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Abstract. Large-eddy simulation (LES) has been applied to calculate the turbulent
flow over staggered wall-mounted cubes and staggered random arrays of obstacles
with area density 25%, at Reynolds numbers between 5× 103 and 5× 106, based on
the free stream velocity and the obstacle height. Re = 5× 103 data were intensively
validated against direct numerical simulation (DNS) results at the same Re and ex-
perimental data obtained in a boundary layer developing over an identical roughness
and at a rather higher Re. The results collectively confirm that Reynolds number
dependency is very weak, principally because the surface drag is predominantly
form drag and the turbulence production process is at scales comparable to the
roughness element sizes. LES is thus able to simulate turbulent flow over the urban-
like obstacles at high Re with grids that would be far too coarse for adequate
computation of corresponding smooth-wall flows. Comparison between LES and
steady Reynolds-averaged Navier-Stokes (RANS) results are included, emphasising
that the latter are inadequate, especially within the canopy region.

Keywords: group of obstacles, bluff body, turbulent flow, Reynolds number depen-
dency

1. Introduction

A number of major observations of flow and dispersion in urban area
have been completed recently and more are planned. In numerical
modelling for street-scale problems, Britter & Hanna (2003) point out
that computational studies typically produce reasonable qualitative
results but the performance, when compared with laboratory or field
experiments, is little better than that of simple operational models.
Large-eddy simulation (LES) (Sagaut, 2001) is a promising tool for
computing unsteady 3-dimensional flows at high Reynolds number or
with complex geometry. An LES resolves only the large-scale fluid mo-
tions and models the subgrid-scale (SGS) motions through filtering the
Navier-Stokes equations. When unsteady Reynolds-averaged Navier-
Stokes (RANS) methods are used, it is implicitly assumed that there
is a fair degree of scale separation between the large time scale of the
unsteady flow features and the time scale of the genuine turbulence
(Castro, 2003). However, in reality it is hard to find an evident time
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scale gap for many turbulent flows. And, of course, RANS generally
eliminates most of the genuinely turbulent fluctuation information.

Flow over groups of cubes mounted on a wall provides an excellent
test case for validation for LES. The groups of cubes represent either
simple buildings or roughness elements. Furthermore, understanding
of such flows is also directly beneficial to the understanding of build-
ing aerodynamics, urban meteorology and atmospheric boundary layer
meteorology (Britter & Hanna, 2003; Stoesser et al., 2003). Dittrich
et al. (1996) conducted an experiment in a tilting flume to investigate
flow over staggered cubes or spheres, or aligned spheres. Cheng &
Castro (2002) performed comprehensive measurements over staggered
or aligned cubes in a thick wind tunnel boundary layer at Reynolds
numbers (Re, based on cube height and free-stream velocity) between
5000 and 13000, and Coceal et al. (2006) conducted a direct numerical
simulation (DNS) of turbulent channel flow with one wall comprising
similar arrays of cubes at Re = 5000 (based on the maximum – domain
height – velocity and the height of the cubes). The latter’s results are
in good agreement with the former’s measurements in the near-surface
layer despite the mismatch in outer layer thickness. Hanna et al. (2002)
used a finite element flow solver (FEFLO) with LES to simulate the
mean flow and turbulence fluctuations within and above staggered or
aligned cubes. Their results are compared with measurements obtained
from a hydraulic water flume. Kanda et al. (2004) performed an LES
(LES-CITY) to compute the flow over a square array of cubes. Their
results are also in good agreement with laboratory experiments. Never-
theless, further studies applying LES to 3-D flow over obstacle arrays
are still needed (Kanda et al., 2004). For instance, the issue of the
Reynolds number dependency, or of the minimum resolution required
for LES applied to flows over a real urban area, need to be further
addressed.

Our main interest here is on the urban environment, so we are
mostly concerned with the flow within and above the cube-canopy, up
to a height at least equal to the top of the roughness sub-layer (the
region in which the flow is spatially inhomogeneous, which typically
has a depth of a few element heights at most, see Cheng & Castro,
2002). Incompressible flow over a staggered array of cubes with an area
coverage of 25% at a Reynolds numbers of 5000 based on maximum
mean velocity and cube height has been intensively investigated. Higher
Reynolds number cases (5×104 and 5×106) were also simulated for this
test case. In addition, a further test case having a more complex geome-
try and also studied experimentally by Cheng & Castro was simulated.
The geometries are shown in Figures 1 and in the more complex case
(Figure 1b, c) consisted of a collection of 80mm × 80mm ‘repeating’
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(a) (b) 

(c) 

Figure 1. (a): schematic plan view of the domain for staggered cube arrays (case
designated C20S); (b): schematic plan view of one unit of the domain for stag-
gered random arrays, which consists of 2(streamwise) × 2(lateral) units (designated
RM10S). Dimensions in mm, with element heights indicated; (c): perspective view
of one repeating unit of RM10S.

units, each containing sixteen 10-mm-square elements placed in a reg-
ular staggered pattern and having five different heights chosen from a
normal distribution with a mean and standard deviation of hm=10mm
and 3mm respectively. For this case, the Reynolds number based on
the maximum stream velocity and the mean height of the obstacles
was approximately 6000.

As the eventual objective is to simulate such flows at much higher
Reynolds number, we resorted to large-eddy simulation but not di-
rect numerical simulation. Furthermore, comparison of LES with three
Reynolds-averaged Navier-Stokes (RANS) models, namely the stan-
dard k − ε model (SKE), a modified k − ε model (MKE) and the
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Reynolds stress model (RSM), was conducted, illustrating the limi-
tations of RANS models for canopy flows.

In Section 2 the governing equations, the subgrid-scale model(SGS),
the three RANS models and the corresponding wall models are given.
Section 3 presents further details and in Section 4, firstly, the grid
resolution of LES is validated by comparing with Castro et al. (2005)’s
measurements and Coceal et al. (2006)’s DNS data. Secondly, simula-
tion of flows at Re=5×104 and Re=5×106 are presented and discussed
and, thirdly, flows in a much larger domain consisting of 64 random
obstacles are described. Lastly, a comparison of results from three
RANS models with the LES data is given. Section 5 presents some
final discussion and emphasises the major conclusions.

2. Governing Equations

2.1. Large-eddy simulation

We solve the filtered Navier-Stokes equations,

∂ui

∂xi
= 0

∂ui

∂t
+

∂uiuj

∂xj
= −1

ρ

(
∂p

∂xi
+ δi1

∂ < P >

∂x1

)
+

∂

∂xj

(
τij + ν

∂ui

∂xj

)
.
(1)

The dynamical quantities, ui, p are resolved-scale (filtered) velocity and
pressure respectively and τij is the subgrid-scale (SGS) Reynolds stress.
u1, u2 and u3 are respectively the streamwise, lateral and vertical ve-
locity components. δi1 is the Kronecker-delta and ν is the kinematic
viscosity. ∂ < P > /∂x1 is the driving force, a constant streamwise
pressure gradient. Some numerical experiments were conducted by im-
posing a fixed pressure gradient (i.e. a body force in each cell) or,
alternatively, by specifying a pressure drop between inlet and outlet
or by specifying a constant mass flux. Nearly identical results were
obtained, with small discrepancies (particularly within the canopy)
partly a result of the finite and not always equal averaging times. It was
concluded that imposing a constant pressure gradient on every cell as
the driving force is indeed a valid method, with fully periodic boundary
conditions on the inlet and the outlet. The Smagorinsky SGS model
was used with Cs = 0.1, which is recommended by (Shah, 1998) for
flow past a blunt obstacle. Note that the Smagorinsky model is widely
used by researchers to simulate this kind of flow, with considerable
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success (Shah, 1998; Hanna et al., 2002; Addad et al., 2003; Stoesser
et al., 2003). Shah (1998) and Stoesser et al. (2003) also compared the
Smagorinsky model with the dynamic model for flow over bluff obsta-
cles. They found that the overall influence of the SGS model is small,
at least at low Reynolds number. In the current paper, we report what
happens at higher Reynolds numbers when the Smagorinsky model is
used for such flows.

In the x1 and x2 directions the flow is periodic. At the top of the
domain, stress free conditions are imposed on u1 and u2:

∂u1

∂x3
=

∂u2

∂x3
= 0; u3 = 0.

The top boundary condition here is simple but widely used (Andrén
et al., 1994). It is essentially that for a symmetry plane, so the flow
can be considered as one half of a very-rough-wall channel flow. In this
respect it is different to a boundary layer flow, but the emphasis here
is on the near surface region which, as will be demonstrated, is not too
dependent on the outer region of the flow.

The wall model is generally an important issue for LES, and is no
less important than the SGS model if the computational cost is to be
minimised. For cases where the fine eddies in the vicinity of the wall
are of interest, it is recommended that z+

1 is of order of unity (z+
1 is

the distance in wall unit of the centroid of the first cell from the wall).
Note, however, that for a complex geometry like the present one, where
separation and attachment processes occur, it is impossible to satisfy
this criteria everywhere. We argue here that it is in fact not necessary,
at least for obtaining overall surface drag and element-scale dynamics,
which turn out to be dominant (see later).

The local wall shear stress is then obtained from the laminar stress-
strain relationships:

u+ =
u

ûτ
, z+ =

ρûτz

µ
, z+ = u+ , (2)

where ρû2
τ is the local wall shear stress. However, if the near-wall mesh

is not fine enough to resolve the viscous sublayer, for simplicity it is
assumed that the centroid of the first cell from the wall falls within the
logarithmic region of the boundary layer,

u

ûτ
=

1
κ

lnE

(
ρûτz

µ

)
, (3)

where κ is the von Karman constant and E is an empirical constant.
The log-law is employed when z+ > 11.2, similar to the criterion used
by (Werner & Wengle, 1991) (11.8) in their model.
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These wall models are relatively simple ones among a number of
possible ones representing an impermeable wall (Sagaut, 2001, pp. 238-
243). Note that the models do not need the averaged tangential velocity
and/or wall shear stress, which is an advantage in computing flows with
complex geometry. Kanda et al. (2004) also took the local profile of the
tangential velocity component to be logarithmic at all solid surfaces,
and obtained reasonable results. Comparisons of our LES results with
measurements and DNS in section 4 confirm that these simple wall
models are effective. Since logarithmic layers are anyway very unlikely
to exist on most of the body surfaces this suggests that the flows are
not crucially dependent on the near wall regions but, rather, are domi-
nated by the dynamics of the body-scale motions. This marks a crucial
difference between these kinds of flows and those over smooth walls at
similar Reynolds numbers.

2.2. Reynolds-averaged Navier-Stokes model

The continuity and momentum equations for steady incompressible are
given as follows,

∂Ui

∂xi
= 0

∂UiUj

∂xj
= −1

ρ

(
∂P

∂xi
+ δi1

∂ < P >

∂x1

)
+

∂

∂xj

(
ν

∂Ui

∂xj
− u′iu

′
j

)
,

(4)

where Ui and P are the Reynolds-averaged velocity in the xi direction
and the pressure respectively. ∂ < P > /∂x1 is again the driving force,
a constant streamwise pressure gradient. ν is the molecular kinematic
viscosity and u′iu

′
j are the Reynolds stresses, which must be modelled

to close the momentum equations. As is well known, k−ε models (SKE,
MKE) apply the Boussinesq type of eddy viscosity approximation,

−u′iu
′
j = ν̂

(
∂Ui

∂xj
+

∂Uj

∂xi

)
− 2

3
kδij ,

where ν̂ is kinematic viscosity and k = 0.5u′iu
′
i is the turbulence kinetic

energy (TKE), whereas Reynolds stress models (RSM) solve transport
equations for the Reynolds stresses.

Because of the standard nature of the RANS models used, more
details of the SKE, MKE and RSM models are not given here, other
than the values of the constants. For SKE these are as follows,

Cµ = 0.09, C1ε = 1.44, C2ε = 1.92, σk = 1.0, σε = 1.3.

However, it is well known that high streamwise strain rates, which must
always occur in certain regions of the flow around a bluff body, lead to
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enhanced turbulence energy dissipation in a way that is not modelled
by the SKE, which usually therefore returns unphysically high values of
turbulence energy in such regions. The standard modification proposed
to “fix” this problem within the k − ε context (Leschziner & Rodi,
1981) is to modify the modelling of the production of dissipation term
in the ε equation from C1εPε/k (where Ψ represents the generation of
turbulence kinetic energy) to

Pε = [C ′
1εΨ− C ′′

1εν̂S2
ns]

ε

k
, (5)

where the constants C ′
1ε and C ′′

1ε are 2.24 and 0.8 respectively. Sns is
the “shear strain” in the direction of streamline. Note that C ′

1ε−C ′′
1ε =

C1ε=1.44, and the scheme reduces to the standard k − ε model for
the pure shear-strain case of ν̂S2

ns = ν̂S2 = Ψ. However, in three-
dimensional flows the “shear strain” in the direction of streamline is
not well-defined. We followed previous work (Apsley et al., 1995; Castro
et al., 1999) in assuming that the most appropriate direction is that of
the component of the gradient of local streamwise velocity normal to
the local velocity. In the current paper, this modified model is labelled
’MKE’. The other closure constants of MKE are kept the same as those
of SKE.

The nine closure constants for RSM (Gibson & Launder, 1978) are
as follows,

Cµ = 0.09, C1ε = 1.44, C2ε = 1.92, C1 = 1.8,
C2 = 0.6, C ′

1 = 0.5, C ′
2 = 0.3, σk = 1.0, σε = 1.3.

Note that the linear pressure-strain model is used for the pressure-strain
term, and the generalized gradient-diffusion model (Daly & Harlow,
1970) is used for the diffusion term in the RSM.

A non-equilibrium wall function (Kim & Choudhury, 1995) is more
suitable for use in complex flows involving separation, attachment and
impingement, since the mean flow is subjected to large pressure gra-
dients and thus changes rapidly. The key improvements in the non-
equilibrium wall function used here are: (1) Launder and Spalding’s
log-law for mean velocity is sensitized to the pressure-gradient effects;
(2) the two-layer-based concept is adopted to compute the budget
of turbulence kinetic energy in the wall-neighboring cells. The non-
equilibrium wall function was applied for all the three RANS models,
SKE, MKE and RSM.

Many of the initial LES computations were undertaken using three
quite different, commercially available CFD codes. Considerable time
was spent in assessing the performance of these codes and comparing
results of computations from all three codes using identical grids. We
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emphasise that the results turned out to be essentially independent
of the code used, provided that each was implemented correctly and,
crucially, that the numerical discretisation scheme in both time and
space was second order. However, we found that because of the different
solution strategies used, the codes varied significantly in the efficiency
with which the LES computations were performed; we are not con-
cerned here with that issue. Whilst most of the results presented here
were obtained using one particular code, this should not be taken as an
overall endorsement of that code over the others nor as an indication
that it was particularly efficient. The same code was used for the RANS
computations but, again, essentially identical results could be obtained
using the alternative codes.

3. Further Numerical Details and Settings

The CFD code is a finite-volume (FVM), unstructured-grid code. For
the baseline case C20S (Figure 1a) only uniform mesh (∆x = ∆z = ∆z)
or hexahedral cells with two or three levels of grid refinements with
hanging nodes were used. In the latter case, the mesh in the vicinity of
the cubes and the bottom wall was uniform.

In addition to this baseline case (C20S) a similar array of random
height bodies (RM10S) was studied (see Figures 1b,c). The black dots
in Figure 1 denote sampling locations at which experimental, DNS and
LES data are compared. The computational domain for C20S was Lx×
Ly×Lz = 4h× 4h× 4h, where h = 0.02m is the height of cube. Coceal
et al. (2006) mostly used this domain size in their DNS of the same
flow, but for validation they also employed domain sizes of 8h×8h×4h,
4h × 4h × 6h and 16h × 12h × 8h. Although a 4h × 4h × 4h domain
with periodic boundary conditions was, not surprisingly, found to be
too small to capture all of the largest scales of turbulence – particularly
the very long ’streaky’ structures near the surface – they found that
the differences in mean velocity and turbulence statistics were negligible
except, not surprisingly, in the vicinity of the top boundary. For the
present RM10S case a domain of Lx×Ly ×Lz = 16hm× 16hm× 10hm

was used, where hm = 0.01m was the mean height of the obstacles, so
this domain contained 64 obstacles.

For C20S at Re=5× 103, a uniform mesh of 0.25 million cells with
16× 16× 16 grid points per cube (LES16, medium mesh) was mainly
used. In some simulations, a more refined mesh of 0.75 million cells with
32×32×32 grid points per cube (LES32, fine mesh, see Figure 2a) was
used, whereas some other simulations were done with a uniform mesh of
only 31 thousand cells with 8×8×8 grid points per cube (LES8, coarse
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Figure 2. (a): mesh with finest resolution h/32 for C20S (LES32) at y=0.5h; (b):
mesh with finest resolution h/64 for C20S (LES64) at y=0.5h; (c): mesh with finest
resolution h/16 for RM10S at x=5hm.

mesh). The maximum CFL number in all the simulations was less than
unity. The distances in wall units of the centroid of the first cell from
the wall, z+

1 , for LES32 (fine mesh) and LES16 (medium mesh) were
approximately 6.3 and 12.6 respectively, based on the global friction
velocity u∗ = 0.89uτ (see equation 6). However, the distances in wall
units of the centroid of the first cell from the wall z+

l1 based on the local
friction velocity were much lower, because obstacle form drag provides
the dominant part of the total drag, as discussed in later. The final
calculated z+

l1 for LES16 varied from 8 at the leading edge on the top
roof of the cube to less then 2 behind the cube on the bed of the
channel, with an average value of approximately 5.6.
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For C20S at Re=5× 104, a three-level mesh of about three million
cells with 64× 64× 64 grid points per cube in the near wall region was
used (LES64, see Figure 2b). At Re=5×106, only the mesh LES16 was
used. For RM10S, a three-level mesh of 2.3 million cells with 16×16×16
grid points per hm × hm × hm in the near wall region was used (see
Figure 2c).

The fluid density and the kinematic viscosity for C20S at Re=5000
were set to 1.205 kg m−3 and 1.5× 10−5 m2 s−1, respectively, and the
constant pressure gradient in equation 1 was set to -1.59 Pa m−1. The
bed stress can be obtained from:

ρu2
τ =

∂P

∂x1
× Lz,

where uτ is by definition the total wall friction velocity. The roughness
Reynolds number, Rτ = uτh/ν, was 433, which is in the fully rough
regime. Higher Re was achieved simply by changing the value of the
kinematic viscosity appropriately, with other variables unchanged. For
RM10S, the kinematic viscosity was set to 1.67 × 10−5 m2 s−1, the
constant pressure gradient was set to -5.14 Pa m−1.

Although individual velocity profiles above the canopy do not gen-
erally contain a logarithmic region, it has been shown (Cheng & Castro,
2002; Coceal et al., 2006) that spatially averaging the velocity at each
height does yield the usual rough-wall log-law expressed by,

U(z) =
u∗
κ

ln
(

z − d

z0

)
, (6)

where κ is the von Karman constant, u∗ is the friction velocity, d is
the zero-plane displacement and z0 is the roughness length. It is not
obvious how best to fit the spatially averaged streamwise mean velocity
to determine the characteristic velocity u∗ when, as here (and unlike the
regular boundary layer) the flow is maintained by a constant pressure
gradient. Coceal et al. (2006) noted that the effective u∗ in a pressure-
driven variant of a rough-wall boundary layer is not the same as uτ

and found that a theoretically derived value of u∗ = 0.89uτ (for this
geometry) gave the best fit for their DNS results, compared with Cheng
& Castro (2002)’s (boundary layer) measurements. Here we also set u∗
to be 0.89uτ for all the LES cases.

A second-order backward implicit scheme in time and a second-
order central difference scheme in space were applied. Shah (1998)
stresses that non-centred schemes such as the ‘upwind’ method have
built-in dissipation which can lead to damping of the turbulent kinetic
energy in LES. Central difference schemes can yield unphysical oscil-
lations; however, this should be taken as an indication of insufficient
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grid resolution and should not be suppressed by the use of numerical
dissipation. Note that at the differential level the conservation equation
is exactly satisfied on each control volume in the finite-volume method
(FVM). For example, the convection terms in the momentum equations

are written in the total derivative form,
∂uiuj

∂xj
, and the conservation of

kinetic energy can then be automatically maintained (Williams, 1969).
Little extra treatment is needed for the convection term in the mo-
mentum equation. At the discrete level conservation depends on the
quality of the mesh, the detailed discretization scheme and the storage
arrangements. On the other hand, for finite difference methods (FDM)
in LES, various treatments have been used for the convection term
(Mason, 1989; Moeng, 1984; Nieuwstadt & Brost, 1986; Schmidt &
Schumann, 1989). Shah (1998) and Stoesser et al. (2003) also applied
the central difference scheme for the convection term in their own
FVM LES codes for flows over bluff obstacles. (Note that if a passive
scalar equation is solved, extra attention does need to be paid to the
convection term, see Xie et al., 2004b, for example).

The initial duration of most of the runs was 200T (T = h/u∗),
which was also used in the DNS (Coceal et al., 2006), whereas the sub-
sequent averaging duration for all the statistics was normally 80T, less
than that used in the DNS (400T ). We noticed that the variation in sta-
tistical data throughout the roughness sub-layer (including the canopy
region) was usually small once the averaging duration exceeded about
20T , provided the initialising duration was sufficiently long. (200T was
generally adequate). However, the variations in the streamwise mean
velocity at the top of domain was not small; this will be addressed in
section 4.1.

A second-order upwind difference scheme in space was applied for
the SKE, MKE and RSM (RANS) models. In the vicinity of all the
solid walls four layers of a fine mesh having 32 × 32 × 32 grid points
per cube were used, whereas in the other regions a medium mesh with
16× 16× 16 grid points per cube was used. Both grids had some 0.36
million cells. Other numerical settings are the same as those for the
large-eddy simulations.

We conclude this section by commenting on the required computer
time for typical computations. As an example, the numerical simulation
of the regular cube array using about 750K cells, when performed on
a local Linux PC cluster system using only 16 (2.2GHz 64-bit AMD)
processors, provided converged statistics within about 100 hours, when
started from an initial coarser mesh solution which itself took about
21 hours. This is a factor of roughly 40 longer than required to obtain
a converged RANS solution on the same mesh. The more expensive
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LES computations for the RM10S (random) array on a grid of about
2.5 million cells required about 20 days (7680 hours) on 16 processors.
Increasing the number of processors reduces the time required (roughly
linearly).

4. Results and Discussions

4.1. Some LES results compared with DNS and LDA

Vertical profiles of streamwise mean velocity at four typical horizon-
tal positions obtained using the coarse, medium and fine meshes are
shown in figure 3 and are in satisfactory agreement with both the DNS
data (DNS64 CTBC – Coceal et al., 2006) and wind tunnel measure-
ments (LDA CC – Castro et al., 2005). Note that the resolution of the
DNS is h/64 (recall h is the cube height). However, LES8 underesti-
mates the streamwise mean velocity for z/h < 1 by over 25% in the gap,
Figure 3d, which is simply due to the lack of resolution. Visualization
shows that LES8 fails to predict a reverse flow (separation bubble)
on the two lateral sides of each cube, with the consequence that the
streamwise velocity at the middle of the gap is underestimated. Stoesser
et al. (2003) also noticed an underestimation of the streamwise mean
velocity in the gap. They did not analyze it further in their paper, but
suggested that it was because that the recovery of the flow behind the
obstacle is underestimated.

Figure 4 shows comparisons of turbulence intensities behind the
cube using the coarse, medium and fine meshes and data from DNS
and measurements. Again, the differences between the results obtained
using the three meshes are relatively small. However, figure 4c shows
that both DNS64 and LES32 have successfully captured the peak wrms

around the height of the cube, which suggests that a fine mesh (or at
least a stretched grid having greater resolution in that region) is needed
to simulate accurately the details of the shear layer above the canopy.
All the simulations underestimate the lateral fluctuation, vrms, com-
pared with measurements (figure 4b). Since DNS with a significantly
larger domain size yielded a similar underestimation, neither the small
domain size nor the simple wall model used for the present LES can
be blamed for this apparent deficiency. Note that in the vicinity of the
bottom wall there is a sharp peak of vrms/u∗ (4b) for LES8 and LES16;
this is almost certainly caused by too coarse a resolution.

A strong shear layer can be seen in Figure 4a at the height of cube,
which is consistent with the data in Figure 3b. All the simulations
successfully captured this shear layer, although note again that the

ftac06.tex; 14/03/2006; 10:08; p.12



13

0

1

2

3

4

-2 2 6 10
U/u*

z/
h

(a)

0

1

2

3

4

-2 2 6 10
U/u*

z/
h

LES8

LES16

LES32

DNS64
CTBC
LDA CC 

(b)

0

1

2

3

4

-2 2 6 10U/u*

z/
h

(c)

0

1

2

3

4

-2 2 6 10U/u*

z/
h

(d)

Figure 3. Vertical profiles of streamwise mean velocity at four horizontal positions.
(a): over cube; (b): behind cube; (c): in front of cube; (d): in gap.

coarse and medium meshes failed to capture the peak in wrms. As
discussed later the features of flows above and within an array of cubes
depend on the cube layout - staggered or aligned arrangements leading
to significant differences. Also, for a large enough depth (δ/h) the flow
tends to be more like a rural boundary layer, generating an evident
plateau of shear stress and turbulence intensities in the near-surface
layer. On the other hand, with a smaller δ/h (as here), the flow becomes
more like an urban boundary layer where the size of the large eddies
generated by the obstacles is a much larger fraction of the flow depth.
Figure 5 shows comparisons between turbulence intensities in front of a
cube. The differences among the coarse, medium and fine mesh results
are again generally small, especially above the canopy. Note that only
LES8 shows a rise in vrms near the wall (figure 5b) which is, again,
very likely due to the low resolution. Also in figure 5c, there is a weak
resolution dependence within the canopy.

Figure 6 shows comparisons between the turbulence intensities
in the gap between the cubes. All the LES data are in reasonable
agreement with the measurements and the DNS data. Nevertheless,
the coarse grid results (LES8) fail to capture the peak in the vertical
fluctuations at the height of the cube in figure 6c.
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Figure 4. Vertical profiles of turbulence intensities behind cube.

Figure 7 shows comparisons of vertical profiles of Reynolds shear
stress from the LES16 results, Castro et al. (2005)’s wind tunnel data
and Coceal et al. (2006)’s DNS results. The comparison is very encour-
aging. A linear variation of Reynolds shear stress with height is evident
for LES and DNS data, which is due to the constant driving body force
imposed in the numerical simulations. In figure 7c LDA measurements,
DNS64 and LES16 data all yield a zero shear stress around z = 0.3h.
Note that, as seen in figure 3 and in figure 8 (at the centre of the
circulation in front of cube), the mean streamwise velocity but not
the gradient of mean streamwise velocity is also approximately zero at
z = 0.3h. DNS64 captures a peak at approximately 0.1h (figure 7c),
presumably because the laminar sublayer is adequately resolved.

Figure 8 shows mean velocity vectors of (u, w) in the x−z symme-
try plane through a cube obtained using LES and DNS (Coceal et al.,
2006), in which the DNS vectors are plotted at reduced resolution for
greater clarity. The two plots are qualitatively identical in that both
clearly reveal the location of the stagnation point, the location and
the size of the clockwise circulation at the corner in front of the cube,
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Figure 5. Vertical profiles of turbulence intensities in front of cube.

the reverse updraft flow behind the cube, and flow pattern on top roof
of the cube behind the leading edge. In regard to the latter, there
is little evidence of any reversed flow region just aft of the leading
edge. However, reducing the turbulence levels just upstream of the
element increases the size of the separation bubble on the top roof of
the cube behind the leading edge. So Cheng et al. (2003) and Meinders
& Hanjalić (1999), for example, examined a case of aligned cubes with
a much lower area density of 6.25%, yielding lower turbulence levels at
element height, and found a thin reverse mean flow on the top roof of
the cube behind the leading edge. In contrast, neither the DNS nor the
present LES32 generated a reverse mean flow in this region, because the
staggered cube case with a larger area density 25% generates stronger
turbulence mixing in this region. Also note that there are two primary
separation points on z = 0. These are at ∆x ≈ 0.73h ahead of the cube
and ∆x ≈ 0.93h behind the cube. A secondary separation occurs at
∆x ≈ 0.06h ahead of the cube, which is comparable with that found
at ∆x ≈ 0.05h in flow over a single cube (Shah, 1998). The medium
mesh LES16 generated a nearly identical mean velocity vector field
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Figure 6. Vertical profiles of turbulence intensities in gap.

as the fine mesh LES32 although it failed to predict the secondary
surface separation near the upstream corner. Consequently a greater
downward flow in the near wall region ahead of the cube was generated,
which postponed the primary separation point on z = 0 to occur at
∆x ≈ 0.9h ahead of the cube. However, this subtle discrepancy made
little difference to the mean pressure distribution on the cube and thus
the total surface drag, see later, because the velocities near the bottom
surface are so low.

Similarity parameters of turbulent flow over rough surfaces in
neutral conditions are summarized in Table I, which again confirms
that the LES generally performs well against the finer resolution DNS.
Note that the lowest values are seen for cases in which the velocity
profiles have an inflection point, whilst the other data are typical values
in the near-surface layer of more classical rough-wall boundary layers
(which have much larger δ/h). The table suggests that the flow over
and around staggered cubes quite likely has dynamics determined by
the mixing-layer-type velocity profiles around the cube height - i.e.
a profile with an inflection point - as argued by Finnigan (2000) in
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Figure 7. Vertical profiles of Reynolds shear stress at four horizontal positions.
(a)over cube, (b)behind cube, (c)in front of cube, (d) in gap.

Table I. Comparison of similarity parameters of flow over rough surface

Maxima for staggered-cubes, Inflection

mixing layer & canopy flows urms/u∗ vrms/u∗ wrms/u∗ in U(z)

LES16 1.84 1.31 1.05 Yes

DNS(Coceal et al., 2006) 1.93 1.23 1.05 Yes

Mixing layer(Finnigan, 2000) 1.8 / 1.4 Yes

Plant canopy(Finnigan, 2000) 1.8-2.0 / 1.0-1.2 Yes

Values in the ‘classical’ surface layer

LES (Xie et al., 2004a) 2.7 1.38 1.14 No

Experiment (Xie et al., 2004a) 2.4 1.6 1.2 No

Fackrell & Robins (1982) 2.3 1.6 1.2 No

Stull (1993) 2.47, 2.49, 1.70, 1.73, 1.0, 1.3,

2.55 2.07, 2.47 1.58 No
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Figure 8. Mean velocity vectors in the x-z plane at y/ZH = 1.5. (a): LES32, fine
mesh; (b): DNS64 (every two vectors plotted). Note that for the two cases different
plotting routines were used, having small differences in arrow geometry.

the plant canopy flow case. In the case of an aligned array of cubes,
which has ‘smooth’ channels within the canopy for flow to pass through,
Kanda et al. (2004) and Cheng & Castro (2002) found that the drag
forces are less than those on staggered cubes and the flow within the
canyon is apparently more similar to that near the surface of a regular
channel or boundary layer. Thus, not surprisingly, the largest values in
the horizontally averaged stresses (urms/u∗, wrms/u∗) were observed
to be close to the bed ((Kanda et al., 2004)) whereas, in contrast, the
peak stresses occur near the roof level for the present case of a staggered
cube situation.
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Figure 9. Vertical profiles of turbulence statistics at various Reynolds numbers. (a):
streamwise mean velocity; (b): turbulence intensity.

4.2. LES for flows at higher Reynolds numbers and flows
over random geometry

Test case C20S at Re = 5 × 104 with meshes LES16 and LES64 (see
figure 2b) and at Re = 5 × 106 with mesh LES16 were simulated.
Figure 9 shows one typical plot – the vertical profile of streamwise mean
velocity and the rms of vertical velocity. The LES64 at Re = 50, 000
(like LES32 for Re = 5000, Figure 4c yields a peak in the shear layer at
the cube height (figure 9b) whereas LES16 does not resolve this at any
Re. The discrepancy in wrms at z = 0.2h is due to inadequate mesh
resolution, as was clearly seen for Re = 5000 in Figure 4. The other
turbulence statistics data at various Reynolds number show similar
results. It is emphasised again that the flow around the obstacle below
some height, e.g. z = 0.3h, is very weak and hence contributes little to
the total drag force of the obstacle. It is significant that for Re = 50, 000
what might be considered a relatively coarse mesh, LES64, captures the
shear layer peak, just as does LES32 for Re = 5000. Taken with the
experimental data (obtained by Cheng & Castro, 2002 for 5000 < Re <
13000) the results suggest that any Reynolds number dependency on
the turbulence levels in this shear layer is very weak.
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Figure 10. Spectra of the axial turbulence component, plotted in inner-layer scaling.

In discussing the effects of Re and the sub-grid modelling it is help-
ful to consider spectral data. Figure 10 shows typical spectra, plotted
in inner-layer scaling. Note that k = 2πf/U is the wavenumber and
z′ = z − d, where d is the zero-plane displacement and is 0.013m for
C20S and 0.012m for RM10S (Cheng & Castro, 2002 and Castro et al.,
2005). The data were sampled at z = 1.5h for C20S, except for the case
LES64, Re = 5× 106 case, for which data were sampled at z = 1.25h.
For RM10S the data were sampled at z = 3hm. A wide (e.g. more
than one decade) inertial sub-range with slope -5/3 was found on the
spectrum obtained from measurements (Meinders & Hanjalić, 1999;
Castro et al., 2005) at low Reynolds numbers of approximately 5000
and 13000, respectively. This again suggests that turbulence generated
by urban-like obstacles (with sharp edges) is large-scale dominated.

Figure 10 indicates that all of the numerical simulations resolve an
inertial sub-range, but to an extent depending on the resolution. There
is a relatively wide inertial sub-range even at the lowest Reynolds num-
ber (5000); increasing Re simply extends this range to higher frequen-
cies. This is seen even with the relatively coarse grid LES16 (compare
the Re = 5× 103 and 5× 104 data in Figure 10). The difference is not
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large enough, of course, and a higher resolution LES64 is required to
yield a significantly greater extension to higher frequencies. However,
the experimental data indicate that 92% of the total energy is contained
below kz′ ≈ 5 and even with LES16 this part of the spectrum is
adequately captured. With a further increase in Re to 5 × 106, the
simulated inertial sub-range remains quite restricted but given the rel-
ative unimportance of these smallest scales in this kind of flow, this
seems not to be a serious drawback. The ratios of the subgrid-scale
eddy and the molecular viscosity for these various computations range
from about 0.1 to a few hundred.

Turning to the low wave-number part of the spectrum, for all the
C20S cases there exists an evident distortion in the spectrum near
kz′ = 1. This is the wave length corresponding to the domain size in
the streamwise direction. There is no such distortion in the spectrum of
RM10S, for which a much larger domain size was used. Similar effects
have been observed by Coceal et al. (2006) and it seems clear that the
distortion is caused by the relatively small domain size. Nevertheless,
the integrated energy for kz′ < 2 is approximately 80% for RM10S
and 70% for the C20S case at Re = 5000 with LES16. Given also the
92% energy content for kz′ < 5 in the measurements, mentioned above,
and the adequate resolution of at least the upper part of the inertial
subrange, this suggests that most of the energy of the large eddies was
successfully captured. We again emphasise that in this flow the large
eddies (on the order of the obstacle size) are dominant.

Figure 11 plots the vertical profile of the laterally-integrated pres-
sure difference between the front and back faces of a cube, normalized
by the pressure difference, ∆pm, between the centre of the front and rear
faces. The comparisons for Re = 5×103 between the LES16, LES32 and
both the DNS data and the measurements is very satisfactory. However,
the very coarse mesh (LES8) smoothes much of the peak near the top
of the cube. The integrated pressure difference between front and rear
faces using the fine mesh (LES32) is about 93% of the total imposed
body force, showing that the form drag is totally dominant, with only
a small contribution from the viscous drag. It is also noted that data at
higher Reynolds numbers with more than 16× 16× 16 grids per cube
are in good agreement with DNS data and measurements (which were
Re = 13000), again suggesting that any Reynolds number dependency
is very weak. For the Re = 5×104 and Re = 5×106 cases the integrated
pressure differences between front and rear faces are all over 87% of the
total body force imposed. Overall, the results suggest that a medium
mesh (16×16×16 cells per cube) would be sufficient for the simulation
of a real urban area, at least as far as obtaining the total drag force is
concerned.
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Figure 11. Vertical profiles of laterally-integrated pressure difference between front
and back faces of the cube.

Coceal et al. (2006) conducted an intensive domain size test for
C20S using a larger domains and found, as noted earlier, that the tur-
bulence statistics up to second order were not significantly affected by
domain size. Furthermore, we also conducted an LES for RM10S using
a domain size Lx × Ly × Lz = 16hm × 16hm × 10hm. Figure 12 shows
vertical profiles of streamwise velocity and turbulence intensities behind
a 17.2 mm obstacle in the RM10S array. Note that the measured depths
of the boundary layers in the wind tunnel were 141 mm and 137 mm for
C20S and for RM10S respectively (i.e. δ/h = 7.0 & 13.7). Comparing
figures 3 and 4 with figure 12, it is emphasised again that both the
small domain (C20S) and large domain (RM10S) LES16 computations
generated reasonable agreement with experiment at least up to the
inertial sublayer (whose upper limits were respectively 46 mm and 33
mm in the two cases). This provides further confidence that the current
test case C20S is indeed sufficient for an economical benchmark for the
LES codes.
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Figure 12. Vertical profiles of streamwise velocity and turbulence intensities behind
17.2mm obstacle, RM10S.

4.3. Reynolds-averaged Navier-Stokes results

Figure 13 shows streamwise velocity and turbulence kinetic energy
(TKE = 0.5(u′2 + v′2 + w′2)) in the gap between cubes, given by
the three RANS models (SKE, MKE and RSM) and the LES using
the medium mesh (LES16). At this location (in the gap) the difference
between the RANS and LES results was largest (compared with cor-
responding differences at the other three stations examined – over the
centre, behind and in front of the cube). In figure 13a, all the RANS
models underestimate the streamwise mean velocity within the canopy
and both the SKE and MKE models fail to predict a reverse flow on
the lateral sides of the cube. Also, the RSM model underestimates the
size of the reverse flow – compared with the LES data (see Figure 14).
Underestimation of the reverse flow must be one of the reasons that
the streamwise mean velocity within the canopy is underestimated in
the lateral gap between the cubes, as noted earlier.

Figure 13b shows that all the RANS models underestimate the
TKE in the canopy, when compared with the LES results. It is not
surprising that the MKE model predicts a lower TKE than SKE,
because MKE is designed to enhance turbulence energy dissipation in
the region with high streamwise strain rates.
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Figure 13. Vertical profiles of streamwise velocity and turbulence kinetic energy.

Figure 14 shows a comparison of mean velocity vectors in the x−y
plane at z/h = 0.5 given by RANS and LES16. LES generates a large
separation bubble on the lateral sides of cube, whereas RSM generates
a weaker separation bubble. A separation bubble is hardly noticeable
with the SKE and MKE models. Nevertheless it seems that there is a
slight improvement in the predicted mean velocity at the front corners
with the MKE compared with SKE model.

Figure 15 shows vertical profiles of Reynolds shear stress behind
and in front of the cube from the RANS models and LES. In Figure
15a it is seen that MKE and RSM perform better that SKE in simu-
lating the strong shear layer at the height of cube. All of the RANS
models failed to simulate the zero shear stress at 0.3h found by LDA
measurement and DNS computations (see Figure 15b and Figure 7c).
Among the three RANS models, SKE arguably performs the worst.

Turning back to Figure 11, profiles obtained from the three RANS
models have a much higher peak at approximately 0.9h compared with
that suggested by LES, DNS and experimental data. It was also noted
(but cannot be deduced from Figure 11) that all the three RANS mod-
els underestimate the sectional drag force below z = 0.8h, which is
consistent with the excessive peak at approximately z = 0.9h because
the identical total driving force was imposed in all cases. This is also

ftac06.tex; 14/03/2006; 10:08; p.24



25

Standard K-� Modified K-�

RSM LES

(a) (b)

(c) (d)

Figure 14. Mean velocity vectors in the x-y plane at z/h = 0.5. LES, medium mesh.

consistent with data in Figure 13a, which show that all three RANS
models underestimate the mean streamwise velocity within the canopy.
Not surprisingly, RSM yields the most accurate pressure profiles among
the three RANS models.

5. Final Discussion and Conclusions

Overall, the comparisons between a fully-resolved DNS computation of
flow at Re = 5 × 103 over a staggered array of cubes (Coceal et al.,
2006) and corresponding LES16 computations are very satisfactory.
The Re is low enough for the LES32 to be ’almost DNS’, but flows
at Re = 5 × 104 and Re = 5 × 106, with coarse or fine grids, gener-
ated almost identical non-dimensional statistics compared with those
at Re = 5 × 103, even though the high-frequency end of the spectral
range was not well captured in some cases. This suggests that Reynolds
number dependency (if it does exists) is very weak for such flows, except
no doubt very close to solid walls. Turbulence generated by urban-like
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Figure 15. Vertical profiles of Reynolds shear stress behind and in front of the cube.

obstacles (with sharp edges) is large-scale dominated and hardly at
all dependent on the much-smaller-scale viscous dominated processes
on the body surfaces, so even at a low Reynolds number a relatively
wide inertial sub-range exists in the near-surface layer (as seen in the
measurements of Meinders & Hanjalić 1999 and Castro et al.2005).
These flows are thus much less Reynolds number dependent than, for
example, flows over smooth walls or even around isolated bodies (Shah,
1998; Hoxey et al., 1998).

A wide inertial sub-range in flows over urban-like obstacles may
also suggest that turbulence reaches a quasi-isotropic state at relatively
lower frequency than non-vortex-shedding flows at similar Reynolds
numbers, which is another reason why a simple SGS model can give
reasonable results. Whilst improvement of the SGS model, via more
expensive dynamic models for example, may enhance the simulation
in the close vicinity of the solid walls at high Reynolds number and,
likewise, improvements in the wall model itself, may increase accuracy
near the element walls, it is much more important to use grids which can
resolve the major features of the separated shear layers. The influence
of the small-scale motions, increasingly inadequate as Re rises, is much
lower in these flows than it is in smooth-wall equivalents. This is all
greatly beneficial for the numerical simulation of the coupling between
weather scale flows and street scale flows. Our major conclusion is that
LES may be reliably able to simulate turbulent flow over urban areas
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at realistic Reynolds numbers, with what (in more ’classical’ flows)
would normally be thought of as inadequate grids. It is suggested that
medium sized meshes on the body scale (e.g. 15-20 grid points at least
over a typical body dimension) are sufficient for the simulation of a
real urban area, at least as far as obtaining the total drag force or the
large-scale flow dynamics.

The results obtained from steady RANS models are generally com-
parable with those from LES above the canopy. However, it was found
that within the canopy the results obtained from steady RANS models
are much less satisfactory, compared with LES, which suggests that
the inherent unsteadiness there plays an important role in such flows.
It should also be stressed that a pure unsteady RANS method could not
successfully be applied for such flows in view of the lack both of any sig-
nificant scale separation and of any significant periodicity. Although the
improvement from LES for such flows is at the cost of much more CPU
time, e.g. at least an order of magnitude more than RANS, with the
rapid advances in computing hardware and software such an expense
is increasingly becoming affordable even for industrial-scale problems.
To emphasise the point, the present numerical simulations with three
million cells were performed on a local Linux PC cluster system, using
up to 16 CPUs and required about three weeks for adequate averaging.

Finally, it is worth pointing out that compared with a constant
driving force, a time-varying external force can make a dramatic differ-
ence to turbulent flows. In their study of channel flow with a roughened
(rippled) wall, for example, Chang & Scotti (2004) found that the effect
of an oscillation in the imposed pressure gradient was to increase the
mean drag noticeably. Nevertheless, so far, statistically unsteady tur-
bulent flows driven by time-varying external forces have received little
attention, compared with the statistically steady ones (Dong et al.,
2004). Our longer-term objective is to develop tools for implementing
unsteady spatial boundary conditions derived from the output of much
larger-scale computations, e.g. the UK Met Office’s Unified Model, with
an LES code for computing the street-scale flow. To maintain accuracy
this requires the use of polyhedral meshes; further work on these topics
will be reported in due course.
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