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Abstract Large-eddy simulations of the dispersion from scalar line sources at various loca-
tions within a fully developed turbulent channel flow atRe= uh/ν = 10400 are presented.
Both mean and fluctuating scalar quantities are compared with those from the single avail-
able set of experimental data (Lavertu and Mydlarski, 2005)and differences are highlighted
and discussed. The results are also discussed in the contextof scalar dispersion in other
kinds of turbulent flows, e.g. homogeneous shear-flow. Initial computations at a much lower
Reynolds number are also reported and compared with the two available direct numerical
simulation data sets.
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1 Introduction

It is of great importance to be able to predict dispersion in high Reynolds-number flows, e.g.
pollutant dispersion from and within streets in urban environments. Large-eddy simulation
(LES) is a promising numerical approach for this purpose in that it has already been shown
to perform well for determining the mean flow and turbulence characteristics of such flows
(e.g. Xie and Castro, 2008). Before studying typical street-scale dispersion using LES (with
results discussed in Xie and Castro, 2009; Boppana et al., 2010) we addressed the concep-
tually simpler case of scalar dispersion in a channel flow, largely because there are some
existent laboratory experiments and direct numerical simulations (DNS) for such flows; it is
this topic that is discussed in the present paper.

Scalar dispersion in turbulent shear flows is a classical problem that has been studied
for a long time in several ways. In order to understand the mixing and transport processes
of scalars in the kind of turbulent flows that are prevalent inmany engineering applications,
experiments and numerical computations have been conducted, and theories and models de-
veloped. Some of these studies have considered point sources and others have concentrated
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on line or area sources; the scalars have almost always been considered passive for simplic-
ity. The general problem is quite challenging for numerous reasons. To mention two: unlike
the velocity field, there is strong coupling between the large and small scales in the scalar
field, which doesn’t admit universality concepts, and the energy spectra of velocity and
scalar fluctuations can differ significantly (Warhaft, 2000). There is a considerable literature
on dispersion in various turbulent fields, including homogeneous isotropic turbulence and
both homogeneous and inhomogeneous turbulent shear flows. Excellent reviews on some
of these are given by Sreenivasan (1991), Warhaft (2000), Shraiman and Siggia (2000) and
Lavertu and Mydlarski (2005). A brief overview is given below, by way of introduction to
the specific situation considered in the present paper.

One of the earliest experimental studies on the most fundamental problem of line source
dispersion in grid turbulence was by Townsend (1954), for grid Reynolds numbers from
2700 to 21,000. Warhaft (1984) extended this to cases in which there was more than one
line source, considering the interference between two or more line source wakes at a grid
Reynolds number of 1.09×104. These studies shed light on the distribution of the mean
scalar concentration downstream of the source, the rate of spread of the scalar wake and
the correlation coefficients of the scalar fluctuations produced by more than one source.
Similarities and differences in the character of line source dispersion in uniform shear flows
and homogeneous isotropic turbulent flows were identified byKarnik and Tavoularis (1989).
They stated that a universal turbulent diffusivity tensor could be used for rough estimates
of both second and third-order temperature-velocity correlations. The implication is that
the gradient transport concept can be used at least qualitatively to interpret the variation of
all measured temperature-velocity correlations. They also explained the role played by the
relative size of energy-containing eddies with respect to the wake width in the appearance
and suppression of double peaks in the scalar fluctuation profiles.

Experiments in inhomogeneous flows are more limited, but include investigation of dis-
persion from a line source in a channel flow (Lavertu and Mydlarski, 2005) and a point
source in a boundary layer flow (Fackrell and Robins, 1982). The latter conducted experi-
ments with both ground-level and elevated sources. They studied in considerable detail the
effects of source size on the scalar fluctuations and the relative importance of the terms (e.g.
advection, production, diffusion and dissipation) in the variance transport equation. Lavertu
and Mydlarski (2005) used a nominally two dimensional fullydeveloped turbulent channel
flow at two different Reynolds number,Re= 10,400 and 22,800 (based on channel half-
width, h, and the mean velocity at the channel centre,U). Scalar mixing from line sources
placed at three different wall-normal locations was studied. Various statistical quantities of
the scalar wake, e.g. the mean and fluctuation profiles, probability density functions (PDF) of
the fluctuations, and second and third order velocity-scalar correlations, were obtained and
compared for different source locations and at the two Reynolds numbers. In the present
paper, LES results for theRe= 10400 case are compared with the experimental data.

In the modelling context, PDF models have been developed forscalar mixing in tur-
bulent flow. Anand and Pope (1985), for example, studied the thermal wake behind a line
source in grid turbulence using a velocity/temperature joint PDF transport equation and com-
pared results with the experimental data of Warhaft (1984).With an unconditional PDF, they
successfully modelled the mean temperature field but not thevariance. Using a joint PDF
conditional on the lateral velocity, however, the normalised variance profiles were within a
factor of two of the experimental profiles. A three-dimensional stochastic model for particle
pair motion in isotropic, high Reynolds number turbulent flow was presented by Thomson
(1990), who found the resulting normalised scalar varianceto be in agreement with the ex-
perimental data of Fackrell and Robins (1982). Bakosi et al.(2007) developed the IECM
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(Interaction by Exchange with the Conditional Mean) model to obtain the joint PDF of the
velocity and scalar. The first and second moments of the scalar from two line sources at
ys/h = 0.067 and 1 in a high-aspect-ratio channel flow at a Reynolds number (based onh
and the friction velocityuτ ) Reτ = 1080 were compared with the experiments of Lavertu
and Mydlarski (2005). Comments on these comparisons will bemade later (in§4.2.1, 4.2.2
and 4.2.3). Viswanathan and Pope (2008) incorporated the effects of molecular diffusion
in their modified IECM mixing model to study dispersion from line sources in grid turbu-
lence. Some of the key predictions of the model are that the source size effects are limited
to an initial period and at large times the relative intensity of the scalar fluctuations tends to
0.4, independent of Reynolds number. The conventional Reynolds averaged Navier-Stokes
(RANS) models for scalar dispersion in the regions where theconvection is dominant, tend
not to be as successful as models like those mentioned above.

There have been some limited direct numerical simulation (DNS) studies of point source
dispersion. For example, a study of point sources in a fully developed pipe flow atRe=
2650 was performed by Brethouwer et al. (1999), who also obtained satisfactory agreement
with the experiments of Brown and Bilger (1996) on scalar mixing in grid turbulence. A
stochastic model was tested by Iliopoulos and Hanratty (1999) using the data obtained from
their DNS study on point source dispersion in fully developed channel flow atRe= 4520.
Bernard and Rovelstad (1994) examined the accuracy of random flight and closure models in
predicting the turbulent scalar transport rates. Their scalar fields were produced by uniform
(area) and line sources in a channel flow atReτ = 125. Mixing and reaction processes in
an active scalar wake from a line source in channel flow (atReτ = 180) were studied by
Brethouwer and Nieuwstadt (2001) in order to investigate the closure terms that appear
in PDF and Conditional Moment Closure models. Scalar dispersion and mixing from two
line sources in a fully developed channel flow atReτ = 180 was simulated by Vrieling and
Nieuwstadt (2003). They formulated a new model to describe the plume dispersion and the
model results seem to agree qualitatively with their DNS data. Another recent DNS study for
channel flow atReτ = 180 (Fabregat et al., 2009) considered both a neutrally buoyant scalar,
mixed convection and a buoyant scalar. Finally, in the context of grid turbulence, Livescu
et al. (2000) used DNS data to study the structure and development of the scalar wake in
grid turbulence, varying the sizes of the line source from the Kolmogorov microscale to an
integral scale. Their scalar computations mainly simulated the turbulent convective regime
and the transition to the turbulent diffusive regime, and hence the DNS data disagreed with
the gradient diffusion model. This is because the latter is valid only in the full turbulent
diffusion stage.

As mentioned above, some of these DNS studies were conductedin order to test typical
assumptions used in closure models. Other studies that focussed on modelling the thermal
dispersion from a line source are those of Kyong and Chung (1987), who incorporated a
composite time scale in the gradient transport model for a homogeneous shear flow, Cho
and Chung (1997), who used a second order Reynolds stress / heat flux closure model for
uniform shear flow, and Wang and Komori (1999) who compared a second moment closure
model with an algebraic stress and flux model for dispersion in a turbulent boundary layer.

DNS is obviously not a currently viable approach for simulating scalar dispersion in
urban environments but there is some hope that LES could be a useful tool. There have been
some earlier studies that used LES methods – for a point source in a street canyon (Walton
and Cheng, 2002), a line source in a street canyon (Liu and Barth, 2002) and ground-level
and elevated point sources in turbulent boundary layers (Sykes and Henn, 1992), for exam-
ple. Also, Xie et al. (2004) have predicted possible extremeconcentrations from ground-
level and elevated point sources in boundary layers. However, scalar dispersion even in
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classical flows like plane channels or turbulent boundary layers at highReis a challenging
task due not least to the requirement of fine resolution, the existence of high intermitten-
cies and the presence of steep scalar gradients. So as an initial test of the LES approach,
a conceptually fundamental problem was addressed: that of dispersion from a line source
in a fully developed channel flow at relatively highRenumber; this should be even sim-
pler than predicting dispersion from a point source in turbulent boundary layers, e.g. Xie
et al. (2004). The former is essentially a two-dimensional problem with well-defined upper
and bottom boundary conditions in an axially homogeneous flow, whereas the latter is a
three-dimensional problem usually with an artificially designed upper boundary condition.

In the work described here, an initial validation study was done forReτ = 180, with
results compared with the previous DNS studies in literature. This is discussed in§3 after
details of the numerical methods are presented in§2. The major part of the work – simu-
lations of the experiments of Lavertu and Mydlarski (2005) (thermal dispersion from three
line sources in a fully developed channel flow atReτ = 520) – is contained in§4. This in-
cludes consideration of the mean and fluctuating scalar fields, along with eddy diffusivities
which would be difficult to obtain from laboratory experiments. Conclusions are drawn in
§5.

2 Numerical details and Settings

2.1 Flow equations and boundary conditions

The filtered continuity and Navier–Stokes equations governing unsteady incompressible
flow are

∂ui

∂xi
= 0, (1a)
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The resolved-scale velocity and pressure are respectivelygiven byui and p with u1 = u,
u2 = v andu3 = w the streamwise, vertical and lateral velocity components respectively.
ρ andµ are the density and dynamic viscosity of the fluid.τi j is the subgrid-scale (SGS)
Reynolds stress and was handled using the Smagorinsky modelin conjunction with a Lilly
damping function near the walls. Smagorinsky’s constantCs was chosen as 0.065 (Shah,
1998). In the streamwise (x) and lateral (z) directions, periodic boundary conditions were
employed. No slip conditions were set on the channel walls (y= 0 and 2h, whereh is half
the channel height).

2.2 Scalar equation and boundary conditions

The filtered governing equation of the scalar is

∂c
∂ t

+
∂u jc

∂x j
=

∂
∂x j

(

(ks+km)
∂c
∂x j

)

+S, (2)

wherec is the resolved-scale concentration of the scalar.ks is the subgrid turbulent diffusiv-
ity and is given byνs/Scs whereνs is the subgrid viscosity andScs is the subgrid Schmidt
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Fig. 1 A schematic representation of the central line source in the channel (not to scale).

Table 1 Details of the computational domain

Reτ Computations type Lx×Ly×Lz ∆x+ ∆y+w ∆y+c ∆z+

180

LES 4πh×2h×2πh 9.4 2.0 2.8 9.4
DNS (Brethouwer and Nieuwstadt, 2001)a 10h×2h×6h 8.0 - 4.6 9.0
DNS (Moser et al., 1999) 4πh×2h× 4

3πh 17.7 - 4.4 5.9
DNS (Fabregat et al., 2009) 8πh×2h×2πh 17.7 0.4 4.8 8.8
DNS (Vrieling and Nieuwstadt, 2003)a 10h×2h×6h 12.0 - 2.4 11.2

520 LES 4πh×2h×πh 27.2 2.0 16.6 13.6
590 DNS (Moser et al., 1999) 2πh×2h×πh 9.7 - 7.2 4.8
a Wall units were not specified in the references, so numbers given in the table are estimated by the authors
and represent the likely maxima.

number which was set to 0.9 (Walton and Cheng, 2002; Xie et al., 2004).km is the molecular
diffusivity and is given byν/Scm, whereν is the kinematic viscosity of the fluid. A molec-
ular Schmidt number (Scm) of 0.71 was used; this is similar to that used in previous DNS
studies of similar cases (e.g. Brethouwer et al., 1999; Vrieling and Nieuwstadt, 2003; Fab-
regat et al., 2009).S is the scalar source of volume flux that was kept constant in time. The
line source was aligned in the spanwise direction as shown inFig. 1 which summarises the
geometry. Cyclic boundary conditions were employed in the streamwise and in the lateral
directions, but a zero scalar flux was imposed over ay−z plane near the inlet to re-impose
zero concentration upstream of the source. On the channel walls, the normal gradient of the
scalar was set to zero, ensuring a zero surface flux.

A finite volume approach was used to discretize the flow and scalar equations, with a
second-order central difference scheme for spatial discretization of Eq. 1. In order to elimi-
nate any possible numerical instabilities, the monotone advection and reconstruction scheme
(STAR-CD, 2009) with second-order accuracy and a blending factor of 0.99 was used for
Eq. 2. A second-order backward implicit scheme was used for time discretisation.

Table 1 lists the computational domain sizes and the resolution at typical regions forReτ
= 180 and 520, with∆x+i = ∆xiuτ/ν , where∆xi is the grid spacing in thei-th direction and
uτ is the friction velocity. In the streamwise and spanwise directions, the grid was uniform,
whilst in the transverse (y) direction the grid was stretched with finer resolution in the near
wall region. The wall units at the channel centre and in the near wall region are denoted by
∆y+c and∆y+w respectively. The computational domain consisted of hexahedral cells and the
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Table 2 Details of the source size and shape forReτ = 180

Computations type Source shape
Source size

2.4σs/h(2.4σ+
s ) Hs/h(H+

s )

LES
Gaussian 0.0768(13.8) -

Rectangular - 0.1101(20.0)
DNS (Brethouwer and Nieuwstadt, 2001) Rectangular - 0.028(5.0)
DNS (Fabregat et al., 2009) Rectangular - 0.054(9.7)
DNS (Vrieling and Nieuwstadt, 2003) Gaussian 0.065(11.6) -
σs is the standard deviation of Gaussian distribution of the ‘Gaussian’ source.Hs is the size of the ‘Rectan-
gular’ source in which a constant distribution is specified.In terms of wall units, 2.4σ+

s = 2.4σsuτ/ν and
H+

s = Hsuτ/ν. Dimensionless Kolmogorov lengthη+ ≡ ηuτ/ν ∼ 2 (Kim et al., 1987)

flow was maintained by a constant pressure difference∆ p given by

∆ pLy = 2τwLx,

whereLx andLy are the domain lengths in the streamwise and transverse directions respec-
tively andτw = ρu2

τ is the wall shear stress. The time-step was small enough thatthe mean
Courant number (∆ tU/∆x) was less than one. All the computations were carried out us-
ing STAR-CD (2009) version 4.08 (from CD-adapco). Some of the computations were run
on Iridis, a local supercomputer at the University of Southampton and some on HECToR,
one of the machines at the UK’s supercomputer centre. For allthe computations, the initial
durations were more than 50h/uτ . The averaging durations for the flow and scalar were re-
spectively 50h/uτ and 20h/uτ . All the statistics were obtained by averaging in the spanwise
direction as well as in time.

3 Line source in a channel flow atReτ = 180

Before proceeding with the simulations atReτ = 520, a verification study was conducted in
which the passive scalar dispersion from a line source placed at the centre of the channel at
Reτ = 180 was simulated using LES. The mean flow and fluctuations are compared with two
DNS studies (Moser et al., 1999; Fabregat et al., 2009) in Fig. 2. The differences in the mean
flow and fluctuations between the two DNS studies and the current LES may be attributed to
the different numerical schemes and grid resolution, identified in Table 1. Note in particular
that the grid spacings in the LES are finer in the streamwise direction and in the wall-normal
direction at the channel centre compared with those in the two DNS studies, so the present
LES (at thisReτ ) could be viewed as almost a DNS. Nonetheless, the discrepancy in v′2/u2

τ
between the LES and the DNS is probably due to the unresolved subgrid scale motions near
the wall in LES that are not included in the figure and numerical scheme. Overall however,
the LES velocity field is in reasonably good agreement with that given by DNS.

To study the shape effects of the line source, two sets of computations were performed.
In the first set a constantS in Eq. 2 was specified over the source cells; this is called the
‘rectangular’ source. In the second set,Swas specifiedvia a Gaussian distribution in they
direction over the source cells and this is denoted as the ‘Gaussian’ source. Both sources
were placed at the channel centre as shown in Fig. 1. Details of the source size and shape
used in LES and in the previous DNS studies are given in Table 2.

We compare the mean scalar field from LES and DNS. The width of the mean scalar ¯c(y)
plume is quantified by the profile’s standard deviation (σc) and its variation with streamwise
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Fig. 2 LES streamwise mean velocity and Reynolds stresses atReτ = 180, compared with DNS data.
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distance is shown in Fig. 3. The standard deviation is corrected using its value at the source,
i.e.

σc =
√

σ2−σ2
0 , (3)

whereσ0 is the standard deviation of the source. The varianceσ2 is obtained using

σ2 =

2h
∫

0
(y−β )2c̄(y)dy

2h
∫

0
c̄(y)dy

, where β =

2h
∫

0
yc̄(y)dy

2h
∫

0
c̄(y)dy

. (4)

This method is simple and easy to use. Note that for the near wall source cases examined
in §4, the standard deviationσ calculated from the above equations may differ somewhat
from that obtained by considering the profile as a combination of a Gaussian profile with its
wall reflection from an imaginary source (Fackrell and Robins, 1982). Normally the former
is less than the latter. It is observed in Fig. 3 that the values of σc differ between the three
DNS studies. The reason for this is unclear, but since the source size is taken into account
by correcting with its value at the source, we must assume that the discrepancies inσc arise
solely because of the specifics of grid resolutions and numerical schemes, which may have
led to slightly different mean flow and turbulence statistics (which were not shown by two
of the three authors).

Figure 4 shows the downstream decay of the maximum mean concentration normalised
with the scalar total fluxQ. As usual, the half-width of the Gaussian profile is defined tobe
half the width of the profile where the mean concentration is half its maximum value; this
is about 1.2 times the standard deviation. The source size for the Gaussian source is defined
to be 2.4σs (∼ 7η , whereη is the Kolmogorov length) whilst for the rectangular sourceit is
Hs (∼ 10η). The effects of the source size and shape are evident only upto x/h≤ 2. Good
agreement is observed between the LES and the DNS downstreamof x/h= 2. We conclude
that the effect of source size (at least if less than 10η) and shape on the mean concentration
is negligible in the far field for relatively lowRe number flows. Overall, thisReτ = 180
simulation provides satisfactory verification of the LES code used.

4 Line sources in a channel flow atReτ = 520

Lavertu and Mydlarski (2005), hereafter denoted by LM, conducted experiments on the flow
in a high-aspect-ratio channel whose dimensions were 267h×2h×37h whereh = 0.03 m is
the half channel height. They studied passive scalar dispersion from three line sources in this
channel. Each source comprised an electrically heated fine Nichrome wire stretched across
the channel in the spanwise direction (which was vertical intheir rig), but with temperatures
sufficiently small to ensure that the source was essentiallypassive. Source locations were
ys/h = 0.067, 0.17 and 1, for whichy+s = ysuτ/ν were 35, 87 and 520, respectively. The
present computations used the same source locations, but the code allowed Eq. 2 to be solved
for three separately identifiable scalars simultaneously;this avoided having to undertake the
entire computation three times. Before considering the behaviour of the scalar plumes, we
present details of the mean velocity and turbulence fields.
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Table 3 Values of the source size, taken as 2.4σs/h, at the three source locations. Values in brackets refer
to 2.4σs in wall units – 2.4σsuτ/ν for Reτ = 520, except for the entry labelled ‘a’, for which the sourcewas
rectangular (sizeH+

s ) and covered one grid cell.

ys/h = 0.067 ys/h = 0.17 ys/h = 1
Set 1 (small line source) 0.0156(8.2) 0.012(6.2) 0.032(16.6)a

Set 2 (large line source) 0.024(12.5) 0.024(12.5) 0.022(11.5)

4.1 Flow field

Details of the computational domain and the resolution usedin this study and in the earlier
DNS study (Moser et al., 1999, for the flow only) are given in Table 1. The streamwise mean
velocityu and the Reynolds normal and shear stresses in thex−y plane obtained from LES
and normalised usinguτ are compared with the DNS and the experiments in Fig. 5. The LES
uprofile lies between the DNS and the experimental data with the maximum difference at the
centre of the channel. In contrast to this, LES velocity profile lies above DNS atReτ = 180 in
Fig. 2. Comparing these two flow fields, it can be observed thatincrease in the values ofReτ
led to increase in the velocities (ash andν are constant). In Fig. 5, the flow field from DNS
corresponds toReτ = 590 and that of LES atReτ = 520. This could be the reason for slightly
smaller values ofu in LES compared with DNS. Near the wall the resolved streamwise
fluctuations are slightly over-predicted whereas at the centre-line they are marginally under-
predicted by LES compared with DNS. In the experiments, the error in obtaininguτ may
be as much as±4% (L. Mydlarski, pers. comm, 2010) which could account for some of
the discrepancies with the DNS data. The slightly smaller discrepancies between the LES
and experiments may be reflected in the scalar dispersion data, as discussed later. Subgrid
stresses probably account for the rather lower values ofv′2 predicted by the LES compared
with the DNS. Differences between the LES and DNS shear stress profiles are very small
and, overall, the flow field comparisons between the LES and both experiments and DNS
are sufficiently good to give confidence in the scalar predictions discussed next.

4.2 Scalar field

In the experiments, the Nichrome wires had diametersds= 1.27×10−4 m for measurements
close to the source (x/h≤ 10.8) and 2.54×10−4 m for measurements farther downstream,
to improve the signal-to-noise ratio. The former diameter corresponds to 4.2× 10−3h, or
about 0.45η at Re= 10400, whereη is the Kolmogorov length scale at the channel centre-
line. (For the near-wall source location, the corresponding value was about 0.85η .) LM
concluded that their results were independent of the sourcediameter in that range for the
downstream locations under consideration. In the present LES, the length of the streamwise
domain was 4πh and hence the scalar field with the experiments could be compared up to
x/h≈ 11. The sources were located around 0.3hdownstream of the inlet plane. It would have
been computationally too expensive to model the exact geometry of such a small line source,
so two different sets of computations were done with different source sizes in order to study
the source size effect on the scalar dispersion before comparing with the experiments. The
details of both sets are given in Table 31. The Gaussian source sizes (i.e. 2.4σs) for Set 1 and
Set 2 are about 3η and 5η respectively, assumingη+ = 2.7 (LM).

1 Note that the size of the sources atys/h = 1 is not reflected solely in the values shown due to their
different shapes.
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Fig. 5 Comparison of streamwise mean velocity and the Reynolds stresses with DNS (Moser et al., 1999)
and experiments (Lavertu and Mydlarski, 2005) forReτ = 520.

Instantaneous profiles of the scalar plume for the three linesources from Set 2 are shown
in Fig. 6. The bulk flapping of the scalar wake is evident immediately downstream of all three
line sources. Even for the centre-line source, it can be observed in Fig. 6a that the scalar has
not yet reached the side walls far downstream and plume meandering is observed throughout
the domain length. For the two near-wall sources Fig. 6 showsthat, not surprisingly, the
plumes reach the bottom wall relatively quickly and earliest for the source nearest to the
wall.

The time series of the normalised scalar from the three line sources at their respective
source heights and atxc/h = 7.4 are shown in Fig. 7. Two dotted lines are included atc/c̄ =
0.5 and 1.5 in order to show clearly the frequency of the largeexcursions in concentrations
from its mean value. As expected, most of the scalar lies within this range for the near wall
sources and not for centre line source due to the flapping nature of the latter plume. This
shows that the intermittent nature of the plumes from all these sources are different; details
are discussed in§4.2.3.
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(a) ys/h = 1

(b) ys/h = 0.17

(c) ys/h = 0.067

Fig. 6 The instantaneous contours of the scalar normalised by the mean concentration at the source centre
for the three line sources from Set 2.

4.2.1 Mean concentration of scalar

For the range of source size considered in Table 3, we noticedthat the calculated mean
concentration is independent of the size after certain downstream distance which, given the
results of Fackrell and Robins (1982) and Xie et al. (2004), is perhaps not surprising. How-
ever in the region nearer to the source, the mean concentration is clearly very dependent on
source size and shape. A virtual origin correction is made for the two sets of line sources by
fitting linear curves to the growth in standard deviation (σ/h) of the mean concentration pro-
file, as shown in Fig. 8. According to Anand and Pope (1985) thedevelopment of the mean
scalar field in highRe, non-decaying, homogeneous turbulence consists of the following
three stages:

Molecular diffusion, t ≪ Γ /v′2 : σ2 ≈ 2Γ t

Turbulent convection,Γ /v′2 ≪ t ≪ T : σ2 ≈ v′2t2

Turbulent diffusion, t ≪ T : σ2 ≈ 2Γtt

Here,t is the diffusion time,Γ is the thermal or molecular diffusivity,v′ is the Lagrangian
velocity fluctuation,T is the Lagrangian integral time scale andΓt is the turbulent diffusion
coefficient. In our computations, the molecular diffusion stage near the source is very short
and this probably is a result of the relatively large source size. The turbulent convection stage
prevailed in the computational domain to some extent where the plume growth is linearly
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Fig. 7 Time series of the scalar from three line sources at their respective source heights and atxc/h = 7.4.

proportional to the diffusion time (see Fig. 8). The virtualorigins of the line sources,xo/h,
correspond to the stations whereσ/h = 0.

Figure 9 compares the maximum mean concentrationcmax normalised with the respec-
tive source total fluxQ for the two sets of line sources at the three different wall normal
locations. The abscissa corresponds to the streamwise distance corrected for the virtual ori-
gin i.e.xc/h = (x− xo)/h. The decays from the two sets of data are in good agreement for
the two near wall sources. Notice the small ‘bumps’ in these profiles; these correspond to
the locations wherecmax reaches the bottom wall, which is atxc/h≈ 6 and 2 forys/h = 0.17
and 0.067 respectively. In Fig. 9c, the profiles ofcmax for the two sources do not collapse in
the near source region, e.g. forxc/h≤ 2, which is anticipated because the shape effects of
the source cannot be mitigated merely by using a virtual origin correction. (Recall that for
the centre-line location, the smaller source has a rectangular shape and the larger one has a
Gaussian shape.) In order to compare the LES mean scalar quantities with the experimental
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Fig. 8 Determining the virtual origin (x0/h) for the three line source locations.×: large source;◦: small
source.

results, the data from either of these two sets can be considered, with an appropriate correc-
tion for the source size. We use the data from Set 2 (the largersource) for the comparisons.

Figure 10 shows the normalised profiles of the mean concentration for the three line
sources. It is observed in all cases that the scalar profiles from the experiments are slightly
wider than those from LES. Bakosi et al. (2007), however, found that the IECMover-
predicted the plume width at the far downstream stations forthe sources atys/h = 0.067
and 1 and atReτ = 1080. They stated that due to an under-prediction of the wall normal
Reynolds stress componentv′2 by the velocity model and the uncertainties in the experi-
mental data, the mean scalar profiles should be considered only qualitatively. But it is not
quite clear how the under resolved transverse fluctuations could over-predict andunder-
predict the plume width in PDF model and LES respectively. The disagreement of plume
widths in LES and experiments could be due to any or combination of the following: under-
resolved transverse fluctuations in LES, over-prediction of maximum mean concentration in
LES due to advection, and uncertainty in the measurement of reference mean temperature
in the experiments (LM).

In Fig. 10a, it is observed that the peak of the mean concentration from LES is at the
wall for xc/h ≥ 4, whereas the data from experiments have peaks initially atthe source
height (atxc/h= 4) and then gradually nearer the wall for distances farther downstream. In
Fig. 10b, atxc/h = 4, LES shows the peak of the plume aty/h = 0.12 which is lower than
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the source height. This is consistent with the previous experimental and LES data (Fackrell
and Robins, 1982; Sykes and Henn, 1992) for a point source atzs/H = 0.19 in a turbulent
boundary layer flow with boundary layer thicknessH. Also, in experiments for a line source
in uniform shear turbulent flow (Karnik and Tavoularis, 1989), the peak of the mean scalar
was found to be shifting towards the lower velocity regions at far downstream distances. For
adiabatic wall conditions, in principle the profile of mean concentration should be given by
superposition of a Gaussian profile and its reflection in the wall (i.e. an imaginary source at
y = −ys). The peak of the mean concentration profile should then be atthe wall provided
(roughly) thatσc ≥ ys. For the near wall sourcesys/h = 0.067 and 0.17, these locations
correspond tox/h≈ 2 and 6, respectively, so the profile peak locations from the LES data
are consistent with this expectation, as confirmed in Figs. 6, 10a, 10b and 11. In contrast,
the experimental peak locations for the sourceys/h= 0.17 are not aty= 0, as noted above,
even far downstream. It is speculated that this must be due either to the lack of near-wall
data, wall-probe interference effects, experimental scatter, or the lack of a wall temperature
measurement, or a combination of these (L. Mydlarski, priv.comm, 2010).
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Table 4 The exponent of the power law fit to the curves of the (i) maximum mean concentration profiles:
c̄max ∝ (xc/h)n and (ii) the standard deviation of the mean concentration profiles: σc/h ∝ (x/h)n

n
ys/h = 0.067 ys/h = 0.17 ys/h = 1

(i)
LES (Set 2) -0.782 - -0.875
Expts (LM) -0.7 -0.5 -0.6
Expts (Karnik and Tavoularis, 1989) - - -0.75 to -1.0

(ii) LES (Set 2) 0.5548 0.4996 0.7664

Figure 10c shows that for the centre-line source the plume profiles from the LES seem
to be in fair agreement with the experiments atxc/h = 4 but not atxc/h = 7.4. It is stated
in LM that there are inaccuracies in measuring the free-stream temperature, which gave
rise to low signal-to-noise ratios in the measurement of themean temperature excess pro-
files (particularly far downstream), so the authors emphasised the qualitative, rather than
quantitative behaviour of their profiles. Recall also that the velocity fluctuations are slightly
underestimated and the mean velocity slightly over-predicted by the LES when compared to
the experiments (Fig. 5), both of which could lead to somewhat narrower plumes. All these
factors could explain the differences between the simulations and the experiments.

The variation of the maximum mean concentration ¯cmaxwith the streamwise distance for
all the three lines sources (Set 2) are shown in Fig. 11. Note that the ¯cmaxare not normalised,
in order to be consistent with the experiments. For the near wall and centre line sources,
the data fromxc/h = 3 could be fitted with a power law. The data forxc/h ≥ 6 can be
fitted using a linear curve but no such fit is possible if the data are considered upstream of
xc/h = 6 (since the peak has not yet reached the wall). Table 4 compares the power law
exponentn obtained from the simulations with those of the experimentsby LM and Karnik
and Tavoularis (1989). The LES data for the source atys/h = 0.17 did not show any power
law dependence.

From these comparisons in Table 4 an interesting observation can be made: the peak
mean concentrations for sources near the wall and at the centre of the channel decay sim-
ilarly to what is observed in a homogeneous uniform shear turbulent flow. The LES data
suggests that the decay rate is faster for the centre line source compared with that for the
near wall source. This could be due to the wall impeding plumedevelopment in the latter
case, resulting in less meandering than occurs for the centre-line plume. The fact that decay
of the peak mean concentration from the source atys/h = 0.17 follows a different pattern
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than that for sources atys/h= 0.067 and 1.0 is no doubt due to the interactions between the
plume and the wall in the intermediate stages.

The normalised standard deviationσc/h of the mean plume is calculated using Eqs. 3
and 4 and is shown in Fig. 12 for the three source locations. The power law is found to
be a good fit fromx/h > 1 for all three cases. The width of the mean scalar profile in the
experiments did not show any similar dependence withx/h. The power law exponent for
the LES atys/h = 0.067 and 0.17 data are both found to be approximately 0.5 and for
the data from the centre line source it is found to be approximately 0.75. It is observed in
Fig. 12 that the mean plume width for the source atys/h = 0.17 is greater than that for
the near wall source as the plume growth of the latter is impeded by the bottom wall much
earlier. The plume width for the centre line source is less than those for the two near wall
sources up tox/h< 6 but then gradually exceeds them. Note that the normalised standard
deviationσc/h develops from zero atx/h = 0. Due to the low local turbulence intensity in the
channel centre, slower plume growth is anticipated in the near source region. With increasing
downstream distance, the meandering of the plume graduallybecomes more significant and,
unlike the near wall source cases, the plume is not impeded bythe channel walls within the
computational domain. Nonetheless, the edges of the plume gradually reach regions with
significantly higher local turbulence intensity than on thecentre-line.

4.2.2 Concentration fluctuation

The vertical profiles of the scalar fluctuations normalised with their maxima are compared
with the experimental data in Fig. 13 at typical downstream distances for the three line
sources. For the near-wall sources, apart from the locationof the maximumcrms, the agree-
ment in the vertical profiles ofcrms between LES and the experiments are better than those
for the corresponding mean profiles in Fig.10, probably as a result of the higher accuracy in
the scalar fluctuation data (as noted by LM).

For both the LES and the experiments, the peakcrms drifts away from the wall with
increasing downstream distance. This is due to the rapid mixing in the near wall region and
the high scalar intermittency at the edge of the plume. This drift in peak location is observed
to be greater in the experiments than it is in the LES, which could be a consequence of
the drift in the peak of mean concentration in the experiments, as seen in Figs. 10a and
10b. The peak drift is more distinctive for the near wall source atys/h = 0.067 than for the
source atys/h = 0.17. The LEScrms profiles from the centre-line source are in reasonable
agreement with the experiments (Fig. 13c), although the LESslightly under-predicts the
width of thecrms profile at all locations. This might be attributed not only tothe slight under-
prediction of the resolved velocity fluctuations at the coreof the channel but also the under-
estimated mean velocity in the experiments (Fig. 5). In Bakosi et al. (2007), the IECM-
predictedc′2 profiles for the source atys/h= 1 are in fair agreement with the measurements.
In contrast, the IECM data for the source atys/h= 0.067 show an evident discrepancy with
the measurements.

In the LES, double peaks are observed up toxc/h < 1.5 for ys/h = 0.067 and up to
xc/h< 3 for ys/h = 0.17. They are not observed far downstream and this could bebecause
of the impedance of the plume growth by the bottom wall. For the centre line source, the
bulk flapping of the plume that is primarily responsible for the occurrence of the double
peak near the source is not present, presumably due to the source size. Whilst the LES
profile atxc/h ≈ 4 is symmetric with a single peak at the channel centre, the downstream
profiles start to deviate from this as can be seen in the profileat xc/h = 7.4. Eventually, e.g.
from xc/h > 8, double peaks begin to form and one such profile is shown atxc/h = 10.8.
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Similar double peaks at far downstream locations from the line source are also observed for
very large value ofScs, thereby indicating that its effects are very small. It was observed
in the grid turbulence experiments of Warhaft (1984) and in the uniform shear turbulence
experiments of Karnik and Tavoularis (1989) that the emergence of a double peak in thecrms

profiles initially occurs very close to the source, but the peaks then merge to become a single
peak in the intermediate region and a double peak again develops in the far field. The double
peaks were also observed in the far field by Fabregat et al. (2009) in their DNS study but
were not observed in the DNS study of Brethouwer and Nieuwstadt (2001). The absence of
double peaks in the latter case could be a result of the relatively coarse resolution (see Table
1). In LM, the measurements were not made close enough to the source to observe double
peaks in thecrms profiles, but nor were such peaks observed far downstream. LMstated
that this could have been because the plume widths were smaller than the integral scale
of the turbulence, but if that were the cause we would not expect double peaks to appear
in the LES data, since the mean flow and turbulence statisticsare essentially the same as
in the experiments. Also, the observed small ripple of double peak in LES is within the
experimental error. Further understanding is required before these discrepancies between
the simulations and the experiments can be fully explained.

The decay of the maximum concentration fluctuationcrms−max with downstream dis-
tance is shown in Fig. 14. A power law appears to be a good fit forthe data fromxc/h = 3
for all the three line sources. The exponents of the power lawfrom the LES and the experi-
ments (LM; Karnik and Tavoularis, 1989) are shown in Table 5.The standard deviations of
thecrms profiles are shown in Fig. 15 for the three line sources. A power law again seems
to be a good fit for all the curves and the corresponding exponents are compared with the
experiments (LM) in Table 5. The values ofn from LES are in fair agreement with the ex-
periments. It is to be noted that the exponents of the mean andcrms of the scalar are almost
the same, which indicates that the plume growth rate of the scalar fluctuations is almost
the same as that of its mean. A non-monotonic trend is observed in the values of|n| with
increase inys/h. It was suggested by LM that the decrease of|n| for ys/h = 0.17 compared
with that forys/h = 0.067 is due to the decrease in turbulence intensity with increasing dis-
tance from the wall, whereas the increase of|n| for ys/h = 1 is due to an increase in flapping
of the plume. This certainly seems a reasonable explanation(recall the evidence of greater
flapping for the centre-line source seen in Fig. 6).
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Table 5 The exponent of the power law fit to the curves of the (i) maximum r.m.s concentration fluctuation
profiles:c̄rms−max∝ (xc/h)n and (ii) the standard deviation of the r.m.s concentration profiles:σc/h ∝ (x/h)n

n
ys/h = 0.067 ys/h = 0.17 ys/h = 1

(i)
LES −0.916 −0.799 −0.955
Expts (LM) −1.311 −0.952 −1.133
Expts (Karnik and Tavoularis, 1989)a - - −0.85,−1.6

(ii)
LES 0.533 0.464 0.751
Expts (LM) 0.431 0.372 0.679

a Near the source, the value was found to be−0.85 and−1.6 in the far field.
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The variation of the normalised cross correlation of the twonear wall scalars, given by

c′1c′2/
√

c′1
2
√

c′2
2 with the downstream distance is shown in Fig. 16. Herec′1 andc′2 corre-

sponds to the scalar fluctuation from the source atys/h = 0.067 and 0.17 respectively. A
detailed investigation on the correlation coefficient of thermal plume arising from a pair of
line sources in a turbulent channel flow atReτ = 510 was made by Costa-Patry and Myd-
larski (2008). In their experiments, various combinationsof the wall normal positions of the
line sources (represented by the average line source position from the wall,ysav/h) and the
separation distances of the line sources (d) were considered and the correlation coefficients
of relevant cases were compared with the DNS study of Vrieling and Nieuwstadt (2003) in
turbulent channel flow, experiments of Warhaft (1984) in grid turbulence and experiments
of Tong and Warhaft (1995) in a turbulent jet. Note that in thecurrent LESd/h = 0.103
andysav/h = 0.1185 are smaller than those considered in the experiments of Costa-Patry
and Mydlarski (2008) and therefore quantitative comparison is not made. However, if the
two sources are separated by a small distance, e.g.d/h≤ 0.13, qualitative comparison with
Costa-Patry and Mydlarski (2008) and Vrieling and Nieuwstadt (2003) shows that the cor-
relation coefficient initially is negative and then gradually becomes positive with increasing
downstream distance. In the near field, the plume widths are small and the transport of the
plumes by the same eddies yield anti-phase contributions tothe correlation. In contrast, the
positive correlation is a result of the two plumes tending topass the measurement loca-
tion simultaneously. Or as aptly described by Costa-Patry and Mydlarski (2008), the plume
flapping in the near field and internal turbulent mixing in thefar field determines the sign
of the cross correlation. Note that forx/h < 1, the plumes are narrow and hence the cross
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correlation at the plume edges (i.e. aty/h = 0.0182 and 0.2231) are subjected to numerical
discrepancies. All the profiles approach asymptotic valuesbetween 0.7 to 0.9 at very large
x/h, indicating that the source heights have little effect on dispersion in the far field.

To understand the development of the relative intensity of the concentration fluctuations
with downstream distance, the maximum concentration fluctuationcrms−max normalised by
the maximum mean concentration ¯cmax is plotted in Fig. 17 for the three line sources. The
locations of the peak in thecrms−max/c̄max variation for the near wall sources are closer
to the sources than that for the centre line source, which is consistent with the results of
dispersion from point sources (Fackrell and Robins, 1982; Xie et al., 2004). This is due
to the difference in the local turbulence intensity, the local turbulence integral length scale
and the impedance effect of the wall. Forys/h = 0.067, the fall from the peak value is the
most rapid. From approximatelyx/h = 2.0 (where the maximum mean concentration is at
the wall),crms−max/c̄max falls only very slowly. In contrast, forys/h= 0.17, the downstream
fall from the peak is not as rapid as that forys/h = 0.067. However, from approximately
x/h= 6.0 (where the maximum mean concentration is at the wall), thecrms−max/c̄max decay
is very slow and almost coincides with the variation forys/h = 0.067. This suggests that
the effect of the height of the near wall source on the relative concentration fluctuation is
negligible downstream ofx/h = 6.0. In the experiments, however, the difference between
the relative intensity variations for the two near wall sources is visible upstream ofx/h =
15 (not shown here). Downstream ofx/h = 15, the two variations seemed to approach a
constant of about 0.3. All these observations might seem consistent with the speculation
that an asymptotic non-zero value ofcrms−max/c̄max in dispersion from point sources exists
(see Xie et al., 2007) (but see below, where we argue that thiscannot be true in channel flows
when extremely long domains are considered). The peak ofcrms−max/c̄max for ys/h = 0.067
is less than that forys/h = 0.17, which is probably because of the smaller turbulence integral
length scale and stronger wall impedance effect in the former compared with the latter.

For the centreline source, thecrms−max/c̄maxbehaviour is quite different from that for the
near wall sources. In the near wall region the turbulence intensity is much higher (Fig. 5) and
the transverse turbulence integral scales are smaller thanthose in the centre of the channel
(Xie et al., 2004; Iwamoto, 2002). So for near wall sources, due to stronger turbulent convec-
tion, the concentration fluctuation is quickly enhanced andcrms−max/c̄max rapidly reaches its
peak. Then the scalar approaches a well-mixed state more quickly due to the shorter local
integral scale. On the other hand, for the centre line source, the concentration fluctuation
increases relatively slowly due to the shorter mixing time caused by higher velocity at the
channel centre and weaker local turbulence intensity. Thenthe plume flapping enhances the
concentration fluctuation significantly in the far field and hence the peak incrms−max/c̄max

occurs further downstream (beyondx/h> 4) than for near wall source cases.
It should be noted that once the scalar has become fully mixedacross the entire channel,

which must eventually happen wherever the source is placed,the mean concentration will
be uniform for ally and independent of source location (provided the volume fluxis the
same). It would then not be possible to deduce the source location (in y). On the other hand,
perhaps unlike the boundary layer case of Xie et al. (2007), the r.m.s. of the scalar fluctuation
must eventually decay to zero in a channel flow, due to the dissipation term in the variance
transport equation, since there is no mechanism to maintainthe fluctuations (because the
mean scalar concentration gradient is zero). The data in Fig. 17 confirm the expectations
that, firstly, this eventual decay incrms−max/c̄max to zero is very slow and, secondly, that it
will take much longer for a source near the centre-line than for one near the wall.

Because of the high uncertainty in the measurement of mean scalar in the experiments
(LM), the experimental datacrms−max/c̄max should only be interpreted qualitatively as sug-
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gested by LM. For the centre-line source, the peak of the relative intensity of scalar fluctu-
ations in the experiments was found to be 1.75 (atx/h = 4) and gradually decreased to 0.8
(at x/h = 18.6). The current LES shows the peak to be approximately 0.6 at x/h ≈ 4 (for
the rectangular source it is slightly lower), decreasing monotonically to 0.5 atx/h≈ 11. We
found from further numerical experiment that turning off the sub-grid scale model showed
negligible difference to the relative intensity of concentration fluctuations. This suggests
that the sub-grid scale Schmidt number effects are not significant for the resolution used.
Lower relative intensity of scalar fluctuations in the computations are therefore partly at-
tributed to the much larger source size. Fackrell and Robins(1982) showed that the effect of
source size oncrms−max/c̄max can be significant, although their experiments showed that it
was negligible for ground level sources. Numerical experiments for investigating the effect
of source size were performed (Table 3). For the near wall sources with small size (Set 1),
there is about a 10% increase in the peak (Fig. 17). Note the small and large source sizes
for near wall sources are 3η and 5η respectively. Such a range of sizes is clearly insuffi-
cient for investigating the entire range of possible sourcesize effects but the data show that
downstream of the peak the effect of source size in the present cases vanishes rapidly. For
the centre line source, the difference in the results between Set 1 and Set 2 is very small,
which is probably because the effective size of the rectangular source in Set 1 is approxi-
mately equivalent to that of the Gaussian source in Set 2. With regards to any comparison
of dispersion from point sources and line sources, the source size effects are expected to be
smaller for the latter. Also, because of the homogeneity of the line source dispersion in the
spanwise direction, intermittency of the scalar is expected to be weaker than that for point
sources. Consequently, bothcrms−max/c̄max and measures of the relative extreme concentra-
tions (i.e. maximum possible concentration normalised by the mean, Xie et al., 2007; Mole
et al., 2008) are expected to be lower for line than for point sources.

In the DNS study of Vrieling and Nieuwstadt (2003) atReτ = 180, the peakcrms−max/c̄max

(for the central line source) was found to be 0.8 atx/h≈ 4. This is not inconsistent with our
LES data, given the possible effects of source size andRenumber. Much smaller values
were observed by Karnik and Tavoularis (1989) in uniform shear turbulence. The relative
intensity of the scalar fluctuations was approximately 0.5 at x/M ≈ 6 and far downstream
(x/M ≈ 120) it had decreased to 0.15. Viswanathan and Pope (2008) estimated the asymp-
totic value of the relative intensity to be 0.4 in their grid turbulence experiments. Collec-
tively, all these results suggest that the asymptotic valueof crms−max/c̄max is very dependent
on the specific type of flow, although we emphasise that in channel (or pipe) flows it must
be zero.

4.2.3 Probability-density functions

The probability density functions of the normalised scalarfluctuations at five downstream
locations and at their respective source heights are shown in Fig. 18 for all three line sources.
In the near field i.e. atxc/h = 1 and 2.5, all three line sources exhibit different shapes of pdf
due to different turbulent intensities and integral lengthscales. The pdf profiles from the near
wall source show ‘Gaussian-like’ shapes and those from the centre line source are negatively
skewed because of large scale plume meandering. The pdf profile from the source atys/h =
0.17 shows a more‘uniform’ distribution, but with longer positive tails. Further downstream,
both the near wall source pdfs tend towards a Gaussian shape and are also found to be in
good agreement with experiments. Unlike LES, the pdfs from the centre line source are
spiky and positively skewed in the experiments. Bakosi et al. (2007) also observed similar
profiles atReτ = 1080 for the centre line source. But their pdfs from the nearwall source
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Fig. 20 Variation of intermittency factor at the plume centreline with the downstream distance for the three
line sources. Intermittency factor is also shown across the plume atxc/h = 7.4 for the centre line source (for
clarity, itsy-axis is labelled on the right side of the figure). Legend in (b) is same as in (a)

at ys/h = 0.067 are also spiky and negatively skewed, unlike the Gaussian shape seen in
experiments, and they attributed this to the inaccurate specification of the micromixing time
scale in their model. We are not entirely sure if this is the reason for their spiky skewed
pdf even for the centre line source. The integral length scales and plume widths are almost
of the same order at far downstream locations from the source. In experiments, the source
size being smaller, the scalar dispersion is due to the result of the plume flapping as well
as the turbulent advection. As a result, the scalar fluctuating intensities are also high in
experiments. Whereas in LES, the source size being bigger and transverse fluctuations being
under-resolved, the effects of plume flapping are relatively weaker. Hence, pdfs are not spiky
in LES. However, it can be argued that the spiky pdf in experiments is not due to the bulk
flapping of the plume but could result from the measurements taken slightly away from the
channel centre line. Note in Fig. 10c that the mean concentration profiles of experiments
are not symmetric with respect to the channel centre atxc/h = 7.4. Figure 19 shows the
corresponding LES pdfs of the scalar fluctuations from the centre line source at different
transverse locations. It can be observed that even at small distances from the channel centre,
pdf profiles are very different. Near the plume edges, pdfs show an exponential decay for
high scalar fluctuations due to the intermittency.

The intermittency factor is generally defined as the probability that the scalar concen-
tration is non-zero, i.e.γ = P(c > 0). We observed that the scalar concentration is always
non-zero at several downstream locations for all the three line sources, except in the very
near field. Therefore, intermittency factor is defined here using a threshold and so results
depend on the chosen threshold value. Sykes and Henn (1992) chose the threshold to be 5%
of the mean concentration value based on their grid studies.We defineγ1 = P(c> 0.02c̄) and
γ2 = P(c > 0.05c̄) and scalar intermittency for these two cases are shown in Figs. 20a and
20b for different downstream locations and also across the plume from the centre line source
atxc/h = 7.4. It is to be noted that the profiles are similar except that γ1 showed higher inter-
mittency compared toγ2 as expected. Figure 20b shows that for the two near wall sources,
intermittency is lower near the source and gradually asymptotes to one forxc/h > 4. The
plume fromys/h = 0.17 exhibited lower intermittency near the source compared with that
from ys/h = 0.067. This is expected because the latter is subjected to shorter integral length
scales because of the presence of the bottom wall of the channel. For the centre line source,
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the intermittency factor exhibits non-monotonic behavior. Near the source, the intermittency
factor is high and this can be attributed to the large source size and lower turbulence inten-
sity at the channel centre. The source size effects on the intermittency are studied in detail
by Fackrell and Robins (1982) in a turbulent boundary layer.Their elevated point source of
larger size shows similar intermittency behavior to that found in the present case of centre
line source as expected. Away from the source, the intermittency factor decreases but then
increases with increase in downstream distance. This is because the plume is subjected to
meandering in the initial stages before it becomes more diffusive across. As a result, lower
intermittency is observed at the plume centreline. But far downstream end, the plume size
increases resulting in intermittency closer to unity. Compared to the point source in a tur-
bulent boundary layer (Fackrell and Robins, 1982), the intermittency for a line source is
observed to be larger because the former plume is subjected to meandering in the spanwise
direction also. The intermittency across the plume from thecentre line source is also shown
in Fig. 20b. As expected, the values ofγ2 are larger near the plume axis and smaller at the
plume edges.

4.2.4 Eddy diffusivity

Livescu et al. (2000) showed that the diffusion coefficient from thek− ε model differed
from that derived by DNS in the turbulent convective and transition to turbulent diffusive
regimes of scalar dispersion in grid turbulence. However, Karnik and Tavoularis (1989)
found some clues on the validity of gradient transport concept for scalar dispersion in the
diffusive regime in uniform shear flows. We now consider thisfurther.

The vertical eddy diffusivity,k is obtained from the gradient transport relation

c′v′ =−k
dC̄
dy

. (5)

At four downstream locations for the two near wall sources, normalised diffusivity values
are shown in Fig. 21 fory ≤ 2σ . The discontinuity observed in some of the LES profiles
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in Fig. 21 is near the region where the mean concentration gradient is zero. The diffusivity
values from Eq. 5 are compared with those estimated from the DNS data (Moser et al., 1999)
using the equation

k= νt/Sct , (6)

whereνt is the turbulent eddy viscosity andSct is turbulent Schmidt number, which is as-
sumed here as unity. Also shown in Fig. 21 is the diffusivity estimated from the standard
mixing length model of the turbulent boundary layer, given by

νt = l2
m

∣

∣

∣

dU
dy

∣

∣

∣
, where lm = κy[1−exp(−y+/26)] (7)

andκ = 0.4. It is observed that for the two near wall sources the diffusivity obtained from
Eq. 5 is almost the same. The diffusivity changes with the downstream distance slightly,
indicating a small variation in the turbulent Schmidt number. The LES estimates from Eq. 5
are found to be in good agreement with DNS (Eq. 6) in the far field (e.g.xc/h≈ 9), suggest-
ing that (i) a constant turbulent Schmidt number is a reasonable assumption in the far field;
and (ii) the gradient transport concept for dispersion might be valid provided the turbulent
viscosity is known. These diffusivity values are in fair agreement with those obtained from
the mixing length model (Eq. 7) up toy/h≈ 0.15 ory+ ≈ 80, which suggests that the gra-
dient transport concept can be used at least qualitatively to predict the dispersion in these
regimes.

For elevated point source dispersion in a rough wall turbulent boundary layer, Fackrell
and Robins (1982) obtained approximately constant diffusivity in the very near field, but
this started to deviate towards profiles somewhat similar tothose shown in Fig. 21 in the far
field. They observed an increase ink with increasing downstream distance and the values
are found to be slightly greater than those in the current study. Again these observations
suggest that the gradient transport model might be useful toestimate vertical dispersion in
the near wall regions for the near wall sources. In the case ofthe centre line source, the plume
widths are much lower and integral length scales are greaterthan those for the two near wall
sources. Therefore, it is difficult to comment on the validity of the gradient transport concept
for the centre line source.

5 Conclusions and discussions

Firstly, large-eddy simulation (LES) implemented in Star-CD v4.06 was performed for pas-
sive scalar dispersion from a line source in a plane channel flow atReτ = 180. The results
are in encouraging agreement with the DNS data in the literature. Then passive scalar dis-
persion from three line sources in a fully developed turbulent channel flow atReτ = 520 was
studied using LES, with line sources placed atys/h = 0.067, 0.17 and 1.0, corresponding
to y+s = 35, 87, 520 respectively. The resulting mean and fluctuating quantities of the scalar
were then compared with the experiments (LM). For the three sources, the LES predicted
mean plume width is slightly less than that from the experiments. Given the uncertainties in
measuring the mean scalar due to the inaccuracy in estimating the free-stream temperature
in the experiments and slightly under-resolved transversefluctuations in LES, perfect agree-
ment between the LES and the experiments could not be expected for the mean scalar field.
For the sources atys/h = 0.067 and 0.17, LES showed the peak of the mean concentration
to be at the bottom wall from approximatelyx/h> 2 and 6 respectively, as expected. In the
experiments, however, for the downstream locations considered, the peak of the mean scalar
shifting towards the wall occurs very gradually.
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The comparison of the verticalcrms profiles between the LES and experiments is better
than that of the mean scalar profiles, apart from the discrepancy of the location of the peak
crms (which is probably due to the discrepancy of the location of the peak mean). This may
confirm the comment in LM that the fluctuating temperature field is not subject to the effects
of room temperature variations and is therefore significantly more precise. Both the LES and
experiments showed that the peaks of thecrms from the near wall sources drift away from
the bottom wall, whereas the peak of the latter is further away from the wall than that of
the former. For the centre line source, double peaks are observed in the r.m.s profiles of
the scalar fluctuation at far downstream locations, e.g.x/h≥ 7.4. Such double peaks were
absent in the experiments, probably because the observed small ripple of the double peak is
within the experimental error.

The effect of source size (withσ+
s varying from 3 to 5) on the mean concentration ¯c

is found negligible in the far field, e.g.x/h ≥ 3. The difference of the relative intensity
of concentration fluctuationcrms−max/c̄max from the two sets of sources is no more than
10%. Downstream of the location where the peak of the profilecrms−max/c̄max occurs, this
difference vanishes quickly. The peak ofcrms−max/c̄max for the centre line source in the
experiments is found to be more than twice that in the LES data, which is mainly due to the
much smaller source size used in the experiments.

LES results suggest that the effect of the height of the near wall sources, i.e.ys/h =
0.067 and 0.17, on the relative intensity of concentration fluctuations is negligible down-
stream ofx/h = 6.0. This is not surprising because the plume is likely to be well mixed
at least throughout the near wall region in the far field and the effect of source height thus
disappears. Whilst the LES data might also suggest that the relative scalar fluctuation inten-
sity approaches a non-zero constant in the far field, as in boundary layers (Xie et al., 2007),
it must in fact eventually decay to a zero value in a channel flow. This requires very long
downstream distances, particularly for sources nearer thechannel centre-line.

The pdfs of the scalar fluctuations from the two near wall sources are found to be in fair
agreement with the experiments. For the center line source,the pdfs are found to be spiky
and positively skewed in experiments, but not in LES and thiscould be because of the larger
source size and under-resolved transverse fluctuations. However uncertainties in the location
of the measurement probe in experiments also could result insuch spiky behavior as LES
showed that away from the channel center line, the pdfs are quite different. Fair agreement
of eddy diffusivities from mixing length model and gradienttransport concept suggests that
the latter can be at least used qualitatively to predict the dispersion in the near wall regions.

Whilst this study has shown that LES is a promising tool for understanding scalar dis-
persion in shear flows, more rigorous studies will be needed before extension to dispersion
in very high Reynolds number flows (as in urban environments)can be successfully imple-
mented.
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