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Abstract. Using a numerical weather forecasting code to provide the dynamic large-scale inlet boundary
conditions for the computation of small-scale urban canopy flows requires a continuous specification of
appropriate inlet turbulence. For such computations to be practical, a very efficient method of generating
such turbulence is needed.

Correlation functions of typical turbulent shear flows have forms not too dissimilar to decaying expo-
nentials. A digital-filter-based generation of turbulent inflow conditions exploiting this fact is presented as
a suitable technique for LES computation of spatially developing flows. The artificially generated turbulent
inflows satisfy the prescribed integral length scales and Reynolds-stress-tensor. The method is much more
efficient than, for example, Klein’s or Kempf et al.’s (2005) methods because at every time step only
one set of two-dimensional (rather than three-dimensional) random data is filtered to generate a set of
two-dimensional data with the appropriate spatial correlations. These data are correlated with the data
from the previous time step by using an exponential function based on two weight factors. The method
is validated by simulating plane channel flows with smooth walls and flows over arrays of staggered cubes
(a generic urban-type flow). Mean velocities, the Reynolds-stress-tensor and spectra are all shown to be
comparable with those obtained using classical inlet-outlet periodic boundary conditions. Confidence has
been gained in using this method to couple weather scale flows and street scale computations.
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1. Introduction

An understanding of the mechanisms by which the urban boundary layer, the rural bound-
ary layer, the city scale flow (Britter & Hanna, 2003), the regional weather and the general
circulation of the atmosphere, are coupled aerodynamically and thermodynamically is
very important but still in its infancy. For instance, the temperature in cities has been
found to be up to ten degC warmer than the surrounding rural areas, and to cause large
increases in rainfall amounts downwind; however, there are situations in which urban
aerosol suppresses precipitation (Collier, 2006). In most general circulation models (GCM)
or operational regional weather models like the UK Meteorological Office’s Unified Model
(UM) a single numerical grid has an axial length of no less than about one kilometer.
Increasing the resolution of such models to, say, one meter is impractical and will remain
so for the foreseeable future, so to investigate the detailed micro-meteorology within an
urban area another approach is needed. Our eventual objective is therefore to develop
tools for providing spatial boundary conditions derived from large-scale computations (e.g.
from the UM) to ‘more classical’ Large Eddy Simulations (LES) of the localised, small-
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scale flows within urban canopy regions. Such a localised domain may in fact be smaller
than the typical grid size of a ‘weather’ code like the UM. Quite apart from the problems
posed by the unsteady and turbulent boundary conditions, typical urban areas comprising
buildings, streets, parks, etc. present a considerable challenge for current engineering-type
CFD tools. For adequate prediction of processes like the unsteady dispersion of pollutants
it is arguably necessary to use genuinely unsteady methods like LES but this seriously
exacerbates the difficulties posed by having to supply appropriate boundary conditions.
One requires a very efficient method to insert appropriate small-scale turbulence at the
upstream boundary at each time step, recognising that the flow is almost never close to
being spatially periodic. The much larger scale fluctuations can then be provided by output
from the large-scale model (e.g. the UM).

The most direct method would be to simulate a laminar inflow and allow it to develop
spatially over a suitably long domain, i.e. over a hundred times the thickness of the
eventual boundary layer depth of interest. However, even this ‘simple’ method would
present difficulties associated with, amongst other things, ensuring the correct surface
condition. It would in any case be extremely expensive computationally. Moreover, for
what we might call ‘urban CFD’, only a part of the urban area might be of interest and
the upstream geometry may be hard to resolve properly. This method is thus rarely used
and is not really applicable for urban CFD.

Alternatively, a time-evolving LES or direct numerical simulation (DNS) with a pe-
riodic (Garcia et al., 2004; Keating et al., 2004) or a ‘modified periodic’ (Lund et al.,
1998) inlet-outlet boundary condition can be used to generate appropriate turbulent flow.
The latter authors used a sort of ‘precursor simulation’, in which the velocity field at an
appropriate downstream station is stored and imposed in suitably re-scaled form as inflow
data for the primary computation. The precursor simulation generates a realistic turbulent
flow field. However, it is also expensive and has limitations, being applicable for example
to simple geometries only. It is difficult to see how such a method could be used for a
genuine urban-type situation.

Procedures based on proper orthogonal decomposition (POD) (Johansson & An-
dersson, 2004; Druault et al., 2004; Perret et al., 2006) are probably less expensive for
the generation of inflow data than the above methods, provided there are appropri-
ate DNS/LES (Johansson & Andersson, 2004) or experimental datasets (Druault et al.,
2004; Perret et al., 2006) available for processing to obtain the most energetic modes,
with an appropriate set of time dependent projection coefficients which provide the phase
information. The reconstructed inflow data for later LES/DNS are ‘almost realistic’. How-
ever, the experimental databases suffer from either low spatial resolution, common with
measurements from hot-wire or Laser Doppler Anemometry (Druault et al., 2004), or
low temporal resolution, as from measurements using Particle Image Velocimetry (Perret
et al., 2006). Special treatment must then be applied to resolve the low resolution issues.
Consequently, such approaches are likely to be suitable only for very particular cases.

Synthetic turbulence generation is another option. This is of particular interest when
only limited turbulence statistics data are available for the procedure. Hanna et al.(2002)
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generated one-dimensional time series of inflow data based on an exponential correlation
function to simulate flows over an array of cubes using LES. The time series were tailored
to provide the required time scale and turbulence intensities and the subsequent LES
was able to reproduce the main characteristics of the measurements. The merit of the
method is its very high efficiency, but because no spatial correlation was imposed at inlet
its accuracy is seriously limited.

Inverse Fourier transforms applied to prescribed spectra are able to generate artificial
turbulent inflows which preserve both the given spatial and temporal correlations (Kondo
et al., 1997; Lee et al., 1992). A long distance is required to recover ‘realistic’ turbulence.
In a channel flow simulation, for example, twenty boundary layer thicknesses were required
to recover the correct skin friction (Le & Moin et al., 1994). Because it might be fairly
expensive to obtain detailed spectra, these methods were not considered for the simulations
of street-scale flows .

Batten et al.(2004) reconstructed an inflow turbulent fluctuation field by summing a
set of sines and cosines with carefully designed random phases and amplitudes, preserving
a given set of space/time correlations and a set of second order moments. The procedure is
easy to code and the efficiency is high. However, Keating et al.(2004) used this procedure
to generate inflow data for a plane channel flow and found that the redevelopment was
slow – after a distance of twenty channel half-heights the turbulence in the core was clearly
not yet fully developed.

Klein et al.(2003) developed a technique generating artificial velocities as inflow data
for jet flows, which reproduced first and second order one-point statistics as well as locally
given correlations. The technique was based on the knowledge that for late-stage homo-
geneous turbulence the correlation function takes a Gaussian form. A three-dimensional
digital filter was therefore used to obtain two-dimensional slices of data, arranged in the
axial direction and with appropriate spatial correlations, from a set of three-dimensional
random data, i.e. a pile of slices of random data. The temporal correlations were also
preserved by shifting all the slices of random data by one ‘step’ at the next time step,
discarding the slice at the beginning of the pile of slices and adding a new slice of random
data at the other end. Kempf et al.(2005) demonstrated that a procedure solving an
appropriate diffusion equation for a set of three-dimensional random data was equivalent
to applying a Gaussian function based filter for the same random data. Since the diffusion
was applied in physical space, we speculate that the phases of the synthetically correlated
inlet data must also have been incorporated in the inflow data, at least to some extent
and albeit implicitly. This could be another significant advantage of these procedures.

di Mare et al.(2006) constructed a digital filter based on a relatively arbitrary correla-
tion function, which could be simply assumed in a Gaussian shape, an exponential shape,
or be obtained from experiments or precursor numerical simulations. This is a more general
approach in terms of using the correlation functions, which is based on solving an array
of equations of the unknown filter coefficients and the correlation coefficients. However, as
stressed in the paper (di Mare et al., 2006) the equations are incompatible and the solution
is not unique. Most important, there is no guarantee that the equations has a solution for
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any given correlation coefficients. To overcome these, a target - minimum residuals of the
equations is sought. This approach was found able to reproduce locally defined, spatial
and temporal correlation functions.

Based on the three-dimensional digital filter approach, Veloudis et al. (2007) exten-
sively investigated the effect of using spatially varying turbulence scales as inputs for the
generation of inflow conditions (also as mentioned in the above, di Mare et al.used a more
general approach to investigate this). In the wall normal direction, the turbulence scale
profiles for a channel flow were digitised into several zones, within which the turbulence
scales were constants. Using spatially varying, rather than constant scales at the inlet
led to better predictions of the test case, on the evidence of the mean and, particularly,
the turbulence profiles. They also developed a method to improve the efficiency of the
three-dimensional digital filter approach by using the Fast Fourier Transform (FFT) for
the filtering process.

Sandham et al.(2003) developed an inflow procedure which introduced specific inner-
and outer-layer disturbances with associated phase information, which only required a
short distance from the inflow to develop the turbulence fully. However, this method
aims to model the streaks in the inner layer and consequently it is only suitable for
high-resolution LES, i.e. with typically fifteen points in the viscous sublayer. Based on
the view that turbulence comprises a superposition of coherent structures or turbulent
spots, Jarrin et al.(2006) proposed a synthetic eddy-method for inflow data. This method
was very efficient. However the arbitrariness of choosing the location and the size of an
individual eddy made it complicated to use.

Because of the features of urban boundary layer flows – high Reynolds number, fully
developed turbulence and driven by weather scale motions – a particularly efficient inflow
procedure is needed. We resorted to a digital-filter based method and in §3 we describe
a technique based on exponential correlation functions for spatially developing LES. The
method allows spatially varying turbulence scales on non-uniform grids to be imposed
at the inlet. It was developed independently of the work of di Mare et al. (2006) and
Veloudis et al. (2007), whose method is similar in some respects, and has already been
used elsewhere (Xie & Castro, 2005; Xie & Castro, 2006b). This paper describes the
method in detail for the first time (in §3); it is shown to be very much more efficient than
its nearest equivalents above – those of Klein et al.(2003) and Veloudis et al. (2007) – and
also inherently more suitable for coupling to a large-scale weather code. It is also more
accurate than methods which don’t allow for spatial variation in the prescribed length
scales. The method has been validated by applying it first to an LES simulation of a
plane channel flow, as described in §4. Secondly, §5 presents results of a simulation of
the flow over a group of staggered cubes. The results are compared with measurements
and previous DNS computations and with those obtained by using periodic inlet-outlet
conditions.
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2. Governing Equations

To ensure a largely self-contained paper, a brief description of the governing equations is
given here. More details can be found in Xie & Castro (2006a), hereafter denoted by XC.

The filtered continuity and Navier-Stokes equations are written as follows,
∂ui

∂xi
= 0

∂ui

∂t
+
∂uiuj

∂xj
= −1

ρ

(
∂p

∂xi
+ δi1

∂〈P 〉
∂x1

)
+

∂

∂xj

(
τij + ν

∂ui

∂xj

)
.

(1)

The dynamical quantities, ui, p are resolved-scale (filtered) velocity and pressure respec-
tively and τij is the subgrid-scale (SGS) Reynolds stress. δi1 is the Kronecker-delta and ν
is the kinematic viscosity. ∂〈P 〉/∂x1 is the driving force, a constant streamwise pressure
gradient which exists only when periodic inlet-outlet boundary conditions are applied but
otherwise vanishes. The Smagorinsky SGS model was used with Cs = 0.1. In the near-wall
region, the Lilly damping function was also applied. Note that the Smagorinsky model is
widely used by researchers to simulate the kind of flow of most concern to us – rough-wall
flows – with considerable success (Hanna et al., 2002; Stoesser et al., 2003; Xie & Castro,
2006a).

The wall model is generally an important issue for LES, and is no less important
than the SGS model if the computational cost is to be minimised. For cases where the
fine eddies in the vicinity of the wall are important, it is recommended that N +

1 is of
order unity (N +

1 is the distance in wall units between the centroid of the first cell and the
wall assuming the N coordinate is normal to the wall). Note, however, that for a complex
geometry, where separation and attachment processes occur, it is impossible to satisfy this
criteria everywhere. We argue that, unlike the situation for smooth-wall flows, it is in fact
not necessary, at least for obtaining overall surface drag and the turbulent motions at the
scale of the roughness elements (buildings), which turn out to be dominant (see XC).

The local wall shear stress is then obtained from the laminar stress-strain relationships:

u+ =
u

ûτ
, N + =

ρûτN

µ
, N + = u+ , (2)

where ρû2
τ is the local wall shear stress. However, if the near-wall mesh is not fine enough

to resolve the viscous sublayer, for simplicity it is assumed that the centroid of the cell
next to the wall falls within the logarithmic region of the boundary layer:

u

ûτ
=

1
κ

lnE
(
ρûτN

µ

)
, (3)

where κ is the von Karman constant and E is an empirical constant. The log-law is
employed when N + > 11.2. Again, note that for very rough-wall flows there are prob-
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ably very few regions on the surface of the roughness elements where log-law conditions
genuinely occur in practice; however, we have shown earlier that for this type of flow the
precise surface condition is unimportant for capturing the element-scale flows and surface
drag (see XC).

The entire LES model was implemented in the code described in XC. Crucially, the
discretisation for all terms in Eq. (1) was second order accurate in both space and time –
lower-order schemes were found not to be adequate but, equally, for the kind of problems
addressed here it is not necessary to use schemes that are of even higher order. Inlet
boundary conditions were set using a User-Defined-Function, embodying the technique
described in the following section.

3. Generation of Inflow Data

The exponential velocity correlation function has been used for stochastic models of dis-
persion (Pope, 1994; Sawford, 1991) and for LES of flows over wall mounted cubes (Hanna
et al., 2002). More recently, Mordant et al.(2001) carried out an experiment to measure
the fully developed turbulent flow in the gap between two counter-rotating disks with
Rλ = 740, and also confirmed that correlation functions have a form closer to exponential
than Gaussian. Typically

R(r, 0, 0) = exp
(
−πr

2L

)
, (4)

where L is the length scale. On the basis that correlation functions in most turbulent
shear flows have a similar form, we take Eq. (4) as an appropriate model. Of course, the
behaviour of the correlation near r = 0 is not correct, yielding a velocity spectrum which
decays at large 1/r like (1/r)−2 rather than (1/r)−5/3, but the large-scale behaviour is
realistically modelled. We therefore use the exponential correlation function for designing
a filter to process a set of random data; for simplicity we start with a set of one dimensional
data. With L = n∆x, where ∆x is the grid size, the correlation function can be rewritten
as

umum+k

umum
= Ruu(k∆x) = exp

(
−π|k|

2n

)
. (5)

A filter function is written as follows,

um =
N∑

j=−N

bjrm+j , (6)

where rm is a series of random data with rm = 0, rmrm = 1. The bj are the filter coefficients
and N is related to the length scale of the filter. Here we take N ≥ 2n. The mean value
follows as um = 0. Because rmrn = 0 for m 6= n, we also obtain,

umum+k =
N∑

j=−N+k

bjbj−k. (7)
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For an arbitrary correlation function umum+k, it is not so straightforward to solve Eq.(7)
even numerically (di Mare et al., 2006). However, for a Gaussian (Klein et al., 2003) or an
exponential function, it is possible to obtain a very simple but approximate solution.

The filter coefficient bk is first guessed in a form

bk = exp
(
−ξπ|k|

n

)
/ζ, (8)

where ζ is simply a normalizing factor to ensure umum = 1. The bk is then easily re-written
in a form to satisfy umum = 1,

bk = b̃k/

 N∑
j=−N

b̃2j

1/2

, (9)

where
b̃k = exp

(
−ξπ|k|

n

)
. (10)

It order to obtain a suitable ξ, the following expression is to be minimised,

σ

 N∑
j=−N+k

bjbj−k/

 N∑
j=−N

b̃2j

− exp
(
−π|k|

2n

) for N ≥ 2n and n = 2, ..., 200, (11)

where σ is the standard deviation of the square bracket’s contents. It was found that
ξ ∼ 1.14 produced a minimum σ, which is no more than 0.068 for n = 3,..., 200; whereas σ
= 0.093 for n =2. The largest individual deviations between the left and right hand terms
in expression 11, for n = 2,..., 200, are less than 0.117; the largest occurs near k = 0 (i.e.
near r =0 in Eq. 4). For simplicity ξ was chosen as 1, which produced little difference from
ξ = 1.14.

Then the final solution of (7) is,

bk = b̃k/

 N∑
j=−N

b̃2j

1/2

, where b̃k ' exp
(
−π|k|

n

)
. (12)

Again note that (12) is only approximatively valid, in particular for the correlation near
k = 0, but the large-scale behaviour is realistically modelled. Using (6) and (12), a series
of (one-dimensional) data with mean value um = 0, variance umum = 1 and prescribed
length scale L, are obtained. A two-dimensional filter can be obtained as

bjk = bjbk, (13)

and this is applied to filter a two-dimensional slice of random data of dimensions [−Ny+1 :
My + Ny,−Nz + 1 : Mz + Nz], where My × Mz are the dimensions of the grid in the
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inflow plane, Nα ≥ 2nα, α = y, z. At the first time step, a two-dimensional slice of data
Ψβ(t, y, z), β = 1, 2, 3 with prescribed length scale Lα = nα∆α is thus obtained.

In the above, it is assumed that constant length scales (in lateral and vertical direc-
tions) are used as input at the inlet. To improve the accuracy it would be straightforward
to separate the inlet into zones, each having different constant length scales. The two-
dimensional filter coefficients in (13) must be calculated for each zone. Note that at each
time step, the two-dimensional slice of random data is generated only once for all the zones
for one velocity component.

For the next time step,

Ψβ(t+ ∆t, y, z) = Ψβ(t, y, z) exp
(
−π∆t

2T

)
+ψβ(t, y, z)

[
1− exp

(
−π∆t

T

)]0.5
,

(14)

where ψβ(t, y, z) is obtained in the same way as Ψβ(t, y, z) but using a new set of random
data. T is the Lagrangian time scale, which can be calculated from measurements or
previously computed data. Note ψβ(t, y, z) is fully random in time and its variance is unity.
Because ψβ(t, y, z) is independent of Ψβ(t, y, z), it follows from (14) that the variance of
Ψβ is unity. We obtain the time correlation between t + k∆t and t from Eq. (14). Here
Ψβ(t, y, z), Ψβ(t+k∆t, y, z), ψβ(t, y, z) and ψβ(t+k∆t, y, z) are written as Ψβ,0, Ψβ,k, ψβ,0

and ψβ,k for simplicity. Again recall that ψβ,j is independent of Ψβ,0, where j = 0, 1, 2, ..., k.
Using overbars to denote time averages we have that,

Ψβ,0Ψβ,k = Ψβ,0

{
Ψβ,k−1 exp

(
−π∆t

2T

)
+ ψβ,k−1

[
1− exp

(
−π∆t

T

)]0.5
}

= Ψβ,0Ψβ,k−1 exp
(
−π∆t

2T

)
, j = 1

...

= Ψβ,0Ψβ,k−j exp
(
− jπ∆t

2T

)
, j = 1 → k

...

= exp
(
−kπ∆t

2T

)
, j = k.

(15)

Eq. (15) confirms that Eq. (14) satisfies a time correlation function of exponential form.
Also we obtain the space correlation between (y1, z1) and (y2, z2) from Eq. (14). Here
Ψβ(t−j∆t, y1, z1), Ψβ(t−j∆t, y2, z2), ψβ(t−j∆t, y1, z1) and ψβ(t−j∆t, y2, z2) are written
as Ψ′

β,−j , Ψ′′
β,−j , ψ

′
β,−j and ψ′′β,−j for simplicity, where j = 0, 1, 2...∞.

Ψ′
β,0Ψ

′′
β,0 = Ψ′

β,−1Ψ
′′
β,−1 exp

(
−π∆t

T

)
+ ψ′β,−1ψ

′′
β,−1

[
1− exp

(
−π∆t

T

)]
...

= Ψ′
β,−jΨ

′′
β,−j exp

(
− jπ∆t

T

)
+ ψ′β,−jψ

′′
β,−j

[
1− exp

(
− jπ∆t

T

)]
...

= ψ′β,−∞ψ
′′
β,−∞, j = ∞.

(16)

Recall that ψβ(t, y, z) is directly obtained by filtering a two-dimensional slice of random
data, which satisfies a space correlation function of exponential form. Hence Eq. (16)
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confirms that the ‘interactively’ calculated Ψβ on the left hand side of Eq. (14) also satisfies
a space correlation function of exponential form.

Note that in Eq. (14) [1− exp(−π∆t/T )]0.5 ranges from R(1.2Lx, 0, 0) to R(2Lx, 0, 0)
(see (4)) for 1/1000 ≤ π∆t/(2T ) ≤ 1/100, where Lx is the length scale in x direction.
Hence, the contribution of the new slice of random data to the inflow data at the next
time step (the second term on the right hand side of (14)) is to some extent equivalent
to the contribution of a completely new slice of random data at the next time step, as
in Klein et al.’s (2003) original procedure. Overall, (14) is almost equivalent to the full
three-dimensional digital filter procedure but we emphasize that (14) only calculates two
two-dimensional slices of data, whereas Klein’s method calculates 2Nx two-dimensional
slices. The present method is therefore much more economical, in particular when the
longitudinal length scale is large, e.g. typically three times the transverse scales for flows
over cubes.

In the above, it is assumed that the Lagrangian time scale T in Eq. (14) is a constant
as input for the whole inlet. Recall that the inlet could be separated into zones to provide
a variation of the lateral and vertical length scales. Again it is straightforward to allow
the time scale T in one zone to differ from the other. Eqs. (15) and (16) are also satisfied
for non-constant length scales and time scales.

A comparison of the efficiency of the present inflow generator with Klein’s method
was carried out for the case ‘flow over cubes’ discussed in §5. The three dimensional filter
size for Klein’s method was (2Nx + 1) × (2Ny + 1) × (2Nz + 1) = 97 × 33 × 33. The two
dimensional filter size for the current method was (2Ny+1)×(2Nz+1) = 33×33. The CPU
time consumed for the latter was approximately 1/500 times that of the former. As noted
in §1 Hanna et al.(2002) used a method similar to (14) to generate a one-dimensional time
series of inflow data, but without spatial correlation in the vertical and lateral directions
which, not surprisingly perhaps, is a serious drawback.

Finally, the transformation originally proposed by Lund et al.(1998) is simplified and
performed as follows:

ui = ūi + aijΨj , (17)

where

[aij ] =

 (R̂11)1/2 0 0
R̂21/a11 (R̂22 − (a21)2)1/2 0
R̂31/a11 (R̂32 − a21a31)/a22 (R̂33 − a2

31 − a2
32)

1/2

 , (18)

and R̂ij is the prescribed Reynolds-stress-tensor, estimated from experimental data or a
previous numerical simulation with periodic inlet-outlet condition. Note for a boundary
layer flow which is homogeneous in the lateral direction, i.e. z, R̂31 = R̂31 = 0 and a31,
a32 vanish.

Auto-correlations and two-point correlations of the velocities produced by the inflow
generator are shown in Fig. 3 (see more in §4). It is clear that the combination of Eqs. 12,
13 and 14 produces almost exponential correlations.
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Figure 1. Schematic view of a channel used for inflow boundary condition.

Here, it is assumed that a uniform mesh is used at the inlet. Nevertheless, Eq. (17)
can also be applied for a non-uniform mesh at the inlet. One simple method is, firstly
to discretise a duplicate of the inlet into a uniform mesh; secondly to perform the digital
filtering process and to obtain the three velocity components as in Eq. (17) on the uniform
mesh; thirdly to interpolate the velocity components of the uniform mesh onto the non-
uniform mesh at the inlet for the computational domain. It is desirable that the difference
of the size of the grids between the two sets of meshes is not too large, to minimize the
error induced by the interpolation.

4. Plane channel flows using the new inflow condition

In order to validate the above digital-filter-based procedure, two test cases were simulated
using LES with the inflow boundary condition technique described above - denoted here-
after by IBC. The first was a plane channel flow and is presented in this section. The
second was flow over a group of staggered cubes mounted on a wall, presented in the next
section.

The computation domain size for the channel flow was 4πd× 2d× πd where d is the
half depth of the channel (see Fig. 1). The axis system in this section is the common
‘engineering’ one having the y coordinate normal to the wall. The Reynolds number based
on the friction velocity and the half depth of the channel d was 180 as in Kim et al.(1987).
A mesh of 60× 60× 50 was used; it was stretched in the y direction from the walls to the
core and had ∆+

x ≈ 38, 2 ≤ ∆+
y ≤ 13, ∆+

z ≈ 11. A duplicate of the inlet was discretised
into a uniform mesh 240(y)× 50(z) with a grid space 1.5 wall unit in the y direction. The
digital-filtering was performed based on a uniform mesh and the final velocities (u, v, w)
were interpolated onto the non-uniform mesh at the inlet of the computational domain. In
the core of the channel, the smallest eddies (i.e. having scales less than ∆+

y = 13) generated
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Figure 2. Integral length scales at inlet of plane channel. Symbols, from two-points correlation DNS data
(Iwamoto, 2002); lines, for inflow generation.

by the digital-filtering were smeared due to the interpolation. However, the contribution
of the small eddies to the turbulent kinetic energy (TKE) was less important than in the
near wall region.

The time step ∆t satisfied the Courant number condition CFL < 1 and the averaging
duration was approximately 61 non-dimensional time units (d/uτ ) after a fully developed
state had been reached. Second-order accurate schemes in both space and time were
employed, as described in XC. The synthetic inflow data was imposed at the inlet and
zero-gradient outflow conditions at outlet. Periodic boundary conditions were used in the
lateral directions. Solid wall boundary conditions were applied for the other boundaries.

First and second velocity moments and integral length scales for the inflow generation
were obtained from a plane channel case simulated using full DNS by Kasagi’s group and
available in a database (No. CH12 PG.WL7 at http://www.thtlab.t.u-tokyo.ac.jp/). For
their simulation the domain size was 5πd × 2d × 2πd with periodic boundary conditions
in both streamwise and spanwise directions. The Reynolds number based on the friction
velocity and the half-depth of the channel was 150. A detailed description of the database
can be found in Iwamoto (2002).

An LES for the plane channel flow with periodic inlet-outlet conditions was performed
(hereafter PBC), for comparison with the results obtained using the inflow technique
(IBC). In this case the flow was driven by a pressure gradient d〈P 〉/dx1 = −ρu2

τ/d (see
(1)) which had the same value as in Iwamoto (2002). The domain size, mesh and all other
boundary conditions and SGS parameters were the same as for the IBC case.
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Figure 3. Correlation functions obtained from inflow generator and the corresponding target exponential
functions.

By using the following equation,

Li =
∫ ∞

0
R(xi)dxi, i = 1, 2, 3,

where R(xi) and xi are respectively the two-point correlation function and the interval in
the ith direction, the integral length scales L1, L2, L3 (i.e. Lx, Ly, Lz) were estimated
from the two-point correlation data in the database (Iwamoto, 2002).

We emphasise that the aim here was not to generate a particularly accurate simulation
of turbulent, smooth-wall channel flow. Rather, our intention is to assess the adequacy of
the inflow generation technique for the simulation of up to second order statistics, in
the context of wall-bounded flows where there are large variations in length scales. So
imposition of precise (e.g. as in (Veloudis et al., 2007)) length scales at the inlet was not
attempted. Indeed, given that in a practical urban flow case such length scales can never
be more than crudely estimated, it is an advantage for the present purpose not to try
to impose precise scales. The heavily simplified forms of the length scale profiles plotted
in Fig. 2 were therefore used; these approximate the DNS data only roughly. Because no
two-point correlation with wall normal separation was available in the database, Ly was
simply taken to be 0.67Lz.

In order to validate the inflow generator, the correlation functions obtained from the
inflow generator are compared with the corresponding exponential functions in Fig. 3.
Velocity time series at twenty four stations (i.e. y = 1d, 0 ≤ z < 1.53d) produced by the
inflow generator were sampled for over ten thousand time steps. Auto-correlations Ruu(t),
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obtained by post-processing the recorded u time series, are plotted in Fig. 3a. Two-point
correlations Rww(∆z), obtained by post-processing the recorded w time series, are plotted
in Fig. 3b. Two-point correlations Rww(∆z) having smaller integral length scales are also
shown in Fig. 3b - with Lx identical to that shown in Fig. 2 and with Ly, Lz equal to
the profiles in Fig. 2 factored by 0.8. The auto-correlations and the two-point correlations
of the other velocity components or those in the y direction have the same behaviour
as in Fig.3. These confirm that the auto-correlation and two-point correlation functions
produced by the inflow generator are closely exponential.

It is crucial to check the convergence of the development in the channel with the
artificially generated inflow turbulence. Fig. 4 shows profiles of the normalized stream-
wise mean velocity, r.m.s turbulence fluctuations and Reynolds shear stress at six typical
streamwise stations. The difference between the Um profiles is hard to discern. It is not
surprising that there is an evident discrepancy in urms and vrms between x/d = 0.25 and
later locations. The zigzags on the x/d = 0.25 profile are due to a coarse resolution in the
core region. The wrms profiles (not shown) have a similar trend. Nonetheless, convergence
to the fully-developed state is clearly reached by approximately x/d = 10.

Fig. 5 shows the correlation functions Ruu and Rww for the IBC case at various
downstream stations at the core of the channel, compared with those for the PBC case.
From the inlet to x/d = 6, the correlation functions are similar, and close to a decaying
exponential. It was also noted that the vertical profiles of the integral time scales at
x/d = 10, z = 0 for the IBC case are comparable with those for the PBC case. It is
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interesting to note that the heavily simplified inflow conditions (as in Fig. 2) produce
integral length scales at x/d = 6 in reasonable agreement with those for the PBC case,
which suggests that imposition of precise length scales at the inlet are not crucial to
the LES computations. There is no doubt that an improvement of the imposed length
scales at the inlet reduces the discrepancy of the correlation functions between the IBC
and PBC cases at large time scales. Note that from x/d = 8 the turbulence length scale
slightly decreases, both for Ruu and Rww, which is probably due to the zero gradient outlet
boundary conditions – for x/d = 10 this is applied at tuτ/d ≈ 0.15.

The sensitivity of the downstream statistics to the integral length scales imposed at
the inlet was carefully investigated. The same inflow turbulence profiles obtained from
Iwamoto (2002) were used in every case. But various different length scale combinations
were used – Lx identical to that shown in Fig. 2 and with Ly, Lz equal to the profiles in
Fig. 2 factored by 1.3, 1, 0.9 or 0.8. Fig. 6 plots the mean velocity, velocity r.m.s. and
Reynolds shear stress at x/d = 10. Note first that these variations in prescribed length
scales had little influence on the mean streamwise velocity, but the influence on the velocity
r.m.s. and the Reynolds shear stress is visible. A 50% variation in Ly and Lz generated a
variation less than 10% in vrms and less than 13% in u′v′. In general, the second moments
increase slightly with the increasing of prescribed length scales in the range shown in Fig.6.

Fig.7 shows the evolution of the local friction velocity ûτ (x), which was obtained by
averaging in the lateral direction. For all the four cases, the variation of the local skin
friction downstream from x = 10d is less than 0.2%, so we assume that the local skin
friction converges at x = 10d. It is not surprising that the convergence over such a short
domain is slightly dependent on the length scales imposed at the inlet. However, a 50%
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Figure 8. Comparison of mean velocity, velocity r.m.s. and Reynolds shear stress between with inflow
boundary conditions and with periodic boundary conditions.

variation in Ly and Lz generated a variation less than 4% in ûτ at x = 10d. Overall, we
conclude that the sensitivity to the inlet length scales on the statistics at x = 10d is not
too large for these channel flows.

Fig. 8 shows vertical profiles of the turbulence statistics at x/d = 10 obtained from
the inflow BC case compared with those from the periodic BC case as well as the Kim
et al. (1987) DNS results. Overall, the comparison between the two cases is very satis-
factory. With a set of more carefully estimated length scales imposed at the inlet, it is
likely that the two sets of profiles would be in even better agreement with each other.
Note, finally, that the main reason for the differences in vrms and wrms between the
periodic BC case and the DNS calculations is the relatively low resolution of the LES and,
perhaps, the inadequacy for this smooth-wall case of the wall boundary condition and/or
the sub-grid-scale model.

Note that x/d = 10 is a short distance for development to a fully turbulent flow.
Recall that, as noted earlier, Keating et al. (2004) used Batten et al. (2004)’s procedure
(i.e. a synthetic turbulence generation method) to generate inflow data for a plane channel
flow and found that the redevelopment was slow requiring at least 20d. For instance, at
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x = 10d the coefficient of friction produced by Batten et al.’s procedure reaches less than
70% of that produced by a ‘precursor simulation’ inflow generator. We are not yet quite
sure why different synthetic inflow generators yield such different outputs. But we are
sure that digital-filter based inflow generators are promising procedures, and our proposed
technique is very efficient and has an accuracy similar to earlier digital filter methods.

5. Flow over a staggered cube array using the new inflow condition

The details of the parameters used for these calculations can be found in our previous
paper (XC), in which LES with a periodic inlet-outlet condition was applied to calculate
the turbulent flow over staggered wall-mounted cubes.

Here only a brief description of the computational domain and the boundary conditions
are given. Fig. 9a is a schematic view of the domain used for the inflow BC case; it has
eight rows of staggered cubes (four of the repeated units of the periodic case stacked in the
streamwise direction). Note that the view in Fig. 9b is shifted 0.5h in the lateral direction
from that of Fig. 9a. Also note that the z coordinate is normal to the wall in these cases,
consistent with XC and the corresponding wind tunnel experiments (Castro et al., 2006).
The four vertical lines indicate data sampling locations and will subsequently be denoted
(from left to right) by ‘behind row 1’, ‘behind row 3’, ‘behind row 5’ and ‘behind row 7’.
These 4 stations correspond to the ‘P1’ station in the periodic BC case (Fig. 9b). Fig.9b
shows a plan view of one unit of the staggered wall-mounted cube array, which was also the
computational domain for the periodic BC case in both inlet-outlet and lateral directions
(XC). The domain height is H = 4h, where h is defined as the cube height. The plan area
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density of the cubic array was 0.25. P0, P1, P2 and P3 indicate four typical data sampling
locations.

The synthetic inflow data was imposed at the inlet and zero-gradient outflow condi-
tions at outlet. At the top of the domain, stress free conditions were applied. Periodic
boundary conditions were used in the lateral directions. Solid wall boundary conditions
with a wall model were applied for all other boundaries (see details in XC). A uniform
mesh of more than one million cells with 16×16×16 grid points per cube was used, which
was suggested by XC for sufficient accuracy in these kinds of flows.

The turbulence statistics and the integral length scales which were applied for the
generation of the inflow data are shown in Fig. 10. Note that the Um(z), u′w′(z), urms(z),
vrms(z), wrms(z) profiles are not functions of y for the current simulations. This could
easily be done (as discussed in §3) but in practical cases it is unlikely that sufficient
knowledge of such spanwise variations would be available to make it either sensible or
possible; recall that one large-scale (UM) grid cell is larger than the entire local domain
being computed by the LES and thus only one profile can be obtained from the UM to drive
the LES computation, perhaps updated after an appropriately large number of LES time-
steps to make use of the long-time scale variations provided by the large-scale model. The
turbulence profiles were chosen to approximate the horizontally averaged measurements
obtained by (Castro et al., 2006). They are considerably simplified and thus differ from
the ‘real’ values at some stations within the canopy, but the LES results were not found
to be very sensitive to these discrepancies. We found that having a lower value of Lz in
the vicinity of the upper free-slip plane (Fig. 10c) gave better performance. The length
scale profiles shown were the default scales always applied unless otherwise stated.

The initial duration of the computations was over 200T (T = h/uτ ), whereas the
subsequent averaging duration for all the statistics was approximately 60T . Here for body-
force driven channel flow, uτ is the effective friction velocity. As found by XC, the variations
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in statistical data throughout the roughness sub-layer (including the canopy region) were
usually small once the averaging duration exceeded 20T .

Fig. 11 shows the influence of the integral length scales imposed at the inlet. The
inflow turbulence profiles in Fig. 10b were used in every case, but various different length
scale combinations were used – either identically zero for all three, zero for Ly and Lz

but with the Lx shown in Fig. 10c, or all three non-zero and equal to the profiles in Fig.
10c factored by 0.5, 1 or 2. Note first that these variations in prescribed length scales had
little influence on the mean streamwise velocity, but fully random fluctuations (i.e. zero
length scales) at the inlet led to a rapid downstream decay of turbulence, particularly
in the region above the canopy (z/h > 2). However, within and immediately above the
canopy, the five upstream rows of cubes have themselves generated considerable turbulence
– quite a different behaviour from what would be expected in the smooth-wall channel
flow. So flows over group of cubes, or indeed any collection of large roughness elements,
are expected to be much less sensitive to the precise inflow condition than are smooth-wall
flows.

With only a temporal correlation at the inlet (i.e. Lx the only non-zero length scale)
the behaviour improved very little compared with the completely random fluctuations
case. This result is not as good as Hanna et al.’s (2002) finding, which may be due to the
different upper boundary conditions and the particular integral length Lx used at the inlet.
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However, imposing the scales 0.5Lx, 0.5Ly and 0.5Lz shows a great improvement over the
fully random case and with the full scales shown in Fig. 10c the results are in even better
agreement with the measurements and those of the periodic BC case, at least within and
immediately above the canopy. The discrepancy between the periodic BC and inflow BC
cases above the canopy is most probably due to the integral length scales in this region
being too low (see Fig. 10) – doubling the length scales (2Lx, 2Ly, 2Lz) improves the second
moments in the region just above the canopy but leads to an overestimate of the second
moments (compared with the DNS data) in the upper part of the flow. Profiles of the
other second moments had a similar trend. Overall, Fig. 11 shows that whilst the results
far above the canopy are not totally insensitive to the precise inflow length scales, within
or immediately above the canopy such sensitivity is, perhaps not surprisingly, relatively
small.

Fig. 12 shows a comparison between LES with inflow BC and LES with periodic BC
(XC). The length scales for the inflow BC case were those shown in Fig. 10. Discrepancies
in the r.m.s. fluctuations within the canopy might be a result of the assumption of homo-
geneity in the lateral direction at the inlet (see Fig. 10 and §4). Again, the discrepancy

20



1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03

kz'

E
(k

z'
)*

U
/(

z'
u'

2 )

LDA CC

LES inflow BC

Inflow data

LES periodic BC

-5/3

Figure 13. Spectra of the axial turbulence component, plotted in inner-layer scaling. “LES inflow BC” was
sampled at z = 1.5h on row seven.

immediately above the canopy is most probably due to the low length scales imposed in
this region. Nevertheless, the comparison is promising.

Fig. 13 shows typical spectra, plotted in inner-layer scaling. k = 2πf/Um is the
wavenumber and z′ = z − d, where d = 0.013m is the zero-plane displacement (Castro
et al., 2006). The data were sampled at z = 1.5h (on row seven for the inflow BC case).
More than one decade of inertial sub-range with slope -5/3 is seen in the spectrum obtained
from measurements at a Reynolds number of approximately 5000 (Meinders & Hanjalić,
1999; Castro et al., 2006). Over a smooth wall, such a wide inertial sub-range is usually only
found at much higher Reynolds number. This again confirms that turbulence generated by
urban-like obstacles (with sharp edges) is large-scale dominated. In contrast, the periodic
BC case resolves a relatively narrow inertial sub-range. There is a rapid drop beyond about
kz′ = 10, which is due to the relatively low spatial resolution. However, the inflow BC
case is in better agreement with the measurements, which again suggests that the method
is satisfactory. Note in particular that the rapid drop at high frequencies is not present
in this case, which must be because the inlet spectrum is more fully resolved in time and
the axial fetch is too short for the finite spatial resolution of the LES to “degrade” the
spectrum to the form it has when periodic boundary conditions are imposed. Note that
the spatial and the temporal resolutions in the IBC computations are the same as those
in the PBC computations.

We stress again that the technique shortens the developing distance even more for
spatially evolving turbulence flow over a very rough wall (e.g. over an array of cubes) than
over a smooth wall. In the simulation of flows over a real urban area, precise geometry
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upstream of the area of interest is usually unknown. We have found it useful for practical
cases to set up an array of artificial building blocks in the upstream part of the computa-
tional domain. The present inflow technique needs fewer such artificial blocks to achieve
development of appropriate turbulence at the leading edge of the area of interest.

6. Conclusion and further work

The final objective of the current research is coupling weather-scale computations with
street scale large-eddy simulation. It is the efficiency of the street scale computation which
provides the major bottle-neck in such coupling. Other issues, such as Reynolds number
dependency, the minimum resolution needed and the importance of the wall layers on the
block surfaces, were addressed in Xie & Castro (2006a). The method proposed here for
inserting appropriate turbulence at the inlet, based on exponential (rather than Gaus-
sian) velocity correlation functions, is a modified form of the digital filter based method
originally proposed by Klein et al.(2003) and recently developed in newer versions (Kempf
et al., 2005; di Mare et al., 2006; Veloudis et al., 2007). Note in this method the digital filter
approach is used only for the generation of spatially-correlated two-dimensional slices of
data, while the two-dimensional slice data at the current time step are correlated with the
two-dimensional slice data at the previous time step by using an exponential correlation
function. Hence it is much more efficient than the earlier fully three-dimensional digital
filter methods.

LES simulations of plane channel flows and flows over a group of staggered cubes
have provided satisfactory validation of the technique, with results showing good agree-
ment with simulations using periodic inlet-outlet boundary conditions and reasonable
agreement with data from other sources – both the DNS of Kim et al.(1987) and the
laboratory experiments of Castro et al.(2006). These satisfactory validations, the fact that
the results are not too sensitive to the precise form of the prescribed inlet turbulence, and
the high efficiency of the technique, together suggest that the method will be very useful
for practical simulations of urban-type flows.

It is worth emphasizing that all digital filter based methods generate artificial tur-
bulence, in which most crucial quantities –length scale, spectra, mean velocity, Reynolds
stresses – are approximated more or less satisfactorily. There is certainly scope for further
development. For instance, the artificially generated turbulence may not be divergence
free and this may have some downstream effects; this issue has rarely been addressed
in the literature. A more general question, perhaps, relates to just how detailed should
be the imposed statistics and, indeed, how many of the independent quantities need to
be considered. Our feeling is that for general applicability it is important to model not
only the turbulence stresses but also correlation scales in all three directions, as in the
present method. However, only three of the correlation length scales have been explicitly
modelled (the others are implicitly assumed equal to these, as appropriate). Modelling all
nine separately would be straightforward but the effects would, arguably, be small.
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Our method has also been applied to simulate combined oscillatory through-flow and
a steady current over an array of staggered cubes, and was validated by using inlet-outlet
periodic boundary conditions driven by an appropriate unsteady pressure gradient. In addi-
tion, it has been used to simulate flow and point source dispersion over a real urban geome-
try - the DAPPLE field site (Marylebone Rd region, London, http://www.dapple.org.uk/);
numerical results are in good agreement with wind tunnel measurements and the work will
be reported in due course. These last two test cases are not discussed here in the interests of
space. We are now developing tools for implementing dynamic spatial boundary conditions
derived from the output of much larger-scale computations, like those available from the
UK Met Office’s Unified Model, coupled with the new small-scale turbulence inflow method
described here, to simulate flows over more complex geometry.
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