For this purpose, we express Z as a function of the input random numbers,

Z = ζ(X) = ζ[x(Uj : j ∈ IX)] ≡ z(Uj : j ∈ IX). (20)

Example 1 (continued). In Section 1.1 we took X = (V1, V5). In view of (2), we have

IX = {1, 2, 6}. Moreover, (2) and (5) imply

Z = z(U1, U2, U6)

≡ F2,3[t−H1(U1, U2), t−H1(U1, U2)−H5(U6)] · F4[t−H5(U6)] .

Starting from the new response (20), we formulate the conditional expectation–correlation

induction (CE+CI) estimator θ̂CE+CI

(
G(k), n

)
based on the distribution G(k) and n simula-

tion runs. Specifically, θ̂CE+CI

(
G(k), n

)
is obtained by averaging m = n/k i.i.d. replications

of the statistic ZCI

(
G(k), IX

)
; and to obtain a single observation of ZCI

(
G(k), IX

)
, we av-

erage k negatively correlated responses of the form (20), where the random numbers with

indices in IX are used for correlation induction. Notice that the random numbers with in-

dices in {1, . . . , d}− IX need not be sampled, since Z does not depend on them. In terms of

the notation in (6) and (8), the CE+CI estimator is defined formally as

θ̂CE+CI

(
G(k), n

)
≡ m−1

m∑
`=1

Z̃` where m = n/k and
{
Z̃`

}m

`=1

i.i.d.
∼ ZCI

(
G(k), IX

)
. (21)

It follows immediately from (9) and (10) that for any G(k) ∈ G, the statistic θ̂CE+CI

(
G(k), n

)
is an unbiased estimator of θ, and

Var
[
θ̂CE+CI

(
G(k), n

)]
= n−1σ2

Z

[
1 + (k − 1)ρZ

(
G(k), IX

)]
,

where ρZ

(
G(k), IX

)
is defined as in (11). If z(·) is a monotone function of each of its

arguments, then ρZ

(
G(k), IX

)
≤ 0 by Result 1 so that Var

[
θ̂CE+CI

(
G(k), n

)]
≤ Var

[
θ̂CE(n)

]
.

It is also interesting to compare θ̂CE+CI

(
G(k), n

)
with θ̂CI

(
G(k), n

)
, the pure correlation-

induction estimator based on the same distribution G(k) for inducing correlation. To carry

out this comparison, we assume that (a) the conditioning vector X is a subvector of the full
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vector V of input random variates so that with an appropriate reindexing of the components

of V, we may write

V = (V∗, V∗∗) = (X, V∗∗) ;

and (b) the conditioning vector X is independent of the vector V∗∗ of remaining input random

variates. Formally this assumption about the form of X is stated as

X ≡ (Vj : j ∈ JX) and V∗∗ ≡ (Vj : j ∈ J ′X) are independent,

where JX ⊂ {1, . . . , p}, JX 6= ∅, and J ′X ≡ {1, . . . , p} − JX 6= ∅.

}
(22)

It follows from Lemma 2.7 of Whitt (1976) that the full vector (X, V∗∗) of input random

variates could in principle be sampled as a function of a single random number; and under

such a sampling scheme, we could not make the desired comparison between the CE+CI

and CI estimators. Throughout this paper we assume that when (22) holds, the vectors X

and V∗∗ are generated as functions of disjoint sets of the random-number inputs so that the

sampling plan has the form

X = x(Uj : j ∈ IX) and V∗∗ = v∗∗(Uj : j ∈ I ′X), where

IX ⊂ {1, . . . , d}, IX 6= ∅, and I ′X ≡ {1, . . . , d} − IX 6= ∅.

}
(23)

Condition (23) is a reasonable assumption about the form of the sampling plan—in fact, (23)

is a natural approach to generating the random vectors X and V∗∗ under assumption (22).

Additional discussion of the significance of assumption (22) is given after the statement of

Theorem 1 below.

We compare the estimators θ̂CI

(
G(k), n

)
and θ̂CE+CI

(
G(k), n

)
by analyzing the behavior of

all relevant stochastic quantities when we generate the pure correlation-induction estimator

θ̂CI

(
G(k), n

)
. For i = 1, . . . , k, let Y (i), X(i), and V(i)

∗∗ respectively denote the ith correlated

replication of Y , X, and V∗∗ when we use the general correlation-induction scheme (6)–(7)

with W = Y and LW = IW = {1, . . . , d}. Let Ξ denote the matrix of overall conditioning

information,

Ξ ≡
[ {

X(1)
}T

, . . . ,
{
X(k)

}T
]T

.

Exploiting the properties of this scheme for generating θ̂CI

(
G(k), n

)
, we will show that

E
[
YCI

(
G(k), {1, . . . , d}

) ∣∣∣ Ξ ]
= k−1

k∑
i=1

E
[
f

(
X(i), V(i)

∗∗

) ∣∣∣ Ξ ]
(24)

= k−1
k∑

i=1

E
[
f

(
X(i), V(i)

∗∗

) ∣∣∣ X(i)
]

(25)

= k−1
k∑

i=1

ζ
[
X(i)

]
(26)
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= k−1
k∑

i=1

z
[
U

(i)
j : j ∈ IX

]
(27)

∼ ZCI

(
G(k), IX

)
. (28)

Equation (24) follows directly from the assumption (22) about the form of the full vector

of input random variates; and the key to the rest of this argument is the observation that

V(i)
∗∗ depends only on the column vectors {Uj : j ∈ I ′X}, while Ξ depends only on the

column vectors {Uj : j ∈ IX}. Sampling condition SC3 prescribes that the column vectors

{Uj : j = 1, . . . , d} defined by (7) are sampled independently; and thus assumption (23)

about the form of the sampling plan implies that V(i)
∗∗ and Ξ are independent. Therefore

the conditional distribution of
[
X(i), V(i)

∗∗

]
is the same whether we condition on Ξ or X(i);

and (25) follows immediately. Display (26) follows from assumption (22) and the definition

of ζ(·); and display (27) follows from the definition (20). Now we notice that the same

joint distribution for the correlated replications {X(i) : i = 1, . . . , k} would be obtained by

taking W = X and LW = IW = IX in the general correlation-induction scheme (6)–(7); and

this latter approach is used to generate the statistic ZCI

(
G(k), IX

)
on which the conditional

expectation–correlation induction estimator θ̂CE+CI

(
G(k), n

)
is based. Thus relation (28)

follows immediately.

To complete the comparison of θ̂CI

(
G(k), n

)
and θ̂CE+CI

(
G(k), n

)
, we apply the conditional

variance relation (4) to YCI

(
G(k), {1, . . . , d}

)
when conditioning on Ξ; and then we see that

Var
[
YCI

(
G(k), {1, . . . , d}

) ]
≥ Var

[
E

[
YCI

(
G(k), {1, . . . , d}

) ∣∣∣ Ξ] ]
= Var

[
ZCI

(
G(k), IX

) ]
,

(29)

where the last equality follows from (28). Display (29) together with the definitions of

θ̂CI

(
G(k), n

)
and θ̂CE+CI

(
G(k), n

)
given respectively by (12) and (21) imply that

Var
[
θ̂CE+CI

(
G(k), n

)]
≤ Var

[
θ̂CI

(
G(k), n

)]
, (30)

and equality holds in (30) if and only if YCI

(
G(k), {1, . . . , d}

)
is a function of Ξ alone. Notice

that if the original simulation response Y depends only on the conditioning vector X and

not on the vector V∗∗ of remaining input random variates, then it follows immediately that

YCI

(
G(k), {1, . . . , d}

)
is a function of Ξ alone so that equality holds in (30).

The preceding development formalizes the intuitive result that “solving the problem ana-

lytically” on a subset of the random-number inputs and using a correlation-induction tech-

nique on the rest of the random-number inputs is at least as good a variance-reduction

strategy as using the same correlation-induction technique on all of the random-number

inputs. We summarize this discussion in the following result.
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Theorem 1. Suppose that G(k) ∈ G. Then θ̂CE+CI

(
G(k), n

)
is an unbiased estimator of θ.

If the conditioning vector X has the form (22) and if the sampling plan has the form (23),

then

Var
[
θ̂CE+CI

(
G(k), n

)]
≤ Var

[
θ̂CI

(
G(k), n

)]
,

with equality holding if and only if YCI

(
G(k), {1, . . . , d}

)
is a function of Ξ alone. Moreover,

irrespective of the form of X, if z(·) is a monotone function of each of its arguments, then

Var
[
θ̂CE+CI

(
G(k), n

)]
≤ Var

[
θ̂CE(n)

]
.

Some additional comments should be made about Theorem 1. The term “input random

vector” is commonly interpreted to mean a vector of fundamental simulation inputs that

are directly observable in the real system and have immediate physical meaning. Under this

interpretation, the assumption (22) about the form of the input random vector V in terms

of the conditioning vector X may appear to be unduly restrictive. However as discussed in

the first paragraph of Section 1, our definition of the term “input random vector” is more

general than the common interpretation of this term—an input random vector is any random

vector V observed in the simulation such that the response Y can be expressed as a function

of V alone. To clarify this point, suppose that the activity connecting nodes 1 and 2 in

Example 1 is composed of two basic tasks that must be performed sequentially. Let V1,1 and

V1,2 respectively denote the random durations of these two tasks. According to the usual

interpretation, the input random vector is (V1,1, V1,2, V2, V3, V4, V5). Now set V1 ≡ V1,1 + V1,2

and let V ≡ (V1, V2, V3, V4, V5). According to our interpretation, V is a valid input random

vector, since the longest directed path from node 1 to node 4 can be expressed as a function

of V alone according to (1).

Some comments should also be made about the monotonicity assumption in Theorem 1.

For a general conditioning vector X not necessarily having the form (22), no monotonicity

properties are guaranteed for the conditional-expectation function ζ(·) even if the original

response function f(·) is monotone in each of its arguments. However, if X has the form (22)

and f(·) is a monotone function of each component of X, then ζ(·) is a monotone function

of each of its arguments. In the latter situation, it is desirable to use a monotone sampling

scheme x(·) to generate X because this will guarantee that z(·) is a monotone function of

each of its arguments; and as shown in Theorem 1, the integrated CE+CI strategy will then

be superior to both the CE and CI techniques.

Finally, we point out that Carson (1985) obtained a result similar to Theorem 1 for the

special case in which G(k) = G
(2)
AV and Z is a specific conditional-expectation estimator due

to Burt and Garman (1971).
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2.2. Correlation Induction and Control Variates (CI+CV)

Our approach to the joint application of the methods of correlation induction and control

variates is based on the observation that the control vector C usually depends only on a

proper subset {Uj : j ∈ IC} of the input random numbers {Uj : j = 1, . . . , d}, so that we

may write

C = c(Uj : j ∈ IC) for some IC ⊂ {1, . . . , d}, where I ′C ≡ {1, . . . , d} − IC 6= ∅. (31)

Example 1 (continued). Suppose that the control variate of interest is C = V4 + V5, the

duration of the third path from node 1 to node 4 in the definition (1) of T . The sampling

plan (2) implies

c(u5, u6) = H4(u5) +H5(u6)

so that IC = {5, 6} and I ′C = {1, 2, 3, 4}.

Our development is in the same spirit as the approach of Tew and Wilson (1994) for

integrating the Schruben-Margolin strategy with the method of control variates. The key idea

is to induce the desired negative correlation between the responses by sampling dependently

between replications only the input random numbers that do not affect the control vector,

thus preserving the dependency structure between the response and the control vector on

each simulation run.

Given an arbitrary k-dimensional distribution G(k) ∈ G, we perform k dependent repli-

cations of the simulation using the distribution G(k) to sample the random numbers with

indices in I ′C. The random numbers with indices in IC are sampled independently according

to G
(k)
IR . Following the notation in (8), we define the auxiliary quantities

Ỹ ≡ YCI

(
G(k), I ′C

)
and C̃ ≡

[
C1,CI

(
G(k), I ′C

)
, . . . , Cq,CI

(
G(k), I ′C

)]
. (32)

Since all the random numbers that affect the control vector are sampled independently

according to G
(k)
IR , it is clear that C̃ is the average of k independent replications of C,

although the subscript CI appended to each of the components of C̃ in (32) might suggest

that correlation induction is applied to the control vector. Thus

E
[
C̃

]
= µC and Var

[
C̃

]
≡ Σ

C̃
= k−1ΣC . (33)

On the other hand, Ỹ is the average of k dependent replications of Y . To simplify the

notation throughout the rest of this section, we will let

ρY ≡ ρY

(
G(k), I ′C

)
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denote the induced correlation between any pair of replications of the response Y . By (9)

and (10), we have

E
[
Ỹ

]
= θ and Var

[
Ỹ

]
≡ σ2

Ỹ
= k−1σ2

Y [1 + (k − 1)ρY ] . (34)

We view the statistics Ỹ and C̃ as an aggregated response and an aggregated control

vector, respectively; and we use the control-variates technique to further reduce the variance

of Ỹ . Let m = n/k and let

{(
Ỹ`, C̃`

)}m

`=1

i.i.d.
∼

(
Ỹ , C̃

)
as in display (32). (35)

We define θ̂CI+CV

(
G(k), n

)
, the correlation induction–control variates (CI+CV) estimator

based on the distribution G(k) and n replications, as the control-variates estimator

θ̂CI+CV

(
G(k), n

)
≡ ¯̃Y − b̂

(
¯̃C− µC

)T

,

where: ¯̃Y and ¯̃C are the sample means of
{
Ỹ` : ` = 1, . . . ,m

}
and

{
C̃` : ` = 1, . . . ,m

}
, re-

spectively;

b̂ = S
Ỹ C̃

S−1

C̃
;

S
Ỹ C̃

denotes the 1 × q vector of sample covariances between Ỹ and the components of C̃

in (32); and S
C̃

denotes the q × q sample variance-covariance matrix of C̃. Notice that the

sample covariances S
Ỹ C̃

and S
C̃

(and thus the estimated control coefficient vector b̂) are

based on the random sample (35) of size m = n/k rather than the original sample of size n

used in the conventional control-variates method.

To compute the mean and variance of θ̂CI+CV

(
G(k), n

)
, we assume that

(
Ỹ , C̃

)
has a

multivariate normal distribution. Then θ̂CI+CV

(
G(k), n

)
is an unbiased estimator of θ, and

its variance is

Var
[
θ̂CI+CV

(
G(k), n

)]
= m−1σ2

Ỹ

(
1−R2

Ỹ C̃

) m− 2

m− q − 2

= n−1σ2
Y [1 + (k − 1)ρY ]

(
1−R2

Ỹ C̃

) n− 2k

n− (q + 2)k
, (36)

where R
Ỹ C̃

is the coefficient of multiple correlation between Ỹ and C̃. To express R
Ỹ C̃

as a

function of RY C and ρY , we observe that

σ
Ỹ C̃

≡ Cov
(
Ỹ , C̃

)
= E

[
Ỹ C̃

]
− E

[
Ỹ

]
E

[
C̃

]
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= k−2

{
E

[
k∑

i=1

Y (i)
k∑

`=1

C(`)

]}
− θµC

= k−2
{
kE

[
Y (1)C(1)

]
+ k(k − 1)θµC

}
− θµC

= k−1σY C . (37)

Using (33), (34), and (37), we have

R2

Ỹ C̃
=

σ
Ỹ C̃

Σ−1

C̃
σT

Ỹ C̃

σ2
Ỹ

=
σY CΣ−1

C σT
Y C

σ2
Y [1 + (k − 1)ρY ]

=
R2

Y C

1 + (k − 1)ρY

.

Substituting this last result into (36), we obtain

Var
[
θ̂CI+CV

(
G(k), n

)]
= n−1σ2

Y

[
1 + (k − 1)ρY −R2

Y C

] n− 2k

n− (q + 2)k
. (38)

Observe the additive effect of the two sources of variance reduction in equation (38): the

application of correlation induction contributes the term (k − 1)ρY , and the application of

control variates contributes the term −R2
Y C. The loss factor (n− 2k)/[n− (q+2)k] is larger

than the conventional control-variates loss factor (n − 2)/(n − q − 2) since in the CI+CV

strategy the method of control variates is applied to a random sample of size m = n/k rather

than to a sample of size n.

To compare the variance of θ̂CI+CV

(
G(k), n

)
with the variance of the standard control-

variates estimator θ̂CV(n), we also assume that (Y, C) has a multivariate normal distribution.

Then the ratio of variances is

Var
[
θ̂CI+CV

(
G(k), n

)]
Var

[
θ̂CV(n)

] =

[
1 +

(k − 1)ρY

1−R2
Y C

] [
(n− 2k)(n− (q + 2))

(n− 2)(n− (q + 2)k)

]
. (39)

For a fixed G(k), the second factor in square brackets on the right-hand side of (39) converges

to 1 as n→∞, so the first factor in square brackets becomes critical. If y(·) is a monotone

function of each argument whose index belongs to I ′C, then ρY ≤ 0 by Result 1; and if

ρY < 0, then Var
[
θ̂CI+CV

(
G(k), n

)]
< Var

[
θ̂CV(n)

]
for n sufficiently large.

To determine the asymptotic distribution of θ̂CI+CV

(
G(k), n

)
, we relax the assumptions of

joint normality for (Y, C) and
(
Ỹ , C̃

)
made above. For a fixed k-dimensional distribution

G(k) ∈ G, and irrespective of the distributions of (Y, C) and
(
Ỹ , C̃

)
, we obtain the following

central limit theorem analogous to (18) for the CI+CV estimator:

n1/2
[
θ̂CI+CV

(
G(k), n

)
− θ

] D−→ N
{
0, σ2

Y

[
1 + (k − 1)ρY −R2

Y C

]}
as n→∞ .
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Coupled with (18), this last result shows that for any G(k) ∈ G, the ratio σ2
CI+CV/σ

2
CV of

asymptotic variance parameters is given by the first factor in square brackets on the right-

hand side of (39). We summarize this discussion in the following result.

Theorem 2. Suppose that C has the form (31), G(k) ∈ G, and y(·) is a monotone function

of each argument with index in I ′C. If each of (Y, C) and
(
Ỹ , C̃

)
has a multivariate normal

distribution, then θ̂CI+CV

(
G(k), n

)
is an unbiased estimator of θ; and ignoring terms of the

form O(1/n), we have

Var
[
θ̂CI+CV

(
G(k), n

)]
Var

[
θ̂CV(n)

] = 1 +
(k − 1)ρY

1−R2
Y C

≤ 1.

Moreover, irrespective of the distributions of (Y, C) and
(
Ỹ , C̃

)
, the estimator θ̂CI+CV

asymptotically dominates θ̂CV.

Example 2. We give a simple example in which (Y, C) and
(
Ỹ , C̃

)
are both multivariate

normal, and combining antithetic variates and control variates yields a particularly effective

variance reduction strategy. Suppose that W ∼ Nd−q(µW, ΣW) and C ∼ Nq(µC, ΣC)

are independent normal row vectors of dimension d− q and q, respectively (1 ≤ q < d).

Moreover, suppose that the response of interest is Y = αWT + βCT , where α and β are

constant row vectors consisting respectively of d− q and q elements. Using the Cholesky

decomposition ΣW = ΘWΘT
W (Anderson 1984, p. 586), we generate the random vector W

according to the scheme

W = µW +
[
Φ−1(U1), . . . , Φ−1(Ud−q)

]
ΘT

W,

where Φ−1(·) is the inverse standard normal c.d.f. and the random numbers (U1, . . . , Ud−q)

are independent. The control vector C is generated by a similar scheme using the inde-

pendently generated random numbers (Ud−q+1, . . . , Ud). As a practical matter this scheme

for generating W and C would involve using, for example, the Applied Statistics algorithm

AS 111 (Griffiths and Hill 1985) to approximate Φ−1(·).
Since the standard normal distribution is symmetric about the origin, using the method

of antithetic variates (13) to induce correlation between two replications of the vector

(U1, . . . , Ud−q) yields Ỹ = αµT
W + βC̃T. Since C̃ is the sum of independent normal vec-

tors, C̃ is itself multivariate normal; and thus
(
Ỹ , C̃

)
is (singular) multivariate normal,

with R2

Ỹ C̃
= 1. In this extreme example, the method of antithetic variates induces a linear

relationship between Ỹ and C̃; and thus the integrated AV+CV strategy achieves 100%

variance reduction in the estimation of θ.
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Unfortunately, a variance comparison between θ̂CI+CV

(
G(k), n

)
and θ̂CI

(
G(k), n

)
is not

possible in general. For θ̂CI

(
G(k), n

)
we sample dependently between replications all the

random-number inputs, whereas for θ̂CI+CV

(
G(k), n

)
we sample dependently between repli-

cations only the random-number inputs with indices in I ′C; and the extra degree of induced

correlation achieved by θ̂CI

(
G(k), n

)
might outweigh the benefit of using control variates to

form the estimator θ̂CI+CV

(
G(k), n

)
. For an elaboration of this point and relevant experi-

mental results, see Kwon and Tew (1994).

2.3. Conditional Expectation and Control Variates (CE+CV)

To combine the methods of conditional expectation and control variates, we must select a

control vector C and a conditioning vector X such that we can evaluate the conditional

expectations ζ(x) ≡ E[Y |X = x] and δ(x) ≡ E[C|X = x] analytically or numerically for

every possible value of x. We define the auxiliary random vectors Z ≡ ζ(X) and D ≡ δ(X),

and we observe that E[Z] = θ and E[D] = µC.

Example 1 (continued). With the previously defined vectors X ≡ (X1, X2) ≡ (V1, V5)

and C = V4 + V5, we have

δ(x1, x2) = E[V4 + V5|X1 ≡ V1 = x1, X2 ≡ V5 = x2] = E[V4] + x2

so that

D = δ(X) = E[V4] +X2 = E[V4] + V5.

We view Z and D as the new response and control vector respectively, and we use the

control-variates technique to reduce further the variance of Z. By analogy with the standard

control-variates methodology, we assume that the vector D has a positive definite (p.d.)

variance-covariance matrix ΣD; and we will see this implies that ΣC is also p.d. Let {Xi :

i = 1, . . . , n} be i.i.d. observations of X. In terms of the auxiliary observations

Zi = ζ(Xi) and Di = δ(Xi) for i = 1, . . . , n, (40)

we define θ̂CE+CV(n), the conditional expectation–control variates (CE+CV) estimator based

on n replications, as the control-variates estimator

θ̂CE+CV(n) ≡ Z̄ − b̂
(
D̄− µC

)T
,

where: Z̄ and D̄ are the sample means of {Zi : i = 1, . . . , n} and {Di : i = 1, . . . , n},
respectively;

b̂ ≡ SZDS−1
D ;
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SZD denotes the 1 × q vector of sample covariances between Z and the components of D;

and SD denotes the q × q sample variance-covariance matrix of D.

To compute the mean and variance of θ̂CE+CV(n), we assume that (Z, D) has a multi-

variate normal distribution. Then θ̂CE+CV(n) is an unbiased estimator of θ, and its variance

is

Var
[
θ̂CE+CV(n)

]
= n−1σ2

Z

(
1−R2

ZD

) n− 2

n− q − 2
,

where RZD is the coefficient of multiple correlation between Z and D. The remarks following

(18) are again applicable so that irrespective of the distribution of (Z, D), the combined

estimator θ̂CE+CV asymptotically dominates θ̂CE.

To compare the variance of θ̂CE+CV(n) with the variance of the standard control-variates

estimator θ̂CV(n), we also assume that (Y, C) has a multivariate normal distribution and

that the following condition holds:

For every constant 1×q vector β 6= 0, the random

variable βCT is not a function of X alone.

}
(41)

Adjusted to eliminate the effects of sample size, the difference between the variance of θ̂CV(n)

and the variance of θ̂CE+CV(n) is

n(n− q − 2)

n− 2

{
Var

[
θ̂CV(n)

]
− Var

[
θ̂CE+CV(n)

]}
= σ2

Y

(
1−R2

Y C

)
− σ2

Z

(
1−R2

ZD

)
. (42)

We now state the key result permitting the comparison between the CE+CV strategy and

the standard control-variates technique. The proof of this result is given in the Appendix.

Lemma 1. If ΣD is positive definite and (41) holds, then σ2
Y (1−R2

Y C)−σ2
Z(1−R2

ZD) ≥ 0.

Under the assumptions of Lemma 1, it follows immediately from (42) that Var
[
θ̂CE+CV(n)

]
≤

Var
[
θ̂CV(n)

]
for all n.

To determine the asymptotic distribution of θ̂CE+CV(n), we relax the assumptions of joint

normality for (Y, C) and (Z, D) made above. Irrespective of the distributions of (Y, C)

and (Z, D), we obtain the following central limit theorem analogous to (18) for the CE+CV

estimator:

n1/2
[
θ̂CE+CV(n)− θ

] D−→ N
[
0, σ2

Z

(
1−R2

ZD

)]
as n→∞ .

Coupled with (18), this last result shows that under the assumptions of Lemma 1, θ̂CE+CV

asymptotically dominates θ̂CV. We have proved the following result.

Theorem 3. Suppose that ΣD is positive definite and (41) holds. If each of (Y, C) and

(Z, D) has a (q + 1)-variate normal distribution, then θ̂CE+CV(n) is an unbiased estimator
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of θ, and

Var
[
θ̂CE+CV(n)

]
≤ min

{
Var

[
θ̂CE(n)

]
, Var

[
θ̂CV(n)

]}
for n ≥ q/R2

ZD + 2.

Moreover, irrespective of the distributions of (Y, C) and (Z, D), the estimator θ̂CE+CV asymp-

totically dominates θ̂CV and θ̂CE.

Example 3. Suppose that (Y, C, X) is nonsingular multivariate normal. Then Theorems

2.4.3, 2.5.1, and A.3.2 of Anderson (1984) imply that (Y, C) and (Z, D) are both multivariate

normal, ΣD is positive definite, and (41) holds.

3. ASYMPTOTIC VARIANCE COMPARISONS INVOLVING LHS

In this section we show that Latin hypercube sampling is asymptotically more efficient than

the method of control variates when a certain class of controls is used. We also establish

some general conditions under which an integrated variance reduction strategy based on the

methods of conditional expectation and Latin hypercube sampling is asymptotically more

efficient than many of the other strategies discussed in this paper.

Suppose that each component of the control vector C has the additive form

Cτ =
∑

j∈JC

ϕτ,j(Vj) for τ = 1, . . . , q and for some JC ⊆ {1, . . . , p}, (43)

subject to the following ancillary conditions:

AC1 The input random variates {Vj : j ∈ JC} are mutually independent.

AC2 The random vectors (Vj : j ∈ JC) and (Vj : j ∈ J ′C) are independent, where J ′C ≡
{1, . . . , p} − JC .

AC3 For τ = 1, . . . , q and for j ∈ JC, the symbol ϕτ,j(·) denotes an arbitrary univariate

function.

In other words, each component Cτ of the control vector C is a separable function of a set of

independent input random variates; and although the remaining set of input random variates

may be stochastically interdependent, the latter set is independent of the former set. This

situation often occurs in practice since many input variates are generated independently

of each other, and control variates are often taken to be sums of selected input variates.

For example, in queueing simulations, sums or averages of service times observed at selected

service centers are frequently used as controls (Wilson 1984); and in simulations of stochastic
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activity networks, sums of activity times along selected paths are often used as controls (see

Section 4.1.1 below).

Example 1 (continued). Using again C = V4 + V5, we see that (43) holds with JC =

{4, 5}, q = 1, and ϕ1,4(v) ≡ ϕ1,5(v) ≡ v for all real v.

Using the Latin hypercube sampling estimator θ̂LH(HJ , n) as defined in Section 1.2.2

with J = JC, we obtain the following result comparing θ̂LH(HJC
, n) and the control-variates

estimator θ̂CV(n). The proof of this result is given in the Appendix.

Theorem 4. If the response Y is bounded and the control vector C has components of the

form (43), then θ̂LH(HJC
, n) asymptotically dominates θ̂CV(n).

In the rest of this section we examine the asymptotic efficiency of an integrated variance

reduction strategy based on the methods of conditional expectation and Latin hypercube

sampling. Our development requires assumptions (22) and (23), which were elaborated in

Section 2.1. We reiterate that IX (respectively, JX) is a set of indices of the input random

numbers (respectively, the input random variates) upon which X depends. For any subset J

of {1, . . . , p} that satisfies conditions IP1 and IP2 in the general definition of Latin hypercube

sampling as stated in Section 1.2.2, we define the conditional expectation–Latin hypercube

sampling estimator θ̂CE+LH(HJ , n) to be θ̂CE+CI

(
G

(n)
LH, n

)
, where the input random variates

{Vj : j ∈ JX ∩ J} are sampled by inversion. For concreteness, we state the sampling plan

HJ corresponding to θ̂CE+LH(HJ , n),

Vj =

 F−1
j (Uj), j ∈ JX ∩ J,

Hj(Uτ : τ ∈ IX − J), j ∈ JX − J,
(44)

where the functions {Hj(·) : j ∈ JX − J} are selected by the user to yield the correct joint

distribution for the random vector (Vj : j ∈ JX − J).

The following result provides a consolidated statement of our asymptotic comparisons of

θ̂CE+LH with many of the other estimators described in this paper. The proof of Theorem 5

is given in the Appendix.

Theorem 5.

(i) If the response Y is bounded, then θ̂CE+LH(HJ , n) asymptotically dominates θ̂CE(n)

for any J ⊆ {1, . . . , p} that satisfies conditions IP1 and IP2.

(ii) If the response Y is bounded and the conditioning vector X satisfies assumptions (22)

and (23), then θ̂CE+LH(HJ , n) asymptotically dominates θ̂LH(HJ , n) for any J ⊆
{1, . . . , p} that satisfies conditions IP1 and IP2.
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(iii) If the response Y is bounded, if the conditioning vector X satisfies assumptions (22)

and (23), and if the control vector C has components of the form (43), then the

estimator θ̂CE+LH(HJC
, n) asymptotically dominates θ̂CE+CV(n) and θ̂CV(n).

Example 1 (continued). In view of the conclusion of part (iii) of Theorem 5, we take

J = JC = {4, 5}. Since X = (V1, V5) and JX = {1, 5}, we must reindex some of the random-

number inputs to conform to (44). We accomplish this reindexing by interchanging U5 and

U6 in the original sampling plan (2), so that now V4 = H4(U6) and V5 = H5(U5). Let F−1
5 (·)

denote the inverse c.d.f. of V5. Thus the sampling plan HJC
is given by

V1 = H1(U1, U2) and V5 = F−1
5 (U5).

Recalling the form of the conditional-expectation estimator in (5), we generate n dependent

replications of this estimator,

Z(i) = F2,3

[
t−H1

(
U

(i)
1 , U

(i)
2

)
, t−H1

(
U

(i)
1 , U

(i)
2

)
− F−1

5

(
U

(i)
5

)]
· F4

[
t− F−1

5

(
U

(i)
5

)]
for i = 1, . . . , n, where

{
U

(i)
j : j = 1, 2, 5

}
are sampled under LHS as in (15) with k = n.

The resulting CE+LH estimator is

θ̂CE+LH(HJC
, n) = n−1

n∑
i=1

Z(i).

4. APPLICATION TO STOCHASTIC ACTIVITY NETWORKS

We illustrate the application of our integrated variance reduction strategies to simulation

of stochastic activity networks (SANs). In Section 4.1 we discuss how we implemented the

standard VRTs of Section 1 and the integrated strategies of Section 2 for simulation of SANs,

and we explain how we validated the assumptions underlying the integrated strategies. In

Section 4.2 we describe the specific simulation experiments that were performed, and in

Section 4.3 we summarize the results of those experiments.

4.1. Implementation and Validation Issues

4.1.1. Setup for Simulating Stochastic Activity Networks

The setup for describing and simulating an arbitrary stochastic activity network is a straight-

forward extension of Example 1. The graph-theoretic structure of a stochastic activity net-

work is described by the pair (N , A), where the nodes in the network constitute the set
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N ≡ {1, . . . , ν} and the activities in the network constitute the set

A ≡
{
(aj, bj) : activity j has start node aj ∈ N and end node bj ∈ N , j = 1, . . . , p

}
.

The network is assumed to be acyclic with a source node and a sink node in N . Each activity

j has a random duration Vj, so the input random variates are {Vj : j = 1, . . . , p}; and the

probabilistic structure of the network is described by the joint distribution of the random

vector (V1, . . . , Vp).

The objective of simulating the network is to estimate the distribution of the time to

realize the sink node—that is, the time to complete the network when all of the precedence

relations between the activities in A are taken into account. Let ξ denote the number of

directed paths from source to sink, and let

A(ω) ≡ {j : activity j is on ωth source-to-sink path} for ω = 1, . . . , ξ.

The duration of the ωth path is the random variable

Pω ≡
∑

j∈A(ω)

Vj for ω = 1, . . . , ξ; (45)

and paralleling (1) is the network completion time

T ≡ max{P1, . . . , Pξ}. (46)

We seek to estimate the c.d.f. FT (·) of T at each cutoff value in a given set T . For a selected

t ∈ T , the response of interest is

Y = f(V1, . . . , Vp) ≡ 1{T ≤ t} . (47)

Here we view the overall estimation problem as a set of univariate estimation problems so

that each value in T corresponds to a single estimand of interest.

Our sampling plan is based on the assumption that each activity duration Vj (j = 1, . . . , p)

is independent of all other activity durations and has a known c.d.f. Fj(·). We use the method

of inversion to generate all random variates, so the sampling plan HJp is given by

Vj = F−1
j (Uj) for j ∈ Jp ≡ {1, . . . , p} . (48)

Thus in terms of the notation established in Section 1, we have d = p. We observe that

several numerical-analysis libraries—such as IMSL (International Mathematical and Statis-

tical Library 1987) and the Applied Statistics algorithms (Griffiths and Hill 1985)—provide
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inversion routines for most of the probability distributions that are commonly used in system

simulation. Moreover, inversion is the only variate-generation scheme used in the INSIGHT

simulation language (Roberts 1983); and in the SIMAN simulation language (Systems Mod-

eling Corporation 1989, pp. 377–387), inversion is used to sample every distribution except

the multiphase Erlang distribution, for which a combination of inversion and composition is

used. Thus as a practical matter, we believe that use of the sampling plan (48) is not overly

restrictive.

The variance reduction techniques discussed in Sections 1 and 2 are applied as follows. To

implement the method of conditional expectation, we adapt an estimator originally developed

for stochastic shortest route problems by Sigal, Pritsker, and Solberg (1980). A uniformly

directed cutset L is a set of activities such that each directed path from source to sink contains

exactly one activity in L. Following Sigal, Pritsker, and Solberg, we use a conditioning vector

of the form

X = (Vj : j ∈ JX), where JX = {1, . . . , p} − L (49)

and L is the uniformly directed cutset that is chosen. See Sigal, Pritsker, and Solberg for

properties of a uniformly directed cutset and for a derivation of the associated conditional-

expectation estimator of E[Y ]. See Provan and Kulkarni (1989) for an efficient algorithm to

identify a “good” uniformly directed cutset.

To implement the method of control variates, we use the approach of Avramidis, Bauer,

and Wilson (1991). Ranking the directed paths from source to sink in decreasing order of

expected duration, we let ω1, ω2, and ω3 denote the indices of the paths ranked first, second,

and third, respectively. We use as control variables the durations of these three paths so

that

Cτ ≡ Pωτ =
∑

j∈A(ωτ )

Vj for τ = 1, 2, and 3. (50)

Observe that for each τ we can easily compute E[Cτ ] as the sum of the corresponding mean

activity durations; and each mean activity duration E[Vj] is either known at the outset, or

it can be evaluated using the known c.d.f. Fj(·). Also observe that the controls are of the

form (43), with JC = ∪3
τ=1A(ωτ ) and

ϕτ,j(v) ≡

 v, if j ∈ A(ωτ ),

0, otherwise,

 for τ = 1, 2, 3 and j ∈ JC.

Finally, we have implemented the correlation-induction techniques of antithetic variates

and Latin hypercube sampling along the lines detailed in Sections 1.2.1 and 1.2.2, respec-

tively.
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4.1.2. Validation of the Integrated Variance Reduction Strategies

Given this setup for simulating stochastic activity networks, we can assess the validity of

each of the assumptions underlying the development of Sections 2 and 3. First we consider

the assumptions of Theorems 1 and 2. In view of (45) through (47), it is clear that f(·) is a

monotone function of each of its arguments. Moreover, the sampling plan (48) ensures that

the conditioning vector in (49) satisfies conditions (22) and (23) as required in Theorem 1.

From the discussion of monotonicity following Theorem 1 (that is, in the next-to-last para-

graph of Section 2.1), it follows that ζ(·) is a monotone function of each of its arguments.

Therefore any monotone sampling plan will guarantee the monotonicity of both y(·) and

z(·). Finally for all of the SANs used in our simulation experiments, the controls defined by

(50) are readily seen to have the form (31) as required in Theorem 2.

Next we examine the validity of the assumption that (41) holds and ΣD is positive definite;

this assumption is required in Theorem 3 to obtain the variance comparisons between θ̂CE+CV,

θ̂CV, and θ̂CE. We will show that the following continuity properties of the controls C and

D are sufficient to satisfy this assumption:

CP1 Given X, the conditional distribution of C has a density or is of mixed type.

CP2 The distribution of D = E[C|X] = δ(X) has a density or is of mixed type.

(A distribution of mixed type has both discrete and absolutely continuous parts; see Neuts

1973, p. 170.) Proposition 1 of Porta Nova and Wilson (1989) is easily extended to cover

distributions of mixed type and not only distributions having a density; then applying this

extended result twice, we see that property CP1 implies condition (41), and property CP2

implies ΣD is p.d. For the SANs used in our simulation experiments, each distribution Fj(·)
has a density or is of mixed type, C has the form (50), and X has the form (49). Exploiting

this structure, we reach the following conclusions about our SAN simulations:

(a) The definition of a uniformly directed cutset ensures that property CP1 holds.

(b) Since D = δ(X) is a smooth (continuously differentiable) function of X, the change-

of-variables formula (Bickel and Doksum 1977, Theorem 1.2.2) ensures that prop-

erty CP2 holds.

In summary, properties CP1 and CP2 provide a convenient means of checking that ΣD is

p.d. and condition (41) holds.

The assumption of normality necessary for the small-sample comparisons in Theorems 2

and 3 is clearly violated for the response (47) used in our SAN simulations. However, since
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standard control-variates estimators have proven to be effective in a variety of settings where

the normality assumption was violated (Avramidis, Bauer, and Wilson 1991), we expect that

θ̂CI+CV and θ̂CE+CV will have a similar behavior.

In Theorems 4 and 5, the asymptotic variance comparisons between θ̂CE, θ̂CV, θ̂LH, θ̂CE+CV,

and θ̂CE+LH require that the response Y is bounded. Clearly this boundedness assumption

is satisfied for responses of the form (47). Since any simulation model must ultimately

be executed on a computer with a finite word length, all variables in the simulation must

be bounded; and thus the boundedness assumption does not seem to have much practical

importance for any applications of the integrated variance reduction strategies discussed in

this paper.

4.2. Description of the Simulation Experiments

The experimental performance evaluation was based on two SANs. For each activity duration

Vj in a given network, the associated distribution was taken to be either (a) a normal

distribution with a nominal mean µj and standard deviation σj = µj/4 whose probability

mass below the origin has been relocated to the origin; or (b) an exponential distribution

with a specified mean µj. We chose the exponential distribution as the nonnormal alternative

for reasons elaborated in Avramidis, Bauer, and Wilson (1991). The first SAN was taken

from Elmaghraby (1977, p. 275); and it is depicted in Figure 2. The set of activities with

“adjusted” normal durations as in (a) was taken to be {(1, 2), (1, 3), (2, 4), (6, 9), (7, 8)}; all

other activities were taken to be exponentially distributed as in (b). As a uniformly directed

cutset, we chose L = {(3, 6), (2, 6), (5, 6), (5, 8), (4, 7)}.
The second SAN was taken from Antill and Woodhead (1982, Figure 8.5(b), p. 190); and

it is depicted in Figure 3. Here the set of activities with “adjusted” normal durations was

taken to be {(1, 3), (2, 6), (2, 4), (8, 11), (10, 13), (12, 18), (16, 17), (17, 21), (17, 23), (17, 19),

(18, 19), (23, 24)}. The uniformly directed cutset for this network was L = {(2, 9), (4, 7),

(5, 7), (1, 6), (3, 6), (3, 8)}.
The experiments on networks 1 and 2 were executed with a general simulation program for

stochastic activity networks. Random numbers were generated by the IMSL routine RNUNF.

To implement the sampling plan (48), we used the Applied Statistics algorithm AS 111

to approximate the inverse standard normal c.d.f. To generate random permutations of the

integers {1, . . . , n} as required by estimation procedures involving Latin hypercube sampling,

we used the IMSL routine RNPER. Our simulation program is available upon request.

The purpose of the Monte Carlo study was to estimate the variance reductions achieved by
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Figure 2. Network 1 used in the Monte Carlo study.
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Figure 3. Network 2 used in the Monte Carlo study.
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the following estimators: (i) the conditional-expectation estimator θ̂CE(n); (ii) the antithetic-

variates estimator θ̂AV(n) ≡ θ̂CI

(
G

(2)
AV, n

)
; (iii) the Latin hypercube sampling estimator

θ̂LH(HJp , n); (iv) the control-variates estimator θ̂CV(n); (v) the conditional expectation–

control variates estimator θ̂CE+CV(n); and (vi) the conditional expectation–Latin hypercube

sampling estimator θ̂CE+LH(HJp , n). In the experimental performance evaluation, we used

the following sample sizes: n = 32, 64, and 128.

For each selected combination of a stochastic activity network, a sample size n, and an

estimator θ̂, we used the following protocol to approximate Var
[
θ̂

]
. We conducted a set

of M independent macroreplications of the estimation procedure that yields θ̂, where each

macroreplication consisted of n (possibly correlated) replications of the network simulation

that are required to compute a single observation of θ̂. Then Var
[
θ̂

]
was estimated as the

sample variance of M i.i.d. observations of θ̂. Table I shows the number of macroreplications

used to approximate Var
[
θ̂

]
for each estimator θ̂ that we studied, including the direct-

simulation estimator Ȳ (n).

Table I

Number of Independent Macroreplications M of θ̂

Used to Approximate Var
[
θ̂

]
for Each Estimator θ̂

Estimator M
Ȳ (n) 4096

θ̂CE(32) 4096

θ̂AV(32) 4096

θ̂LH(HJp , 32) 4096

θ̂CV(32) 4096

θ̂CE+CV(32) 4096

θ̂CE+LH(HJp , 32) 4096

θ̂CE+LH(HJp , 64) 2048

θ̂CE+LH(HJp , 128) 1024

4.3. Experimental Results

For networks 1 and 2 respectively, Tables II and III contain our approximations to the

variance ratio Var
[
Ȳ (n)

] /
Var

[
θ̂

]
for each selected estimator θ̂. Because of the large number

of degrees of freedom (at least 1023) in the numerator and denominator of each estimated

variance ratio, there is relatively little error associated with the entries of Tables II and III.
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By independently replicating Tables II and III, we found that the largest standard error for

any of the entries in these tables was less than 7% of the corresponding entry. To improve

the readability of these tables, we omitted the standard errors associated with the estimated

variance ratios. We remark that based on n = 4096 independent replications of network

1, the direct-simulation estimates of FT (30), FT (50), FT (70), and FT (90) are 0.044, 0.44,

0.78, and 0.92, respectively; and for network 2, the direct-simulation estimates of FT (500),

FT (600), FT (700), and FT (900) are 0.18, 0.47, 0.72, and 0.94, respectively.

For estimating the c.d.f. of the network completion time in the given stochastic activity

networks, the method of conditional expectation appears to be the most effective of the

individual VRTs, followed by Latin hypercube sampling and control variates. Moreover,

Tables II and III clearly reveal the synergism that results from the joint application of two

VRTs in an integrated variance reduction strategy. For example, if the efficiency improve-

ments due to successive application of the methods of conditional expectation and Latin

hypercube sampling were independent effects, then the variance ratio for θ̂CE+LH(HJp , n)

would equal the product of the variance ratios for θ̂CE(n) and θ̂LH(HJp , n) at every sample

size n; however in Tables II and III the variance ratio for θ̂CE+LH(HJp , 32) substantially ex-

ceeds the product of the corresponding variance ratios for θ̂CE(32) and θ̂LH(HJp , 32). Notice

also that θ̂CE+LH(HJp , 32) is more precise than θ̂CE(32), θ̂AV(32), θ̂CV(32), θ̂LH(HJp , 32), and

θ̂CE+CV(32); and this small-sample comparison is consistent with the asymptotic comparisons

given in Section 3. Although asymptotic comparisons of θ̂AV against the other estimators

do not seem possible in general, our experimental results indicate that θ̂AV is usually less

precise than all of the other estimators. We concluded that for the simulation of stochastic

activity networks, Latin hypercube sampling is the correlation-induction method of choice;

moreover, integrated variance reduction strategies can yield large improvements in precision

relative to individual VRTs.

Because of the superior performance of the conditional expectation–Latin hypercube sam-

pling estimator θ̂CE+LH(HJp , n), we investigated the effect on this estimator of increasing the

sample size n. If the response Y is bounded and the conditioning vector X has the form

(22), then Corollary 1 of Stein (1987) implies that

lim
n→∞

Var
[
Ȳ (n)

]
Var

[
θ̂CE+LH(HJp , n)

] =
σ2

Y

σ2
CE+LH(HJp)

≥ 1 , (51)

where σ2
CE+LH(HJp) is the asymptotic variance parameter for the CE+LH estimator with

the sampling plan HJp defined by (48). Although we cannot give a complete charac-

terization of the way in which the variance ratio in (51) approaches the limiting value
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Table II

Estimates of the Variance Ratio Var
[
Ȳ (n)

] /
Var

[
θ̂

]
for Different Estimators θ̂ and Sample Sizes n in Network 1

Estimand

Estimator FT (30) FT (50) FT (70) FT (90)

θ̂CE(32) 11.2 4.7 4.17 4.31

θ̂AV(32) 1.05 1.22 1.08 1.02

θ̂LH(HJp , 32) 1.19 2.26 2.92 2.18

θ̂CV(32) 1.12 1.35 1.33 1.20

θ̂CE+CV(32) 16.7 19.8 10.9 7.62

θ̂CE+LH(HJp , 32) 42.3 72.6 52.2 18.3

θ̂CE+LH(HJp , 64) 42.4 83.2 70.7 47.1

θ̂CE+LH(HJp , 128) 44.6 87.4 78.1 56.3

Table III

Estimates of the Variance Ratio Var
[
Ȳ (n)

] /
Var

[
θ̂

]
for Different Estimators θ̂ and Sample Sizes n in Network 2

Estimand

Estimator FT (500) FT (600) FT (700) FT (900)

θ̂CE(32) 3.50 2.88 2.66 2.37

θ̂AV(32) 1.17 1.18 1.11 1.02

θ̂LH(HJp , 32) 1.50 2.15 2.29 1.65

θ̂CV(32) 1.15 1.27 1.26 1.19

θ̂CE+CV(32) 5.64 6.48 6.14 3.86

θ̂CE+LH(HJp , 32) 11.2 17.9 17.5 7.99

θ̂CE+LH(HJp , 64) 11.0 19.5 23.0 11.2

θ̂CE+LH(HJp , 128) 11.2 20.9 25.4 14.2
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σ2
Y /σ

2
CE+LH(HJp), the experimental results in Tables II and III as well as other empirical

results not reported here support the conclusion that this variance ratio is generally an in-

creasing function of the sample size—that is, the precision of θ̂CE+LH(HJp , n) relative to

direct simulation seems to improve as n increases. The point at which the variance ratio

Var
[
Ȳ (n)

] /
Var

[
θ̂CE+LH(HJp , n)

]
levels off seems to vary with the application.

5. CONCLUSIONS AND RECOMMENDATIONS

We believe that the development presented in this paper provides a framework for effective

application of integrated variance reduction strategies in many contexts. Beyond the theoret-

ical comparisons of the various integrated strategies, the experimental results for moderately

complex stochastic activity networks provide substantial evidence of the practical value of

using these techniques to improve the efficiency of large-scale simulations. In particular, we

observed a synergism due to joint application of variance reduction techniques so that the

variance ratio (relative to direct simulation) for each integrated variance reduction strategy

substantially exceeded the product of the variance ratios for the corresponding individual

variance reduction techniques.

Although follow-up work is needed in a number of areas, perhaps the most immediate need

is for more extensive experimentation. A major unresolved issue concerns the performance of

the integrated variance reduction strategies when the assumptions underlying those strategies

are violated. Moreover, it is unclear whether the large efficiency improvements observed

by integrating the methods of conditional expectation and Latin hypercube sampling are

typical of the gains that can be anticipated in practice. In the spirit of Nelson (1990) and

Avramidis, Bauer, and Wilson (1991), a comprehensive experimental evaluation is required

for the integrated variance reduction strategies developed in this paper.

Follow-up work is also required to extend the theoretical development to cover a larger

class of simulation experiments. Although our development is limited to simulations where

the dimension d of the vector of random-number inputs is fixed, we believe that much of this

analysis can ultimately be extended to simulations where d is random. Such a complication

naturally arises in the following situations: (a) a finite-horizon simulation with a sampling

plan involving, for example, the acceptance-rejection method, so that p is fixed but d is

random; and (b) an infinite-horizon simulation in which both p and d are random. All of the

results presented in this paper are limited to independent replications of a univariate simula-

tion response. These results should be generalized to multiresponse simulations. Moreover,

the integrated variance reduction strategies should be adapted to responses generated within
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a single prolonged replication of a simulation model in steady-state operation. In light of the

observed effectiveness of the joint application of Latin hypercube sampling and the method

of conditional expectation, we believe that in future research emphasis should be given to

integrated strategies involving these techniques. Finally, the integrated variance reduction

strategies formulated in this paper should be extended to accommodate joint application of

three or more basic variance reduction techniques; and the potential for synergism between

these techniques should be investigated.

APPENDIX

Proof of Lemma 1

We express the adjusted difference in variances (42) as

σ2
Y (1−R2

Y C)− σ2
Z(1−R2

ZD) = σ2
Y − σY CΣ−1

C σT
Y C − σ2

Z + σZDΣ−1
D σT

ZD , (52)

where we have partitioned the variance-covariance matrix of (Z, D) as

Var[ (Z, D) ] =

 σ2
Z σZD

σT
ZD ΣD

 .
Similarly, we partition the expectation of the conditional variance-covariance matrix of

(Y, C) given X as

P ≡ E{Var[ (Y, C) |X] } =

 P11 P12

PT
12 P22

 , (53)

where P11 is a scalar, P12 is a 1× q vector, and P22 is a q× q matrix. Exploiting the matrix

version of the conditional variance relation

Var[ (Y, C) ] = E{Var[ (Y, C) |X] }+ Var{E[ (Y, C) |X] }

= P + Var[ (Z, D) ] ,

we will repeatedly use the relations

P11 = σ2
Y − σ2

Z , P12 = σY C − σZD , P22 = ΣC −ΣD . (54)

To continue the analysis of (52), we show that P22 and ΣC are p.d. Notice that we require

ΣC to be p.d. in equation (52), the first step of this proof; and we will require P22 to be
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p.d. in equations (61) and (64) below. Clearly P22 = E[ Var(C|X) ] is positive semidefinite

(p.s.d.) since Var(C|X = x) is p.s.d. for every x. Moreover, for any deterministic 1×q vector

β 6= 0,

βP22β
T = E

[
βVar(C|X)βT

]
= E

[
Var

(
βCT

∣∣∣X) ]
. (55)

Since βCT is not a function of X alone, the event
{
Var

(
βCT

∣∣∣X)
> 0

}
must have positive

probability of occurring so that

E
[
Var

(
βCT

∣∣∣X) ]
> 0 . (56)

It follows immediately from (55) and (56) that P22 is p.d.; and (54) implies that ΣC =

P22 + ΣD is also p.d.

The next step in the analysis of (52) is to obtain expressions for σY CΣ−1
C σT

Y C and

σZDΣ−1
D σT

ZD that can be combined conveniently. Using elementary properties of tr(·), the

trace operator, we have

σY CΣ−1
C σT

Y C = tr
(
σT

Y CσY CΣ−1
C

)
= tr

[
σT

Y CσY CΣ−1
C (ΣC −P22)Σ

−1
D

]
= tr

(
σT

Y CσY CΣ−1
D

)
− tr

(
σT

Y CσY CΣ−1
C P22Σ

−1
D

)
. (57)

Similarly, we have

σZDΣ−1
D σT

ZD = tr
(
σT

ZDσZDΣ−1
D

)
= tr

[
(σY C −P12)

T(σY C −P12)Σ
−1
D

]
= tr

(
σT

Y CσY CΣ−1
D

)
+ tr

{[
−

(
σT

Y CP12 + PT
12σY C

)
+ PT

12P12

]
Σ−1

D

}
. (58)

Now if A and B are square matrices of the same dimension and if B is symmetric, then it

is easy to show that

tr(AB) = tr
(
ATB

)
. (59)

If we apply (59) to (58) with A ≡ σT
Y CP12 and B ≡ Σ−1

D , then we obtain

σZDΣ−1
D σT

ZD = tr
(
σT

Y CσY CΣ−1
D

)
+ tr

[(
−2σT

Y CP12 + PT
12P12

)
Σ−1

D

]
. (60)

Subtracting (57) from (60), we get

−σY CΣ−1
C σT

Y C + σZDΣ−1
D σT

ZD (61)

= tr
[(

σT
Y CσY C − 2σT

Y CP12P
−1
22 ΣC + PT

12P12P
−1
22 ΣC

)(
Σ−1

C P22Σ
−1
D

)]
= tr

{ [
σT

Y C

(
σY C −P12P

−1
22 ΣC

)
−ΣCP−1

22 PT
12σY C + PT

12P12P
−1
22 ΣC

](
Σ−1

C P22Σ
−1
D

)}
.
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In the last equality in (61) we used (59) again, this time with A ≡ σT
Y CP12P

−1
22 ΣC and

B ≡ Σ−1
C P22Σ

−1
D = Σ−1

D −Σ−1
C . If we define the auxiliary quantities

α ≡ σY C −P12P
−1
22 ΣC and Ω ≡ Σ−1

C P22Σ
−1
D = Σ−1

D −Σ−1
C ,

then we can rewrite (61) as

−σY CΣ−1
C σT

Y C + σZDΣ−1
D σT

ZD = tr
{ [

αTα− (ΣCP−1
22 − Iq)P

T
12P12P

−1
22 ΣC

]
Ω

}
= tr

{ [
αTα−

(
ΣDP−1

22

)
PT

12P12P
−1
22 ΣC

]
Ω

}
= tr

{ [
αTα−ΣD

(
P−1

22 PT
12P12

)
P−1

22 ΣC

]
Ω

}
= tr

[
αTαΩ−

(
P−1

22 PT
12P12

)(
P−1

22 ΣCΩΣD

)]
= tr

(
αTαΩ

)
− tr

(
P−1

22 PT
12P12

)
= αΩαT −P12P

−1
22 PT

12, (62)

where Iq denotes the q × q identity matrix. In view of (54) and (62), the difference (52) has

the form

σ2
Y (1−R2

Y C)− σ2
Z(1−R2

ZD) = αΩαT +
(
P11 −P12P

−1
22 PT

12

)
. (63)

To complete the proof of Lemma 1, we will establish that the two terms on the right-

hand side of (63) are nonnegative. From the definition (53), it follows that P is p.s.d. since

Var[ (Y, C) |X = x] is p.s.d. for all x; and thus by a simple modification of Theorem A.6

of Arnold (1981), we see that the term in parentheses on the right-hand side of (63) is

nonnegative. Finally we show that the matrix Ω is p.d. so that the first term on the right-

hand side of (63) is nonnegative. There exists a nonsingular matrix Θ such that ΘTΣCΘ

and ΘTΣDΘ are both diagonal matrices (Searle 1982, Theorem 3, p. 313)—say,

ΘTΣCΘ = diag (ε1, . . . , εq) and ΘTΣDΘ = diag (η1, . . . , ηq) .

Since P22 = ΣC −ΣD is p.d., we see that

ΘTP22Θ = ΘTΣCΘ−ΘTΣDΘ

= diag (ε1 − η1, . . . , εq − ηq) is p.d.; (64)

and thus we have ετ > ητ > 0 for τ = 1, . . . , q. It follows that η−1
τ −ε−1

τ > 0 for τ = 1, . . . , q

so that

Θ−1Ω(ΘT)−1 =
(
ΘTΣDΘ

)−1
−

(
ΘTΣCΘ

)−1

= diag
(
η−1

1 − ε−1
1 , . . . , η−1

q − ε−1
q

)
is p.d.;

and thus we finally conclude that Ω is p.d.
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Proof of Theorem 4

We have seen in (18) that the asymptotic variance parameter for θ̂CV is

σ2
CV = σ2

Y − σY CΣ−1
C σT

Y C = Var(Y − b∗CT), (65)

where b∗ is defined in (17). Writing b∗ = (b∗1, . . . , b
∗
q) and using (43), we have

Y − b∗CT = Y −
q∑

τ=1

b∗τCτ = Y −
∑

j∈JC

q∑
τ=1

b∗τϕτ,j(Vj). (66)

Applying Theorem 1 of Owen (1992), we see that for any J ⊆ {1, . . . , p} satisfying conditions

IP1 and IP2 with associated sampling plan HJ defined by (16), the following CLT holds:

n1/2
[
θ̂LH(HJ , n)− θ

] D−→ N
[
0, σ2

LH(HJ)
]

as n→∞, (67)

where the corresponding variance parameter is

σ2
LH(HJ) = Var

Y − d∑
j=1

E(Y |Uj)

 with Y = f [HJ(U)] . (68)

Result (67) was originally established by Stein (1987), but Stein’s proof has some gaps that

were filled by Owen (1992). Next we observe that

Var

Y − d∑
j=1

E(Y |Uj)

 ≤ Var

Y − d∑
j=1

ψj(Uj)

 (69)

for any univariate functions
{
ψj(·) : j ∈ {1, . . . , d}

}
. The inequality (69) follows from

Appendix B of Stein (1987). To compare the asymptotic variance parameters σ2
CV and

σ2
LH(HJC

) when we take J = JC in (16) to obtain the sampling plan HJC
, we choose ψj(u) ≡∑q

τ=1 b
∗
τϕτ,j[F

−1
j (u)] for j ∈ IC and ψj(u) ≡ 0 for j ∈ I ′C in the right-hand side of (69). Since

IC = JC in the sampling plan HJC
, we see that (65), (66), and (69) yield the desired result.

Next we establish a lemma that will be used repeatedly in the proof of Theorem 5.

Lemma 2. Let J be an arbitrary subset of {1, . . . , p} and define the random vectors

V̇ ≡ (Vj : j ∈ J) and V̈ ≡ (Vj : j ∈ {1, . . . , p} − J). Let U̇ denote the set of random

numbers on which V̇ depends so that V̇ = Ḣ(U̇), where Ḣ(·) is the appropriate part of the

overall sampling plan H. If V̈ does not depend on U̇, then for any response W that is a

function of (V̇, V̈) alone, we have

E
[
W

∣∣∣ V̇]
= E

[
W

∣∣∣ U̇]
.

Proof. Since V̈ does not depend on U̇, the joint distribution of (V̇, V̈) is the same whether

we condition on V̇ or U̇; and the conclusion of Lemma 2 follows immediately.
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Proof of Theorem 5

If Y is bounded, then so is Z ≡ E[Y |X]; and applying Theorem 1 of Owen (1992), we see

that for any J ⊆ {1, . . . , p} satisfying conditions IP1 and IP2 with associated sampling plan

HJ defined in (44), the asymptotic variance parameter for θ̂CE+LH(HJ , n) is

σ2
CE+LH(HJ) = Var

Z − ∑
j∈IX

E(Z|Uj)

 , (70)

where the dependence of Z on HJ in (70) parallels the dependence of the response on the

sampling plan that was shown explicitly in (68). Applying Appendix B of Stein (1987), we

also have

Var

Z − ∑
j∈IX

E(Z|Uj)

 ≤ Var

Z − ∑
j∈IX

ψj(Uj)

 (71)

for any univariate functions {ψj(·) : j ∈ IX}. By choosing ψj(u) ≡ 0 for j ∈ IX, we obtain

Var(Z) = σ2
CE on the right-hand side of (71); and combining this result with (70), we obtain

the conclusion of part (i).

To prove part (ii), we will show that for any J ⊆ {1, . . . , p} satisfying conditions IP1 and

IP2, the sampling plan HJ defined by (44) yields the asymptotic variance parameter

σ2
CE+LH(HJ) = Var

E(Y |X)−
∑

j∈IX

E
[
E(Y |Uτ : τ ∈ IX)

∣∣∣Uj

] (72)

= Var

E(Y |X)−
∑

j∈IX

E(Y |Uj)

 (73)

= Var

E(Y |X)−
∑

j∈IX

E
[
E(Y |Uj)

∣∣∣Uτ : τ ∈ IX
] (74)

= Var

E(Y |X)−
∑

j∈IX

E
[
E(Y |Uj)

∣∣∣ X ] (75)

= Var

E(Y |X)−
d∑

j=1

E
[
E(Y |Uj)

∣∣∣ X ] (76)

= Var

E

Y − d∑
j=1

E(Y |Uj)

∣∣∣∣∣ X
 (77)

≤ Var

Y − d∑
j=1

E(Y |Uj)

 = σ2
LH(HJ) . (78)

Display (72) follows from (70), the definition of Z, and an application of Lemma 2 with V̇ =

X, U̇ = (Uτ : τ ∈ IX), and W = Y . Display (73) follows from the law of total probability
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for conditional expectations (Karlin and Taylor 1975, p. 246); and (74) follows from the

substitution theorem for conditional expectations (Bickel and Doksum 1977, p. 5). Display

(75) follows from repeated application of Lemma 2 with V̇ = X, U̇ = (Uτ : τ ∈ IX) and W =

E(Y |Uj) for each j ∈ IX. Display (76) follows by observing that for every j ∈ {1, . . . , d}−IX,

the random vectors E(Y |Uj) and X are independent so that E[ E(Y |Uj) |X ] = E[ E(Y |Uj) ] =

θ by the double expectation theorem (Bickel and Doksum 1977, p. 6). Finally, the inequality

in display (78) follows by applying the conditional variance relation (4) to Y −∑d
j=1E(Y |Uj)

when conditioning on X. We have shown that θ̂CE+LH(HJ , n) asymptotically dominates

θ̂LH(HJ , n) for any J ⊆ {1, . . . , p}; and this completes the proof of part (ii).

To prove part (iii), we observe that D ≡ E[C|X] has components

Dτ ≡ E[Cτ |X] =
∑

j∈JC

E
[
ϕτ,j(Vj)

∣∣∣∣ (Vτ : τ ∈ JX)
]

=
∑

j∈JC∩JX

ϕτ,j(Vj) +
∑

j∈JC−JX

E[ϕτ,j(Vj)], τ = 1, . . . , q,

where the last equality follows from conditions AC1 and AC2; and thus the control vector

D has components of the form (43). Now Theorem 4 can be applied to the response Z and

the control vector D, showing that θ̂CE+LH(HJC
, n) asymptotically dominates θ̂CE+CV(n). It

remains to show that θ̂CE+LH(HJC
, n) asymptotically dominates θ̂CV(n). Applying part (ii) of

Theorem 5 with J = JC, we see that θ̂CE+LH(HJC
, n) asymptotically dominates θ̂LH(HJC

, n).

Finally, Theorem 4 ensures that θ̂LH(HJC
, n) asymptotically dominates θ̂CV(n); and since

asymptotic dominance is a transitive relation, we obtain the desired result.
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