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Abstract

In this paper we introduce an alternative form of coarse geometry on proper metric
spaces, which is more delicate at infinity than the bounded metric coarse structure. This
new structure is called the Cj coarse structure. This is a more refined form of coarse
geometry on metric spaces. The coarse geometry of a proper coarse space X is studied
analytically via the Roe algebra. This is an algebra of operators on a Hilbert space
carrying a representation of Cy(X); specifically, in the case of the Cy coarse structure, it
is the completion of the algebra of locally compact operators with propagation tending
to zero at infinity.

Motivated by a construction of Roe for the usual bounded coarse structure, if
X is a complete Riemannian manifold, then we define a ‘higher index’ for Dirac type
operators on bundles over X. This index lies in the K-theory of the C version of the
Roe algebra. The first major result of the thesis is a vanishing theorem for the index.
Assuming the manifold has an unbounded component, then for any Dirac-type operator
with no essential spectrum we show that the Cjj index vanishes. We can relate this to
positive scalar curvature. For the spinor Dirac operator on an open spin manifold, if
the scalar curvature x(z) tends to infinity as x tends to infinity, then D has no essential
spectrum, and we can apply the vanishing theorem. As a corollary to these results we
show that if X is a compact spin manifold with a metric of uniformly positive scalar
curvature, then there is a bound R such that every metric uniformly close to the given

one has at least one point of scalar curvature less than R.
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The coarse Baum-Connes conjecture can also be formulated in the Cj context. We

show that for any finite dimensional locally finite simplicial complex, with an appropriate
metric, the Cy coarse Baum-Connes conjecture holds. We then use this to reformulate
the coarse Baum-Connes conjecture for a space W equipped with the bounded coarse
structure, in terms of a forgetful functor, which coarsens from the Cj structure to the
bounded structure on some space X built out of W. This reformulation works for any
bounded geometry space W, however given stronger hypotheses, namely that W also has
finite asymptotic dimension, then we can use the reformulation to give a new proof of the
theorem of Yu: the coarse Baum-Connes conjecture holds for spaces of finite asymptotic

dimension.
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Chapter 1

Introduction

This thesis introduces a new coarse structure for metric spaces. The notion of
a coarse (or bornologous) map between metric spaces was introduced in [18] and in [7]
this was generalized to define an abstract coarse structure. In these terms, to a metric
space there is a naturally associated abstract coarse structure, called the bounded metric
coarse structure. Here we will associate a second coarse structure to a metric space —
the Cjy coarse structure. This is a refinement of the bounded structure, and as such it
is better suited to the study of existence problems for metrics satisfying certain scalar
curvature conditions. Indeed the original motivation for introducing the Cj structure
was to investigate obstructions to properly positive scalar curvature on open manifolds.
By definition the scalar curvature k is properly positive, if it is a proper function having
range in the interval [k, 00) for some kg € R. We will show that the K-theory group of
the Roe algebra associated to the C( coarse structure is the natural receptor for a ‘Cy
higher index,’ and that this index, when non-zero, is an obstruction to properly positive
scalar curvature.

This thesis also discusses another significant application of the Cj coarse struc-
ture. As this coarse structure is more refined than the bounded metric structure, the

K-theory groups mentioned above are more topological in nature, and correspondingly



they are easier to compute than in the bounded case. For any abstract coarse struc-
ture there is a conjectural isomorphism between these K-theory groups and the coarse
K-homologyl. This is the coarse Baum-Connes conjecture. For any coarse structure
the coarse K-homology is defined by a topological construction, and hence is fairly easy
to compute. We are therefore able to show for a wide class of metric spaces that the
coarse Baum-Connes conjecture holds for the C(y coarse structure. This result applies in
sufficient generality that the coarse K-homology for the bounded coarse structure can be
identified with the K-theory of the Roe algebra for the C( coarse structure. Thus the
version of the conjecture which is of most interest in applications — that is the coarse
Baum-Connes conjecture for the bounded coarse structure — can be interpreted as a
relation between the K-theory for the C(y and bounded coarse structures. The thesis
concludes by establishing that this relation is true, and hence the coarse Baum-Connes
conjecture holds, in the case of spaces of finite asymptotic dimension. This gives a new
proof of the results of [25].

In chapter 2 we will deal with the preliminaries. We begin by defining an abstract
coarse space axiomatically. We can then say when two maps between coarse spaces are
coarse maps, and when and two maps into a coarse space are close. We then proceed to
define the specific class of coarse structures in which we will be interested, namely the
Cy coarse structure on a metric space. We will note that this satisfies the axioms for a
coarse space. Throughout we will denote a metric space X equipped with the C coarse
structure by X{), to distinguish from the bounded metric structure. Chapter 2 concludes

with the definition of the Roe algebra C*X for a coarse space X. For a Hilbert space $

11t should be noted that this conjecture is now known to be false for certain classes of examples.
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carrying a representation of Cjy(X), the Roe algebra is the completion of the algebra of
operators which are locally compact and whose support is controlled for the given coarse
structure. We will show that the Roe algebra is covariantly functorial in a certain sense.
To be precise its K-theory is a coarse invariant, and coarse maps induce homomorphism
on the K-theory group.

The remainder of the thesis deals with two topics. Firstly it addresses the ques-
tion of how these K-theory groups can be computed. Secondly if we know the K-theory
groups, and if we can identify the elements in K-theory corresponding to certain opera-
tors, then we can make geometric deductions. In chapter 3 we will set up the framework
for calculating the groups. We will introduce the two fundamental techniques for calcu-
lating them, namely the ‘Eilenberg swindle,” and a coarse Mayer-Vietoris exact sequence.
The former of these is used to make the first explicit calculations of the K-theory groups
for the Cjy coarse structure, for example it can be used to show that the groups K, (C*]RaL)
vanish. We will also carry out a ‘hands on’ calculation of the groups in the case of a
uniformly discrete space (by contrast with the bounded coarse structure, the C{ coarse
type of a uniformly discrete space depends only on its cardinality). Having made these
direct calculations, we will see that the K-theory groups for a number of spaces can then
be computed using the Mayer-Vietoris sequence. The framework set up in this chapter
will be used in chapter 4 to calculate the Cj higher index, and in chapter 5 to tackle the
coarse Baum-Connes conjecture.

In chapter 4 we begin by briefly recapitulating the definition and properties of
the bounded coarse index appearing in [19]. We then recall the definition and basic

properties of a Dirac type operator. It is for such an operator that the Cj coarse index
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will be defined. In fact the construction can be generalized to elliptic operators, however
in the geometric applications it is the Dirac type operators that arise. For X a complete
Riemannian manifold, and D a Dirac type operator on a bundle over X, we then proceed
to define the Cjy indez, Index D, in the group Kj(C*XO), where j = 0 if the bundle is
graded and j = 1 if not. Having defined the index we turn to a discussion of metrics
of properly positive scalar curvature. We observe that for X a spin manifold, and D
the corresponding spinor Dirac operator, if X has properly positive scalar curvature
then D has no essential spectrum, i.e D has discrete spectrum with finite dimensional
eigenspaces. This spectral condition is the hypothesis we then use to study the K-theory
element Index D. Let us assume that D has no essential spectrum. We show that under
this assumption, the index of D lies in the image of the group Kj (R) under the map
induced by the inclusion & — C*XO. Then in the ungraded case the index therefore
vanishes as K7(R) = 0, while in the graded case if X has a non-compact component
then we show that the map Z = K(f&) — K(C*Xy) factors through KO(C*]RS_) =0
and again the index vanishes. We conclude chapter 4 by computing the index in some
specific examples where it is non-zero. As a corollary we obtain the following result:
Whenever X is a compact spin manifold equipped with a metric of uniformly positive
scalar curvature, there is a bound R such that every metric uniformly close to the given
one has at least one point of scalar curvature less than R.

In chapter 5 we study the coarse Baum-Connes conjecture. Many of the construc-
tions involved in stating and proving the conjecture involve the study of metric simplicial
complexes, and we begin by defining the uniform spherical metric on a simplicial com-

plex, and discussing the geometry of this.



5

We then define the coarse K-homology KX, (X) of a coarse space X, and the
assembly map pu: KX, (X) — K,(C*X). The coarse Baum-Connes conjecture asserts
that p is an isomorphism. We show that both KX, (X) and K,(C*X) are covariant
functors on the category of coarse spaces, and each has certain homological properties.
Specifically the Mayer-Vietoris exact sequence mentioned above also holds for KX, (X),
and both functors are invariant under coarse homotopy equivalence. Based on experience
of homology uniqueness in the context of topology we therefore expect (in favourable
circumstances) to be able to prove inductively that y is an isomorphism for a space X by
building it out of simpler pieces. For a finite dimensional simplicial complex equipped
with a uniform spherical metric we show that these homological methods allow the
reduction to the 0-dimensional case, that it the uniformly discrete case. In other words,
to prove the Cj coarse Baum-Connes conjecture for such a complex, it will suffice to
prove it for uniformly discrete spaces. This however is straightforward in the Cj case; as
noted above the C(y coarse type depends only on cardinality, and hence we give a single
calculation to complete the proof of the coarse Baum-Connes conjecture for a simplicial
complex with uniform spherical metric, equipped with the Cj coarse structure.

However in many applications such as the Novikov conjecture it is not the Cj
version of the conjecture, but the bounded version that is of interest. We therefore
turn our attention to applying the Cj results to deduce cases of the conjecture in the
bounded case. Given a discrete metric space W (any metric space with bounded structure
is coarsely equivalent to some discrete space W) we will construct a new space X called
the coarsening space of W built out of a sequence of simplicial complexes. We can

compute the K-theory of C*XO by an Eilenberg swindle, indeed the K-theory vanishes.
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We show that there are ideals I and Ij, in the algebras C*XO and C* X respectively, for
which K X, (W) = K, (Iy) and K, (C*W) = K, (I,). Moreover Iy C I}, and we show that
identifying K X, (W) and K, (C*W) with the K-theory of these ideals, the inclusion of I,
into Iy, induces the assembly map p on K-theory. Finally we show that in the case where
W has finite asymptotic dimension, there is another coarse structure on X, denoted Xj,
and called the hybrid coarse structure, such that C*X p, is a subalgebra of C *X containing
I}, as an ideal. If W has finite asymptotic dimension then the space X can be constructed
in such a way that the K-theory of C*X p, vanishes by a further Eilenberg swindle. Hence
the K-theory long exact sequence gives isomorphisms K, 1(C*X(/Iy) = K,(Ij) and
K, 1(C*Xp/1},) = K, (Ip,). Again with the assumption of finite asymptotic dimension,
the space X may be built out of subsets Y such that for Jy and J;, the corresponding
ideals of C*Yy, C*Y},, the algebras C*Yy/Jy and C*Y},/J;, are isomorphic. Using a
further homology uniqueness argument in this context we show that K, (C*Xy/Iy) =
K,(C*X},/I;,). Hence we obtain a new proof of the theorem of Yu (see [25]): for W
with finite asymptotic dimension the assembly map g is an isomorphism, i.e the coarse

Baum-Connes conjecture holds for W.



Chapter 2

Coarse Geometry & Controlled Operators

2.1 Abstract coarse structures

An abstract coarse structure on a set is defined either by a collection of entourages,
or by a closeness relation on maps into the set. Abstract coarse structures were first
introduced in [7]. A treatment based on the notion of closeness is developed in [9]. We
shall take the former approach here. We shall deal with spaces equipped with a topology
and the coarse structure will satisfy conditions of compatibility with this. Usually the
spaces will even be equipped with a metric, and the topology and coarse structure will
both derive from this; these concrete examples will appear in the following section.

Let X be a set, and let £ be a collection of subsets of X x X. Members of £ will
be called entourages and are said to be £-controlled, or, and when the collection & is

understood we will just say they are controlled.

Definition 2.1. A collection £ of entourages defines a unital coarse structure on a set

X if it satisfies the following axioms:

1. The diagonal of X x X is controlled.
2. If A and B are controlled then A U B is controlled.

3. If A is controlled and B is a subset of A then B is controlled.
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4. The union of all controlled sets is X x X. Equivalently every singleton {(z,y)} is

controlled.

5. Transposition: If A is controlled then

AT ={(y,z) e X x X | (z,y) € A}

is controlled.

6. Composition: If A and B are controlled then

AoB ={(r,2z) € X x X | Jy € X such that (z,y) € A, (y,2) € B}

is controlled.

For X a Hausdorff topological space the coarse structure is proper if additionally:

7. There is a controlled open neighbourhood of the diagonal of X x X.

8. If K C X is compact and A is controlled then

{r € X |3y € K with (z,y) € Aor (y,z) € A}

is relatively compact.

An equivalent definition of a proper structure is established in lemma 2.5 below.

Definition 2.2. A coarse structure & coarsens a structure & if every & controlled set

is &'-controlled.
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If &, & are coarse structures, and each structure coarsens the other then they are

equal.

Definition 2.3. Given any collection C of subsets of X x X, the coarse structure &
generated by C is the minimal coarse structure containing C. In other words £ is the

collection of all sets A, such that A is controlled for every coarse structure containing C.

The following definition describes coarsely the familiar metric properties of bound-
edness and uniform boundedness. One view of an abstract coarse space is as a space

equipped with a notion of uniform boundedness.

Definition 2.4. A subset A of a coarse space X is bounded if A x A is controlled. A
collection C of subsets of X is uniformly bounded if there is a controlled set which contains

A x A for each A in C.

Lemma 2.5. Let X be a Hausdorff topological space equipped with a coarse structure.
This latter is proper if and only if it is generated by open sets, and is such that the

properties of boundedness and relative compactness coincide.

Note that a metric space is proper if and only if the properties of relative com-

pactness and metric boundedness agree.

Proof. Suppose £ is a coarse structure generated by open sets. Then every controlled set
is a subset of a controlled open set. As the diagonal is controlled, so is an open neigh-
bourhood of this, i.e. axiom 7 holds. Conversely for a coarse structure £ satisfying axiom
7, let U be the given controlled neighbourhood of the diagonal. Consider the collection

C of sets produced by composing the elements of £ by U on both sides. Certainly these
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compositions are open. As U o AoU contains A for each A in &, the structure generated
by C coarsens £. On the other hand U o Ao U is always £-controlled by the composition
axiom. Thus the coarse structure generated by C is &.

We will now assume that the coarse structure is generated by open sets, and
we must show under this assumption that axiom 8 is equivalent to the condition on
boundedness. Suppose that X has a proper coarse structure i.e. axiom 8 holds. All
compact sets are bounded as the generating sets form an open cover of X x X hence
a finite number will cover a compact rectangle. A relatively compact set lies within a
compact and bounded set so is bounded. On the other hand if K is bounded then K x K
is controlled. Applying axiom 8 to the compact set {z}, for some z € K shows that K
is relatively compact.

Conversely suppose that relatively compact sets and bounded sets coincide. Let
A be controlled and K compact. By the transposition and union axioms we may assume
that A is symmetric i.e. (z,y) € A <= (y,z) € A. Then we need to show that
K' ={z € X |3y € K, (z,y) € A} is relatively compact. Let Ax = AN (X x K).
The composition Ag o (K x K)o A% gives K’ x K'. As A is controlled and K compact
and so bounded by assumption, each term in the composition is controlled. Thus by
the composition axiom K "'x K is controlled, i.e. K " is bounded. Thus K' is relatively

compact as required and axiom 8 holds. O

Definition 2.6. A coarse space is separable if there exists a countable uniformly bounded

cover.
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Remark 2.7. For a proper space this is equivalent to the existence of a countable uni-
formly bounded open cover, and if additionally the underlying topology is metrizable

then it is equivalent to the topological definition of separability.

To give a full description of the coarse category we must also describe the mor-

phisms. These are ‘proper’ maps taking controlled sets to controlled sets.

Definition 2.8. Let X,Y be equipped with coarse structures. A map a: X -+ Y is a

coarse map if:

1. For each controlled A C X x X the image (a X a)(A) is controlled for Y.

2. For each bounded K CY the pre-image a_l(K ) is bounded in X.

It is immediate from the definition that a composition of coarse maps is coarse.

In terms of uniform boundedness, the first condition asserts that the image of any
uniformly bounded collection of subsets of X is uniformly bounded. For both X and Y
proper coarse spaces the second condition is that the pre-image of a relatively compact
set is relatively compact. Thus if the map is also continuous then it is topologically
proper.

For a single set equipped with two coarse structures &, 5’, the identity map from
(X,€) to (X,£&') is a coarse map if and only if £ coarsens € and the notions of bound-
edness coincide.

The following definition relates the entourage description of coarse geometry to

the closeness description.

Definition 2.9. Let S be any set, and X a coarse space. Let «, 8 be maps from S to

X. Then « and 3 are close if the image {(a(s),3(s)) | s € S} of (e, B) is controlled.
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From the composition axiom we can make the following deductions. Composing

a pair of close maps with a coarse map, produces close maps. Similarly for a a coarse

map and (3 close to «, it follows that 8 maps controlled sets to controlled sets. For such

a, B, and for K bounded, consider K/ = ﬁ_l(K). Then ﬁ(K’) is bounded, and again

by composition, so also is a(K’). But then a_la(K/) is bounded, and this contains K’

so the preimage of a bounded set under § is bounded. Thus every map close to a coarse
map is also coarse.

It is sometimes convenient to restrict to consideration of Borel coarse maps. The

following lemma allows us to do this.

Lemma 2.10. Let X,Y be a topological spaces equipped with coarse structures. Suppose
X is proper and separable. Then every map X — Y is close to a Borel map. If the given

map is coarse then the Borel map will be coarse as well.

Proof. Let a be a map from X to Y. Let {U;} be a countable uniformly bounded open
cover of X, and pick z; in U; for each i. Define v: X — X by v(U; \ Uy ; Uyr) = {=;}-
Let 8 = « oy, which is Borel as the preimage of any set is a countable union of sets of

the form U; \ U.s_;U.. As {U;} is uniformly bounded  is close to the identity, and

i'<i i

hence S is close to a as required. As S is close to «, if « is coarse then so is . O

We are now in a position to define coarse equivalence of a pair of spaces.

Definition 2.11. Let X,Y be equipped with coarse structures. Then X and Y are
coarsely equivalent if there exist coarse maps a: X — Y and 8: Y — X such that So«a
is close to the identity on X and « o S is close to the identity on Y. The maps «, 8 are

called coarse equivalences.
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Later we will define an algebra of operators associated to a coarse space. This will

be functorial at the level of K-theory, i.e. X — Ky(C*X), K1(C*X) will define functors.
It will then follow from functoriality that a coarse equivalence of spaces provides natural

isomorphisms of these these groups.

2.2 The (| coarse structure

The main objects of study here are coarse structures that derive from a metric.
The following definition describes the unique coarse structure such that the metric and

coarse definitions of uniform boundedness coincide.

Definition 2.12. Let (X, d) be a metric space. The standard coarse structure on X is

& ={A C X x X | there exists R € R, such that A C Up}

where

Ug ={(z,y) € X x X | d(z,y) < R}.

To measure ‘propagation near infinity’ we use an alternative coarse structure.
Roughly speaking a set will be controlled if it lies inside a ‘pinched tube’ about the
diagonal, having width tending to zero at infinity. We replace the constant R of the
preceding definition with a function R of ¢, where t is a parameter measuring the distance
from a base-point z() in X. The choice of base-point will not affect the structure. Instead
of using a distance parameter £ and a function R of the distance, we could alternatively

use a function r on X x X.
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Definition 2.13. Let (X,d) be a metric space. The C(y coarse structure on X is

& ={A C X x X | there exists R € Cy(R,.), R(t) > 0 such that A C Ur}

where

Ug = {(,y) € X x X | d(z,1) < R(d(z,30) + d(y, 20))}-

We denote the space X equipped with this coarse structure by X to distinguish from

the standard coarse structure.

Definition 2.14. The proper Cy coarse structure on X is defined to be:

E={ACX xX |3reCy(X xX), r(z,y) =r(y,z) > 0 such that A C U,.}

where

Up={(z,y) € X x X | d(z,y) <r(z,y)}.

With this structure we denote the space by XéD .

Lemma 2.17 below establishes that the Cjy, and proper Cj structures will coincide
for proper metric spaces.

Note that replacing Cy by Cp in either of the above definitions would produce
the standard coarse structure. The standard structure coarsens the Cy structure. A
collection of subsets of X all of the same diameter is uniformly bounded in the standard

coarse structure, but will be Cy uniformly bounded only if they all lie within some metric
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ball. Indeed for a collection of subsets to be Cj uniformly bounded, for each € > 0 the
subsets of diameter greater than € must all lie within some metric ball.

These structures may be described in terms of closeness as follows. Let S be a
set, and let «, 8 be maps from S to X. For the standard coarse structure these are
close if the uniform distance supgzc g d(a(s),3(s)) between the maps is finite. For the
Cy structure we additionally require that the distance tends to zero as a(s), 5(s) tend
to infinity. More precisely we require that for all £ > 0 the set of pairs (a(s), 3(s)) with
d(a(s),B(s)) > € is metrically bounded in the case of the C{y structure, and is relatively

compact in that case of the proper C structure.

Definition 2.15. Two metrics dy, d9 on a space X are coarsely equivalent if the identity
map from (X,dy) to (X,d9) is a coarse equivalence for the bounded coarse structure.
Two metrics dq,dg on X are Cyy-coarsely equivalent if the identity map from (X,d;) to

(X, dg) is a coarse equivalence for the Cjy coarse structure.

Lemma 2.16. The proper C( structure is proper for any locally compact metric space

(X,d).

Proof. If K is a compact subset of X then certainly it is metrically bounded so to be
coarsely bounded for the proper C) structure we need only have a C(y function on X x X
which is greater than this bound on K x K. This will exist by Urysohn’s lemma.
Conversely suppose that K is coarsely bounded for the proper C) structure. Then
there exists r € Cy(X x X) with d(z,y) < r(z,y) for z,y in K. Choose € > 0 less than the
diameter of K (if K has diameter 0 it is trivially compact). Consider {(z,y) | 7(z,y) > €}.

This is open and has non-empty intersection with K x K. It is relatively compact as r
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is Cp, so it follows that there exists zj in K and a relatively compact open ball in X

about zg. Then for ¢ sufficiently small, K lies in:

{z | d(z,z¢) < 0} U{z | r(z,zq) > 6}

This is relatively compact, and so K is relatively compact as required. O

In fact it is always true that all coarsely bounded sets of X(I]D are relatively com-
pact. The requirement of local compactness in the lemma is to ensure that that all
compact sets are coarsely bounded.

For the C structure the notion of boundedness coincides with the metric defini-
tionl, hence by lemma 2.5 this structure is proper if and only if the metric is proper.
(The same is true for the standard coarse structure.) As Xéj is always proper, for it to
agree with X, it is necessary that the metric is proper. The following lemma shows that

this also sufficient.

Lemma 2.17. Let (X,d) be a metric space. Let £ denote the Cy coarse structure, and
let EF be the proper Cq structure, as defined in 2.13.
If the metric is proper then & is equivalent to the coarse structure P m general

& coarsens EP .

Proof. Given R > 0 in Cy(R, ) let r(x,y) = R(d(x,zq) + d(y,yg)). For all & > 0,

K = {(z,y) | d(z,zg) + d(y,zg) < k} is closed and bounded, hence is compact if the

IMetric boundedness of a set K gives a diameter bound as required by the standard coarse
structure, and also provides a bound on the parameter d(x,zg) + d(y, zg) so we may take a Cy
(or even C,) function R controlling K x X.
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metric is proper. Thus d(z,zq) + d(y,zy) — oo and hence r(z,y) — 0 as (z,y) — oc.
For r(z,y) so defined, r is symmetric, non-negative, and lies in Cjy(X x X), so in the
proper case every £ entourage is also an eb entourage.

Conversely given U,. € &P as in definition 2.13, define R; by

Ry (t) = sup{r(z,y) | d(z, z0) + d(y, z0) = t}.

As r is Cy it is bounded and so also is R{. Further, for each ¢ > 0 there exists a compact
subset K of X with r < e outside K x K. Let ty = 2sup{d(z,zg) | z € K}, which is

finite by compactness. For ¢ > t it follows that

Ry(t) < sup{r(z,y) | (v,y) ¢ K x K} <e.

Thus Ry(t) - 0 as t — oco. (Note that we did not require the metric to be proper in
this argument.) As Rj is bounded and tends to zero at infinity, we may find R > Ry,

continuous and tending to zero at infinity. Then

Uy € {(e,y) € X x X | d(,y) < R(d(x,20) + d(y,20))} € E.

Thus £ always coarsens € P , and so the two are equivalent when the metric is proper. [J

The following lemma, gives examples of Cy coarse maps. It also illustrates that the
Cy structure is much more closely related to the underlying topology than the bounded

structure is.



18
Lemma 2.18. Let X,Y be proper metric spaces, and let a: X — 'Y be (topologically)

proper and uniformly continuous. Then a: X =Y, is Cy coarse.

Proof. As « is continuous and topologically proper, it is coarsely proper. Thus it suffices
to show for A C X x X, Cy-controlled, that B = a x a(A) is again Cy-controlled. By
uniform continuity, for all ¢ > 0 there exists § > 0, such that d(a(z), a(z')) < e whenever
d(z,z') < 6. The condition on A implies that there exists K C X x X compact, such
that if (z,2') € A\ K then we have d(z,z’) < 4, so d(a(z),a(z')) < e. Hence B lie in
the union of o x a(K), which is compact, with the set of pairs (y,y) with d(y,7’) < .

As € can be chosen arbitrarily small B is C-controlled as required. O

For a sequence of metric spaces we generalize the Cjy coarse structure to the

disjoint union.

Definition 2.19. Let X = | |X,, be a disjoint union of proper metric spaces. The
Cy disjoint union structure is given by entourages which are the union of a relatively
compact subset of X x X, and a sequence of Cj controlled subsets A,, of X, with

sup{d(z,y) | (z,y) € A, } tending to zero as n — oo.

Note that if we also have a proper metric on the disjoint union which agrees with
the metrics on each X,,, then the Cj structure obtained from this metric is the same
as the C disjoint union structure. As a simple example if each X, is the closed unit
interval with the usual metric, then the structure on the disjoint union is the same as

the Cy structure on J,,[2n, 2n + 1] obtained from the usual metric.



19
We will be particularly interested in the C structure on Riemannian manifolds,
and we make the convention that if the manifold is not connected, then the C structure

on this is the Cy disjoint union.

2.3 Representations and the Roe algebra

In this section we define the coarse C*-algebra or Roe algebra of a coarse space.
For the metric coarse structure this is discussed in [19], and for abstract coarse structures
it was introduced in [7]. We will establish functoriality at the level of K-theory. Through-
out this section X,Y will denote separable locally compact Hausdorff topological spaces

equipped with coarse structures.

Definition 2.20. Let A be a C*-algebra, §) a separable Hilbert space, and p: A — B($)
a faithful non-degenerate representation. That is p is an injective *-homomorphism from
A to B(9) such that p[A]$) is a dense subspace of ). Then p is ample if p[A]NR(H) = {0},

i.e. if the composition of p with the projection to the Calkin algebra Q($)) is also injective.

We will be interested in ample representations of the C*-algebra Cy(X). For
X without isolated points, equipped with a reasonable measure (specifically a measure
assigning positive mass to all non-empty open sets) the standard example is § = L2(X )

and p the representation by pointwise multiplication.

Definition 2.21. Suppose a Hilbert space §) and an ample representation p: Cp(X) —
B($) are given. Let T be an operator in B(£)). We will define the support of T" with

respect to the given representation, and denote this by SuppT'.
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Let U, V be open subsets of X. The support of T fails to meet U xV if p(f)Tp(g) =
0 for every pair f € Cy(U) and g € Cy(V). By definition X x X \ Supp7T is the union
of all such open rectangles U x V.
Taking complements of the above, a point (z,y) € X x X lies in the support of
T if and only if for every open rectangle U x V about (z,y) there exist f € Cy(U),
g € Co(V) with p(f)T'p(g) # 0.
There is an obvious generalization to an operator T': §y — Hy where there
are representations of Cjy(X),Cy(Y) on $x,9Hy. We repeat the above with U an open

subset of Y, and V open in X.

In the example of X equipped with a measure, consider 7" an integral operator
T:h v [,ex k(-,2z)h(z) on LZ(X). In this case the definition of support reduces to
the usual definition of the support of the kernel k.

Note that by the Borel calculus, a representation of Cp(X) may be extended to
a representation of the C*-algebra of bounded Borel functions. The complement of the
support will then contain an open rectangle U x V if and only if p(f)Tp(g) vanishes for
f,g the characteristic functions of U, V. Vanishing of p(f)Tp(g) is clearly sufficient; to
prove necessity we observe that as f is the characteristic function of an open set, it is a
monotone limit of continuous functions f,, supported in U, and similarly g = limg,,,. In
the Borel calculus p(f), p(g) are then the weak limits of the sequences p(f,,) and p(g,,)
respectively, so p(f)Tp(g) is the weak limit of operators p(f,,)Tp(g,,), which vanish if

U x V does not meet the support. This shows necessity.

Lemma 2.22. The support of ST is contained in the composition Supp(S) o Supp(7T).
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Proof. We want to show that if (z,y) is not in A = Supp(S) o Supp(T’) then it is not in
Supp(ST). As X is assumed to be locally compact it will suffice to show that if U,V
are relatively compact open sets such that U x V does not meet A then U x V does not
meet Supp(ST). Let Wy = {z € X | there exists y € U with (y,z) € Supp(S)} and let
Wy = {z € X | there exists y € V with (x,y) € Supp(T)}. Compactness of U,V implies
that Wy, W are closed, hence we get P(XX\WQ)T/’(XV) =0 and /’(XU)S/’(XX\Wl) =0
by the above observations about the Borel calculus. If U x V does not meet A then
W1, Wy are disjoint, thus we see that T'p(xy ) = P(XW2)TP(XV) = p(XX\Wl)Tp(XV).
We conclude that p(xg7)STp(xy) = p(XU)Sp(XX\Wl)Tp(XV) = 0, and as required,

U x V does not meet Supp(ST). O

Lemma 2.23. IfT, is a sequence of operators on $ with T,, — T weakly, then Supp(T') C

A where A = LimSup,, Supp(7},)-

Proof. Let A = LimSup,, Supp(7},). We need to show that if (z,y) ¢ A then (z,y) ¢
Supp(T’). Thus suppose (z,y) ¢ A. In other words, suppose there is an open set U x V
containing (z,y), such that for some n(), the intersection U x V N Supp(7},) is empty for
all n > ng. For any functions f, g supported respectively in U,V the product fT),¢g must
vanish for all n > ng. Thus (fTgv, w) = lim,(fT,,gv,w) = 0 for all f, g supported in
U,V, and for all v,w € §. Hence fT'g = 0 for all f,g supported in U,V , so U x V does

not meet the support of T'. we conclude that (z,y) ¢ Supp(T') as required. O

Definition 2.24. For X a metric space, the propagation of an operator is defined to be

Prop(T) = sup{d(z,y) | (z,y) € Supp(T)}.
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Definition 2.25. Let T be an operator in B($)). If SuppT is controlled then we say
T is controlled. If p(f)T and Tp(f) are compact for all f € Cy(X), then T is locally
compact. If the commutator [p(f),T] is compact for all f in Cy(X) then we say T is

pseudolocal.

The following standard result is stated in [11]. For a proof see [9].

Lemma 2.26 (Kasparov’s Lemma). An operator T in B($) is pseudolocal if and
only if p(f)Tp(g) is compact for all disjointly supported pairs of functions f,g in C(X™T).

O

Definition 2.27. The Roe algebra of a coarse space X, denoted C;X , 18 the norm clo-
sure in B($)) of the algebra of controlled and locally compact operators. Analogously we

define an algebra D;X as the norm closure of the controlled and pseudolocal operators.

Remark 2.28. The collection of controlled operators is a *-subalgebra of B($)). It is closed
under composition by the composition axiom for a coarse structure, and is closed under
the involution by the transposition axiom. The controlled and pseudolocal operators
form a *-subalgebra of this which in turn contains the controlled and locally compact
operators. These last will be a *-ideal in the controlled operators if the coarse structure
is proper - indeed axiom 7 suffices. To show that an operator is locally compact it
suffices to consider multiplication by C, functions as these are dense. If T" is controlled
and f € C.(X) then Tp(f) is compactly supported so equals p(g)Tp(f) for a bump
function g in C.(X). It follows that for S locally compact STp(f) = Sp(g)Tp(f) is
compact. Compactness of p(f)ST holds for any T, so we have a right ideal. Closure

under involution is clear hence it is a *-ideal. Without the additional assumption of
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properness, the controlled and locally compact operators form a *-ideal in the controlled

and pseudolocal operators.

Example 2.29. Let X be a point. Then an ample representation of Cy(X) = Cis a
separable infinite dimensional Hilbert space §) with the representation by scalar multi-
plication. All operators on this are controlled (as every subset of X x X is controlled),
and the locally compact operators are just compact operators. Thus C* X is just the al-
gebra of compact operators. Indeed for any compact topological space equipped with its
unique proper coarse structure the same argument will apply as the constant functions

in C(X) must act by scalar multiplication.

Lemma 2.30. For any proper coarse space X, the compact operators form an ideal in

*
CpX.

Proof. We will show that every compact operator is the limit of a sequence of compact
operators each of which is compactly supported. Let fy in C.(X) be an approximate
unit for Cy(X). Then p(f)) converges strongly to the identity as p is nondegenerate.
Hence for any compact operator K, the net p(fy)K converges to K in norm. For fixed
A, we also have lim, p(fu)Kp(f)\) = Kp(f)) and so we may approximate K in norm by

o( fH)K p(fy) which is compact and compactly supported. O

The Roe algebra apparently depends on the choice of the representation p. In-
deed for a given coarse space, though the Roe algebras obtained from different ample
representations are isomorphic there is no canonical choice of isomorphism. However for

proper spaces there is a natural isomorphism at the level of K-theory.
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Definition 2.31. Let a: X — Y be a coarse map. Let X,Y be equipped with am-
ple representations px: Cy(X) — Hx, and py: Cy(Y) — $Hy. A bounded operator

V:9x — Ny covers the map «, if {(y, a(z)) | (y,z) € Supp V'} is controlled.

This provides a notion of controlled operators between §) x, . Indeed an oper-
ator covering « is precisely an operator which is controlled for the coarse mapping space
defined below. The following construction also appears in [21].

We will define a coarse mapping space X U, Y. Topologically we take this to
be the disjoint union, which is locally compact for X,Y locally compact. Define a map
a: XU,Y =Y by a(z) = a(z) for z € X, and a(y) =y for y € Y. We then define
the controlled sets for X U, Y to be those subsets A of X U, Y x X U, Y such that
(& x @)(A) is controlled for Y. We take the direct sum representation p = px @ py on

0 0
H=Hx ®HNHy. Then V covers « if and only if the operator is controlled.

V o

By construction, the inclusion of X into the mapping space and the map & from
the mapping space to Y are both coarse. The composition of & with the inclusion of Y
into X U, Y is close to the identity on the mapping space, while the inclusion followed
by & is the identity on Y. Hence the mapping space is coarsely equivalent to Y. The
idea of the construction is to be able to take a controlled operator on X, and to regard
it as a controlled operator on the mapping space which is coarsely equivalent to Y.

Note that for : X — Y close to a, the a and S mapping spaces are coarsely
equivalent, specifically the identity map X U, Y — X U 8 Y is a coarse equivalence. The

construction is also compatible with compositions. For a: X — Y, and 8: Y — Z coarse
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maps, the obvious inclusions from X U, Y, Y Us Z,and X UBoa Z,into X U, Y Ug Z

are coarse, and the latter two are coarse equivalences.

Lemma 2.32. Suppose X, Y have proper coarse structures, and o,V as above. Then

* - %
Ady, maps CPXX into prY.

0 0 0 0\(T o}[o0 V* _
Proof. Consider = in B($Hx & 9Hy). Without

0 Ady(T) v o)\o o)\lo o

loss of generality we may assume 7' is in the dense subalgebra of controlled operators.
Then T'® 0 is controlled and as V' covers «, it follows that 0 ® Ady (T') is controlled for
X U, Y. Thus Ady (T) is controlled for Y.

If X and Y have proper coarse structures we must show Ady (T') to be locally
compact. It suffices to show this for 00 Ady/ (7). The mapping space X U, Y also satisfies
axiom 7,2 so the locally compact operators form an ideal in the controlled operators by

0 0
remark 2.28. As T @ 0 is locally compact and is controlled, 0 @ Ady/ (T) is

V o

locally compact as required.

Thus for proper spaces we have established that Ady, maps C;XX into Csz. O

We have shown that given a covering isometry we obtain a map of the coarse
C*-algebras. Indeed this is a *-homomorphism, so induces a map on K-theory. We will
establish that there always exist isometries covering a given coarse map, and further
that the map on K-theory is independent of the choices made. In fact we may state

this independence as the fact that operators 7' and Ady (T') regarded as elements of

2This follows as both image and pre-image of a bounded set are bounded for the coarse map
a, so boundedness in the mapping space again coincides with relative compactness.
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C*(X U, Y) define the same element of K-theory. For existence we need to find a
controlled operator V in B (%)), such that V*V is the projection onto §) x, and VV¥isa

projection with range in )y .

Proposition 2.33. Suppose X,Y have proper separable coarse structures, and « is a
coarse map between them. Then there exists an isometry from $Hx to Hy covering a.
Moreover for any given uniformly bounded open cover {U;} of Y, there is a covering

isometry with support contained in |J; d_l(ﬁi) X 64_1(71-).

Proof. As close maps define the same coarse mapping space, we may assume « is Borel,
by lemma 2.10.

Suppose there is a countable uniformly bounded Borel partition {Y;} of Y with
each Y; having non-empty interior. Let X; = a_l(Yi). Then by definition {X; U
Y} = {5‘_1(Yi)} is a uniformly bounded Borel partition of X U, Y. Let f;,g; be the
characteristic functions of X;,Y;. These form a partition of unity, and extending p by
the Borel calculus they provide orthogonal projections with sum converging strongly to
1 (as p is non-degenerate).

From the assumption that each Y; has non-empty interior, as p is ample it follows
that the projections p(g;) have infinite dimensional range. Thus there exist isometries
V; from p(f;) into p(g;)9. Let V = ¥, V; in B($). Then V¥V = ¥, V*V; = X, o(fy),
the projection onto $) x. Likewise VV* is a projection with range in $)y. Finally each
V; commutes with each p(f; + g;) so as these have sum 1 (strongly), V=3p(fi +

gV 2 jp(fj +9j) = Xip(fi + 9i)Vp(fi + g;), which is controlled by J; & HY;) x
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We now need to establish the existence of such a Borel cover. Let {U;} be the
uniformly bounded open cover of Y provided either by separability or by hypothesis for
the latter part of the statement. Note that as Y is proper, whenever A is controlled, so
is A as this lies in U o Ao U for U any controlled open neighbourhood of the diagonal.
Thus {U;} is also uniformly bounded. Let Y7 = Uj, and inductively define ¥;, 1 =
U1\ Uy <i Y. IfY; 1 has empty interior then every point of U; 1 must be a limit
point of Y1 U---UY;, and so also is every point of T—H But Y] U---UY; is closed, so
whenever Y; has empty interior, it is empty. As Y; lies in U;, we have {Y;} uniformly
bounded as required. Passing to the subsequence of those Y; which are non-empty gives

the required cover. O

The final part of the above proposition ensures that we can find isometries which
cover ‘arbitrarily closely’ a given map «a. Specifically, for a proper metric space equipped
with a proper coarse structure, for any € > 0 there exist uniformly bounded open covers
all of whose sets have diameter at most €. This guarantees that there exist covering
isometries for which d(y, a(z)) < ¢ whenever (y,z) is in the support. We will refer to
coverings with this additional property as e-coverings.

We can now establish functoriality.

Theorem 2.34. Modulo natural isomorphism, the K-theory of the Roe algebra is in-
dependent of the choice of representation. It gives a functor on the category of proper
separable coarse spaces and coarse maps. For a: X —'Y a coarse map, the induced map

oy is given by Adyry: K*(C’;XX) — K*(Csz), where V is any isometry covering c.
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Proof. We have already established that such an isometry V' always exists, and that Ady,
maps C;XX to Csz. We must show that the induced map on K-theory is well-defined,
i.e. does not depend on the choice of isometry. Given this we deduce functoriality as
follows.

Let X 5 Y ﬁ) Z be a composition of coarse maps, and 9 x l) Dy 1) Nz a
composition of covering isometries. As a composition of controlled operators is controlled,
WYV is a covering isometry for 5 o o, and it follows that (8 o @), = Byay. The identity
map from X to X is covered by the identity operator, provided that both copies of X
are equipped with the same representation.

We may interpret this as functoriality on the category of pairs (X, p), with coarse
maps as morphisms. Suppose X is given two different representations. The identity
map (X, p1) = (X, pa) then induces a natural isomorphism at the level of K-theory, the
inverse being induced by the identity (X, p9) — (X, p1). Thus the K-theory does not
depend on the choice of representation, and in fact we have functoriality on the category
of proper coarse spaces and coarse maps.

All that remains is to establish that the induced map is well defined. If T' € C;XX ,
and V7, V5 are two covering isometries for a: X — Y, then define

Ady, (T) 0 0 0 1-nvy nwy
le 1 ,TQZ ,andU: ! 2

0 0 0 Ady,(T) WV 1-WVy
Then U is an involution and Ady; interchanges T7 and T5. As Vq,Vs cover «, for
1,7 = 1,2, the operator 0 & VzVJ* is controlled for X U, Y, so VzVJ* is controlled for

Y. By remark 2.28, Csz is an ideal in the algebra of controlled operators. Hence as
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inner automorphisms of an algebra induce the identity on the K-theory of an idea1,3
T AdV1 (T)®0and T — 0 AdV2 (T') induce the same isomorphism K *(C;X X)—

K*(MQ(C;Y Y)).Thus Ady;, Ady, induce the same maps as required. O

Remark 2.35. The argument showing independence of the choice of covering applies in
greater generality. For example suppose A, B are subalgebras of B($)x ), B(9y ), con-
taining C*X and C*Y as ideals, and V7, V5 are two unitaries (for simplicity) covering
a: X Y. If Adv1 , AdV2 both map A into B, and further V; V2* multiplies B into itself,
then they induce the same maps from K, (4) to K, (B), and also from K,(4/C*X) to
K,(B/C*Y). The argument is as above, the given condition ensuring that B is an ideal

in the algebra generated by V; VQ* along with B. This generalization will be useful later.

3Given J an ideal in an algebra A, the K-theory of the ideal injects into the K-theory of the
algebra D = {(a,a+j) |a € A,j € J}, while a unitary » in A gives a unitary (u,u) in D which
induces the identity on K-theory.



30

Chapter 3

K-theory for C, Coarse Geometry

In this chapter we will give some specific calculations for the K-theory groups of
the Roe algebra defined in the chapter 2. Throughout the chapter X will be a proper
metric space and Xy will denote X equipped with the Cjj coarse structure. We will
compute K*(C*XO) in some simple cases, and demonstrate some general methods by
which it is possible to calculate these groups for more complicated spaces. In fact the
general results will hold for any proper separable coarse space. The techniques developed
in this chapter to deal with some straightforward examples will also be used in chapter
4 in the discussion of the coarse Baum-Connes conjecture, as will some of the specific

calculations.

3.1 Rays and cones

In this section we will show some conditions on a space X for the K-theory of
C* X to vanish. We will make use of this in the following sections to calculate K,C* X
for other spaces by putting together the groups arising from simpler pieces.

The following technical lemma gathers together sufficient conditions on the alge-
bra for it to have trivial K-theory. It may be regarded as giving conditions under which
there is a homotopy from the identity to ‘the constant map at infinity.” We will make

many applications of this result.
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Definition 3.1. Let X be a proper separable coarse space, and let «;, be a sequence of

coarse maps X — X. Then the sequence oy,

e is properly supported if for any bounded set K, the intersection K N Range ay, is

non-empty for only finitely many k;

e is uniformly controlled if for every controlled set A there is a controlled set B 4

such that (z,2") € A implies that (ay(z), ap(z')) € B for all k;

e has uniformly close steps if there is a controlled set C such that (ay(z), a4 1(z)) €

C for all k and for all z € X.

Lemma 3.2 (Eilenberg swindle). Let X be a proper separable coarse space. Let oy,
be a sequence of coarse maps X — X with ag the identity. If oy, is properly supported,

uniformly controlled, and has uniformly close steps, then K, (C*X) = 0.

Proof. Let $ be the given representation space on which elements of C*X act. We
will show that there is a sequence V}, of covering isometries for oy such that for any
T € C*X (or in a matrix algebra over C*X) with T a projection or unitary defining an
element [T] € K*(C¥), there are well defined operators T' @ Ady, (T) @ Ady, Te...
and Ady, (T) & Ady, (T) & AdV3 (T)®... on H° = HO H ... which are equal at the
level of K-theory. As the inclusion of § into $H*° on the first component is a covering
isometry for the identity, this will imply that [7] = 0 in K, (C*X) and as [T] is arbitrary

it will follows that the groups vanish.
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Fix A C X x X a controlled open neighbourhood of the diagonal, and let V}. be

a covering isometry for oy, supported in

{(z,2) : (z,0p(z")) € A}.

As oy is the identity we may choose V{y to be the identity. Suppose T' € C*X is controlled
and let A be its support. Let B4 be the set provided by the uniform control hypothesis.
Then Ade T= VkTV];k is supported in AoB 4 oAT for all k, hence @@ Ade is controlled.

For a bounded set K let K/ = {z : 3(z,2’) € ATz’ € K}. Then K’ is bounded,
and if it does not meet the range of o, then the support of Ade T does not meet K x K.
Thus it follows that for any bounded set K, only finitely many of the terms Ade T have
support meeting K X K. Hence as each term is locally compact, the sum @Ade T
is also locally compact, and thus lies in C*X for the representation on $°°. As an
arbitrary element of C*X is a limit of controlled locally compact elements, it follows
that @ Ady, T lies in C*X forany T € C*X.

From [T] € K*(C*X), we have obtained elements [TGBAdV1 (T) ® Ady, (T)e...]
and [AdV1 (T) ® Ady, (T) & Ady, (T) & ...] as claimed. It remains to show that these

are equal. We now define a sequence of unitaries

ViriVe 1= VitV
Uk =

1- Vle: Vle;kJrl

It is not hard to check that each U is unitary and that composition with U maps

[‘(/)kg] to [Vka-l 8:| ThUSforU:UOEBUl@---,S:T@AdVI(T)EB... and S —



33
Ady, (T)®Ady, (T)®. .. we find that Adys takes [*g 8] to [%’ 8] We note that for each
k the operator VkV,;k is supported in A o AT, and the operator V}, +1V];.k is supported in
AoCo AT, where C' is provided by the hypothesis that o} has uniformly close steps.
Thus U is a controlled operator, and hence lies in the multiplier algebra of My(C*X).

As inner automorphisms of the multiplier algebra induce the identity on K-theory it we

conclude that the elements [S],[S'] are equal and hence [T] = 0 as required. O

Corollary 3.3. For the ray RT with the standard coarse structure, the K-theory groups

K, (C*RT) vanish.

Proof. Let ag: RT — R be the right translation ay(t) = k +t. It is clear that the
sequence is properly supported. To show that the sequence is uniformly controlled we
note that a controlled set is simply one which lies within some finite distance R of the
diagonal, and it is clear that if d(¢,#') < R then also d(oyg(t), ak(t/)) < R. Finally note
that for all k the distance d(ay,(t), gy 1(t)) is 1 for all ¢ which shows that the sequence

has uniformly close steps. U

In fact this may be generalized to a product of a ray with any other space. The
argument is the same, with «} taken to be as before in the direction of the ray, and to
be the identity in the transverse direction.

The proof for the Cj structure is similar.

Corollary 3.4. For the ray RY with the Cq coarse structure, the K-theory groups

K*(C*R{;) vanish.

Proof. Let ay: RT — RT be the right translation ap(t) = max{logk,t}. Again the

proper support hypothesis is clear.
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For the uniform control hypothesis, given a controlled set A there is a function
R € Cy(R") such that d(t,t') < R(t+t') for all (t,#') € A. Without loss of generality

we may assume that R is decreasing. Then for (¢,¢') € A certainly

d(ay(t), () < dt,t') < R(t+1).

If logk < m = max{t,t'} then, logk,t,#' < m and hence aj(t),at(t') < m. But
t+t' + R(0) > 2m, hence t + ¢ > 2m — R(0) > a(t) + ai(t') — R(0), and so as R is
decreasing

d(ag(t), ap(t) < R(t+1') < R(ag(t) + oy (') — R(0)).

On the other hand if logk > max{t, '} then d(ay(t),at(t')) = 0. Hence for all ¢,¢
and for all k, the pair (a(t), ag(t')) lies in the Cy controlled set By = {(t,t') |
d(t,t') < Rt +t — R(0))}.

Finally note that for all £ the distance d(ay(t), a4 1(t)) bounded by log(k+1) —
logk < 1/k and is zero if logk > t. Hence whenever ¢ > log ky then d(ay (1), ap41(t)) <

1/kq for all k& which gives uniformly close steps. O

This may again be generalized to certain products. Note that there are several
possible choices of metric on a product space X x Y, for example dp((:v,y), (:v/,y')) =
(d(z,z"YP+d(y, y')p)l/p where p € [1,00), and du, ((2,7), (z’, 1)) = max(d(z, z’), d(y, y)).
For sequences (or nets) (z;,y;) and (wg, y;) in X XY, the product metrics dp((z;,y;), (x;, y;))
are bounded (respectively tend to zero) if and only if both d(wi,:z;;) and d(yi,yg) are

bounded (respectively tend to zero). Hence the bounded coarse type of the product
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and the Cj coarse type of the product, do not depend on which metric is chosen. In
terms of operators, T is Cjy controlled if for any € > 0, there is a compact subset K
of X x Y, outside of which T has propagation at most ¢ in either direction; that is if

((z,y), (:Bl,y/)) € SuppT lies outside K x K, then d(w,w/),d(y,y’) <.

Definition 3.5. We will say that a compact metric space X is cone-like if there exists

a sequence 3; of maps X — X such that:

1. For each 4 there is a constant \; < 1 such that for all z,y in X, we have the

inequality d(B;(z), B;(y)) < Ajd(z,y).
2. The sequence 3; converges uniformly to the identity as ¢ tends to infinity.

Note in particular that for a compact space Y contained in a Hilbert space, and
for X a closed cone on Y within the Hilbert space of one dimension higher, X is cone-like.
The following proposition generalizes the result for a ray, to the product of a ray with a
cone-like space. In fact we will use this in the following section to show a generalization
to the product of a ray with any compact contractible space.

The following proposition is a first example of the more general notion of ‘coarse

homotopy equivalence.” This will be discussed in greater detail in chapter 4.
Proposition 3.6. If X is a cone-like space, then the K-theory of C*(R+ x X))o vanishes.

Proof. We will again use lemma 3.2. Let §8;,A; be given by the hypothesis on X. We
would like to assume that A;...\; — 0. It is clear that for some sequence of indices
n; the products )\?1 )\?’ tend to zero, and hence if each 3; and ); is repeated n;

times then the limit will be zero as required. Let oy be as in 3.4. Let v4(t,z) =
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(ag(t),Bg o0 fir10Bi(x)) for i = [t] <k, and y(t,2) = (o (t),z) if [t] > k. We

will show that the sequence 7 satisfies the conditions of the lemma. As usual the first
hypothesis is immediate.

Let dy((t,x), (t',2)) = [t — ¢/| and let d,((t, ), (',2)) = d(z,2). Given a

controlled set A, for any ¢ > 0 we may write A = K_ U A, where K_ is a bounded set,

and the distance functions d;,d, are less than € on A_. Let

By = {((t,z), (7)) : (¢, 2), (,5)) € A k=1,2,...}.

Clearly d;,d, are bounded by & on the pair ('yk(t,x),'yk(t',x')) for all k& and
all ((t,z),(t',2')) € A,. As K, is bounded choose be an upper bound i for t,#’
with ((¢,z), (t,2')) € K_. Then for all k£ > 4, we have d;, < Ag...)\;DiamX on
pairs (74 (t,z), 7 (', 2")) for ((t,z),(t',2")) € K,. For k sufficiently large, we have
Ap---AjDiam X < e and og(t) = ak(t/) for all ((¢t,z),(t',')) € K_. Hence for some
ko, if k > kg then d, is bounded by ¢, and d; = 0 on each pair (’yk(t,w),'yk(t/,w/)) with
((t,z),(t',2")) € K.. Thus By is contained in the union of a set on which dy,d, < €,
with a finite number of of images under ;. for k¥ < ky of K_.. As each such image is
bounded it follows that B4 is controlled.

Certainly dy(vg(t,2),v%41(t,7)) — 0 as t — oo; we established this in the proof
of 3.4. Given ¢ > 0 there is a kg such that for all k& > kg and for all z we have

d(By(z),r) < e. For t > kg, we have dy(vi(t,z),vk11(t2)) = d(y, Br1(y)) < € if

y=Ppo--oBir10Bi(r)and k > i = [t] ory =2 and k+1 = [t]. On the other hand if
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k+1 < [¢] then dy (v (t, 2), Yg41(t, ) = d(z,7) = 0. Thus dy (v (¢, 2), V41 (4 7)) = 0

as t — oo giving the third hypothesis. O

3.2 Homology properties

In this section we will establish a Mayer-Vietoris sequence for K,C*X. This is
based on a corresponding result for the bounded coarse structure appearing in [10]. We
will proceed to show that on the category of compact metrizable spaces X, we obtain a

generalized homology theory given by K,C*(X x R +)o-

Definition 3.7. For A C X x X controlled and Y C X closed, define the A-neighbourhood

of Y to be:

Y4 ={z € X | there exists y € Y with (z,y) € Aor z =y}

Definition 3.8. If B C X x X is controlled, we say it is near to Y if there exists

ACX x X, with BC Yy xYy.

For any A C X x X controlled, the inclusion Y — Y4 is a coarse equivalence.
There exist retractions Y4 — Y which are close to the identity, indeed we may define
a map r(y) =y for y € Y, and define r(z) = y for any y € Y with (z,y) € A, when
z € Y4\Y. Any such choice of r is then an inverse to Y < Y4 modulo closeness, hence

the inclusion is a coarse equivalence as claimed.
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Note that for X a proper metric space equipped with the Cj coarse structure, a

set is near to Y if and only if it is contained in a set

YR = {z € X | y € Y such that d(z,y) < R(d(zq,z) + d(zq,y))},

where R: Ry — R, is Cy and zg € X.

Definition 3.9. Suppose a representation p of Cy(X) on § is given, and take the in-
duced representations of C(Yy4) on p(xy A)f), where p is extended to bounded Borel
functions via the functional calculus. Define the ideal of C*X supported by Y to be
lim, 4 4C*Yy, where A is the collection of controlled open sets containing the diagonal

of Y x Y, directed by inclusion. Denote this by Iy-.

Note that this is an ideal, as for T € C*X with SuppT C B controlled, T -
C*Y4 C C*Ypoy, and C*Yy, - T C C*Y4,p5. Note also that for A a controlled open
neighbourhood of {(y,y) | vy € Y}, the induced representation of Cy(Yy) is ample. As
such A generate the coarse structure, Iy is equally the direct limit over all controlled
sets A, of the algebra of locally compact controlled operators with respect to the (not
necessarily ample) induced representation of Cy(Yy).

For any controlled A, as Y — Y} is a coarse equivalence, K, C*Y i) K,C*Yy,
and hence for A,B € A with A C B, we have K,C*Y — K,C*Y, — K,C*Yg.

Thus by continuity of K-theory under direct limits K,C*Y i) K, C*Iy, the map being

induced by any isometry covering ¥ — X.
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Definition 3.10. Suppose that X =Y U Z, with Y, Z closed in X. If for all controlled
A C X x X there exists B C X x X controlled, such that Y4 N Z4 C (Y N Z)p, then

the decomposition is coarsely excisive.

Remark 3.11. In the cases of the Cj and bounded coarse structures on a path metric

space X, any decompostion of X into closed sets is excisive.
Lemma 3.12. If X = Y UZ is a coarsely excisive decomposition, then Iynz = Iy NIy.

Proof. Certainly (Y NX)4 CYy,Z4 for all A, so Iynyz C Iy, Iz. Conversely given T
in Iy NIz, we may write T as T1Ty in Iy I; = Iyy N Iz. We may then approximate
Ty, Ty by T3,Ty, with T3 in C*Y 4, and Ty in C*YA/ for some open controlled A4, A’.

Note
SuppT3Ty C SuppT30(Z 4 X Z 1) N (Y x Yy) o SuppTy C (YpN Zp) x (Yp N Zp)

for B O SuppT1j o A" U A o Supp Ty. Now as the decomposition is excisive, and X is
proper, there exists D open and controlled, with Yg N Zg C (Y N Z)p. Thus T3Ty lies

in C*(Y N Z)p C Iynz, so Iy is dense in and hence is equal to Iy N I. O
We now obtain a Mayer-Vietoris sequence for coarsely excisive decompositions.

Theorem 3.13. For a coarsely excisive decomposition X =Y U Z, there is a cyclic

Mayer Vietoris exact sequence:

o K (CF(Y N 2) 222 k(o' @ K, (CF7) LTI i (cFX)

O K, ((C*(YNZ) ...
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where 11,19 are respectively the inclusions of Y NZ into Y, Z, and j1,j9 are respectively

the inclusions of Y, Z into X.

Proof. Given the above observations it suffices to establish an exact sequence:

---K*(IYHZ) — K*(IY) EBI(>1<(IZ) - K*(C*X) - K*—I(IYﬂZ) ...

By the lemma Iy 7 = Iy NIz. Letting P = p(xy) for p the representation of Cjy(X), we
will show that for controlled T in C* X, TP lies in Iy-. Certainly it is locally compact, and
as A = SuppT is controlled we have SuppTP C Y4 xY near Y. Likewise T(1—P) € I,
so Iy + Iz is dense in C*X, and hence equals this.

We now use a general construction to show that these conditions imply exactness

of the sequence. Define

J=S8(C*X)={f €C0,1]@ C*X | f(0) = f(1) = 0}

A={feC[0,1]0C*X | f(0) € Iy, f(1) € Iz}.

Note that the *-homomorphism A — Iy @ I given by f — f(0) @ f(1) has kernel J
and is onto, so A/J = Iy @ I;. By homotopy invariance, the inclusion of Iyz into
C[0,1] ® Iy 7 as constant functions, induces an isomorphism on K-theory. The image

of C[0,1] ® Iy 7 is an ideal in A, and as Iy + I; = C* X, the quotient is given by

A/C[0,1] ® Iynz = Cp[0,1) ® Iy /Cp[0,1) ® Iy 7z © Cy(0,1] @ I7/Cp(0,1] ® Iy z7-
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Again by homotopy invariance, this has trivial K-theory, so by the cyclic exact sequence
in K-theory, Iynz < A also induces an isomorphism on K-theory. The suspension
isomorphism arising from the short exact sequence 0 — J — C[0,1) ® C*X — C*X —
0, identifies K,C*X with K, _1J, and hence we have identified the terms of the K-
theory exact sequence arising from 0 - J — A — A/J — 0, with those of the claimed
exact sequence.

That the map K, (Iyz) = Ky(Iy)®K,(I7) is induced by the diagonal inclusion
follows from the fact that this inclusion is the composition [y 7 — A = A/J = Iy & 1.

For the map K, (Iy) — K,(C*X), consider the following commutative ladder:

0 y J » {feC0,1)®C*X | f(0)ely} —— Iy —— 0
0 — — C[0,1) ® C*X — = C*X —— 0

The map under consideration is given by the boundary map in K-theory for the first se-
quence, composed with the suspension isomorphism arising from the second. Naturality
of the boundary map implies that this is the same as the map induced from Iy — C*X.
For I; < C*X we get the same answer except for a change of sign due to the different

suspension isomorphism arising from the cone C(0,1] ® C*X. O

We will now discuss further the case of C*(X x R + )0, where X is a compact
metrizable space.

If X,Y are compact, then every continuous map from X to Y is topologically
proper and uniformly continuous, and the same is true for a product a x id from X x R

to Y x R, . Hence lemma 2.18 implies that such maps are C( coarse, so it is correct to
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talk about compact metrizable spaces X,Y in this context rather than compact metric
spaces, as the coarse type of (X x Ry )q is a homeomorphism invariant of X.

We will now show that these spaces behave well with respect to excision, indeed

any decomposition which is a product at infinity is excisive.

Lemma 3.14. Suppose X is compact and metrizable, and that Y,Z are closed subsets
of X with X =Y UZ. Let W be a proper metric space. If Y N Z is non-empty, then

Y xWUZ x W is a coarsely ezcisive decomposition of (X x W).

Proof. Let Y =Y x W,Z' = Z x W. We need to show that for all R: R, — Ry
tending to zero at infinity, there exists R’ : R + — Ry again Cy, such that YII% N Z}z C
Y'nz' R!» Where the notation Yp etc. is as above. Equivalently we need to show that
(z,t) = d(z,Y NZ) is Cjy on Y]/% N Z}%'

Now let (z,,,t,,) be a sequence in YII% N Z}%, with ¢,, = co. As Y N Z is non-empty
such sequences exist unless W is compact in which case the result is trivial. As (z,,,t,,) €
Y}/z it follows that d(z,,Y) — 0 as n — oo, and similarly for d(z,,Z). Consider
d(z,,Y N Z), and note that all subsequences of z,, have convergent subsubsequences,
which from the above must tend to a point of Y N Z. It follows that d(z,,,Y N Z) — 0
for any such sequence (z,,,t,), and hence (z,t) — d(z,Y N Z) is Cy on YII% N ZJIR as

required. O

We have now shown enough to deduce that X — K,(C*(X x Ry )g) defines a
generalized reduced homology theory on the category of compact metrizable spaces and

continuous maps. This can be stated abstractly as follows.
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Definition 3.15. Let C be a category whose objects are topological spaces, and with
all continuous maps as morphisms. A decomposition in C of an object X is a pair of
subsets Y, Z of X, with X = Y U Z, and such that Y, Z, Y N Z are all (homeomorphic

to) objects.

Lemma 3.16. Let C be a category whose objects are topological spaces, and with all
continuous maps as morphisms, and let ﬁ* be a covariant functor from C to the category

of abelian groups. Suppose that for any object X of C

e the product X x [0,1], the closed cone ConeX = X x [0, 1)+ and the suspension

SX =X x (0, 1)+ are objects of X ;
. ﬁ* Cone X is the trivial group;

o for every decomposition of X inC as YUZ, there is a Mayer- Vietoris exact sequence

i h(YNZ) = hy(Y)®hy(Z) = h(X) = by 1(YNZ) — ...

where: the homomorphisms h,(Y N Z) to hy(Y),hy(Z) are induced from the in-
clusions of Y N Z into Y, Z; the homomorphisms hy(Y),hy(Z) to hy(X) are re-
spectively +/— the maps induced from the inclusions of Y, Z into X ; the boundary

map 1is natural.

Then iz* is homotopy invariant, that is for any continuous map n: X x [0,1] =Y, and
for ni(z) = n(=,4), we have nyy = N1

Proof. Let ¢; be the inclusions of X into X x [0,1] given by ¢;(z) = (z,7). Since

Nix = (N0 ;)% = NyP;x, it suffices to show that ¢y, and ¢1, are equal. The projection
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m: X x[0,1] = X induces a left inverse to both ¢g, and ¢y, so it suffices to prove that
®0x» P1+ are isomorphisms, as then both give the inverse to m,.

We begin by identifying SX with (X x (=1,2))". We decompose this as Y U Z

where Y = (X x (=1,1])" and Z = (X x [0,2))T. Now let Y/ = (X x (~1,0))" and

observe that SX can also be decomposed as Y’ U Z. We have Mayer-Vietoris sequences

for each decomposition, and as Y’ includes into Y we get a commutative ladder:

Ry 1 (V) © By 1(2) —— h 1 8X) =2 R(Xx{0}) —— R () @ B (2)
l H l‘bﬂ* l
i"*—l—l (Y) @ 77‘*+1(Z) E— 77‘*+1(SX) L) i"* (XX [0, 1]) —_— il* (Y) @ i"* (Z)

But h, (Y), b (Y'), hy(Z) are all zero, and so the boundary maps are isomorphisms. This

implies ¢, is also an isomorphism as required, and similarly so is ¢1,. O

Let us denote K, (C*(X x R,.)g) as K,_1(X); it will be convenient to introduce

this dimension shift.
Corollary 3.17. The functor 16* is homotopy invariant.

Proof. Let C be the category of (non-empty) compact metrizable spaces, and continuous
maps. The objects Cone X and SX are the usual topological constructions. We have
functoriality, vanishing for cone-like spaces, and we have a Mayer-Vietoris sequence for
closed intersecting subsets Y, Z with YUZ = X. We can construct Cone X by embedding
X in a codimension one subspace of a Hilbert space and then building the cone in this
Hilbert space. The metric inherited from the Hilbert space is cone-like hence we have

all the hypotheses to apply the lemma. O
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3.3 Examples of K,C*X

In this section our aim is just to compute some examples. Note that the results
of the previous section already allow us to compute the K-theory for the Roe algebras
associated to a large class of spaces.

The results for products of the form X x R, with X compact also lead us to

results for spaces of the form X; = X x R. We will make useof this below.

Lemma 3.18. Let X be a compact metric space. The spaces X1 = X x R and X9 =
(X x {0,1}) x Ry are Cy coarsely equivalent. Specifically the map Xy to Xo given by
a: (z,t) — (w,x(_oo 0) (t),|t]), and the map Xq to Xy given by B: (z,i,t) — (z, (—l)it)

are coarse equivalences.

Proof. Certainly the maps are proper. If d(a(z),a(z’)) > d(z,z), then z,z’ must lie
in the compact set X x [—1,1], hence « is coarse. Conversely any Cy controlled subset
of X9 x X is of the form A = BU K, with K bounded and B C (X x {0} x Ry )2 U
(X x {1} x R+)2. For a pair (z,y) € B we have d(8(x), 8(y)) = d(z,y), while the image
under § x  of K will again be bounded. Hence § is also C(y coarse. (Note however that
it is not coarse for the standard structure as it can increase distances arbitrarily.) The
composition 8o « is the identity, while « o 8 differs from the identity only on a compact
set — specifically it maps X x {1} x {0} to X x {0} x {0} — so both compositions are

close to the identity. O
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~ Z i=mn mod 2
Example 3.19. ;5" = . For n = 0 we deduce this from the

0 2=n+1 mod 2
Mayer-Vietoris sequence for the decomposition R = (—00,0] U [0,00), where we iden-
tify 50 x R, with R via the coarse equivalence described above. This decomposi-
tion is coarsely excisive, indeed choosing z(j = 0 as basepoint we have (—oo, 0] Rz N
[0, oo)R’w0 = {O}R,xo for all functions R. As the K-theory for rays is trivial, from the
Mayer-Vietoris sequence the K-theory for R is obtained from that of {0} by a dimension
shift, and by example 2.29 we have K;C*({0}) = Z for i = 0 and vanishes for i = 1.
The result for n > 0 is given by induction using the usual suspension isomorphism for a

reduced homology.

The above example is closely related to the question of calculating the groups
K*C*]Rg. We obtain the case of R! immediately from the above, however while there is
a coarse map ]Rg — 8" X RT for all n, it is a coarse equivalence only when n = 1. For
n > 1 we may take a decomposition R = R (—o0,0]U R 1 [0,00), however we
have not yet developed the theory required to show that K*C*(Rn_1 X R+)0 is trivial.

We will now move on to slightly more complicated spaces. let us consider spaces
which are ‘periodic’ along a ray, rather than ‘constant’. Examples of these would include
disjoint unions |_|fi0 X, with X compact metrizable. The Cj disjoint union structure in
this case is the same as that of (X x N)y. By lemmas 2.18 and 3.14, we again need only

consider the space X up to homeomorphism, and we have good excision properties.
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Lemma 3.20. K(C*Ny = ([[NZ)/G and K1C*Ny = 0, where [] Z denotes the infinite
direct product, that is all sequences of integers, and G is the subgroup of finitely supported

sequences whose sum is zero.

Proof. Let 9 be a separable infinite dimensional Hilbert space, and represent CyN on
H = l2(N) ® §', acting by pointwise multiplication on the first factor. An operator T
on ) is given by an infinite matrix T4 of operators on $’. Local compactness is the
condition that each T;; is a compact operator on $’. As N is uniformly discrete, for an
operator to have Cp-propagation, it must have no propagation outside some compact
set. In other words, there are only finitely many pairs (7, j) with ¢ # j and T;; # 0.

Let A, = ﬁ(l2{0, L n}e9)@I®{n+1,n+2,... }®K($). The above observa-
tions amount to the statement that each locally compact Cp-propagation operator lies in
some Ay, hence C*Ny = lim,,, 4,,. To compute the K-theory of A, note that each A,
just consists of sequences of compact operators. A projection over A~n is therefore just
a sequence of projections over fi, and the restriction to each factor gives a map to the
K-theory of & (given by the rank in the case where the K-theory element is defined by
a projection in 8). This produces a homomorphism KyA4,, — [] N>n Z. We will show
that this is an isomorphism.

Note that M (R) = K. Thus it is not hard to show that every element of K(RK)
can be represented by a projection in #; we do not need to pass to the matrix algebra.
Moreover if [p] = [p’] in K-theory, then there is a projection ¢ € & such that p @ ¢ is
Murray von-Neumann equivalent to p’ @ ¢ in the algebra My (&). Indeed if B is any C*-
algebra then the same is true for Ky(&® B). We will use this for &, and for 4,, & AR,

to show that the homomorphism KgA4,, — [[n>,, Z is injective. Given two sequences
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(p1,p9,...) and (p’l,p/2, ...) of projections in &, if the images in HNZ” Z are equal then
for each i there is a projection g; such that p; ® ¢; is Murray von-Neumann equivalent
to p; @ ¢;, and the sequence of equivalences gives a Murray von-Neumann equivalence
between (p; @ q1,p9 ® ¢1,-..) and (pll &> ql,p/2 ® qq,..-). Hence two elements with
the same image in [] N>n 7Z must be equal. Surjectivity is easy as we may just choose
appropriate sequences of finite rank projections, and hence Ky4,, =[] N>n 7.

The map A”O — A”l’ for ng < nq is given by including all terms up to nq
into a single larger algebra of compact operators. Hence the map on K-theory is given
by (rno,...,rnl,rn1+1,...) — (rno + 4 rnl,rn1+1,...). Each of these maps is
surjective, so KOC*NO = lim,,, Kg4,, is a quotient of KyAy = [[Z. Let G be the kernel
of this, and note that (rg,r(,...) € G if and only if (rg + 7y +--- + 7, 741,...) =0
for n sufficiently large. Hence G is as claimed.

To establish that the K; group vanishes it suffices to show this for each algebra

A,,. This is straightforward if we identify K;(4,,) with Ky(4,, ® Cy(R)). Again an

element is represented by a sequence (py,p9,...) of projections, this time in & ® Cy(R).
As Ky(8 ® Cy(R)) = K1(R) vanishes, for each ¢ there is a projection ¢; with p; @ g;
Murray von-Neumann equivalent to ¢;. Hence (p1®qq,pa®qo,...) is equal to (¢, ¢9,...)

at the level of K-theory, so (p1,p9,-..) is zero, and the group vanishes. O

For the remainder of this section, G will denote the subgroup of [[Z consisting
of finitely supported sequences whose sum is zero.
Given the calculation for a sequence of points, we may now extend to other spaces

of the form X x N using the Mayer-Vietoris sequence. Note however that a priori we
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do not have homotopy invariance for the functor X — K,C*(X x N)j, however the

following example will lead to homotopy invariance under certain conditions.

Example 3.21. Let I = [0,1]. Then the map K,(C*Ny) — K,(C*(I" x N)y) is an
isomorphism. Certainly the map is injective, as the retraction I"" x N — N will induce a
left inverse. To establish the isomorphism we will show that this retraction also induces
an injection.

Inductively we assume that K,(C*Ny) — K,(C*(I" x N)g) is an isomorphism
and we will show that the same is true for I x N. Embed I"t! x N coarsely into
R as X = 1" x UZ[26,2i+1], and let Y = I" x [J$2[2i 4 1, 2i +2]. The retraction
that we wish to prove is injective is then the map from X to 2N. Note that the union
XUY =TI" xRy is Cj coarsely excisive. From 3.6 we know that K,C*(X UY) is
trivial. Hence the Mayer-Vietoris sequence gives K, C*(X NY)y = K, C* Xy @ K, C*Y.
The intersection Y N Z is I" x N so inductively K;C*(X NY)y = 0, and the group
K1C* X vanishes.

For K(j, we observe that there is a surjection KOC*XO @ KOC*YO to KOC*QNO )
KyC*(2N+1)g. If this is an injection then KyC* Xy & K;C*2N) as claimed. Inductively
KyC*'Ny = KyC*(I" x N)g = KgC*(X NY)( and from the Mayer-Vietoris sequence
this is also isomorphic to KoC* Xy @ K(C*Y[y. We therefore identify KyC* X® KyC*Y)
with KOC*NO, and with this identification we will show that the surjection KOC*NO —
Ky C*2Ny @ KyC* (2N + 1) is an isomorphism.

We may explicitly compute this map; in terms of sequences (modulo G), we get
(ro,7r1,---) = (ro,r1 + 19,73 +74,...)® (rg + 71,72 +73,...). Now suppose this gives

a pair of sequnces in G @ G. Then for all n sufficiently large, rg 471 + -+ + 79, = 0 and
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rg+r1+ -+ +r9p41 = 0. Thus the sequence r(,rq,... has finite support and its sum
is zero, i.e. (rg,71,...) € G. Hence the map [[Z/G — [[Z/G @ [[Z/G is injective as

required.

Let us now use this to establish a homotopy invariance result for K,C*(X x N).
It will be convenient to use a reduced version of this; we introduce the notation I@T(X ) =

Ker(K,C*(X x N)g = K,C*Ny).

Lemma 3.22. The functor IC*N is homotopy invariant on the category of finite simplicial

complezes.

Proof. We will apply lemma 3.16. Let C be the category of compact metrizable spaces
admitting a finite triangulation, with continuous maps as morphisms. Note that if X
admits a triangulation, then so do Cone X and SX. We have a Mayer-Vietoris sequence
for a decomposition of X into two subcomplexes Y, Z and hence all that remains is to
show that K*N(Cone X) vanishes for all X. This is a simple induction over the set of
simplicial complexes, partially ordered by inclusion. If X is a single simplex, then so is
Cone X. Thus Cone X x N is Cj-coarsely equivalent to I ™ x N, so by the above example
K*N Cone X = 0. Otherwise X = Y U Z with Y, Z proper subcomplexes. Note that
Cone YNCone Z = Cone(Y NZ) where by convention we take the cone on the empty set to
be a point. Hence by induction, 1615 ConeY = I@IE Cone Z = Iﬁ?(ConeY N Cone Z) = 0.

The Mayer Vietoris sequence then shows that K*N(Cone X) vanishes. O
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Example 3.23. IC?IS" = . In the case n = 0 this is

0 1=n+1 mod 2
canonically identified with a subgroup of K,C*Ny allowing us to identify ‘generators.’
For n > 0 we identify elements via a suspension isomorphism.

Homotopy invariance and the tautological vanishing for a point are all that is
needed for the suspension isomorphism, so we will just make the calculation for n = 0,
as in 3.19. Certainly the Ky group vanishes. For K, regard the map SY x N = N as
the map N — N given by n — |n/2]. Then the induced map on the K group [[Z/G is
given by (rg,r1,79,...) + (rg + r1,72 + r3,...), which has kernel whose elements are
represented by sequences (rg,r1,79,...) with ro,, = —rg, 1 for all n > n( sufficiently
large and 7 +--- + Tong+1 = 0. Such elements may in fact be represented by sequences
with ro, = —rgp, 41 for all n, so KON(SO) is the image of the map [[NZ — [INZ/G,
given by (rg,r1,79,...) — (rg, —70,71, —T1,--.) + G. The kernel of this map is Py Z,
so its image is isomorphic to [y Z/ & Z. Hence IC(I)\I (SO) is the isomorphic image of

[INZ/@NZin ][N Z/G.

As a final example we will make use of the above to calculate the groups for a

periodic space which is not a product.

Example 3.24. Let X be the ‘infinite ladder’ given by taking a surface with four bound-
ary components and no handles, that is a tubular H, and attaching infinitely many copies
of this (all of the same size) together along pairs of boundary components, see figure 3.1.

We will take the construction to be infinite only in one direction. Alternatively we
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may think of X as given by removing infinitely many pairs of discs from S LR +, and

attaching a cylinder S 1 % I to each the pair of boundary circles.

Fig. 3.1. Decomposition of the ladder space

First we will compute IE*N(H ) for H the surface with four boundary components.
From a cylinder (which of course is homotopy equivalent to a circle), we can obtain a
surface with three boundary components, which we shall call T, by glueing an interval
in the boundary, to an interval in the boundary of another cylinder. Note that in
the corresponding Mayer-Vietoris sequence, all but two of the groups vanish, and we
obtain KN(T) = KYs! @ KYs! = [[2/@Z @ [[Z/ @Z, while KY(T) = 0. The
two summands correspond to the inclusion of two of the three boundary components,

and by homotopy invariance the inclusion of the third boundary component is given
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by (rg,71,--.) — £(rg,r1,---) ® £(rg,71,-.-) modulo € Z, where the signs depend
on the choice of orientations. Repeating the construction to add another boundary
component gives another copy of [[ Z/ € Z in the I&II\I(H ) group, and will give Ie(ITI(H ) =
0. It will be convenient to take the three ‘generators’ to be given by the inclusion of
a circle dividing the surface into two copies of T, and the inclusion of one of the other
boundary components of each T. The inclusion of the other two circles will then be
given by (rg,r1,...) — (rg,7r1,...) ® (=19, —71,...) ®(0,0,...), and by (rg,r1,...) —
(rg,r1,---) ®(0,0,...) ® (—rg, =71, --)-

Now let Y be the subset of X given by taking every second copy of H from which
X was built, so Y is an infinite disjoint union of copies of H. Let Z be the disjoint
union of all the other pieces making up X. This gives a coarsely excisive decomposition
of X, and we understand the K-theory for the pieces Y and Z. For Y N Z we will
need to compute I€§(5’1 U Sl). Take the decomposition of S' L S as the usion of S
with S! U {*} with a point. As K(I?I(Sl) = 0 this decompoition gives I%IIN(Sl U Sl) =
}@1\](51) @}611\1(51) and I%ON(S1 U Sl) = 163\1(51 L {*}). Decomposing stu {*} as stus?
gives 16%1(51 U Sl) = I@ON(SO)

Note that there is an inclusion of the ray into X and a retraction from X to the
ray. This takes Y, Z to disjoint unions of intervals, and with Y N Z mapping to N + 1.
Hence we may reduce the exact sequence for X = Y U Z, by the exact sequence for
this decomposition of the ray. That is, we take the kernels of the maps induced by the
retraction, and the original sequence is the direct sum of the reduced sequence with the
exact sequence for the decomposition of the ray. Applying example 3.21 we see that this

reduction replaces K,C* (Y NZ)y with /C*N(S1 |_|51) and replaces K, C*Yy@K,C* Zj with
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IGIf(H ) ® IG*N(H ). The other terms in the sequence remain unaffected, as the K-theory

for the ray vanishes. We obtain the following exact sequence:

£stusly — e H) ——  KoC*Xg

I |

KiC*Xy +—— KN H) @ £Y(H) «—— KN (stush

Consider the map 1611\1(51 U Sl) - I@II\I(H) ) I@II\I(H) Elements of the latter
group are given by two triples of sequences, modulo @ Z. Corresponding to the fact
that in constructing X from Y,Z we are interleaving the components of one with the
other, let us instead represent elements of the group by a single triple of sequences, given
by interleaving each sequence of the first triple with the corresponding sequence of the

second. Then the map is given by

0: (rg,r1,---) ® (s0,81,---) —

(0,80 + 81,81 +82,--.) ®(0,mg — 59,71 — 81,...) ® (rg — 80,71 — $15---)

modulo @ Z. An element of the kernel may be represented by a pair of the form
(ry—ryry—7,...) ® (—7r,7,—1,7,...), hence as IGON(H) =0, we get K,C*"Xg = Z. We
may think of the generator as being analogous to that for st x R, , indeed we may
consider it to be an ‘orientation class’ for the manifold. Elements of the image are all
those triples with the third sequence given by a left shift of the second. The image of
the map I@IIN(H) @ /CIFI(H) to K1C* Xy is isomprhic to the quotient of ICII\I(H) @ I@IFI(H)

by the image of #, and we see that this is [[Z/ P Z.
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Now consider the inclusion of S1 x N into X , as loops around the holes of the
ladder. The decomposition of this space given by intersection with the pieces Y, Z, is
the decomposition into pieces of the form I x N. The boundary map for the reduced
sequence for this decomposition is the suspension isomorphism. On the other hand as
the inclusion SO < S' U S induces an isomorphism on I&ON, we have the following

commutative diagram:

KIC*XO E— I@g\I(Sl L Sl)
This provides a splitting of the short exact sequence

0 [[2/@z— K1C* Xy — K (5T ush) —o,
N N

and hence we get K1C* X = [[NZ/@ONZ® [IyZ/ Py Z, where the two sequences of
‘generators’ are given by the inclusions of the loops through the holes, and the inclusions

of loops around the holes of the ladder.
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Chapter 4

The C, Index

In this chapter we will associate an index in the K-theory of C’*XO to certain
differential operators on bundles over a Riemannian manifold X. The main result of
this chapter is a vanishing theorem giving certain conditions under which this index will
be zero. In particular we will establish that there is an index associated to the real
spinor Dirac operator over a complete Riemannian manifold, and that this vanishes if
the manifold has positive scalar curvature tending to infinity.

Throughout the chapter we will assume X to be a separable smooth manifold,
equipped with a complete Riemannian metric. The metric will be denoted (., .), while
(., «) will denote the inner product given by integration against the volume form. Com-
pleteness ensures that the metric is proper, and hence the standard and Cj coarse struc-

tures on X derived from the Riemannian metric will also be proper.

4.1 Recap of the bounded coarse index

For comparison with the Cj construction, we will begin with a brief discussion of
the coarse index in C*X where X is given the standard metric coarse structure. This
result appears in [19]. Some of the technical aspects of this discussion will be avoided
for now, but will appear later in the chapter as needed for the development of the Cj

theory.
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Let S be a bundle over a complete Riemannian manifold X and let D be an op-

erator of Dirac type. Then using the functional calculus we produce a bounded operator

X(D) where x is a continuous function on R tending to £1 at £oo. It may be shown

that this operator lies in D*X. For any other such function X/, the difference y — X, lies

in Cp(R) and consequently x(D) —x'(D) = (x—x)(D) lies in C*X. Likewise X(D)2 -1

also lies in C*X. Hence for ¢: D*X — D*X/C*X the quotient map, g(x(D)) is an
involution in D*X/C* X, and this is independent of the choice of x.

Associated to the short exact sequence
0 C*X - D*X - D*X/C*X — 0,
is a long exact sequence in K-theory:
o K1 (D X) 25 K,y 1 (DFX)CFX) 5 K (CFX) =

The projection (g(x(D)) + 1)/2 gives an element in Ky(D*X/C*X), and we define the
index to be Index(D) = 9[(q(x(D)) +1)/2] in K1(C*X). If the bundle has a Zy-grading
with respect to which D is odd, then we will require x to be an odd function. Then
q(x(D)) is an odd involution, and so defines an element of K1(D*X/C*X). In this case
we obtain an index in the even K-theory, again by applying the boundary map.

The square of the Dirac operator is given by the Weitzenbock formula, as the
connection Laplacian plus a curvature term. In the case of the spinor Dirac operator, this

term is multiplication by x/4, where « is the scalar curvature. Hence as the Laplacian is
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a positive operator, it follows that for a manifold with uniformly positive scalar curvature
D?is strictly positive. Thus there is an interval about zero not meeting the spectrum of
D.

Given these conditions we may choose x to be identically 1 on the positive spec-
trum of D, and identically —1 on the negative spectrum. In which case x(D) is itself an
involution, and so defines an element in the K-theory of D*X. The index is then given
by applying 0 o g, to this. By exactness the index vanishes, and we therefore conclude

that the index provides an obstruction to uniformly positive scalar curvature.

4.2 Operators of Dirac type

In this section we will give an overview of the theory of Dirac operators, cf.

[12],[20]. In particular we will be interested in applying the functional calculus to them.

Definition 4.1. The Clifford algebra of a real vector space V', denoted CI(V), is the
quotient of the tensor algebra RV @ (Ve V) (VeVeV)a®... of V, by the relations
VRV = —||'u||2, for each v in V. We make the Clifford algebra into a *-algebra by defining

v* = —v for v in V, and equip it with a grading by defining vectors v to be odd.

Note that the relations respect the involution and grading. When V' is n-dimensional,
the algebra has dimension 2"; if {eq,...,e,} is a basis for V, then {6111 6122 ... ef{l \
i1y .-y € {0,1}} is a basis for C1(V). To a vector bundle S there is associated a bundle
CI(S) of Clifford algebras with fibre C1(S,,) at z, and a local trivialisation of S gives rise

to a local trivialisation of C1(S).
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Definition 4.2. A Clifford bundle over X is a Hermitian vector bundle S over X
equipped with a bundle morphism from CI(T*X) to the bundle End(S) of endomor-
phisms of S, which is a *-algebra homomorphism on each fibre. A graded Clifford bundle
is a Clifford bundle S equipped with a Zg-grading, and such that the given morphism
also preserves the grading on the fibres. For £ in T; X, the map on S, which this induces

will be written s — £s and will be referred to as Clifford multiplication.

Definition 4.3. A Dirac connection on a Clifford bundle S, is an affine connection V

on S such that for V' a vector field on X and sq, s9, s sections of S
1. V(s1,89) = (Vys1,82) + (1, Vyrsg) and

2. Vy(€s) = &EVys + Vi (§)s where the last connection term is the Levi-Civita

connection on T*X.

If S is graded, we further require that V is compatible with this, that is V splits to give

connections separately on the positive and negative parts of S.
We may now define operators of Dirac type.

Definition 4.4. Let S be a Clifford bundle equipped with a Dirac connection. Then

the Dirac operator D on S is the operator given locally by the formula

Ds = ZfivViS
?

where {V;} is a local orthonormal frame for TX and {¢;} is the dual frame.

It is straightforward to establish that this local definition does not depend on the

choice of local orthonormal frame, and hence D is well defined. We note immediately that
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for S a graded Clifford bundle, the operator D is odd, as VVz‘ is even and multiplication

by ¢; is odd.
Lemma 4.5. Dirac operators are formally self-adjoint.

Proof. Let S, V, and D be as above. Let s; and s9 be sections of S, and let v denote
the volume form on X. We need to check that [((Dsq,s9) — (s1,Ds9))v = 0. Let {V;}
be a local orthonormal frame for TX and let {¢;} be the dual frame. Given a point = in

X we may choose these such that at z we have VVifi = 0. Then

((Ds1.82) = (51:D52))e = D ((&iVy;51582) = (51,6 Vy;52))e
= > ((Vyéists2) + (€is1: Vi;52)z

= ) Vi(&s1,59)s

Define a 1-form w by w(W) = ({s1,s9), where { = (W,.). In coordinates w(V;) =

(&;s1,s2)- Applying the Hodge star, we have locally

=3 (651,89)(~1) TIELA - AE I NE I A NEp,

)

where X has dimension n. Then d(xw) = > V;(;51,59)§1 A--- A&, = D Vi(§;51,59)v.
Thus at the point z we have (Dsq,s9) — (s1, Ds9)v = d(*w). As this equation does not
depend on the choice of coordinates, it follows that this holds for all z. Thus the integral

is 0 by Stokes’ theorem. O

We will now state some standard results about differential operators in general,

and Dirac operators in particular. The following three results, which we will state without



61

proof, appear in [9]. Other versions of these (in the context of compact manifolds) appear

in detail in [20].

Proposition 4.6. Let D be any formally self-adjoint first order linear differential oper-
ator on a bundle S over X. Let s be a compactly supported section in LZ(X, S). Then s
is in the minimal domain of D if and only if it is in the mazimal domain. In particular
if X is compact then the minimal and mazimal domain are the same, so D is essentially

self-adjoint. O

Certainly any section may be approximated by compactly supported sections, and
we may achieve this via multiplication by a sequence of smooth and compactly supported
functions f; on X. The difficulty that may in general arise, is with the commutators
[D, f;]. However for a Dirac operator, completeness of X guarantees the existence of
such a sequence with the further property that [D, f;] tends to 0 in norm. From this and

the previous two results, the following proposition may be derived.

Proposition 4.7. Let S be a Clifford bundle over a complete Riemannian manifold X,

and let D be a Dirac operator on S. Then D is essentially self-adjoint. O

Given the essential self-adjointness of a Dirac operator D we will generally not
distinguish between D and its unique closure. Essential self-adjointness also allows us to
make use of the functional calculus to define bounded operators (D), for 9 a continuous
bounded function on R, or even a bounded Borel function.

One further result will be required; a result about ellipticity. Rather than define
ellipticity here, we will just note that in particular all Dirac operators are elliptic. The

domain of the closure of D may be equipped with a Hilbert space structure, and is called
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a Sobolev space. Essential self-adjointness implies D has real spectrum so (D + z')_1
is a bounded operator on L2(X ,S). Ellipticity implies moreover that this is bounded
as a map from L2(X ,S) to the Sobolev space. The inclusion of the Sobolev space into
I? (X, S) is locally compact, and hence so is (D + i)_l as an operator on L2(X, S). The

functional calculus generalises this to other functions of D. The essential part of this for

our purposes is packaged in the following theorem.

Theorem 4.8. Let D be a Dirac operator on a Clifford bundle S. Then for 1 in Cy(R),

the operator (D) on LZ(X, S) is locally compact. O

Another result arising from ellipticity is that whenever Ds is smooth, in fact the
section s must itself be smooth. This is called elliptic regularity, and hints of this will
arise later.

For the remainder of this section, S will be a Clifford bundle, equipped with a
Dirac connection, and D will be the associated Dirac operator. The following two results

demonstrates a relation between Dirac operators are coarse geometry, see [19].
Proposition 4.9. The wave operator "D has propagation at most |t|.

Proof. Tt suffices to show for K, K’ closed subsets of X, with d(K, K') > |t|, and for s a
section supported in K, that the support of D5 does not meet K'. We will suppose
that ¢ > 0; replacing D with —D will then give the full result.

Choose T with t < T' < d(K, K'). There exists a smooth function f on X with
f(K) = {1} and f(K’) = {0}, and with gradient everywhere less than 1/7". Note that

the commutator Df — fD is given by s — Y V;(f)&s for V;,&; an orthonormal frame
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and its dual. As the Clifford multiplication operators §; have norm one, it follows from
the bound on the gradient that |[Df — fDJ|| < 1/T.

Let ¢ be a smooth and non-decreasing function on R which is identically one
on Ry, and otherwise strictly less than one. Let f (z) = #(f(z) +7/T —1). Our
aim is to show that 3‘9?( fTeiTD s,e™D s) > 0 for 0 < 7 < t. This inequality im-
plies that ( fTeiTD s,eiTD s) is non-decreasing, while on the other hand it is at most
(eiTD s,eiTD s) which is constant. Hence as these are the same for 7 = 0, we have
((1— fT)eiTDS, eiTDs> =0 for all 7 < ¢t. In particular setting 7 = ¢, for z in the support
of eitDs, we must have f(z) +¢/T > 1 and hence f(z) > 0. Thus as required, the

support of "D s does not meet K.

Now we shall examine the inequality.

The commutator calculation above shows

Df; ~ D = §(f(@) +7/T = 1)(Df - {D) = T(5-{)(Df ~ /D).

As ¢ is increasing, 66? fr is non-negative. The operator iT'(Df — fD) has norm at most

one, and is self-adjoint, thus 1 — ¢T(Df — fD) is a positive operator. This commutes
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with the positive operator 3‘% fr, and hence their product is positive. This provides the

necessary inequality. O

Making use of Fourier analysis we may now examine the propagation of operators

produced from D via the functional calculus.

Proposition 4.10. Let ¥ be a continuous bounded function on R with compactly sup-
ported distributional Fourier transform . If ¢ is supported in [—R, R), then (D) has

propagation at most R.

Proof. Note that as Qﬁ is compactly supported we may integrate it against any smooth
function, not just Schwartz-class functions. We may define an operator T' by (s, Ts9) =
21? i &(t)(sl, eitD s9)dt. Let pj be the polynomial partial sums for the exponential func-
tion. Then for fixed z and for ¢ in a compact set, p,, (itz) — eitz uniformly, and likewise
for all derivatives. Let 1;(2) = % f@(t)pj (itz)dt. Then 9; — 1) pointwise, and hence
Pj(D) — 9(D) strongly.

On the other hand, we certainly have

(s1.65(D)sa) = 5 [ 9(Oe1,p5(itD)so)r

Consider sections s9 in the image of X[~N,N] (D), for some N. Such sections are dense,
and D is bounded on each of these spaces. For such sy, the functions (sq,p;(itD)sg)
converge uniformly on compact sets, and likewise for all derivatives. Thus we conclude
that (s1,%;(D)sg) — (s1,Tsg) for all s1 and for a dense space of sections s9, as j tends

to infinity. But this also converges to (s1,%(D)sg), and hence we must have T = (D).
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It is now immediate from proposition 4.9, that (D) has the claimed propagation.
If f, g are functions on X with supports of distance greater than R apart, then for |t| < R,
we have <f81,eithSQ> = 0. Thus (sq, f(D)gs9) = (fs1,Tgs9) = f’(ZJ(t) - 0dt = 0, for

all s1, s9, and hence fi(D)g = 0. O

Corollary 4.11. For ) in Cy(R), the operator (D) is a norm limit of finite propagation

operators.

Proof. If 1) is Cp then it is a uniform limit of Cy functions with compactly supported

Fourier transform.! Thus (D) is a norm limit of finite propagation operators. O

Combining this last result with elliptic regularity we deduce that for v in Cj,
and for X equipped with the standard coarse structure, (D) € C*X. The following
result gives conditions under which (D) need not be locally compact, but is at least

pseudolocal.

Proposition 4.12. Let 9 be a function on R extending continuously to [—oo,00]. Sup-
pose that v is a Cy perturbation of a function with compactly supported distributional

Fourier transform. Then for X with the standard coarse structure, 1(D) € D*X .

Proof. Given our previous observations about Cy functions, we may assume that 1) itself
has compactly supported Fourier transform, say with support in [—R, R]. This ensures
that (D) has finite propagation. Define 9.(z) = 9(¢z/R). Then we have 1&5 supported

in [—¢,¢].

1Schwartz-class functions are dense in Cy, and these in turn may be approximated by inverse
Fourier transforms of CZ° functions.
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Given any compactly supported functions f and g on X with disjoint supports,
we have d(Supp(f),Supp(g)) > € for some € > 0. Then as 1.(D) has propagation at
most €, we have fi).(D)g = 0. But as v tends to a limit at +oo, it follows that 1) — . in
Cy, so (1 —1.)(D) is locally compact. Thus f4)(D)g = f( —.)(D)g which is compact.

As this holds for all disjointly supported f, g, we have 9 (D) pseudolocal as required. O
We conclude this section with a simple result about gradings.

Proposition 4.13. Let S be a graded Clifford bundle, and D a Dirac operator on S.
For ¢ a continuous bounded function on R, if 1 is even then ¢(D) is even, and likewise

if v is odd then (D) is odd.

Proof. If 1 is even then ¥(z) = ¢(z2) for some bounded Borel function ¢. As D is
odd, D? is even, and so we may apply the functional calculus separately to D? on the
positive and negative parts of S. Hence we obtain (D) = ¢(D2) operating separately
on L2(X,S%) and L?(X,S™). Thus 9(D) is even.

If ¢ is odd then 1 (z) = z¢(z) for some function ¢. Provided that ¢ is differentiable
at 0, it follows that ¢ is continuous. Then as ¢ is even, so is ¢(D), and consequently
(D) = D$(D) is odd. To be precise, it acts as an odd operator on a dense subspace, but
is bounded and hence extends by continuity. The general result follows by approximating

continuous functions by functions differentiable at 0. O
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4.3 Definition of the |y coarse index

We can now proceed to construct the index. We will suppose throughout the
section that S is a Clifford bundle over a complete Riemannian manifold X, and D is
an operator of Dirac type on sections of the bundle. The bundle S may be graded or
ungraded, and in the former case D will be an odd operator.

For constructing C* Xy and D* X, we will use an ample representation on the
Hilbert space of sections L2(X ,S) in the ungraded case. In the graded case we will use
an ample representation on the space L2(X , S+) of positively graded sections. In each

case the representation of Cjy(X) is given by pointwise multiplication.

Definition 4.14. A chopping function is a continuous function x from R to [-1, 1], such

that x(z) — £1 as £ — +o00. We will also require this to be odd unless otherwise stated.

We note that there exist chopping functions with compactly supported distribu-
tional Fourier transform, and every other chopping function is of course a C(y perturbation
of such. For example, consider the function 2/it interpreted as a distribution via princi-
pal value of the integrals. This is the Fourier transform of the sign function. Truncation
of the distribution, smooths its inverse transform; for x(¢) = 2/it on [—1,1], and x(¢) =0
elsewhere, we obtain for y a real-valued odd function, tending to 0 at 0, and tending to

+1 at £oo.

Lemma 4.15. Let S be a Clifford bundle over a complete Riemannian manifold X, and
D an operator of Dirac type on S. Let {f;} be a locally finite partition of unity by

compactly supported functions, and to each f; associate a chopping function x;. Then
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the sum,

T — Zf/2XZ f/z

converges strongly, and is a locally compact perturbation of x(D) for any chopping func-

tion x.

Proof. For convergence it suffices to show this separately for the two sums obtained by
replacing each x; with respectively its positive and negative part. Thus we may suppose
. . . . Uy Y, .
instead that each x; has image in [0, 1]. In this case 0 < f,"“x;(D)f;"* < 1 for each i, so
- - - W Y
the sum will converge strongly provided that the partial sums 7}, = Zign f; x;(D) i

are bounded in norm.

As T,, is positive, its norm is given by

1Tl = supl(Y £2x(D)F 20,0 | o]l < 1)

1<n

= {3 (D)1, 20, £,"20) | ol < 1)

1<n

< sup{)_ [Ixi(D) ||||f/2 I | o]l < 1}
1<n

< sup{Y_(fio,0) | llo] <1}
1<n

< 1

and hence we have the required bound.
The second part of the statement asserts that for any g in Cy(X), and for x any
chopping function, (7" — x(D))g is compact. It suffices to check this for g in the dense

subalgebra C.(X). The support of such g will meet the support of only finitely many
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f; in the partition of unity. Thus (T — x(D))g = (T,, — x(D))g, for n sufficiently large.

Pseudolocality of x(D), proposition 4.12, implies that

1 1
(T, ~x(D))g = 3 ;2 (xi(D) — x(D)) ;.
1<n
modulo compacts. For each i, as x; — x tends to 0 at +oo it follows that (x; — x)(D)
is locally compact (4.8). Hence each term is compact, so (T — x(D))g is compact as

required. ]

As the above operator T is a locally compact perturbation of x (D) it follows that
it shares many of the properties of this, for example pseudolocality. We will show that
though x (D) need not lie in D*XO, for appropriate choices of f;, x;, the operator T" will

have Cjy-propagation, and so in particular it is in D*XO.

Proposition 4.16. Let S be a Clifford bundle over a complete Riemannian manifold

X, and D an operator of Dirac type on S.

e For any sequence of chopping functions x;, there exists a locally finite partition of

1

1
unity f; with compact supports, and such that ), fz/le(D)fz/2 has Cy propaga-

tion.

e Conwversely for any such partition of unity f;, there is a sequence of chopping
functions x;, such that the sum again has Cy propagation. Specifically we may take
x;(t) to be x(t/t;) for any chopping function x with compactly supported fourier

transform and any sequence t; with y; — oo.
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e For any such partition of unity f;, and for x;(t) = x(t/t;) where x is a chopping
Junction with no support restriction and t; is a sequence with t; — oo, the operator

1 1
Yo fi/2Xi (D)fz-/2 iss a norm limit of C(y propagation operators.

Proof. First, let x; be any sequence of chopping functions. We observed in chapter 1
remark 2.7, that for a proper metrizable coarse space, coarse and topological separability
agree. Hence X has a C-uniformly bounded countable open cover. Less abstractly, there
is a sequence of relatively compact open sets U;, with diameters tending to zero, and
such that |J; U; = X. By paracompactness, for each such cover, there exists a locally
finite partition of unity {f;} subordinate to it.

For a strongly convergent sequence of operators T),, the support of the limit
lies in the closure of LimSup, Supp(7},), by lemma 2.23. Thus for any sequence of
chopping functions, and for a partition of unity subordinate to {U;}, the operator

s Yo T : .
> £ xi(D) f;"* is supported in |J; U; x U;. As the cover is Cy-uniformly bounded,
by definition A = |J; U; x U; is Cp-controlled. As A contains an open neighbourhood of
the diagonal the composition 4 o A contains A. Hence A is also Cj-controlled and the
operator has Cjy propagation.

For the second statement suppose {f;} is any locally finite partition of unity with
compact supports. Let x be a chopping function with compactly supported distribu-
tional Fourier transform, and let ¢; be a sequence of positive real numbers tending to
infinity. We define x;(t) = x(t/t;). If x is supported in [-N, N], then yx; is supported
in [-N/t;, N/t;]. Hence by proposition 4.10, x;(D) has propagation at most N/t;.

Let r;; = max{N/t}, | Supp(f}) meets Supp(f;) and Supp(f;)} andlet r(z,y) =

Zi,j Tij fi(z) f (y). For any € > 0, there will exist only finitely many pairs (%,) such
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that r;; > e. This follows from the assumption that the partition of unity is locally
finite and each f; is compactly supported. Hence r is Cy. For (z,y) in the support of

s s s Y

>2i [;'*xi(D) f;', we must have (z,y) in the support of f,/“x} (D) f;/* for some k. Thus
d(z,y) < N/t < ry; for all (z,7) with f;(z)f;(y) # 0. Hence d(z,y) < r(z,y) for all
(z,y) in the support of } f; / 2 x;(D) fz-l/ 2 and so this has C\ propagation as required.

For the final statement, let x be any chopping function, and let X/ be a chopping
function with compactly supported fourier transform. Let ¢; be a sequence tending to in-
finity, let f; be a locally finite partition of unity, and let x;(¢) = x(¢/t;), Xf,i (t) = X’(t/ti).
We know that -, f / 2./ ( ) fil/ 2 has Cy controlled propagation, thus it suffices to estab-
lish that for +;(t) = x;(t) — X;(t) = (x — x')(t/t;), the operator D fil/qui(D)filb is a
norm limit of C(y propagation operators. But ¢ = x— Xl is Cy, and so is a uniform limit of
Cy functions with compactly supported Fourier transform. By the norm estimates in the
proof of lemma 4.15, this uniform convergence will give norm convergence of operators,

1 1
S0 ) fz-/ 24,(D) f; /2 is a norm limit of C{j propagation operators as claimed. O

To define the index, we shall now make a few further observations about the

operators that we have constructed, especially in the graded case.

Proposition 4.17. Let x; be chopping functions, and {f;} a partition of unity, such
1 1

that the operator T =}, fi/2Xi(D)fi/2 lies in D*XO. Let q denote the quotient map

q: D*Xy — D*X(/C*X(. Then q(T) is an involution which is independent of the choice

of chopping functions and of partition of unity, and which is odd if a grading is provided.
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In the graded case there exists a unitary V : LQ(X, st - L2(X, S7) covering the

0 (VvO)* 9 4
identity on X, and we may write T = , with U an operator on L*(X,S8™).

VU 0

Then q(U) is unitary, and the class [q(U)] in K-theory is independent of the choice of

V.

Proof. As X2 — 1 is in Cy(R), modulo locally compact operators X(D)2 is the identity,
and certainly x(D) is self adjoint, thus x(D) is an involution modulo locally compact
operators. In the graded case we noted in the previous section that x(D) is odd. Both
these properties hold for any operator T constructed as above: we again have the former
as T is a locally compact perturbation of x(D) (lemma 4.15), while the latter follows as
the multiplication operators fil/ 2 are even. Any two such constructions must be locally
compact perturbations of one another, and so ¢(T') is independent of the choices made.

All that remains is to check the additional assertions about the graded case. As
the operator D is a Dirac operator, it must be the case that ST and S~ have the same
fibre dimension. Hence as vector bundles, ST and S” are locally isomorphic. For a
Borel subset B of X, over which both 1 and S~ are trivialised, the isomorphism of
vector bundles gives rise to a unitary isomorphism Vpg: L2(B, St B) — L2(B, S7|R)-
We may regard these two spaces as included in r? (M, Si), and we note that they are
invariant subspaces for the multiplication representations. Thus Vg exactly intertwines
the multiplication representations i.e. Vgf = fVpg for all f in Cy(X). By separability we
may pick a countable partition of X into Borel sets over which S +, S are trivialized.
Thus we obtain direct sum decompositions of L2(M , Si), with the summands paired

by unitaries exactly intertwining the representations. The direct sum V =) pVp is a
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unitary from L2(X ,ST) to LZ(X , S~ ) which intertwines the representations, and so in
particular V covers the identity.

Let V' be any unitary from L2(X ,ST) to L2(X ,S7) covering the identity. As T
is odd and self-adjoint it has an off-diagonal matrix form and we may express the matrix
entries as VU and (VU)*. Modulo locally compact operators T2 is the identity, while
on L2(X,ST) it is U*U, and on L%(X,S7) it is VUU*V*. Hence q(U*U) = 1, and as
V covers the identity we also have q(UU™) = 1, i.e. g(U) is a unitary as required. To
see that [¢(U)] is independent of the choice of V' all we need is to observe that different
choices of V' correspond to conjugation by a unitary on L2(X , S+) which covers the

identity. From chapter 1 (remark 2.35) this induces the identity on K-theory. O

We have now made all the observations necessary to define the C index, and to

see that it is well defined.

Definition 4.18. The Cj indez of a Dirac type operator D is defined as follows. Let

q: D*Xy — D*X(y/C* Xy in the short exact sequence
0 C*X - D*X - D*X/C*X — 0,

and let 9,,: K,,(D*X/C*X) — K,,,_1(C*X) denote the boundary maps in the associ-

1 1
ated K-theory long exact sequence. Let T =}, fi/2Xi(D)fi/2-

In the ungraded case the () index of D is

Index(D) = dylg((T + 1)/2)] € K1(C* Xy).
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In the graded case the Cj index of D is

Index(D) = 01[q(U)] € K(](C*X())a

0 U*Vv* 9 n 9 _
where T' = for some unitary V from L“(M,S™) to L°(M,S™) covering
VU 0

the identity on X.

4.4 Spectral obstructions and spin

We will be particularly interested in Clifford bundles arising from spin structures.
We will set up the machinery of spin structures, and define the spinor Dirac operator.
We will then establish the Weitzenbock formula, relating the spinor Dirac operator to
the scalar curvature. We will use this formula to establish a spectral obstruction to

properly positive scalar curvature, defined below.

Definition 4.19. The group Spin(n) is the even part of the subgroup of the multiplica-

tive group of CI(R") generated by vectors v with |jv| = 1.

The group Spin(n) is a two-fold cover of SO(n), the covering being given by the

map taking a in Spin(n) to the orthogonal map v — Ad,(v).

Definition 4.20. A spin structure on an oriented n-dimensional manifold X is a princi-
pal Spin(n) bundle equipped with a morphism to the principal SO(n) bundle of positively

oriented orthonormal frames of 7 X, with the underlying group homomorphism equal
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to the canonical covering map.2 A manifold equipped with a spin structure is called a

spin manifold.

Given a spin structure PSpin(n) A, PSO(n) we may construct the balanced prod-
uct S = Pgpin(n) X Spin(n) CI(R™), where Spin(n) acts on CI(R") by left multiplication.
Applying a similar construction we have T*X = PSO(n) XS0(n) R™. The bundle S is a
Clifford bundle as follows. Given smooth sections s of S , and & of T*X, we represent s
as (p,a) and & as (n(p),v), where p is a section of PSpin(n)’ and v, a are functions on X
with values in R, CI(R") respectively. Then we may define £s to be (p,va) modulo the
group action. It is easy to show that this does not depend on the choice of representative
and hence from a spin structure we obtain a well defined Clifford bundle.

Note that in addition to a left multiplication by sections of 7% X, the bundle S also
has a right multiplication by CI(R"). Let eq,...,¢,, denote the standard basis vectors in
R,,. On the complexification of S, right multiplication by ie,,_1¢,, defines an involution.
The operator (ie,,_1€, + 1)/2 gives the projection onto the bundle of +1 eigenspaces of
i€,_1&p- By associativity the left multiplications by sections of T*X commute with the
right multiplication by C1(R"), and hence with this projection. Each vector £1,...,€,_9
will also commute with the product ie,, _1¢,, and hence with the projection. Thus the +1
eigenspace of i€, 1€, is an invariant subbundle for the left multiplications by sections
of T*X and the right multiplication by Cl(]Rn_Q), where R" 2 is included in R" as the

span of €1,...,&,_9.

2Strictly speaking a spin structure should be an equivalence class of these, and it must be
shown that the construction of indices of the associated Dirac operators respects the equivalence
relation. For our purposes however we may suppose a single representative has been chosen.
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Restricting to the invariant subbundle of +1 eigenspaces halves the fibre dimension
as €y,_1,€Ep give isomormorphisms between the positive and negative eigenspaces. This
isomorphism also means that the full bundle can be reconstructed from the subbundle.
If n = 2k then we may repeat this restriction process k times. If n = 2k 4+ 1 then once
we have repeated this k£ times, we may carry out a further reduction using the grading
of the bundle, as follows. Right multiplication by ¢e; defines an isomorphism between
the positively and negatively graded parts of the bundle. We take the positive part
of the bundle and define a new left multiplication agreeing with the existing one for
even elements of C1(T*M), and given for odd elements by composing the existing left

multiplication with right multiplication by iey.

Definition 4.21. The spinor bundle associated to a spin structure is the reduced Clif-

ford bundle constructed above.

For an even-dimensional manifold of dimension 2k, the spinor bundle has dimen-
sion 2F and is graded. For an odd-dimensional manifold of dimension 2k + 1, it has
dimension 2F and is ungraded.

We will now consider connections on the spinor bundle S. From a connection on
S we obtain one on the complexification. This will restrict to a connection on S provided
that the connection commutes with the right multiplication, that is Vy/(se;) = (Vy s)e;
for all 5. In fact given a spin structure there exists a unique Dirac connection with this
property. Suppose a positively oriented orthonormal frame &;,...,&, is defined near a
point z. Then this gives a local trivialisation of 7% X; in terms of principal bundles we

obtain a section g of PSO(n) near z, such that ¢ j 1s given by (g, ej) modulo the group
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action. As PSpin(n) is locally trivial, and as 1 induces a covering map on groups, in some
possibly smaller neighbourhood U of z there exists a section p of PSpin(n) lifting g. This
provides a trivialisation of S , which is compatible with the trivialisation of T7*X in the
sense that the Clifford multiplication on S |7 is just given by the Clifford multiplication
of the trivialisation U x CI(R"). For these trivialisations there is a formula for the Dirac

connection.

Lemma 4.22. For PSpin(n) — PSO(n) a spin structure, there exists a unique Dirac
conmection on 8§ = PSpin(n) XSpin(n) CI(R") that commutes with the right multiplication.
Suppose T*X and S are compatibly trivialised over some open subset U of X. Let sq
denote the section ofg with constant value 1 € CI(R™) for this trivialisation, and denote

the frame for T*X corresponding to the trivialisation by &1, ... »&n- Then

Vy(s1) = Ya D6 V€)s1.

J

Proof. Write Vys; = asq. The inner product (sq, 1) is constant and hence (Vy/s1,s1) =
0, so a has no scalar term. For each 7 we may write a = fjaj + bj, where aj is odd,
bj is even (as V preserves the grading), and {; graded commutes with a;,b;. Then
Vy(€is1) = (€(Eaj +b)) + Vy€i)sy = (—aj +bj + Vy&j)s1, but on the other
hand, Vi (§;s1) = Vysiej = (§ja; +b5)¢;51 = (a5 +£jbj)s1. Thus 2a; = Vy§;.
As aj is a vector for each j, there are no terms in a which are a product of more
than two linearly independent vectors, so in fact all terms are given by precisely two

linearly independent vectors. Summing & @ will thus count every term twice, hence

Vyst = o X(Ea5)51 = Y1 (& V) s
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Given this formula, uniqueness follows as we may write every section as a sum of
sections of the form s = f¢;. .. -&j,. 51, and then Vs = V(f)fj1 e fjmsl—l—fvvslejl .
For existence it is clear that this formula for Vy,s, along with the above formula for Vi 51
locally defines a connection which commutes with the right multiplication. Uniqueness
will imply compatibility of the local definitions, so it suffices to check that locally this is
a Dirac connection. From the definition (Vy/s1,s1) = 0, which implies the metric com-
patibility. We need to check that Vy/(¢;s) = Vi (§;)s +&;Vy s. It suffices to check this
for s = s1, and then the condition amounts to checking that asie; = (Vy&; + {ja)sy.
The calculation (Vy/& j:€ j) = 0 shows that ¢; anticommutes with Vy,{;, while the def-
inition of the Clifford algebra gives Vy/(§;)§; + §;Vy & = —2(Vy§;,¢;). Note that

(VV(fi)aﬁj) = —(fi,vaj), so we have

0,651 = Y& (Vy(E)E — €VvE) + a3 &y (E)E; + & Ve

i#]
1 1
= V& + Y i ViE))
i#]
= Vy§;.
This shows that a{;s; = ({ja + Vy{;)s1 as required. O

We will now establish the Weitzenbock formula. In general this says that the
square of a Dirac operator is given by the Laplacian V*V of the Dirac connection,
plus a curvature term. In the case of the unique compatible connection on a spinor
bundle, the latter is a scalar; it is a multiple of the scalar curvature of the mani-

fold. We will denote the Riemann curvature tensor by R. By definition R(V,W) =

.&‘jm.
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VyVw — Vg Vy — V[V,W]' For V; an orthonormal frame we express this in co-
ordinates as R(V;,V;)Vy = > leile-3 It will be convenient to apply R(V;,Vj) to

covectors as well as vectors. For coordinates with VVZ,E]- = 0 at a point z, we note
that (Vy; V&) (V) = Vil(Vy; &) (V) = Vi(=&(Vy, V1)) = —&(Vy; Vy, V). Hence
R(V;, V)& = — 321 Ryyi€; at = and as this is a tensor equation it holds for any choice
of (orthonormal) frame, and for all z. The scalar curvature will be denoted by x. This

is a contraction of R; in orthonormal coordinates kK =, j Rijij-

Proposition 4.23. Let S be a Clifford bundle over X and D a Dirac operator on S.
Let {¢;} be a local orthonormal frame for T*X with dual frame {V;}. Then D? =
V*V 4+ Zi<j fzé“]R(Vz,VJ) If X is a spin manifold, and S the spinor bundle then

D2 =V*V + k.

Proof. We will prove the general formula first. Note that as R is a tensor, the claimed
formula for D? is independent of the choice of frames. To simplify calculations, we will
choose a frame such that at a point z, we have VVifj = 0 for all 4,j5. It follows that
at that point [V}, VJ] vanishes simplifying the curvature term. From the assumptions we

get,

2
D%s = Zﬁivvi(ﬁjvvjs)

]

= Zfiﬁjvvﬁvjs
2]

2

= Z_ijs'i_;fiEj(vViVVjs_VV]-VV;S)'

J 1<)

3All coordinates considered will be orthonormal, so we need not use raised/lowered indices
l
Ry T
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We just need to check that the first term is V*Vs. We have V: C*°(S) — C®°(T*X®S)

given by Vs =) € ®VVj s, and we need to compute the formal adjoint V*: C®°(T*X ®

S) — C*°(S). This is given in orthonormal coordinates by V*(Ej ®s) = _ij s. This

may be checked in a similar way to the proof (lemma 4.5) that D is self-adjoint. A

straightforward calculation shows that for v the volume form, (Vs, ¢ j®s')u+(s, VVj =
d(*w), where w is defined by w(V;) = d;;(s, s'). Thus (Vs, & ® sy = (s, —ijs’), which

establishes the formula for the formal adjoint. Thus V*Vs = Zj V*(fj ® ijs) =

— Zj V%/js as required.

For the second assertion, we may consider the square of the Dirac operator on S ,
as the operator D? on the spinor bundle is a restriction of this. We will make the same
convenient choice of coordinates, and will make use of the above lemma. Let K denote
the curvature term. Every section may be written locally as a sum of sections of the form
s = fs1€5 ..-€; ~and so it suffices to check that Ks = 1/4/%’ for such sections. As ¢;
commutes with the connection for all j, we need only consider fs;. The only asymmetric
term in VViijfsl =V;V;(f)s1 + Vi(f)VVjsl +V;(f)Vy.s1 + fVViVVjSl is the last
one, so we have K fs] = fK(s1), and it suffices to check that K(sq) = 1/4,%31. From the
lemma we have VVjsl =1 Zk(fkvvjfk)sl, SO VViVVjsl =1 Zk(vw(gk)vngk +
13 kvVi VVJ_E 1)s1- The former term vanishes by the assumptions on the coordinates, so
we have 4Ksy = 37 32 &€&k (Vv V€ — Vv Viée)st-

It will be convenient to sum over all 7,7, which given the symmetries will count
all terms twice. In coordinates we have 4Ks; = —1/2 Zi,j,k,l §i€i€k&1 Rrij- We now
use the symmetries of the curvature tensor. From the first Bianchi identity, terms with

three of more distinct indices must cancel, as ;¢ jf &1 is then invariant under 3-cycles of
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these indices, while the sum of Rklij cycling three indices gives zero. Antisymmetry of
Rklij under transposition of k,! or of 7, j, means that the only other non-zero terms are
fori=k#j=1,and for s =1 # j = k. The sums for both of these sets of indices are

the same so we have 4Ksy = — > ;5 €88 Rjij = D24 j Rijij = k- O

Definition 4.24. A Riemannian manifold X has properly positive scalar curvature if
the scalar curvature x: X — R is a proper function and has range in an interval [, 00)

for some k) € R.

We make the following definition for a not necessarily bounded operator, which

agrees with the usual definition in the bounded case.

Definition 4.25. The essential spectrum of an essentially self-adjoint operator D is the
set of points A € C, for which either A is a limit point of the spectrum of D, or A is in

the spectrum of D and the A-eigenspace is infinite dimensional.

The following theorem provides a spectral obstruction to properly positivescalar

curvature. In particular, any essential spectrum provides an obstruction to this.

Theorem 4.26. Let X be a complete Riemannian spin manifold, S the spinor bundle
over X, and D the Dirac operator on S. Suppose that X has properly positive scalar
curvature. Then D has no essential spectrum, i.e. the spectrum of D is discrete, and the

corresponding eigenspaces are finite dimensional.

Proof. We will assume that X has scalar curvature tending to +o0o. If D has no essential
spectrum then for any function ¢ in Cy(R), the operator ¢(D) will be compact. The

converse statement follows from the spectral theorem for compact operators, so we will
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prove compactness of ¢(D) for ¢ € Cy(R). For this it in turn suffices to prove the result
for compactly supported functions 1. We suppose that v is supported in [N, N|, and
define a projection P = X[—N,N](D)'

Let k: X — R denote the scalar curvature function. Note x is bounded from
below, so there exists ¢ € R, with k +¢ > 0. Let £k = (k + t)l/Q. The multiplication
operator given by k is unbounded, but has bounded inverse. We will show that the
operator kP is bounded, or equivalently that k: PL? (X,S) — 2 (X, S) is bounded.

Given this, it is easy to establish the compactness of ¢(D). Note that ks in
Cy(X). Thus elliptic regularity (theorem 4.8) implies that ¢(D)k_1 is compact. But
(D) =¢(D)P = ¢(D)k_1kP, where kP is bounded. Thus (D) is compact.

We will now show that kP is bounded. We have seen above the Weitzenbock
formula, D? = V'V + k/4. So for any smooth section s of S we have, 4(Ds, Ds) =
4(Vs,Vs) + (ks, s). Using positivity of the connection term, and the definition of k& we
get an inequality, (ks, ks) < 4(Ds, Ds) + t(s, s).

Sections in PL> (X, S) are in the maximal domain of D. This is immediate from
the construction of the Borel calculus. Thus such sections in fact lie in the minimal
domain, by essential self-adjointness. So for s € PL2(X ,S), there is a sequence of smooth
sections $j =, and with DSj — Ds. The closure of D is bounded on PLZ(X, S), indeed
it has norm at most N. Thus limsup; [|ks;|| < C||s||, where C% = 4N? 4 t. For any
compact subset K of X, the restrictions to K of ks; converge in L2(K, S|i) to the
restriction of ks. As the norm of ks is the supremum of the norms of such restrictions,

and likewise for ks;, we conclude that ||ks|| < C||s||. Thus multiplication by k¥ has norm
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at most C on PL2(X ,S), so in particular we have established the claim that kP is a

bounded operator. O

4.5 The index obstruction to properly positive scalar curvature

In this section we will prove a vanishing theorem for the C( coarse index. This
is analogous to the fact that the standard coarse index vanishes given a spectral gap
at 0. The results of the previous section provide geometric conditions under which the
spectral conditions of the vanishing theorem will hold.

As in the construction of the index, we will suppose throughout that S is a Clifford
bundle over X, with Dirac operator D, and that Cjy(X) is represented either on L2(X ,S)
or on L2(X , S+), depending on whether S is graded.

The following lemma provides the main technical aspect of the vanishing theorem.

Lemma 4.27. Suppose that the Dirac operator D has no essential spectrum. Then for
any chopping function x, the operator x(D) is a compact perturbation of a Cyy propagation

operator. In particular x(D) € D*(X).

Given that x(D) is a compact perturbation of a C{y propagation operator, to see
that x(D) € D*(Xy), write x(D) = T + k with T of Cy propagation, and k compact.
By proposition 4.12, the operator x (D) is pseudolocal, and certainly so is k. Hence T is
pseudolocal and it has C(y propagation by assumption, thus T' € D*(XO). On the other
hand by lemma 2.30 all compact operators lie in C*(X{)), so a foritori k¥ € D*(X{).

We will postpone the proof of the lemma, and show first that it implies the

vanishing theorem.
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Suppose then that D has no essential spectrum. Let T be an operator defining

the index of D. By lemma 4.15 if x is a chopping function then x(D) is a locally
compact perturbation of 7. On the other hand, by the above lemma x(D) is in D*Xo,
so ¢(T) = q(x(D)) in D*X/C* Xy where g is the quotient map D* Xy — D*X/C*X.
Hence q(x(D)) determines a K-theory element, say a, in either Ky(D*X/C*X() or
K1(D*Xy/C*X() depending on the grading, and d(a) = Index D. In fact the spectral
hypothesis also implies that X(D)2 = 1 modulo compact operators and hence x(D)
determines a K-theory element, say ', in K,.(D*Xy/&), and the map on K-theory
induced from the quotient D*Xy/8 — D*Xy/C* X takes a’ to a. We thus obtain a

commutative diagram:

d €K (D*Xo/R) —2 Kl (8)

! !

0 € K,y 1(D*Xo/C*Xg) —2 K,(C*Xg) 5 Index(D)

Hence when D has no essential spectrum the index factors through K, (8). We thus

obtain the following theorem.

Theorem 4.28. If S is an ungraded Clifford bundle over X, and D is a Dirac type
operator with no essential spectrum, then Index(D) = 0 in K1(C*Xy). If S is graded and
D has no essential spectrum then Index(D) lies in the image of iy in Ko(C*X() where
i denotes the inclusion of the compact operators into C*XO. More precisely identifying
Ky(R) with Z, the indez is given by Index(D) = i,(n) where n is the graded Fredholm

indez of D.
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Corollary 4.29. Let X be an odd dimensional complete Riemannian spin manifold and
let D be the spinor Dirac operator. If X has properly positive scalar curvature, then

Index(D) = 0 in K1(C*X).

Proof. From theorem 4.26 the hypothesis implies that D has discrete spectrum. The

result is now immediate from the previous theorem. O

Corollary 4.30. Let X be an even dimensional complete Riemannian spin manifold

and let D be the spinor Dirac operator. If X has properly and uniformly positive scalar

curvature, then Index(D) = 0 in Ky(C*Xy).

Proof. From the Weitzenbock formula, under the conditions of uniform positivity, D?
is strictly positive. Thus D? has no kernel, and so D also has no kernel so the graded
Fredholm index of D is zero. Theorem 4.26 ensures that D has discrete spectrum, hence

the theorem applies and the index is i, (0). O

Let ¢ be the inclusion of a point into X. The algebra C*(pt) is given by the
compact operators on some Hilbert space §). For K any compact subset of X with
non-empty interior, a unitary from $) to L2(K ST k) will cover ¢. The inclusion of the
compact operators on LQ(K, S+| k) into the compact operators on L2(X , S+) induces

an isomorphism on K-theory, so the image of i, is the same as the image of ¢,.

Lemma 4.31. Let X be a complete Riemannian manifold, and suppose that X has an

unbounded component. Then there exists a coarse map from the ray (Ry )g to X.

Proof. We will inductively pick a sequence of points in an unbounded component, and

paths between them. Let X; be an unbounded component of X, and pick a point z; in
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X1. Inductively, having defined T and X ;< X7 we will pick an unbounded component
X1 of X;\ B(zy,7). We must therefore show that X; \ B(zq,j) has an unbounded
component. For each component C of X; \ B(z1,j) not contained in B(zy,j + 2) let
Uo={reClj+1<d(z,z1) < j+ 3}, and let Uy be the open ball about z; of radius
J + 2. Clearly the sets Uy along with Uy cover the closed ball of radius j + 3, but there
is no proper subcover. Hence by compactness of the ball, there are only finitely many
sets in the cover, and hence only finitely many components C' of X j \ B(z1,j) that are
not contained in B(z1,j +2). As X j is unbounded, so also is one of these components.
Thus we take X; 1 to be some unbounded component of X; \ B(z1,7), and pick Tyl
in X j+1-

Choose curves from Tj to T4 in X,; this is possible as X j is connected by
definition. We will take these curves to be parametrized by path length. Define v from
R, to X to be the join of all these curves, preserving the parametrization. Then the
map does not increase distances, as for all t < ¢ in R 4, the restriction of +y to [t, t'] gives
a path from ~(t) to y(t') of length ¢. To check that it is coarse, all we additionally need
is that it is proper. Given any compact subset K of X, there exists a jj such that K
lies inside B(z1,jp). Thus for all j > jg, the set X; does not meet K. Let ¢y be the
minimum of the interval in R corresponding to the curve from Tj tox jo+1- Then the
restriction of 7y to [tg, 00) lies within X jo» hence does not meet K. The preimage of K

is thus compact, and hence 7 is proper. O

This gives rise to a final corollary.
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Corollary 4.32. Let X be an even dimensional spin manifold with scalar curvature
tending to +oo at infinity, and with an unbounded component. Then for D the spinor

Dirac operator, Index(D) = 0.

Proof. Let v be a coarse map from (R} )y to X. Let ¢+ be the inclusion of v(0) into
X. Then 7 factors through +, thus the image of ¢, is contained in the image of 7,. But
from proposition 3.4 the K-theory for C* (R, )( vanishes, thus this image is zero. Scalar
curvature tending to infinity implies that the index lies in the image of ., and hence the

index vanishes. O
We will conclude with the proof the main lemma.

Proof of Lemma 4.27. We are given a function x, and we must establish that x(D)
is a compact perturbation of a Cpy-controlled operator. Define boundedly controlled
neighbourhoods B, of the diagonal by B; = {(z,y) € M x M | d(z,y) < 2_j}.

Claim: for j =1,2,... there exist operators T} over M, and closed subsets Aj of

M x M and C'j of M, such that
o T - x(D) is compact;

ITj = Tj_1]| < 277 for j > 1;

Support(7}) is contained in Aj;
. A] C Aj—l for 7 > 1;
° Bj gAngjUijCj;

. Cj is compact.



Fig. 4.1. The induction step from A;,C; to A;,1,Cj1q
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Once we have established the claim, we proceed as follows. Note that T is
a Cauchy sequence and hence converges to an operator T. For all j, the difference
T - x(D) is compact, and hence the limit 7' — x(D) is also compact. We also want 7T’
to be Cy-controlled, and we observe that Support(T") C j Aj by lemma 2.23. For any
e > 0 there exists j with 277 < ¢. For (z,y) € Support(T) \ (C; x C;) we must have
(z,y) € Bj, and hence d(z,y) <e. As C; is compact, the operator T' is Cy-controlled
as required.

We will now prove the claim. Let X;j be a sequence of normalizing functions,
with distributional fourier transform x; supported in [—2_j ,Q_j ]. Then X (D) has
propagation at most 277 for each 7

We prove the claim by induction on j. Let Ty = x1(D), let A1 = By, and let
Cq = @. The difference T1 — x(D) is given by (x1 — x)(D) which is compact as D has no
essential spectrum. As x;(D) has propagation at most 27! we have Support(Ty) C Ay,
and the rest of the conditions are immediate.

We now carry out the induction step. We assume that 1}, Aj, and Cj have been
constructed, and we will construct T; 1,411, and Cj;q. Let K; = x;41(D) — Tj.
This is compact as both terms are compact perturbations of x(D). Here we again using
the fact that D has no essential spectrum. For a sequence of compactly supported real-
valued functions on M converging to 1 uniformly on compact sets, the corresponding
multiplication operators converge strongly to 1. Thus multiplying by a compact operator
will give a norm convergent sequence. In particular, given K j we may find a compactly

supported function g;: X — [0, 1], such that ||[K; — g;K;g;| < 9= (+1),
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Let Tj+1 = T.7 + K] — ngjgj’ let Cj+1 = Support(gj), and let Aj+1 = Bj+1 U
((Cj41 x Cj11) NAj). See figure 4.1. Certainly T; 1 is a compact perturbation of T},
hence it is also a compact perturbation of x(D). As By € Bj C A, it follows that
Ajy1 € Aj. We need to check that T} 1 1 is supported in A, 1; the remaining conditions
are immediate. Note that Tj, 1 = Xj+1(D) —9jK;g;, and Xj+1(D) is supported in
Bj 1. It therefore suffices to show that g;Kjg; is supported in (Cjy1 x Cj11) N 4.
Certainly it is supported in Cj +1 X Cj +1, and it will in turn suffice to show that K j is
supported in A;. But K; = Xj+1(D) — T}, and we already noted that the first term is
supported in Aj, while the second is also supported in Aj by the induction hypothesis.

This completes the proof of the claim. O

4.6 Non-vanishing examples of the index

In this section we will give an example illustrating the distinction between the
bounded and C(y coarse structures. This in will be an example where the C{y higher
index is non-vanishing, but the bounded higher index vanishes. We will also use the
non-vanishing of certain C(y higher indices to prove a theorem about perturbations of
metrics on compact spin manifolds.

Our example will be the manifold illustrated in figure 4.2(a). This has uniformly
positive scalar curvature and hence the bounded coarse index vanishes, however it does
not have properly positive scalar curvature and indeed the Cj coarse index does not
vanish, so no C( perturbation of this metric has properly positive scalar curvature. The
calculation of the index is simplified by the fact that this manifold is Cjj-contractible as

defined below.
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Fig. 4.2. The product metric (a), and the cusp metric (b), on S2 x R capped by a
hemisphere

Definition 4.33. A proper separable metric space X equipped with the Cy-coarse
structure is Cp-contractible if for every controlled set A in X x X there is a controlled
set B in X x X such that for every subset U of X with U x U C A there is a subset V

of X containing U with V' x V C B and with the inclusion of U into V null homotopic.

Remark 4.34. The calculation of the index is an application of the coarse Baum-Connes
conjecture. For Cj-contractible spaces, the Cy coarse Baum-Connes conjecture claims
that K,(C*(X()) is isomorphic to the K-homology group K,(X), and in this case the

conjecture holds.

Theorem 4.35. Let X denote the manifold illustrated in figure 4.2(a). Let X denote
X equipped with the Cq coarse structure, and let D be the spinor Dirac operator on X.
Then Kl(C*XO) = Z with generator IndexD. In particular this Cy higher index is

non-zero.
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Proof. The Dirac operator on X gives the generator for the K-homology group K (X) &
K, (R3) >~ Z. This group may be computed by repeated suspension isomorphisms,
starting from the K-homology of a point, K(pt). We may regard X as being embedded
in ]R4, and then splitting R?* into two half spaces, will split X into two spaces with
trivial K-homology, see figure 4.3. The Mayer-Vietoris sequence then gives a suspension
isomorphism from X to X N R which is a union of a hemisphere of S 2 with the product
sl x RY. Repeating the process two more times, by splitting R® and then R? into
half-spaces, will reduce X to X N R! which is a point. In each step, the boundary map
takes the Dirac element in K-homology to the Dirac element for the corresponding spin
structure on the intersection. Note that the Dirac operator for a point amounts to the
zero operator on a 1-dimensional space graded as C & 0. This has graded index 1, and
gives the generator for K(pt). We then conclude that the K-homology is infinite cyclic

with generator [D] as claimed.

Fig. 4.3. The decomposition of 52 x Rt capped by a hemisphere
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Note that these decompositions are Cy-excisive. However the final decomposition
is not boundedly excisive, which is why the result fails for bounded coarse geometry. As
the decompositions are Cp-excisive, there are corresponding Mayer-Vietoris sequences
for K,C*(X(). The calculation 3.6 shows that the intersection of X with either of the
half-spaces of rR? gives a space for which the corresponding C*-algebra has trivial K-
theory. It follows that this again induces a suspension isomorphism and the same is true
for the decompositions if R3 and R?. Hence we may repeat the above computation of
the K-homology to show that K,C*(X() is obtained from K,C*(pt) by a dimension
shift. As K,(pt) & K,C*(pt), combining the suspension isomorphisms we conclude
K.(X) & K,(C*Xq), i.e. the coarse Baum-Connes conjecture holds for the space X
with the Cy-structure. The isomorphism identifies Index D with the generator [D] in

K1(X) which completes the result. O

This contrasts with the following theorem, which is a specific case of the bounded

version of the vanishing theorem from [19].

Theorem 4.36. Let X denote the manifold illustrated in figure 4.2(a). Let X} denote
X equipped with the bounded coarse structure, and let D be the spinor Dirac operator

on X. Then Index D = (. O

We conclude by sketching an application of the Cjy vanishing theorem in the case

where the components of X are compact.

Definition 4.37. Let di,dy be Riemannian metrics on a compact manifold C. The

metrics are e-close if dj(z,y) — e < dg(z,y) < dj(z,y) +¢c forall z,y € C.
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Definition 4.38. Let C be a compact Riemannian manifold, and let x denote the scalar
curvature of C'. The Riemannian manifold C has R-uniformly positive scalar curvature

if k is bounded below by R.

Theorem 4.39. Let C be any compact Riemannian spin manifold. Then there exists
R > 0,e > 0, such that no metric on C which is e-close to the given metric, has R-

uniformly positive scalar curvature.

Note that it follows from the results of [13] that given C' there exists R > 0,¢ > 0
such that there is no R-uniformly positive metric on C' for which the metric tensor differs
from the given one by at most €. Our result strengthens this, however the bounds we
obtain are not explicit.

The corresponding statement for uniformly negative scalar curvature would be
false. The existence of metrics of negative curvature approximating any given metric on

a manifold of dimension at least three is discussed in [14].

Proof of 4.39. Let X = C'xN with the product metric, and let Xy denote X with the Cy
structure. The statement of the theorem is equivalent to the statement that X admits
no metric of properly positive scalar curvature, which is Cjy coarsely equivalent to the
given one. Let us suppose that such a metric exists. On the complement of a finite set of
components of X the metric will be uniformly positive, and by a further Cy perturbation
of the metric we may assume that the metric has both properly positive and uniformly
positive scalar curvature. This further condition implies that the Fredholm index of the
spinor Dirac operator is zero, and hence the vanishing theorem implies that Index(D x )

vanishes in K, C™*(X).



95

We will now show that the index cannot vanish in this case. First let us supp-

soe for simplicity that C' = S™. By example 3.23 we have Ker(K,,(C*(S™ x N)g) —
Kp(C'Ny)) = [INZ/@DNZ. As in 4.35, the boundary of the Dirac element in K-
homology gives the Dirac element of the boundary, so the suspension isomorphism
arising from the decomposition of S™ into two hemispheres takes Index(Dgm ) to

Index(D Hence inductively it suffices to show that the C( index of the Dirac

gm-—1 xN)'
operator on S 0 % N is non-zero. But the Dirac operator on sY arising from the boundary
map is positively oriented on one point, and negatively oriented on the other. Hence
the Dirac operator for SY amounts to the zero operator on the 1-dimensional bundle
over S0 graded as C @ 0 on one point, and 0 ® C on the other. Thus IndeX(DSOXN) =
(1,-1,1,-1,...) € KO(C*(SO x N)g) = HSUXNZ/G where G denotes the subgroup
of finitely supported sequences of sum zero. This in fact lies in the reduced theory
Ker(K,,(C*(S™ x N)g) = K,,(C*Ny)) = [INZ/ DN Z, where it is identified with
(1,1,...) modulo @yZ. Hence we have shown that in the case where C = S™, the
index is non-zero in K,C*(X() giving a contradiction.

For the general case let U be an open ball in C, let A be the closure of U, and let
B=C\U. LetY = AxN,Z = BxN, and consider the decomposition X =Y UZ. This
is excisive by lemma 3.14. The boundary map in the exact sequence will take Index(D x )
to Index(DSm_lxN) where m = dim X, as the boundary of the Dirac element in K-

homology is the Dirac element of the boundary. However we have already shown that this

is non-zero, so Index(D x) is non-zero and this contradiction completes the proof. O
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Chapter 5

The Coarse Baum-Connes Conjecture

In this chapter we will give a proof of the coarse Baum-Connes conjecture for

spaces of finite asymptotic dimension. The conjecture is:

Conjecture 5.1 (The Coarse Baum-Connes Conjecture). If X is a bounded ge-

ometry metric space equipped with the bounded coarse structure then the assembly map

p: KX, (X) = K, (C*X) is an isomorphism.

We will begin by defining the left hand side of the conjecture, the coarse K-
homology of X denoted K X,(X), and then we will show that the index map from the
previous chapter D +— Index D € K, (C*M) where M is a smooth manifold, generalizes
to an assembly map p : KX, (X) — K,(C*X). We will then make use of the Cp coarse
structure to reformulate the conjecture in such a way that the two sides are more easily
comparable. We will see that the left hand side may be formulated as the K-theory of an
ideal of Cj-controlled operators on a certain space, while the right hand side is the K-
theory of a corresponding ideal of finite propagation operators. With this reformulation
the assembly map is induced from the inclusion of the C ideal into the bounded one.

In [25] Yu proved the following:

Theorem 5.2. If X is a metric space with finite asymptotic dimension, then the coarse

Baum-Connes conjecture holds for X.
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This chapter provides an alternative proof of Yu’s theorem. The main idea of
the proof is the interplay of the Cj structure, the bounded structure, and a ‘hybrid’

structure which has certain properties in common with each of the other two.

5.1 Spherical metrics on simplicial complexes

Many of the constructions in this chapter will involve metric simplicial complexes.
We will begin by defining a good class of metrics on a locally finite simplicial complex,

and developing some of their properties.

Definition 5.3. The spherical m-simplex is the intersection of the m-sphere in R+

with the positive cone, equipped with the spherical path metric. Barycentric coordinates

on this are defined by taking convex combinations of the vertices (1,0,...,0),...,(0,...,0,1),

and then projecting radially onto the sphere.

The following lemma, relates the spherical metric to the flat metric on a simplex.

Lemma 5.4. Let of be the m-simplex in R+

which is the convexr hull of the points
(1,0,...,0),...,(0,...,0,1), equipped with the inherited Euclidean metric. Let o4 be the

spherical m-simplex. Then the radial projection from og to of is contractive, while the

1
radial projection of toog expands distances by a factor of at most 1/27r(m +1) /2.

Proof. Given two points z,y in of let s be the distance from z to y, and let € be the
spherical distance between the projections of z,y onto o, that is the angle between the
rays from the origin through z and y. It is clear that s < 8 which gives the first assertion.

Let a,b be the distances from the origin to x,y respectively. Note that a,b >

1 1
(m+1)" /2, as the distance from the origin to the simplex oy is (m + 1)~ /2. The
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1
triangle defined by z,y and the origin has area given by 1/23(m +1)" /2 = 1/2ab sinf >
1 1 1 1, 1 ) :
/o(m +1)" "sinf. As 0 < 6 < “/ym, we have 0 < “Jomsind < “Jom(m + 1) /2s. This

completes the calculation. O

Definition 5.5. A uniform spherical metric on a locally finite simplicial complex is a

metric with the following properties:
e each simplex is isometric to the spherical m-simplex;
e the restriction of the metric to each component is a path metric;

e for all R > 0 there is a finite subcomplex K such that if (z, y) lies in the complement

of Kx K, and if d(z,y) < R then z and y are in the same component of the complex.

It is not difficult to see that such a metric must always exist, and indeed it is

unique up to coarse equivalence (for the bounded coarse structure).

Lemma 5.6. Let X be a locally finite simplicial complex with a uniform spherical metric.
For any vertex vy and simplex o in the same component of X, there exists a sequence of

adjacent vertices v, vy, ..,V with v € o and d(vg, o) = kn/2.

Proof. Let k be the smallest number such that there exists a sequence of adjacent vertices
V0, V1, ---, Vg With vg € 0. It is clear that d(vg,o) < kn/2. We will prove by induction
on k that we have equality. Certainly if £ = 0 the result holds, for then vy € o and
d(vg, o) = 0.

For k > 0 let K be the union of all simplices spanned by vertices v connected to
vy by a sequence of at most k — 1 adjacent edges in X. Let z € o be a point minimizing

d(vg, ), and let v be a geodesic from vy to . Now let y be the last point on v lying
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in K. Let 7 be the simplex of K containing y in its interior. Then inductively we know
that d(vy,7) = (k — 1)7/2, so as d(vg,0) < kn/2 and v is a geodesic, it follows that
d(z,y) < m/2, and in particular d(o,7) < w/2. To complete the result, it suffices to

prove the following claim.

Claim. If 0,7 are simplices in a simplicial complex with uniform spherical metric, and

if d(o,7) < /2 then either d(o,7) = /2 or o meets T.

To prove the claim let § be a geodesic between closest points of 7,0. It is clear
that ¢ is piecewise linear and we will break it into linear segments. We will prove the
result by induction on the number of segments. The result is clear for a single segment.
Now suppose ¢ and 7 do not meet, and that d(o,7) < 7/2. Let us remove the first
segment of . Let z denote the end of this segment, and let o’ be the simplex containing
z in its interior. Then by induction, as d(¢’,7) < 7/2 we must have 7 N ¢’ non-empty.
On the other hand certainly o N o’ is non-empty. Hence the shortest paths from z to 7
and to o liein o’. As cNo’ and 7No’ are non-intersecting faces of o they are distance
7/2 apart, and hence the length of the path ¢ is at least 7/2. Thus in fact d(o,7) = 7/2

which completes the proof. O

Definition 5.7. Let (X, d) be a proper metric space. The associated path-length metric
is

dl(w,w/) = inf{l(7y) : v a path from z to z, v [0,1] — X}, where

I(y) = sup{z d(y(t;),v(tir1)) : 0 =19 <ty <--- <t, =1 a partition}.
)
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Note that the path length I(7) is at least d(v(0),7(1)), and hence dj(z,z’) >

d(z, ).

Definition 5.8. Let (X,d) be a path metric space, and let Y be a closed subset of X.
Let d; be the path metric on Y associated to the metric inherited from X. The distortion

of Y in X is

The distortion of a path v: [0,1] — Y is I(y)/d(~(0),v(1)).
We will need the following technical lemma relating different metrics.

Lemma 5.9. Let X be a connected finite dimensional simplicial compler equipped with
the uniform spherical metric. LetY be a connected subcomplex of X (n), the n'h barycen-

tric subdivision of X, and let Y, =Y No for o a simplex of X. Suppose that
1. for each simplex o of X, the subcomplex Y, is connected, and
2. the 1-skeleton of X is contained in Y, or

7. for all pairs of simplices o, o in X, such that Yy, Ya/ are nonempty, the simpler o

meets o' and the intersection Y, N Y 1 =Y ., is non-empty.

Then there is a finite bound on the distortion of Y in X, depending only on n and the
dimension of X. That is, the inherited metric on Y, and the associated path-length
metric on Y are bi-Lipschitz equivalent. Moreover, the uniform spherical metric on'Y
is also bi-Lipschitz equivalent to the other two metrics, and all the Lipschitz constants

depend only on n and the dimension of X.
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Proof. Let dy denote the spherical metric on X, let dy- be the inherited metric on Y,
let d; be the associated path metric on Y, and dg the spherical metric on Y.

First we will observe that the distortion introduced by restricting to simplicial

paths is bounded. Let X () denote the nt barycentric subdivision of X, and let Z be

the 1-skeletion of X (), For z, #' in the interiors of simplices 7, ' of X (”), let
de’ (z,7') = inf{l(y) : v a path from z to Z inruZu 'r,},

where [ denotes the path-length with respect to the metric dy 1 Note that for a single
simplex 7 of X (") the boundary 07 has finite distortion. As there are only finitely many
7 up to isometry, the distortion is bounded over all simplices 7. Now suppose that the
j + 1-skeleton of X (") has finite distortion in X (”), which is true for j sufficiently large
as X is finite dimensional. Then breaking a geodesic in the j + 1-skeleton of X (") into
segments each contained in a single simplex 7 we conclude that the j-skeleton of X (n)
in the j + 1 skeleton has finite distortion. Hence inductively the j-skeleton of X (") has
finite distortion in X(").

Let ¢ be a bound for all j and j > j on the distortion of the j-skeleton in the
j' skeleton. Now for an arbitrary pair of points z,z’ in X let 7,7’ be the simplices of
x®) containing z,z in their interior, and let j be max{dim7,dimr’'}. Take a geodesic
Vj from z to ' through the j skeleton of X (n)’ and let z, 2 be respectively the first and

last points on the path which lie in the 7 — 1-skeleton of X (n)' From what we’ve already

I The function de need not be a metric. We cannot compose such paths so the triangle
inequality may fail. Note however that the restriction of d’ 'x to Z is a metric.
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observed the distortion of v in X (") is at most c. On the other hand we also know there
is a path Yj—1 from z to 2 in the j — 1 skeleton of X (") with distortion at most c.
Inductively we find that there is a constant ¢ such that for all z, 2’ and corresponding
T, 7’ there is a path ~ from z to 7' in 7U Z U7’ with distortion at most ¢’. Hence d X
and d'y are bi-Lipschitz equivalent.

Now we will carry out a similar construction for d; on Y. For y, 3 in the interiors
of simplices 7,7’ of Y, let d;(y, y') = inf{i(y) : v a path from z to ' in TU (Y N Z) U7},
where Z is the 1-skeleton of X" as above. Let d/Y denote the restriction of le to Y.
We will show that there is a path v from y to v in 7 U (YNnZ)u 7' and a bound on the
‘distortion of  relative to d’Y’ which is independent of y, y'. More precisely we will show
there is a a constant ¢’ with d; < c"dly. Take a geodesic from y to y/ in 7UZ U7’ where
y € 7 and y' e 7. Now replace the segment of the path contained in the 1-skeleton of
X () by a path contained in the 1-skeleton of Y. Hypotheses 2 or 2/ along with 1 ensure
that we can do this one simplex of X at a time, that is each segment lying in a single
simplex o of X can be replaced by a segment in Z N o. There are no difficulties joining
up over the boundaries, as we can connect via the 1-skeleton of X using hypothesis 2,
or given 2', for y,y’ in simplices 0,0’ of X we know that o meets ¢’ and we can connect
up via Y,; N Ya’ = Yoﬂa"

Let v be the path so constructed. There are only finitely many simplicial isomor-
phism classes for pairs (O'(TL),YU) where ¢ is a simplex of X, and o™ is its subdivision
in X (n)’ hence there are only finitely many types of replacement occurring within the
simplices of X. Thus there is a bound on the distortion of v relative to dgf, depending

only on the finite set of path-lengths for simplicial paths in a subdivided simplex )
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of X. Combining this with the distortion bound for d’X relative to d y we conclude that
there a bound of the distortion of 7 in X. As dj < d; this is moreover a bonud on the
distortion of Y in X.

Finally we note that on a single simplex 7 the metrics dj,d; are bi-Lipschitz
equivalent, and again as there are only a finite number of cases, the Lipschitz constants
may be chosen independent of 7. A geodesic for d; may be divided up into segments
each contained in a single simplex of Y. Each segment has dj-length bounded by a
constant multiple of its d¢-length, which gives one of the required Lipschitz inequalities.
Interchanging the roles of dgy and d; will give the other inequality, and hence we conclude

that d; and d, are bi-Lipschitz equivalent. O

5.2 Coarse K-homology and assembly

In this section we will define the coarse K-homology K X, (X) and the assembly
map p: KX, (X) = K, (C*X).

We will now proceed to define the coarse K-homology of a space. This is a
geometric process; the space will be replaced by a sequence of ‘coarser’ spaces, each of
which is coarsely equivalent to the original, though perhaps topologically different. We

will construct coarsenings of a space using open covers.
Definition 5.10. Let U be an open cover of a metric space X.

e The degree of U is the supremum over points £ € X of the number of elements U

of U containing z.

e The diameter of U is the supremum of the diameters of the sets U in U.
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e The Lebesgue number of U, denoted Lebesgue(lf) is the largest number R such
that for every open subset V of X of diameter at most R, there exists U € U with

vV CU.

Note that the diameter of U/ is finite if and only if ¢/ is uniformly bounded for the

standard metric coarse structure.

Definition 5.11. An anti-Cech sequence for a metric space X is a sequence U; of open
covers of X with the properties that Lebesgue(l;) tends to infinity, and Diam(l;) <

Lebesgue(U;  1).

Definition 5.12. The nerve Ny, of a cover U is the simplicial complex defined abstractly
to have the members of U as vertices, and with (Uq,Us,...,U;) a simplex iff U3 N Uy N

-+ N Uy, is non-empty.

If the degree of U is finite then so is the dimension of Nj; and Degree(U) =
Dim(Nyy) + 1.

The anti-Cech property implies that for each V € U; there exists U € U; 11 with
V CU. Correspondingly there are simplicial connecting maps ¢; : Nui — Nui+ x given
by mapping a vertex [V] of Ny, to a vertex [U] of Nui+ | With V. C U. We make the
convention that an anti-Cech sequence comes equipped with particular choices for these
connecting maps.

Note that the anti-Cech property additionally implies that for each finite sub-
complex K of Nui and for j sufficiently large depending on K, there is a vertex [V]
ofNquH such that the complex ¢;, jo---o ¢;(K) in Nui+j+1 lies in the star of [V].

Indeed we can do better than this in the following sense.
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Lemma 5.13. For U; an anti- Cech sequence of covers of a countable discrete metric
space there exists a subsequence uik and a sequence of connecting maps ¢ik: Nui —
k
Nui such that for each k, and for each finite subcomplex K of Nui , there exists
k+1 k
j € N such that ¢ik+j c---0 ¢zk(K) is a single vertex.

It will be convenient to assume that the maps have this property, and we will pass

to an appropriate subsequence where necessary.

Proof. We can choose such a subsequence as follows. Let K, K9,... be a list of all finite
subcomplexes appearing in any of the nerves Nui. Define L{Z-l to be the cover whose nerve
contains K7 and let Uy be the union of all sets V' with [V] a vertex of Ky. The set Uy
has finite diameter and hence is contained in some U{ € Z/{i2 for i9 sufficiently large. We
may now define ¢; , to be a simplicial connecting map between the nerves of Z/{il and Z/IZ-2
with the property that each vertex of K maps to [U{], i.e. Kq is collapsed to a vertex.

Now inductively suppose that for some j, k, covers U; S U; K have been chosen,

E
and that each subcomplex Ky,...,K j appearing in the nerve of one of these covers is
collapsed to a vertex of the nerve of uik by the composition of connecting maps so far
constructed. If K j+1 lies in the nerve of one of the covers U; which we have already
skipped, that is 4 < ig but 7 # ig for any k' < k, then move on to j + 2. If Kj+1
lies in some uik’ then let K§-+1 be the image of Kj+1 in Nuik’ and note that this is
still a finite subcomplex. Otherwise let U; 1 be the cover whose nerve contains K 1,
let ¢ik be any simplical connecting map between the nerves of uik and uik+ n and let

K; =K j+1- Now as for K| we may extend the sequence by one further cover and
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connecting map such that K; 41 1s collapsed to a vertex. The construction ensures that

each K j appearing in each Nui is ultimately collapsed to a vertex. O
k

Definition 5.14. A metric space X is uniformly discrete if there exists ¢ > 0 such that

d(zq,z9) > ¢ for any two points z1 # z9 of X.

Definition 5.15. A uniformly discrete metric space X has bounded geometry if for all
R € R, the number of points in a set U C X of diameter at most R, is bounded

independent of U.

Note that if X is a uniformly discrete space with bounded geometry and U is a
cover of X with Diam (i) < oo, then Ny, is finite dimensional and locally finite, with a
uniform bound on the number of simplices meeting at a point.

We can now define the coarse K-homology of a metric space X.

Definition 5.16. Let X be a bounded geometry metric space. The coarse K-homology
groups of X are the groups KX, (X) = li_mﬂ-K,k(Nui)2 where U, is any anti-Cech se-
quence, and the maps on K-homology groups are induced from the connecting maps

¢i: Nui — Nui+1'

Note that this does not depend on the choice of anti-Cech sequence, indeed the
direct limit could be taken over the directed system of all open covers of finite diameter,

equipped with the relation 2/ < U’ iff Diam (i) < Lebesgue(d’) or U = U’

2When we refer to K -homology, we mean K-homology groups with locally finite supports.
Using a compactly supported homology we would just get the homology of a point from this
construction. The specific model for K-homology that we will use is the definition of K-homology
groups given by the K-theory of the dual algebra for a space, see [9].
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There is a similar definition of coarse K-homology KX, (X)) for the Cjy coarse

structure on a metric space X, or indeed for any coarse structure. The major difference

is that the C( structure is not generated by a countable collection of its controlled sets,

except in some trivial cases such as the case where X is compact. As the structure is not

countably generated we cannot restrict our attention to sequences of covers but must
instead use a directed system.

The collection of all covers of a space X is partially ordered by ‘coarsening’:

U1 = Uy if for each Uy € U; there exists Uy € Uy with Uy C Us.

We will need to restrict this to locally finite open covers of a space X, and the following

lemma allows us to do so.

Lemma 5.17. Let X be a proper separable coarse space. Then for any uniformly bounded
open cover Uy of X there exists a locally finite uniformly bounded open cover Uy with

Uy =< Us.

Proof. The axioms for a proper separable coarse space ensure the existence of an open
cover {Uy,Us,...} such that |J; U; x U; is controlled, and hence each U; is relatively
compact. Thus the sequence V; = Uy U--- U U; is an exhaustion of X by relatively
compact open sets. This shows that X is o-compact, so in particular it is paracompact.

Thus there exists a locally finite refinement U of {Uq,Us, ...}, and we note that
as {Uq1,Us,...} is uniformly bounded, so is the refinement ¢. Now given any controlled
cover Uy, we will show that there is a locally finite uniformly bounded open cover Uy

with U] X Us. Let C = UUeu1 U x U. This is controlled by assumption, and we will
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define Us to be the Cy-thickening of U, that is

UQZ{CloU:UEU}

where C] o U = {z : there exists y € U with (z,y) € C1}.

We must show:

e Uy is uniformly bounded. This will follow from the uniform boundedness of U, U; .
e Uy is locally finite. This will follow from local finiteness of the cover Y.
° L{1 = UQ.

First let C9 = UU€U2 UxU and let C = UpyeyU x U. We will show that Uy is
uniformly bounded, that is, Cy is controlled. But C,(C are controlled as U,U; are
uniformly bounded, and Cy = C o C o (', hence this is also controlled.

Now we will show that Uy is locally finite. Let K be a compact subset of X and
let K’ be the Cy-thickening of K, that is K/ = Cj o K. If C} o U meets K then there
exists (z,y) € Cy with z € K and y € U. Thus U meets K'. But K’ which is relatively
compact, so by local finiteness of U there are only finitely many U € U for which U
meets K’. Correspondingly there are only finitely many Cq1 o U € Uy which meet K,
hence Uy is locally finite.

Finally we show that U; < Uy. That is, for all V] € U; there exists Vo € Uy with
Vi C V5. Given V] € Uy, pick a point © € V7. As U covers X, there is an open set
U € U with z € U. Then for all y € V;, we have (y,z) € V; x V] C Cy, and z € U.

Thus y € Cy o U, so for Vo = C = circU, we have Vo € Uy and V| C V5. O
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Definition 5.18. Let Cy(X) denote the collection of all locally finite Cp-uniformly
bounded open covers of X, directed by the above relation & < U’. The Cp coarse
K-homology of X is KX, (X)) = h—m>UGCO(X)K*(NU)’ where the maps on K-homology

groups are induced from connecting maps ¢: U — U fortd <.

Note that this direct limit is well behaved with respect to spherical metrics on the
nerves: Given two covers U, U’ of a space X with U < U’, and a simplicial connecting
map ¢: Ny — NU” there exist uniform spherical metrics on N, NU' for which ¢ is a

contraction.

Definition 5.19. Let X be a locally compact topological space. Then the K-homology
of X at infinity is KJ°(X) = limocx compact K« (X/C), where the directed system is
given by inclusions, and for C C €’ the map K, (X/C) — K,(X/C") is induced from

the quotient map.

We will see below that in a wide range of cases the Cy coarse K-homology groups

are just given by the K-homology at infinity.

Proposition 5.20. Let X be a proper, separable coarse space, and let U be a locally
finite uniformly bounded open cover. Equip Ny, with a uniform spherical metric, and the
corresponding bounded coarse structure. Then there exist maps n: Nyy — X such that if
y € Star[V], then n(y) € V. Any map n with this property is coarse and any two such

maps are close.

Proof. 1t is straightforward to see that 7 exists. Suppose y lies in the interior of the

simplex spanned by [V1],...,[V%]. Then y € Star[V;] for i = 1,...,k, and there are no
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other vertices [V] for which y € Star[V]. As [Vq],...,[V}] span a simplex V; U--- UV},
is non-empty, and we can pick any 7(y) € Vi U--- UV},

That two such maps 7,7 are close is immediate from the fact that C = Urey U %
U is controlled; if y € Star[V] then n(y), 7’ (y) € V, so as V € U, we have (n(y),7 (y)) €
C.

For a bounded subset of X, properness of X and the condition that U/ is locally
finite together imply that the preimage under 7 is a finite subcomplex of N;; and hence 7
is coarsely proper. It remains to show that for all R > 0 there is a controlled subset A of
X x X such that if d(y,y’) < R then (1(y),n(y')) € A. For any R the set of pairs (y,)
with y, 4/ in different components of Np; and such that d(y,y/) < R is bounded. Hence
the set of images (7(y),n(y')) of such pairs is relatively compact, and hence controlled

in X x X. Thus it remains to show that the set

{(n(y), n(y/)) 2 d(y, y,) < R, and y,y/ in the same component of Ny}

is controlled. If y, 3 lie in the same component of Ny and d(y, y/) < R then by lemma
5.6 there is a sequence [V}, ..., [V}] of adjacent vertices of Ny, with y € V), = Vi, and
d([Vp), [V&]) = 7k/2 < R+ m. Thus (y,3') is contained in the k + 1-fold composition of
the controlled set (Ji7¢zy U x U with itself. As k is bounded there is a single controlled

set containing all such pairs as required. O

We will need the assembly map in the contexts of the bounded and Cf coarse
structures. To encompass both definitions we will define the assembly map for an abstract

coarse structure, and will consequently make use of directed systems of open covers,
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however for the bounded coarse structure the reader may assume that all such systems
are anti-Cech sequences.

The assembly map will be defined as follows. First we will construct natural®
homomorphisms K, (X) — K,(C*X) for proper coarse spaces X. Then for a locally
finite open cover U of X we obtain maps K, (Ny;) — K, (C*(Ny;)) where Ny, is equipped
with the bounded coarse structure for a uniform spherical metric. As any connecting
map ¢: Ny — NL{’ is both continuous and coarse, naturality implies there is a map
lim, K, (Ny;) — lim, K, (C*(Ny;)) where the direct limit is over an anti-Cech sequence
if X was equipped with the bounded coarse structure, or in general over the directed
system of locally finite controlled covers for any abstract coarse structure. Finally from
5.20 there are coarse maps 7N;; — X defined up to closeness, and we note that if
dp:U - U is a connecting map and nNy; — X, n/Nu/ — X then n = 77' o ¢ up to

closeness. Hence we will obtain the assembly map as the composition

KX,(X) - limy K, (C*(Ny) = K, (C*X).

The latter map of the composition is in fact an isomorphism.

Theorem 5.21. Let X be a proper separable coarse space. Then

limyg K, (C* (V) = K, (CX)

3Any coarse and continuous map X — Y should give rise to a commutative diagram relating
the assembly maps X and Y.
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1s an isomorphism, where the direct limit is taken over the directed system of locally finite

open covers U such that ey U x U s controlled.

Proof. The maps K, (C*(Ny;)) — K,(C*X) are induced from coarse maps 7;,: Ny; —
X. The idea of the proof is to take an ‘inverse’ map v,: X — Ny Let 4,1 X — Ny
be any map taking points z € X to vertices [U] € Ny with € U. Certainly the
compositions 1y, o ;4 and 14 o 1Py are close to the identity. The issue is that 1)y, will
not in general be a coarse map.

Let C*X be defined using a representation of Cy(X) on § and let C*(Ny;) be
defined using a representation of C(Ny/) on $. Write A = C*X as the direct limit
A = lim, » A where the direct limit is over controlled open subsets C' of X x X containing
the diagonal, and Ay is the C*-subalgebra of A generated by operators with support
contained in C. Note that the axioms for a proper coarse structure imply that every
controlled set is contained in some set C' appearing in the direct limit, and hence A =
lim, o A as claimed.

Let Z:{Ev be the collection of all open sets U with U x U C C, and let Uy be a
locally finite cover with (Jir¢y o U x U controlled and Z:{E« = Up. Such a cover exists
by lemma 5.17. Let ¢ = ¢UC: X — NUC and n = M * NUC — X. Let V] be a
covering isometry for n and in the same spirit let Vo be an isometry from § to S’JUC
with {(y,%(z)) : (y,z) € SuppV'} controlled. Then certainly V;V5 is an isometry on )

covering the identity on X, and V5V7 is an isometry on f)uc covering the identity on

Nuc.
Let B be the preimage of C*Nuc under Ady,. As VaVj covers the identity on
NUC is follows that AdV1 maps C*NL{C into Be. Indeed at the level of K-theory the
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composition K*(C*(NZ,{C)) — K, (Bg) — K*(C*(Nuc)) is the identity. On the other
hand as V7 V5 also covers the identity, the composition K, (Bg) — K*(C*(NZ,{C)) —
K, (A) is the map induced by the inclusion By < A. It is not difficult to see that for C
contained in another controlled open set Cl, and corresponding isometries Vll , V2’ we get
commutative diagrams at the level of K-theory relating AdVI* and Ade* with Advl' N
and AdVZI , respectively. Hence we may pass to the direct limit.

We will show that Ady, (A¢) is contained in C’*Nuc, that is Ao C Bg. Given
this it follows that the direct limit of the subalgebras B is A. Hence we will have

homomorphisms
K*(C*(NUC)) — Ky (A) — K*(C*(NUC)) — Ky (A)

where the composition of each pair of consecutive maps induces the identity, and this
suffices to establish the theorem. To prove the assertion, it suffices to show that for
T € A supported in C, the operator 7" = AdV2 (T') has finite propagation (it is not

difficult to see that it must be locally compact). But the support of T’ is contained in
{(v,9) : 3(x,2) € C such that (y, ), (y',z") € Supp(V3)}.

We thus know that there is a constant R > 0 such that if (y,y/) € SuppT’ then there
exists (z,2') € C with d(y,¥(z)),d(y’,¥(z')) < R. But as 1’7(:’ =< U it follows that
there exists U € Ug with z,2’ € U. Hence d(v(x),[U]),d(%(z"),[U]) < 7/2 and so

d(y,y') < 2R+ 7 for all (y,5') in the support of T’ O
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In preparation for defining the assembly map we will recall the definition of K-

homology in terms of dual algebras.

Definition 5.22. Let A be a C*-algebra, and let p be a representation of A. Then the
dual algebra D ,(A) is defined to be the algebra of operators T' which commute with the
representation modulo compact operators. For J an ideal in A, the relative dual algebra
D ,(A//J) is defined to be the subalgebra of D ,(A) consisting of operators T' for which
p(7)T and Tp(j) are compact for j € J. For a locally compact topological space X and
an open subset U of X we will denote D ,(C(X)) by D,(X), and D ,(Cy(X)//Cy(U))

by D ,(X //U).

Definition 5.23. Let A be a C*-algebra, and let p be a faithful representation of A
whose range contains no non-zero compact operators. Then K*(4) = K, 1(D p(A)/D (A A)).

For a locally compact topological space X we will denote K*(Cq(X)) by K, (X).

The K-homology of a space or algebra is well defined i.e. it independent of p by
a theorem in the spirit of 2.34.
The dual algebra definition of K-homology is related to the coarse algebras by

the following theorem.

Theorem 5.24. For X a proper separable coarse space the inclusion D*X —» ’Dp(X)

induces an isomorphism of the quotient algebras D*X/C*X and D,(X)/D,(X//X).

Proof. We will begin by showing that ©(X) = D*(X) + ©(X//X). Let U be a locally

finite, uniformly bounded open cover of X, and let {f;} be a partition of unity subor-
1 1

dinate to this. Let S € D*(X) be self-adjoint. Then the operator T = o fz-/szl-/2

converges, is a locally compact pertubation of S, and has norm at most 2||S||, cf. 4.15.
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The operator T is controlled by lemma 2.23, hence it lies in D*(X). We find that any
self-adjoint operator in ©(X) is a locally compact perturbation of a self-adjoint operator
in D*(X). Noting that D (X //X) is the algebra of all locally compact operators it follows
that D (X) = D¥*(X) + D(X//X).

Hence there is an isomorphism

D(X)/D(X//X) = D*(X)/(D*(X) ND(X//X)).

For the first part of the statement it therefore suffices to check that D*(X)ND(X//X) =
C*(X), and it is immediate from the definitions that the former contains the latter.
For the converse inclusion we will repeat the construction of T. Suppose S €
D*(X)N®D(X//X) is self-adjoint, and let T be constructed as above. Then T is con-
trolled, it is locally compact as S is, and hence T' € C*(X). Now for Sj a sequence of
controlled operators in ©(X) converging to S, construct operators T; using the same
partition of unity. Each operator Sj - T is also controlled and locally compact, and
moreover S; — T converges to S — T as || T — T[] < 2[|S — S;|. Hence S — T also lies in
C*(X), and splitting an arbitrary operator into self-adjoint and skew-adjoint parts, we

conclude that D*(X) ND(X//X) C C*(X). O

We now obtain the required homomorphism from the boundary map of the K-

theory long exact sequence associated to the short exact sequence of C*-algebras

0—C*X - D*X - D*X/C*X — 0.
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The homomorphism is the composition
K, (X) = K1 (D*X/C*X) % K,(C"X)
and the assembly map then given by the composition
pe KX, (X) = lim, K, (V) 25 lim, K, (C*(Ny) = K, (C*X).

5.3 Properties of KX, and homology uniqueness

In chapter 2 we noted that K,(C*X) has various homological properties. These
homological properties are also true for the coarse K-homology (they are quite straight-
forward from the homological properties of K-homology), and hence we may think of
the coarse Baum-Connes conjecture as being a uniqueness result for ‘coarse homologies’.
This view of the coarse Baum-Connes conjecture is explored in [15].

In the topological context, uniqueness of homology theories on finite dimensional
simplicial complexes can be proved inductively. Any finite dimensional complex can be
constructed as a union of two pieces, each of which is homotopy equivalent to a complex
of lower dimension. The two results employed in the induction step — the Mayer-Vietoris
sequence, and homotopy invariance — can both be used in the coarse context, though
with certain restrictions. These restrictive results are usually sufficient for the required
decompositions and homotopies.

The more fundamental difficulty is in finding a decomposition of X into pieces for

which the coarse Baum-Connes conjecture can be proved. The case case of the bounded
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coarse structure one might hope to prove the conjecture by induction on the asymptotic
dimension4, however there is a difficulty; it is not in general possible to decompose a
space of asymptotic dimension m into finitely many spaces which are coarsely homotopy
equivalent to spaces of asymptotic dimension less than m. On the other hand it is
certainly possible to decompose a simplicial complex of dimension m into complexes
which are homotopy equivalent (either topologically, or Cj coarsely) to to complexes of
dimension less than m. Thus for C( coares geometry we can reduce finite dimensional
simplicial complexes to 0-dimensional (i.e. uniformly discrete) complexes. For the Cj
structure, unlike the bounded case all infinite uniformly discrete spaces are coarsely
equivalent, so the 0-dimensional case amounts to a single calculation. Hence for the Cy
coarse structure, this homological uniqueness in fact proves the conjecture for locally
finite simplicial complexes with a uniform spherical metric.

We will compare the following three functors on proper coarse spaces: X
K (C*X), X — KX,(X) and X — K_°(X). Note that the K-homology at infinity is a
not a functor on the coarse category, but on the category of locally compact topological
spaces with maps which are continuous at infinity i.e. maps whose points of discontinuity
form a relatively compact set. We will find a posteriori that it may be regarded as a
functor on certain Cy coarse spaces. Specifically we will prove that if X is a finite
dimensional simplicial complex with uniform spherical metric then K, (C* X)), K X, (X),
and K_°(X) are all isomorphic.

We will begin with a Mayer-Vietoris sequence for K X, .

4Fow now we will focus mainly on the Cj coarse structure, so we will postpone the discussion
of asymptotic dimension to the final section.
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Theorem 5.25. For a coarsely excisive decomposition X =Y U Z, there is a cyclic

Mayer Vietoris ezact sequence:

= KX, (YNZ) % KX (Y)o KX, (Z) M KX, (X)
O KX, (YNZ) ...
where 11,19 are respectively the inclusions of Y NZ into Y, Z, and 31,79 are respectively
the inclusions of Y, Z into X. There is also a corresponding exact sequence for K-
homology at inﬁnity5.
The assembly maps from this Mayer- Vietoris sequence to the sequence of 3.13 give

rise to a commutative ladder.

Proof. From an open cover U of X, we obtain covers Uy, Uy of Y, Z, naturally giving
a decomposition Nyy = Ny, U Ny, We also obtain a cover Uynz of Y N Z with
NuYn P - NUY N NuZ' The condition of coarse excisiveness ensures that for some cover
! . / . . . . . .
U with Y < U, the image of NUY N NUZ in N, is contained in Nuéfnz' Taking the
direct limit, the result for K X, then follows from the K-homology exact sequence. [
Corollary 5.26. If X = Y U Z is a coarsely excisive decomposition and if the coarse
Baum-Connes conjecture holds for the subsets Y,Z and Y N Z of X, then the coarse

Baum-Connes conjecture holds for X. Likewise if for Y,Z and Y N Z the coarse K-

homology agrees with the K-homology at infinity, then the same is true for X =Y U Z.

5 The Mayer-Vietoris sequence for the K-homology at infinity is exact for any decomposition
of X into two closed sets.
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Now we will give a homotopy invariance result. As this is more general than the
homotopy invariance results already proved for K,(C*X) in chapter 2, we will prove

homotopy invariance both for this functor and for K X, (X).

Definition 5.27. Let X,Y be proper separable coarse spaces, and suppose ¢,9: X =Y
are coarse. Then ¢, 1) are directly coarsely homotopic if there is a map n: X X RT Y

which we will denote by 7(z,t) = n;(z), such that

e 7)(z,0) = ¢(z), and for any bounded subset K of X n;|r = 1| for ¢ sufficiently

large;

e for RT equipped with the bounded coarse structure, and for X x R+,Y x RT
with the product coarse structures, the map 7: X X RT - YV x RT given by

(z,t) = (n(z,1),t) is coarse.

Maps 1, ¢ are coarsely homotopic if there is a sequence of maps 9 = 9, %1,..., ¥ = ¢,
with ¢ja ¢j +1 directly coarsely homotopic or ¢j +1 ¢j directly coarsely homotopic for
each 7. In other words coarse homotopy is the equivalence relation generated by direct

coarse homotopy.

Remark 5.28. For a map n(z,t) = n(z) satisfying the first condition of the above defi-

nition, the condition that 7 is coarse can be stated explicitly as follows:

1. for any controlled set A in X x X, the sets

By = {(n(x,1),n(=,1)) | (,2") € A}

are controlled uniformly in ¢, that is [ J; B; is controlled;
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2. about each t € RT there is an interval U such that 1y is close to 7, for each teU

uniformly in ¢, that is

{(ny(2),mp(2) sz € X, ¢ € U}

is controlled;
3. for any bounded set K in Y, the projection of n_l(K) onto X is bounded.

Definition 5.29. Proper coarse spaces X,Y are coarsely homotopy equivalent if there
exist maps ¢: X = Y, and ¢: Y — X with 9 o ¢ and ¢ o 9 coarsely homotopic to the

identity on X,Y. The maps ¢, are called coarse homotopy equivalences.

Theorem 5.30. Let X,Y be proper separable coarse spaces, and suppose that ¢,1p: X —
Y are coarse maps which are coarsely homotopic. Then the induced maps ¢, and 1, on

the K-theory of C*X and on the coarse K-homology of X are equal.

It follows from this theorem that coarse homotopy equivalences induce isomor-

phisms on coarse K-homology.

Corollary 5.31. If X,Y are coarsely homotopy equivalent and if the coarse Baum-
Connes conjecture holds for X, then the coarse Baum-Connes conjecture holds for Y.
Suppose moreover that the coarse homotopy equivalences are continuous at infinity, and
there is a homotopy between them which is continuous at infinity. If the coarse K-

homology, and K-homology at infinity agree for X then the same is true for Y.

Proof of 5.30. The general homotopy invariance result can be deduced from lemma 3.2.

We will sketch the argument: Suppose 7 is a direct coarse homotopy from « to 8. Write
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X = Ky UKo U... with {K;} a locally finite cover by closed bounded sets. Then by
hypothesis there are numbers ¢; such that 7(z,t) = 8(z) for (z,t) € Y = {J; K; x [t;, 00).
Let Z = J; K; x [0,%;]. By 3.2 applied to positive translations of RT the C*-algebra, of
X x RT has trivial K -theory and likewise for Y, while negative translations show that
the same holds for X x (—00,0] and X x (—o0,0] U Z.

The Mayer-Vietoris sequence for the union of X X (—o0, 0] and Z thus shows that
the inclusion of X into Z induces an isomorphism on K-theory with inverse given by the
projection of Z onto X. Similarly the decomposition of X X RT into Y and Z gives an
isomorphism at the level of K-theory between C*Z and the ideal J of operators supported
near both ¥ and Z% We conclude that there are isomorphisms K,(J) = K, (C*Z) —
K,(C*X). Note that on any of the generating subsets Y4 N Z 4 for J the map 7 is close
to B o mx where mx is the projection onto X. Thus the first of the isomorphisms tells
us that 1, = B4 o Ty, on Z while the latter gives us that 7, = 1, o Tx, = a4 0 Tx,.

Hence as Ty, is an isomorphism oy = f3,. O

In the spirit of uniqueness of homologies, we now need a result corresponding
to the homologies agreeing on 0-dimensional complexes i.e. on discrete spaces. We will

prove this in the context of Cy coarse geometry.

Theorem 5.32. Let X be an infinite uniformly discrete proper metric space. Then

the coarse Baum-Connes conjecture holds for X equipped with the Cy coarse structure.

6We cannot be sure that this decomposition is excisive, so we must use the more general
formulation of 5.25
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Moreover any such space is coarsely equivalent to Ny and
K(N) = KX, (Ny) = K, (C™N).

Proof. We have already shown (lemma 3.20) that []Z maps to Ky(C*Ny) surjectively
with kernel consisting of finitely supported sequences of sum zero, while K (C*NO) =0.
The map [[Z — K(C*Ny) was specifically identified as taking a sequence of positive
integers to a sequence of projections having the given sequence of ranks.

It is easy to see that X is coarse equivalent to Ny; the coarse structure on X is
such that a Cq controlled operator is one for which the support contains only finitely
many points off the diagonal of X x X, and a C{j cover is a cover in which all but finitely
many of the sets are singletons. For a Cj cover let C be the union of all non-singletons
(which is finite). Then the cover can be coarsened to a cover consisting of all subsets
of C along with all singletons of N\ C. For such a cover the nerve is the union of
a simplex with N\ C, and the canonical map from this nerve to N/C is a homotopy
equivalence. It follows therefore that the C(y coarse K-homology of N is isomorphic to
Kfo(N) = li—m>C§N compactK*(N/C)-

We will now explicitly compute this group in order zero. For each C, we have
Ky(N/C) = H:ceN/C Z, and for C C C' the map K(N/C) — K(N/C') is surjective
and its kernel consists of those elements of K(C’/C) C Ky(N/C) which have sum zero.
Hence the homomorphism Ky(N) — K{°(N) = KX(Ny) is surjective, and its kernel
consists of the finitely supported elements of Ky(N) = [],.cnZ with sum zero. It is easy

to see that K1(N/C) = 0 for all C and hence K{°(N) = 0.
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Now we will describe the assembly map for this space. Let us represent Cp(X)
on 12(X) ® I%. The K-homology is given by the K-theory of D(X)/®(X//X). But in
this case the algebra ©(X) of pseudolocal operators consists of operators which are a
sum of a locally compact operator, that is one in ® (X //X), with a diagonally supported
operator. Hence D(X)/D(X//X) = [y B(l2)/ﬁ(l2). The boundary map Ky(N) =
K1 (JIy B(l2)/.€€(l2)) — K, ([ln ﬁ(l2)) is an isomorphism and gives the identification
Ko(N) = [IyZ, while the composition of this map with the inclusion of ]y ﬁ(l2) into
C’*NO is the assembly map.

Explicitly we have found that the assembly map [[Z = Ky(X) — Kp(C*Ny) is
given by taking a sequence of positive integers to a sequence of projections having the
given sequence of ranks. But we know that this map is surjective, and that the kernels
of the maps [[Z — KX(Ny) and [[Z — K(C*Ny) agree, hence the assembly map is
an isomorphism in degree zero. As KX71(X) and K;(C*X() vanish the assembly map

is also an isomorphism in degree one. O

We now get the following theorem as a uniqueness result for coarse homologies in

the Cj context.

Theorem 5.33. If X is a finite dimensional simplicial complex equipped with a uniform

spherical metric then
K:O(X) = KX*(XO) %} K*(C*XO)-

Proof. First let X (2) denote the second barycentric subdivision of X, and let Y] be the

union of simplicial stars in X (2) about the barycentres of the j-simplices of X. Then
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X =YyU:.--UY),, where m is the dimension of X, and each YJ is a disjoint union
of uniformly separated stars, see fig. 5.1. To see that these are uniformly separated it
suffices to consider pairs of stars Star(x), Star(y) in the same component of X, and as we
have a path metric on each component the distance will be the length of a path between
the boundaries of the stars. If these meet a common simplex ¢ of X then the distance
between the stars will be the length of a path within 0. Otherwise for some simplex
o containing z the path between the stars must connect 0 Star(z) to a face of o not
containing x. In either case we get a lower bound on the distance between the stars,
which does not depend on the simplex o as all simplices (of the same dimension) are

isometric.

Fig. 5.1. The second barycentric subdivision of a simplex, decomposed in terms of {YJ}
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Each Yj is therefore either compact if it consists of finitely many stars, or is
coarsely homotopy equivalent to the infinite uniformly discrete set consisting of the j-
barycentres. The homotopy is continuous, and moreover it is contractive on each star. As
the stars are uniformly separated this ensures that it is a Cj coarse homotopy. Hence in
either case the coarse Baum-Connes conjecture holds for Y; and the coarse K-homology
agrees with the K-homology at infinity.

We now consider the unions Zj, = Yy U---UY} for £ = 0,1,.... We will show
that for all £ the conjecture holds for Z;, and the coarse K-homology of Z}. agrees with
the K-homology at infinity. In particular we will conclude that this holds for & = m.
Certainly the statement holds for Zj = Y(. Inductively, we suppose it is true for Z;_ ;.
The statement also holds for Y}, so by the Mayer-Vietoris theorem (5.25) it will suffice to
show that the result holds for Z;_{NY}, and that the decomposition of Z;, as Z;,_ 1 NY}
is coarsely excisive. For k < m the metric on Z; will not in general be uniform, in
particular it will not be a length metric. However by 5.9 (using conditions 1,2,3) there is
a finite bound on the distortion for the components of Z; in X. Thus the given metric
on Z} and the associated path metric are at least uniformly continuous with respect
to one another, which implies that they are Cp-coarsely equivalent by lemma 2.18. It
follows that the decomposition is excisive.

The intersection Z3_1 N Yj has dimension m — 1, and hence we would like to
conclude by a further induction on the dimension m of X, that the statement must
also hold for Z;_ 1 NY}. Again there is a slight nuance as the metric on Z3,_{ NY} is
not a uniform spherical metric. However if we replace the given metric by a uniform

spherical metric then 5.9 (using conditions 1,2,3') implies that on each component of
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Z}_1 MY} the two metrics are bi-Lipschitz equivalent, for some Lipschitz constant which
is independent of the component. Hence as for Zj,, the two metrics on Z}_{ NY} are
uniformly continuous with respect to one another, so they are Cj coarsely equivalent,
and moreover this equivalence is a homeomorphism so it is compatible with K fo Thus

inductively the result holds for Z;_; NY}, completing the proof. O

5.4 The coarsening space

In this section we will construct a ‘total coarsening space’ associated to the coars-
enings Nui coming from an anti-Cech sequence U;. Using the Cj version of the coarse
Baum-Connes conjecture from the previous section, we will then identify the left hand
side of the conjecture with the K-theory of an ideal in the Cj Roe algebra of the total
coarsening space. The right hand side can be identified with a corresponding ideal in
the bounded Roe algebra, and the assembly map becomes a forgetful functor from the
Cp ideal to the bounded ideal. Moreover the bounded version of the ideal can also be
regarded as an ideal in the Roe algebra associated to a ‘hybrid’ structure on the total
coarsening space, which is coarser than the Cj structure, but not as coarse than the
bounded structure. This new structure will be exploited in the next section, to enable
calculations which could not be done directly for the bounded structure.

As we will be dealing with several coarse structures on the same space, we will
use the following conventions. A space equipped with the C{ coarse structure will be
denoted X(3. When we have defined the hybrid coarse structure, this will be denoted

X}p,. The bounded coarse structure will be denoted by an undecorated X.
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Definition 5.34. Let W be a proper metric space, and let I, be an anti-Cech sequence

for W. The coarsening space of (W,U,,) is

X =XWU,) = Nul x [1,2] U¢1 Nu2 x [2, 3] U¢2

equipped with the following path metric. Equip each subset o X [i,i+ 1] of Nui X [4,141]
with the product metric; o being given the spherical metric and [4,7+1] the linear metric.
The image of o X [i,7 + 1] in X is then equipped with the largest metric bounded by the
product metric’. Denote by m: X — [1,00) the map on X arising from the projection

maps Ny X [i,9 + 1] = [i,4 + 1].

Definition 5.35. The partial coarsening spaces of W,U, are the spaces

X; = XZ(W,U*) = Nul X [1,2] U¢1 R U¢i—1 Nui

equipped with the metrics they inherit as subspaces of the coarsening space. In other

words X; = w1 ([1,1]).

We will use various homotopy arguments which will involve collapsing partial
coarsening spaces in X. We will also use these collapsing maps to show that C*X has
trivial K-theory for X equipped with various coarse structures; we may think of this as

a homotopy from the identity to the ‘constant map at infinity’.

I o x [i,% + 1] injects into X then its image will just have the product metric, however if
o Nui — Nui+1 maps o to a simplex of lower dimension, then the metric on the image in X

will be reduced.
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Definition 5.36. The collapsing map from X to 7r_1([t, o0)) is the map

(

(¢i/_1 ©---0 qsl(x)at) for (.’E,S) € Nuz X [Z,’L + 1)a
Py(z,8) = ¢ with s < t,t € [i/,7 +1)

(z,s) for s >t

\

Note that these maps are contractive, and for t' > ¢ we have (I)t’ o®; = @t/.

Theorem 5.37. Let W be a uniformly discrete bounded geometry metric space, and let

Uy be an anti-Cech sequence for W. Then C*(X(W,U,)q) has trivial K-theory.

For the purposes of the following section it would suffice to establish this when X
is finite dimensional. In that case by the Cjy coarse Baum-Connes isomorphism (5.33) it
suffices to show that KfO(X ) = 0 which is straightforward. It is interesting however to

note that the result can be proved in the greater generality stated here.

Proof. We will apply lemma 3.2. 'We must find maps oy from X to X satisfying the
hypotheses of the lemma. Let 7,: RT — R be given by r(t) =logk—tfor0 <t <logt
and 7(t) = 0 for ¢ > logk. Pick a basepoint z in X, and define aj: X — X by
ap(z) = (I)Tk (d(zq,2)) (z). We will show that this has the required properties.

A bounded subset K of X must lie in some X;. Note that ®;(K) is then also
bounded, and so is K’ = <I>i_1<I>z-(K). The set K’ has the property that if ®;(z) € K’ for
some t then z € K'. As K’ contains K, to show that the range of o does not meet K
for k sufficiently large it therefore suffices to show that oy (K ') does not meet K. The

set K’ lies in some ball B(zg, R) in X, and then for z € K we have d(zp,z) < R so
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ri.(d(z,zg)) > logk — R. Thus for logk > R + i the set a(K’) does not meet X; and
so in particular it does not meet K.

If A is a Cjy controlled subset of X x X, then let

By = {(ap(z),ar(z)) : k=1,2,..., and (z,2") € A}.

We must show that this is C(j controlled. For each ¢ > 0 we may write A = K_ U A,
where K, is bounded and d < € on A.. The maps o}, expand distances by at most a

factor of 2 as

d(ag (@), a () < d(z,a") + |ry(d(z0, @) — ri(d(zg,2"))| < 2d(z, ).
Thus for all £ we have d(ay(z), ak(x')) < 2 for (z,2') € A;. On the other hand K, is
bounded, and using the fact that ®; ultimately collapses any finite complex to a point we
find that for k sufficiently large, (ay(z), a(2')) lies on the diagonal for all (z,2') € K.
Therefore B 4 lies in the union of a bounded set and a set on which the distance function
is bounded by 2e. As ¢ is arbitrary it follows that B 4 is controlled.
It is not hard to see that « is close to the identity; indeed «; equals the identity

outside of a bounded set. It therefore remains to show that

C={(a(r),apy1(z)) : k=1,2,... and z € X}
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is controlled. Note that

d(ag(z), ap41(2) < ry1(dz,20)) — rp(d(z, zg))

< log(k+1) —log(k) < 1/k.

Fixing ky we note that there is a bounded set outside of which oy, is the identity for
k < kg. Hence for k < kg the set {(ay(r), agy1(z))} lies in the union of a bounded set
with the diagonal. On the other hand for k > ky we have d(oy(z), oy 1(z)) < 1/kg.
Thus C lies in the union of a bounded set, the diagaonal, and a set on which the distance
function is bounded by 1/kq. As kg is arbitrary C is controlled, which completes the

proof. O

Now we will construct the ideal whose K-theory gives the left hand side of the

conjecture.
Definition 5.38. Let Iy = Io(W,U,) = lim,; C*(X;(W,U,)o)-

Note that we may regard I as an ideal of C* (X (W, U, )(); each algebra C* (X; (W, Uy)o)

is naturally included in C*(X (W, U,)g), and the closure of their union forms an ideal.

Theorem 5.39. Let W be a uniformly discrete bounded geometry metric space, and U,

an anti-Cech sequence. Then KX, (W) is naturally isomorphic to K, (Io(W,U,)).

Proof. We have

KX, (W) :lm)lK*(NZ/[i) = liy ling K*(Nui/c)
i 1 CgNui compact
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as for any compact subset C of Nui and for j sufficiently large, ¢; jo---0¢; (K)isa

contractible subset of Nui+j+ 1 We therefore get

KX, (W) = K X, (Ny4)o) = s, (C" (N )o)

by the coarse Baum-Connes conjecture for Cjy coarse geometry.

Theorem 5.37 tells us that K, (C*(X()) is zero and for each i the group K, (C* (7r_1[z', 00))p)
is zero, the latter following from the fact that we use the antiCech sequence U, Ui 11, - - - -
Thus using the Mayer-Vietoris sequence of 5.25 for the decomposition X = X|i U
7T_1[z', 00), the inclusion of 7r_1{z'} into X; induces an isomorphism at the level of K-
theory.

We now observe that 7T_1{’i} and NZ,{i are coarsely equivalent with the Cj struc-
ture. Given a set A which is Cj-controlled for W_l{i} we may write A = BU C with
dx (z,y) <1 for (z,y) € B and with C bounded. Then for pairs (z,y) € B the distance
dx agrees with the distance d Ny, hence B is also C( controlled for Ny - The set C
will also be bounded for the Nui metric, hence A is also Cy controlled for Nui. To show
conversely that if A is C{y controlled for Ny, then it is also Cy controlled for ﬁ_l{i}, we
use the same argument; the only difference is that if Nui is not connected then we must
write A = BUC with dNL{i (z,y) < min{l,e} for (z,y) € B where ¢ is less than the
least distance between two components of Ny;.. We conclude that C*(Nui)o — C*(X;)o

indcues an isomorphsim on K-theory and hence

KX,(W) = gk, (C*(X; (W,U,)o)) = K, (I (W,1y)).

i
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Naturality follows from the naturality of the assembly map. O

Now we will formulate the right hand side in terms of an analogous ideal. The
direct limit we use can be described as an ideal in the algebra C* (X (W,U,)) with the
bounded structure. However it will be more useful to describe it as an ideal of a slightly

different algebra.

Definition 5.40. Let X = X (W,U,) be a coarsening space. The hybrid coarse structure
on X, denoted X (W, U, )} is the coarse structure for which a set A C X x X is controlled

iff
e d| 4 is bounded, i.e. A is controlled for the bounded coarse structure, and
e sup{d(z,y) : (z,y) € A\ (X; x X;)} — 0 as ¢ tends to infinity.

Note that the restriction of this structure to any partial coarsening space agrees

with the bounded structure.
Definition 5.41. Let I}, = I},(W,U,) = lim,; C*(X;(W,U,)).

We may regard Ij, as an ideal of C*(X(W,U,);); as the bounded and hybrid
coarse structures on X;(W,U,,) agree, each algebra C*(X;(W,U,,)) is naturally included
in C*(X(W,U,)},), and the closure of their union forms an ideal.

To reformulate the conjecture as a forgetful map from I to I all that remains

is to establish the following theorem.



133
Theorem 5.42. There is an isomorphism K, (I}) = K, (C*W), and moreover the for-

getful map Iy — I, gives rise to the following commutative diagram:

The coarse Baum-Connes conjecture is therefore equivalent to the statement that the

forgetful map Iy — I}, induces an isomorphism on K-theory.

Proof. Define (: X; — W be defined by ¢ = no ®; where 7: Nui — W is any map such
that if z € Star[V] then n(z) lies in V', as in proposition 5.20. We will show that ¢ is a
coarse map, indeed a coarse equivalenceg.

First let us show that ( is coarse. If d(z, :v') < j then there is a path in NUH_J- from
®;4 () to (I)z'+j(33l) of length at most j. Hence by lemma 5.6 there exists a sequence of
open sets V(, ...,V in U;, . with the intersection of consecutive pairs non-empty, with
((z) € Vy and ((z) € V4, and with k at most 2j/7 + 2. Hence if d(z,2’) < j then
d(¢(z), ¢(2))) < (2k/7 + 4) Diam;, .. It is not hard to see that ¢ is proper, and hence
it follows that ( is coarse.

Now let ¢: W — 7T_1{‘i} be any map taking w € W to a vertex [V] of w_l{i}
with w € V. If d(w,w’) < R then let j = jp > 0 be such that Uiy ; has Lebesgue
number at least R. Then it follows that there exists [V] € Nuz'+j with w,w’ € V and

hence such that ®; ;(¢)(w)) and @, j(qp(w')) are vertices of Nui+j which are adjacent

8We know that 7 is coarse for the uniform spherical metric on Nui’ but for that metric it is

not in general a coarse equivalence. However for the metric inherited from X we will see that it
is in fact a coarse equivalence.
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to [V]. Thus if d(w,w’) < R then d(¢)(w),9(w’)) < 2jp + . Hence 9 is also coarse. It
is easy to see that 1 o ( and { o %) are close to the identity. The former is at most ¢ +
from the identity, while the latter is at most Diam{{; from the identity.

We have shown that  gives a coarse equivalence (: X; — W, hence K, (C*X;) =
K, (C*W). By continuity of K-theory under direct limits we therefore get isomorphisms
Ky (Ip) = h—mnK*(C*Xz) > Ky (C™W).

The inclusion of Nui into X; is contractive on each component of Nui, and for
any controlled subset A of Nui X Nui the set of pairs (z, x') € A with z and 2/ in different

components is bounded. Hence the inclusion is coarse. Thus for each ¢ we have maps

*

K€" (V) = KulCF (1)) 21 Ko (C*OD))

To see that under the identifications of KX, (W) with K, (Ij), and of K,(C*X) with
K, (Ip), the assembly map p corresponds to the inclusion of Ijy into I}, — in other words
to see that the diagram in the statement of the theorem commutes — it suffices to

observe that the diagram

KX, (C°X;(W,Uy)g) «——  KilNy) —— KX, (W)

l ! |

K*(C*Xi(W,U*)) A K*(C*(Nu,)) E— K*(C*W)

commutes for each 3. O
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5.5 The coarse Baum-Connes conjecture for spaces of

finite asymptotic dimension

In this section we will begin by defining asymptotic dimension. As the algebras
Iy, I}, can be considered as ideals in the Roe algebras of X, X}, we obtain a pair of

short exact sequences, which gives rise to the following commutative ladder:

Ky (Ig) —— Ky (CH(Xp) —— Ko (C*(X)/Ty) —2— Ky_1(Ip)- .-

! ! ! l

L Ky(Iy) —— KJ(CHXp) —— K (CF(Xp)/T) 2 K a(T)...

By the 5-lemma, to prove the coarse Baum-Connes conjecture for W, it will
therefore suffice to prove that the forgetful maps C*(Xy) — C*(X}), and C*(Xq) /Iy —
C*(X},)/I;, induce isomorphisms on K-theory.

We will prove that when W has finite asymptotic dimension, there exists an anti-

Cech sequence U such that for X = X (W, U,)

e the group K, (C*(X},)) vanishes so K, (C*(X()) vanishes by 5.37 the forgetful map

is an isomorphism;
e the map C*(X()/Iy — C*(X},)/I;, induces an isomorphism on K-theory.

This will allow us to conclude that the coarse Baum-Connes conjecture holds for spaces
of finite asymptotic dimension.

The former assertion will follow by another application of lemma 3.2, while that
latter is suggested by the fact the two coarse structures on m ‘become closer to-

gether’ as ¢ tends to infinity, and hence the quotients should in some sense agree. More
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precisely, for certain subsets Y of X, the two coarse structures on Y \ X; agree for i

sufficiently large, and homological arguments will provide a reduction to such cases.

Definition 5.43. Let W be a metric space, and let R > 0. The R-degree of an open

cover U of W is the supremum over w € W of the cardinality of {U € U : d(w,U) < R}.

Definition 5.44. A metric space W has asymptotic dimension at most m if for all
R > 0 there exists an open cover U of W with Diam(i/) < oo and with the R-degree of
U at most m + 1. The asymptotic dimension of W is the smallest m such that W has

asymptotic dimension at most m.
The following theorem is due to Yu, see [25].

Theorem 5.45. If W is a bounded geometry metric space of finite asymptotic dimen-

sion, then the assembly map p: KX, (W) — K, (C*W) is an isomorphism.

We will give a new proof of this using the techniques outlined above.

If W has asymptotic dimension at most m then for each R there exists a cover U
with R-multiplicity at most m + 1. We can thicken this cover to a cover U’ = {{w € W :
d(w,U) < R} : U € U}. This cover has Lebesgue number at least R, and has degree at

most m + 1. This allows us to construct an anti-Cech sequence with bounded degrees.

Proposition 5.46. For a uniformly discrete metric space W of asymptotic dimension
at most m, there exists an anti-Cech sequence U, for W, with Degree(U;) < m+ 1 for
all i. Correspondingly there in an anti-Cech sequence such that each coarsening NL{i has

dimension at most m. O

The bound on the dimensions of the complexes Nui is all that we will require to

prove the coarse Baum-Connes conjecture.
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First we use this to compute the groups K, (C*(X(W,U,)p)). We proceed in
several stages. We will need to construct a sequence of maps from 7r_1([z', 00)) to itself
such that the restrictions to NZ/{i are more and more contractive. The following lemma

will be useful in dealing with homotopies that appear in the construction.

Lemma 5.47. Let Y be a path metric space, and let Z be a uniform metric simplicial
complex. Let ng,m be Lipschitz maps from Y to Z with Lipschitz constant X > 1,
and suppose that for all y the images ny(y),n1(y) lie in a common simplex. Let n;
denote the linear homotopy from ng to n1. Then for Y x [0,1] equipped with the metric
d((yg,to), (z1,t1)) = dy (yg,y1) + |tg — t1|, the map n: Y x [0,1] = Z is Lipschitz, with

constant at most wA.

Proof. Given points yg,y; in Y, and € > 0, let v be a path from yj to y; of length at
most d(yg,y1) +e. We know that 7, oy is a path of length at most \(d(x,z’) + €) for
t =0, 1. It will suffice to show that n; oy is of length at most wA(d(yg,yq) + ¢) for all ¢;
the result will then follow by letting e — 0.

Breaking the path v up in to segments each having images under ng,7n; lying
within a single simplex, it will suffice to show that for such a segment 'y' from y6 to yll,
the distance d(nt(y(l)), Ny (yll)) is at most 7r)\d(y6, yll) for all t. If the simplex was equipped
with a flat metric d¢ this would be clear, indeed we would have d; (nt(y()),nt(yll)) <
Ad f(y(), y'l) We will use lemma 5.4 to deduce the result for the spherical metric from a
flat inequality.

Let S denote the affine span of no(y{)),no(yll), m (y(')), m (y'l) in the simplex, and

note that S can be isometrically embedded into a spherical 3-simplex. Let d f denote the
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metric on S induced from the flat metric on the 3-simplex and note that from lemma

1
5.4 we have dy < d < 'owd 2dy = mdy. Thus d{ny(u)), m(v1)) < g (my ). e (41)) <
W/\df(y(),y'l) < Wkd(y(’),yi) for all ¢.

To complete the proof note that

d(nty (y0),mey (1)) < Ay (o), ney (w1)) + dlney (w1), e, (1))

< wAd(yg,y1) + Tltg — |

IN

mAd((yo, o), (21,1))-

0

We will now state a technical lemma, asserting the existence of certain ‘good’

partitions of unity which will give the coefficients for the contractions of Nui'

Lemma 5.48. Let W be a uniformly discrete bounded geometry metric space of asymp-
totic dimension at most m, and let U, be an anti-Cech sequence for W with degrees
bounded by m + 1. For each i and each € > 0 there is an i’ > i, and a partition of unity

{hy} of Ny, indezed by sets U in Uz{ such that

e all the maps hy; are e-Lipschitz;

e for z in the interior of a simplex o of Ny, if [Vil;- .., [Vj] are the vertices of o

and U € Uy with hy(z) # 0 then U contains the intersection Vi N---NVj.
We will defer the proof of the lemma.

Proposition 5.49. Let W be a uniformly discrete bounded geometry metric space of

asymptotic dimension at most m, and let U, be an anti-Cech sequence for W with degrees
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bounded by m + 1. Let X = X(W,U,) the total coarsening space of (W,U,) and let 7 be
the quotient map from X to [1,00). Then for each i and each € > 0 there is an i >

and a map f: 7r_1([z',oo)) — ﬂ_l([i’,oo)) such that
o d(B(@). () < ed(@. ) for .’ € Ny

e (3 is Lipschitz with constant 3m;

e B(z) =z for x € X with n(z) > ';

e ifz € X withi < w(z) < i then B(z) € Ny, and there is a simplez o of Ny,
7 (3
containing both q)i/(x) and B(x), hence @,/ is linearly homotopic to B, as a map

from 7 Y([i,00)) = 7 L([i', 00)).

Proof. Apply the lemma for the given value of i, and for contraction factor ¢/(m + 1).

For i’ as provided by the lemma we will begin by defining 3: NUi — Ny, by
(2

Blz)= Y hy(@)Ul.
U GUi/
This is well defined as whenever Ay, (z) #0,..., hUj (z) # 0, the sets Uy,...,U; have
non-empty intersection (containing the intersection of the sets V' for which [V] is a vertex
of the simplex containing z), and hence [Uq],..., [Uj] span a simplex. This moreover
implies that for any given x at most m + 1 of the terms are non-zero. A path v from
z and 7’ can be approximated by a path composed of segments 7q,...,7; such that
each o Vi! lies in a single simplex of Nui/. Then for any y, y' in the image of Vi! the
coefficients in the sums B(y),8(y’) each differ by at most ed(y,v’)/(mm + 1) and there are

at most m + 1 coefficients, hence d(B(y), 8(v')) < ed(y,y’). Tt follows that the length
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of f o~ is at most ¢ times the length of v, and hence d(8(z), 8(z')) < ed(z,z’) for all
’
T,r € Nui'

Now compare S(x) with <I>i/(:1:). If z lies in a simplex spanned by [V7],..., [V]]
then <I>Z./(:v) lies in a simplex spanned by [Uq], ..., [Uj] (not necessarily all distinct) with
Vj’ C Uj’ for all j/ < j. On the other hand 3(x) lies in a simplex spanned by [U{], cee [U,'c]
where from the lemma we know that each U]/c/ contains V1 N---NV;. AsUpN---NU;
contains V3 N---NVj it therefore follows that [U1],. .., [Uj], [U{], ce [U];] span a simplex
in Ny,

?
We will now extend /5 to a map from 7r_1([z', 0)) — 7r_1([z'/, 00)). Let 9; denote

the retraction of 7T_1([‘i,‘i + 1)) onto Ny, and define

B(a) = (1 - DBW;(x)) +1By(z) for z € X, m(z) =i+ Yot € [i,i + o]
® () for m(x) € [i + 1/2, o)

?

We will now establish that S is Lipschitz. Without loss of generality we will
assume that ¢ < 2/7. Tt suffices to establish d(8(z),(z')) < 3nd(z,z’) for z,2' €
7T_1([‘i,‘i + 1/2]). The retraction ; restricted to 7r_1([z',z' + 1/2]) increases distances by
at most /2, and hence as  has Lipschitz constant at most 2/7 on Nui it follows that
B o1p; is a contraction. As <I>z-/ is also a contraction, it follows from lemma 5.47 that
d(B(z), B(z')) < m(d(z,2") + |t — t'|) where (z) = i + Yot and 7(z') = i + Yot'. Note

that |t — /| < 2d(z,z') so d(B(z), B(z")) < 3wd(z,z).
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The remaining two assertions of the theorem are immediate from the construction,
and the above observation that for z € Ny the images B(z) and ®,(z) lie in a common

simplex. 0

Theorem 5.50. Let W be a uniformly discrete bounded geometry metric space of asymp-
totic dimension m, and let U, be an anti-Cech sequence for W with degrees bounded by

m + 1. Then the groups K,(C*(X(W,Uy)})) are trivial.

Proof. We will apply lemma 3.2. The idea of the proof is to use proposition 5.49 to
construct a sequence of maps f31,39,... which can be composed to form a sequence of
maps f31,089 o 51,83 o B9 o B1,... with the property that for each ¢ and each € > 0, all
distances between points in X are contracted by a factor of ¢ by all but finitely many of
the maps. Such a sequence would satisfy the first two hypotheses of the lemma, however
the maps would not get closer and closer together, and hence the third hypothesis would
not be satisfied. We will therefore construct a family a; of maps with the same con-
tractive properties as the compositions - - - o 9 o 31, and then pick a sequence t1,19,...
tending to infinity, such that g and Oy g get closer together as k tends to infinity.
Let 59 = 1 and let $; be a map from X = W_l([il,oo)) to 7T_1([‘i2,00)) with
Lipschitz constant 1 as provided by proposition 5.49, where i9 > 4 is provided by the
theorem. Then inductively, let 3; from W_l([ij,oo)) to W_l([ij+1,00)) with Lipschitz

constant 1/j be provided by proposition 5.49. We define

aij:q)ijoﬁj—Qo"'o:BI:X_)ﬂ- ([Zj,OO)),
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and we will use a homotopy to construct the family oy for i <t <ijyq. We know from
the theorem that (I’ij is linearly homotopic to ﬁj—l- Let Vit be such a homotopy where
t € [ij,4541] and Vij = (I)ija'yj,ij+1 = Bj_1- We can now define oy for ¢ € [1,00) by
ap =800 Bj_go-of: X = m (t,00)), for t € [ij,ij41].

Note that this agrees with the previous definition when ¢ = j-

Let t} be a sequence tending to infinity with {1 — ¢ — 0 as k — oco. We
will show that the sequence of maps o, satisfies the hypotheses of lemma 3.2; this will
complete the proof of the theorem. As any bounded subset of X lies in some X, and for
tg. > i the range of ot does not meet X, it is clear that the maps are properly supported.
To show that they have uniformly close steps, note that d(®4(z), @, (z)) < |t—t'| for all z,
and as i1 —1; > 1 the homotopy 7, ; has the property that d(v; +(2),7;+(z)) < m|t—t'|
for all . Thus d(atk(w),atk+1 (z)) < (m+ 1)ty —tgs1| = 0 as k — oo. Hence given
e > 0 there is a kg such that for k¥ > kq the pair (atk (:v),oztk+1 (z)) lies within e of
the diagonal, while for each k < k either (atk (w),atk+1 (z)) lies on the diagonal or
g (w),atk+1(x) both lie in ﬁ_l([l,tk+1]). Thus the collection of all such pairs is a
controlled set for the hybrid structure, and the third condition is satisfied.

It remains to show that the sequence of maps is uniformly controlled. Given a

hybrid controlled set A, we must show that

By = {(atk(x),atk(:z:l)) :k=1,2,..., and (z,2) € A}
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is hybrid controlled. We already know that each ﬂj is Lipschitz with constant inde-
pendent of 5. We will show that the composition Bj o---o0 31 is A-Lipschitz for some
constant A independent of j. Let us for the moment assume this. As (I)ij and ﬁj—l are
both Lipschitz, having constants respectively 1 and 37 it follows from lemma 5.47 that
Vit i Lipschitz for all j,¢ with constant independent of 7,¢. We thus conclude that at,
is \'-Lipschitz for some constant \’ independent of k.

Given € > 0, as A is hybrid controlled it is a union A, U Aé where A, lies in an
e/ M -neighbourhood of the diagonal, and Ala is a subset of X; x X, lying within R of
the diagonal, for some i, R sufficiently large. It is clear that (atk (z), oy (z')) lies in an
e-neighbourhood of the diagonal for all £ and for all (:1:,:1:') € A.. On the other hand

if RA\/j < ¢/X and ij > i then for (z,2) € AIE, the map o .

is the composition
742

of the contraction ®;. _,
Jj+2

the map ﬂj which contracts by a factor of 1/5 on Nuij and
the composition 6]’—1 o ---o0 81 which is A-Lipschitz and maps X; onto Nuij' Hence
d(ozij+1 (z), Xijiq (") < /XN for (z,2') € Aé. Thus for all k with ¢}, > i, 9, the pair
(oztk (z), ayy (') lies in an e-neighbourhood of the diagonal for (z,z') € Ala' To show
that B4 is hybrid controlled it remains to observe that the set of pairs (atk (x), oy (z'))
with 3 <i;49 and (z, i) e Aé lies in some X,/ x X, for i sufficiently large.

To complete the proof we must show that the composition ﬂj o---0f is A
Lipschitz with A independent of j. Given :c,x’ € X, let mj,:c;- be their images under
Bjo:--opy. First suppose [r(z) —n(z')| > 1. Then as z; must lie in a simplex containing
q)ij+1($)’ and similarly for :1:; it follows that d(xj,x;-) < d(q)ij+1(x)’ (I)ij+1 () + 7 <
(1 + w)d(z,2’) for all j. On the other hand if |r(z) — w(z')| < 1 there are at most two

terms 'Bj’ in the composition which do not fix z,z’ and for which ‘Tj’—l’m;"—l do not
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lie in the space Nui on which 3 I is contractive. As each i is Lipschitz with constant
1
J

37 /2 it follows that when |7(z) — n(z')| < 1 we have d(:cj,a:;) < 97r2d(z,x')/4. This

inequality completes the proof. ]

To complete the proof of theorem 5.50 we must prove the lemma which provided

the coefficients for the maps .

Proof of lemma 5.48. We will fix i’ and a parameter k, and construct a partition of unity
{hg7(z)} depending on those choices. Having constructed the partition of unity we will
see that sup{|hfr(z) — hU(x’)|/d(:v,x') : z # #'} depends on ik, and we can choose
these so that this is less than e.

For fixed ', we will begin by constructing bump functions ﬁlfj, depending on k.
Increasing k£ will make the bump functions more spread out, and for an appropriate

choice of k, the partition of unity will be given by

Wk ()
hr(z) = — U
U(z) ZVeui/ W (=)

Let y: RT — [0, 1] be a smooth function with x =1 on [0, 7/2], x = 0 on |7, o),

and |x/(t)| < 1 for all . We define the bump functions by
- 1
W (z) = x(5 min{d(e,[V)) : V € Uy, B(V, (2k +1) Diam(t4)) € U}),

where B(V,R) = {w € W : d(w,V) < R}. Note that for sufficiently small k, for each
z € Ny, there is a set U with ﬁlfj(m) = 1. Indeed if [V] is a vertex within distance /2

of z, then let V' = B(V, (2k + 1) Diam(%4;)). For any set U € Uy with V! C U, we have
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ﬁ]f](:v) = 1, and provided that (4k + 3) Diam(l4;) < Lebesgue(l/;s) such a set U must
exist. Let us assume that k satisfies this inequality.

Suppose that z lies in the simplex spanned by [V1],...,[V;] and BIf](w) # 0 for

some U € Uy. Then certainly there is some vertex [V] with B(V, (2k +1) Diam(l;)) C U

and d(z,[V']) < kn. For the spherical metric this allows us to conclude that there is

krtm/2

5 =2k+1

a simplicial path from V to some vertex [VJ;] of o with at most
edges. Hence there is a sequence V = Vé, Vll, ceey V2,k+1 = Vj’ of elements of U; with the
intersection of consecutive sets non-empty. Hence Vj’ C B(V,(2k + 1) Diam(i4;)) C U.
Thus whenever z € ¢ and ,”Ll(c](x) # 0, we conclude that U contains some element of U;
defining a vertex of o.

Note that |BF (z) — 7¥ («/)] is bounded by Ld(z,z’). Consider the function
U U 3

¥ (@)
h = Uu
U(a:) ZVELIZ./ h{g/(x)

is bounded by 1. From the bound on the degree of U, the denominator has at most

The numerator is Lipschitz with constant at most 1/k and

m + 1 terms. Hence it is Lipschitz with constant at most (m + 1)/k, and it is bounded
between 1 and m + 1. It follows that hg; is Lipschitz with constant as most 2(m + 1) /.

Now choosing k sufficiently large, we have 2(m + 1)/k < e, and given this choice
of k, choosing i’ sufficiently large we have (4k + 3) Diam(lf;) < Lebesgue(l/;s). For
these choices of k,z'/, the partition of unity {h{;} is well defined, and each function
is e-Lipschitz. The second assertion of the lemma now follows immediately from the

corresponding property of E]f]. O

To complete the proof of the coarse Baum-Connes conjecture for spaces of finite

asymptotic dimension we need the following result:
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Theorem 5.51. Let W be a uniformly discrete bounded geometry metric space, and
let U, be an anti-Cech sequence for W with bounded degrees. Then the forgetful map

C*X(W,Uy)o/Iy — C* X(W,Uy)p, /1, induces an isomorphism on K -theory.

This is a ‘homology uniqueness’ result in the same vein as the isomorphism of the

Cp coarse assembly map.

Proof. Decompose X = X (W,U,) as X = X, U X qq, where

Xoy = M 126 — 1,24]), Xoqq = = (| ]126,2i + 1)).

? ?

Using the collapsing maps ®;, these spaces will coarse homotopy retact onto 7r_1(2N)
and 7r_1(2N + 1) respectively, and their intersection is 7T'_1(N). Using a relative version
of the Mayer-Vietoris sequence, and the 5-lemma, it therefore suffices to prove that the
forgetful map induces isomorphisms for 7r_1(I ) where I is a subset of N. It now suffices

to prove:

Claim. Let I be a subset of N, let xI = 7r_1(I), and let Jy, Jy, be the ideals of the
Roe algebras C*(Xé.),C*(Xé) given by the direct limit of the subalgebras supported on
xTn X;. Suppose there exists m such that each simplicial complex Nui has dimension
at most m. Then the coarsening C'*(Xé)/JO — C*(X}{)/Jh induces an isomorphism on

K-theory.

The proof of this claim is modelled on the proof of the Cy coarse Baum-Connes

conjecture for uniform metric simplicial complexes. We write X T as a union Ypu---U
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Y,,, where YJ is the union of stars about the barycentres of j-simplices in the second
barycentric subdivision of X7.

We will prove inductively on k that the result holds for C*((Z,)g)/JoNC*((Z)g) —
C*((Zr)p) /I NC*((Z1,)},), where Zj, = YyU---UY}. The space X7 is a uniform metric
simplicial complex, so the induction process just repeats the C(y coarse Baum-Connes re-
sult with the only difference being the replacement of the usual Mayer-Vietoris sequence
by a relative Mayer-Vietoris sequence for the quotient algebras.

The one remaining point to justify is that the result holds for each space Y] The
argument is as follows. By the coarse homotopy invariance theorem we may replace
the space YJ by the discrete space consisting of the j-barycentres of X T However
with this final reduction the quotient algebras for the Cjy and hybrid structures actually
agree. Any operator which is hybrid controlled is a sum of an operator supported within
some X;, and an operator of zero propagation. The hybrid algebra is therefore the
direct limit lim,; A;, where A; is the subalgebra of hybrid controlled operators which
have propagation zero on the complement of X;. Similarly the Cj Roe algebra is a
direct limit limy; B;, where B; is the subalgebra of Cy controlled operators which have
propagation zero on the complement of X;. But B;/JyNB; = A;/J; N A;, hence taking
the direct limits we conclude that C*((Yj)o)/JOﬂC*((Yj)O) — C*((Yj)h)/JhﬂC*((Yj)h)
induces an isomorhpism on K-theory. This isomorphism proves the claim, and hence
completes the proof of the coarse Baum-Connes conjecture for spaces of finite asymptotic

dimension. O

Let us now gather together all the pieces.
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Theorem 5.52. If W is a bounded geometry metric space of finite asymptotic dimen-

sion, then the assembly map p: KX, (W) — K, (C*W) is an isomorphism.

Proof. Let m be the asymptotic dimension of W, let U, be an anti-Cech sequence for
W such that the nerves Nui have dimension at most m, and let X = X (W,U,) be the

total coarsening space. We have the following commutative diagram.

Ky 11(C*Xo/Ig) —— K1 1(C* X /1)

! |

K*(Io) —_— K*(Ih)

| |

KX, (W) T) K, (C*W)

The maps KX, (W) — K,(Ip) and K,(C*W) — K,(I},) are isomorphisms in
complete generality by theorems 5.39 and 5.42. The map K, 1(C*Xq/I) — K,(Iy) is
also an isomorphism in complete generality by theorem 5.37. Now using the finite dimen-
sionality of X, the maps K, 1(C*Xy/Iy) = K4y 1(C*X},/1},) and K, 1(C* X}, /I},) —
K, (Ij,) are isomorphisms by theorem 5.51 and 5.50 respectively. This completes the

proof. O

We will conclude with a few observations about the proof. Although theorem 5.50
is the most technical step of the proof, it does not make a fundamental use of the finite
asymptotic dimension hypothesis. Finite dimensionality is used only to obtain certain
metric estimates for the maps ot used in the Eilenberg swindle. In fact provided that
dim NZ/{i does not grow too rapidly compared to Diam{; the same argument would still

work. Omne might even suppose that for any bounded geometry space W, there is an
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anti-Cech sequence, for which K, (C*X}) vanishes. On the other hand, theorem 5.51
makes a fundamental use of finite dimensionality. The proof therefore involves a careful
balancing between coarsening enough to make the Eilenberg swindle work, but not so
much that we lose the finite dimensionality required for 5.51.

In the case of a uniformly contractible locally finite and finite dimensional complex
W, instead of using an anti-Cech sequence to build X, we might simply take X = W xRT.
Again we would obtain isomorphisms from K, (W) = KX, (W) — K, 1(C*X(/Iy) and
K,(C*W) — K,(I). Finite dimensionality of X would again give us the isomorphism
K, 1(C*X},/1},) — K, (Ip,), hence in this case we find that K, (C*X},) is an obstruction
group for the coarse Baum-Connes conjecture for W. Given some hypothesis on W, for
example scaleability, an Eilenberg swindle in the spirit of theorem 5.50 could perhaps be
used to show that this group vanishes.

Finally for I' a discrete group, let W = ET' and suppose that this is a finite
dimensional complex. Again let X = W x R™ and note that T also acts on X. It would
be interesting to see how much of the argument could be carried through equivariantly.
The Cj structure is not very well adapted to this context, which causes problems with
the left hand side. On the other hand the hybrid structure appears better adapted for
an equivariant theory. The left hand side should in principle be straightforward to deal
with, so it might be possible to identify the K-theory of the I' invariant part of C*X h

as an obstruction group for the Baum-Connes conjecture for I'.
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