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1
INTRODUCTION
This is an introductory tutorial on the statistical analysis of simulation output.
The tutorial uses a statistical modeling approach which provides a good basis for tackling many modeling problems.

You might already have encountered many of the methods to be discussed but not always in a unified way. We will try to provide such a unified view.
We revisit statistical and modeling methodology in a way that emphasizes how they can be conveniently used in practice.
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We shall describe how to:

Write down a parametric statistical model.


Fit models and estimate parameters.


Assess the accuracy of estimates by



(i)  Classical statistical methods



(ii) Computer intensive (resampling) methods

Compare models

Assess the goodness of fit of models


Select models
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A very good book to modeling is An Introduction to Statistical Modelling by W.J. Krzanowski, (1998) Arnold, London. 
However this reference has a stronger statistical emphasis than we adopt and gives rather less attention to the resampling methods that we shall be using in the analysis.

Resampling is quite well covered in Computer Intensive Statistical Methods by J.S.U. Hjorth (1994) Chapman & Hall, London.
The order in which material is presented is a bit odd. The initial chapters deal with arguably somewhat advanced topics. A good starting point for the book is Chapter 5.
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The tutorial includes web links to a number of Excel workbook examples containing VBA macros for carrying out the statistical calculations discussed in the tutorial.
Only brief discussion of the workbooks in this tutorial.

The workbooks themselves include notes on how to use them.

The VBA macros are annotated to assist anyone who wishes to modify them to extend their range of application.
There is a self-study, step-by-step Excel example available online and described at the end of this tutorial.
Other material on my University web-page. Type in ‘Russell Cheng’ into Google for link to this. Links to further notes at the bottom.

(
2
STATISTICAL METAMODELS
We emphasize the importance of statistical (meta)models in analysing data.
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We focus on how to analyze Y and in particular to identify how the inputs X and 
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 influence Y in the presence of the random effects 
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. We use a statistical model for doing this.
When we are analyzing data obtained from a real system, the term statistical model is used. 
When data has been obtained from a simulation model, then the statistical model is a model of a model, – we then call it a statistical metamodel.
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Example 1:
A single server queue.
Y = sampled mean queue length over a period of length T.

Input parameters are



λ the arrival rate



μ the service rate
Alternatively



λ might be treated as an design variable
The long term average queue length, is known to depend only on the so-called traffic intensity 
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In the example, <Traffic Queue Length EG>, there are n observed (
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, Y) values.
We might assume:
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where 
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 is an explanatory function representing the mean behavior of Y. The errors 
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Very dubious assumption in our example.

Better to allow 
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The example can be regarded as a particular case of a regression model where
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called the regression function. 
Inputs X are treated as explanatory or design variables or factors on which the regression function depends, whilst 
[image: image15.wmf]θ

 are treated as parameters on which the function also depends.
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If little is known about the real system, then η(X, θ) does not have to be complicated. For a single explanatory variable X then a low polynomial function of X is often used.
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When there are a large number of factors, and especially when the errors ε are not small then a multivariate linear form is often used:
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Here the Xi are the values of the different factors, and the model only includes a linear term for each factor.
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Example 2: In the study of a supply chain, Kleijnen, Bettonvil, and Persson (2006) discuss screening techniques in a simulation study involving 92 factors. We consider data collected from a set of 128 simulation runs <Ericsson EG>.
The outputs Y are steady-state mean costs and we use a multiple linear regression model
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(3)

Yi = observed cost in the ith run

Xij = observed value of the jth factor in the ith run
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Example 3: A simulation queueing model was used in a study of the Severn River Toll Bridge in the UK.

The spreadsheet <Gamma MLE> contains a typical sample of 47 observed service times (in seconds).

Toll service times were modeled using the two parameter gamma distribution 
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The unknown parameters were estimated from observed toll service times.
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Approach to be Used in Analysis of Data

In all the examples we treat the output Y as a random variable and write down its distribution by name.

The distribution will usually depend on the parameters.
This first step of treating the output Y as a random variable and of identifying its distribution is essential in determining the most appropriate subsequent analysis.
We discuss the main characteristics of random variables in the next Section.
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3
RANDOM VARIABLES
The key concept of all statistics is the random variable.
We treat a random variable simply as a quantity takes a different value each time it is observed in an unpredictable, random way.

These values however will follow a probability distribution.

Given a random variable, the immediate and only question one can, and should always ask is: What is its distribution?
The definition of most distributions involves parameters.

Well known parametric probability distributions are the normal,
exponential, gamma, binomial and Poisson.
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We focus on continuous distributions which are defined by their probability density functions (PDF), typically written as f(y).

The PDF is not a probability, however it can be used to form a probability increment. 
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 This is a good way to view the PDF.

Example 4a: Write down the PDF of a
(i) Normal distribution, 
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<Normal Distribution>
(ii) Gamma distribution, 
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An alternative way of defining a probability distribution is to give its cumulative distribution function (CDF) defined by




F(x) = 
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Example 4b: Plot the CDF’s of each of the random variables in the previous example. Hint: 
Use the Worksheet Functions NormDist and GammaDist. (These worksheet functions are used in later examples.) 
Example 4c:
 Generate samples of normal variates, and gamma variates using the inverse transform method (See Law and Kelton, 1991), and plot their frequency histograms. Here is a link to a workbook for doing this: <Normal/Gamma Variate generator>
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4
FITTING PARAMETRIC MODELS TO RANDOM SAMPLES
A random sample is a set of n independent and identically distributed observations (of a random variable): Y = {Y1, Y2, … Yn}.
A basic problem is fitting a parametric distribution to a random sample. Input modeling is an example of this problem. 

Example 3: In the toll booth example, suppose the sample of service times has the gamma distribution: 
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. We will have identified the toll booth service time distribution completely once the parameters 
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 are estimated. 
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To fit a distribution, a method of estimating the parameters is needed.

Arguably the best method is the method of maximum likelihood (ML). The resulting estimates of parameters are called maximum likelihood estimates (MLEs).

ML estimation is a completely general method that applies not only to input modeling problems but to all parametric estimation problems. We summarize the method next.
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5
MAXIMUM LIKELIHOOD ESTIMATION
Suppose Y = {Y1, Y2, …, Yn} is a sample and Yi has PDF fi(y, θ).
The joint distribution of Y evaluated at the sampled value y is:
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This expression, treated as a function of θ, is called the called the likelihood. The logarithm is called the loglikelihood:
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Example 4a: Normal 
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 <Normal Likelihood>
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The ML estimate, 
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, is that value of  
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 which maximizes the

loglikelihood.
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Figure 2:   The maximum likelihood estimator 
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Simplest general way of maximizing the likelihood is to use a 
numerical search method. 
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There exists a number of powerful numerical optimizing methods but these can be laborious to set up.
A more flexible alternative is to use a direct search method like the Nelder-Mead method. A demonstration of this algorithm in action is provided here: <Nelder-Mead>.
Example 5 (Continuation of Example 3): The spreadsheet <Gamma MLE> contains a VBA subroutine using the Nelder-Mead method to fit the gamma distribution G(α, β) to data.
Use it to fit this distribution to the toll booth data.
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6
ACCURACY OF MLE’s
How accurate is the MLE?
An important property of the MLE, 
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, is that its asymptotic probability distribution is known to be normal. The key working version of this is that, for n → ∞
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where 
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 is the unknown true parameter value and the variance-covariance matrix of the MLE
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is the inverse of the negative of 
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This latter is called the Hessian (of L) and is essentially the curvature of the loglikelihood at the stationary point.
Can calculate the Hessian numerically using a finite-difference formula for the second derivatives.

Can now find (1-α)100% confidence interval of the coefficient θ1, say,
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where 
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 is the upper 100α/2 percentage point of the standard normal distribution.
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Often we are interested not in θ directly, but a given function of θ, g(θ) say. MLE of g(θ) is simply
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An approximate (1-α)100% confidence interval for g(θ) is
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Here the first derivative of g(θ) is required. This can be obtained numerically using a finite-difference calculation.
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Summarizing it will be seen that we need to


(i)
Identify the statistical distribution of the data to be examined.

(ii)
Write down the loglikelihood of the data, identifying the parameters to be estimated.


(iii)
 Use this in a numerical optimization of the loglikelihood, e.g. using Nelder Mead.


(iv)
 Use the optimal parameter values to obtain estimates for the quantities of interest.


(v)
Calculate confidence intervals for these quantities.
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Example 6: Suppose that the gamma distribution 
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 fitted to the toll booth data is used as the service distribution in the design of an M/G/1 queue.

Suppose the inter-arrival time distribution is
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but a range of possible values for λ, needs to be considered.

The steady state mean waiting time in the queue is



[image: image50.wmf])

1

(

2

)

1

(

)

,

;

(

2

abl

ab

a

l

b

a

l

-

+

=

W

.












(10)





































(
Plot a graph of the mean waiting time 
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 for the queue for 0 < λ < 0.1 (per second).
Add 95% confidence intervals to this graph to allow for uncertainty in the estimated values, 
[image: image52.wmf]b

a

ˆ

 

and

 

ˆ

.           <Gamma MLE>.
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The above formulas, based on the asymptotic theory of ML estimation, only become accurate with increasing sample size n.

With existing computing power, computer intensive methods provide an excellent alternative.

Experience (and theory) has shown these latter methods will often give better results in general for small sample sizes.
Moreover this alternative approach is usually much easier to implement than the classical methodology.
 The method is called bootstrap resampling, or simply resampling.

Resampling hinges on the properties of the empirical distribution function (EDF) 
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7
EMPIRICAL DISTRIBUTION FUNCTIONS
For a random sample 
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Figure 3: EDF of the Yi , 
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The key point is that the EDF estimates the (unknown) cumulative distribution function (CDF) of Y.
Fundamental Theorem of Sampling: As the size of a random sample tends to infinity, the EDF of the sample will tend, with probability one, to the underlying CDF of the distribution from which the sample is drawn.
(This result when stated in full mathematical rigor, is known as the Glivenko-Cantelli Lemma, and it underpins all of statistical methodology. It guarantees that study of increasingly large samples is ultimately equivalent to studying the underlying population.)
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(i)
We can study the properties of the Yi  directly using the EDF, without bothering to fit a parametric model at all.

This avoids assuming anything about the underlying distributional properties of Y.
(ii)
We can use the EDF to study properties of the fitted parameters and fitted parametric distribution.
This gives an alternative way of studying the properties of MLE’s.

Both approaches make use of bootstrap resampling.
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BASIC BOOTSTRAP METHOD
The basic process of calculating a statistic is illustrated in Figure 4.
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Figure 4: Basic sampling process

This depicts the steps of drawing a sample Y = (Y1, Y1, ..., Yn) of size n from a distribution F0(y), and then the calculation of the statistic of interest T from Y.

The problem is then to find the distribution of T.
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Suppose we could repeat the basic process a large number of times, B say.

This would give a sample {T1, T2,..., TB} of test statistics, and, by the Fundamental Theorem, the EDF of the Ti will tend to the CDF of T as B tends to infinity.

The EDF estimate of the CDF can be made accurate to arbitrary accuracy simply by making B sufficiently large.

This needs repetition of the original simulation trials many times - usually too expensive and impractical to do.

The bootstrap method allows us to repeat the basic sampling process many times without having to repeat the simulation trials.
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In the bootstrap method, we sample from the best estimate we have for F0(y).
The best available estimate of F0(y) is the EDF of the sample Y. 
We carry out this process B times to get B bootstrap samples







Y1*, Y2*, ..., YB*. 
From each of these bootstrap samples we calculate a corresponding bootstrap statistic value







Ti* = T(Yi*), i = 1, 2, ..., B.
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  Figure 5: Bootstrap process













(
Sampling from the EDF of the Y’s is the same as sampling the Y’s, with replacement.
Pseudo code:
//  y = (y(1), y(2), ..., y(n)) is the original sample.

For k = 1 to B             // Typically B = 500 or 1000
{

For i = 1 to n

{







      


 // Unif() returns a U(0,1) variate each time it is called


j = Int[1 + n × Unif()] //  Int[∙] returns the integer part of its argument


y*(i) = y(j)





//  j is just a random subscript in the range 1,2, ..., n

}


T*(k) = T(y*)   // T=T(y) is the calculation of T from y.
}
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The EDF of the bootstrap Ti*’s estimates the distribution of T. 
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 Figure 6: Empirical distribution function of the Ti*
The p-value of the original T , T0 , can be read off as
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If the p-value is small then T0 not from the same distribution.
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Chernick (1999) shows how generally applicable is the bootstrap listing some 83 pages of carefully selected references!

A good handbook for bootstrap methods is Davison and Hinkley (1997).

Example 7: Obtain 90% bootstrap confidence limits for the unknown true mean of a random sample of 50 observations.

(Not easy using standard methods as the sample is not normally distributed.)

This is done in <Bootstrap Mean>.
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9
BOOTSTRAP EVALUATION OF ML ESTIMATORS
Simply treat 
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 as being the statistic T of interest.

Example 8:

Make 100 bootstrap versions of 
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 in the Toll Booth example.

Obtain bootstrap confidence intervals for 
[image: image62.wmf]0

0

 

and

 

b

a
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 using asymptotic normality theory.
Produce confidence intervals for the waiting time in the queue using bootstrapping. Compare these results with those produced by asymptotic theory. 










<Gamma Bootstrap>.
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COMPARING SAMPLES USING THE BOOTSTRAP
Suppose we have two samples of observations Y and Z.
Have they been drawn from the same or different distributions?

Suppose the same statistic S(Y) and S(Z) has been calculated in each sample. (e.g. the sample mean or sample variance).

Compare them using the difference 
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Figure 7: Calculation of a comparator statistic under the null hypothesis that both samples Y and Z are from the same distribution.

We therefore need the null distribution of T, corresponding to when Y and Z have been drawn from the same distribution.
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Bootstrap sampling of T under the (null) assumption:
Obtain BS samples Y* and Z* from just one of the samples, Y.

[image: image66]
Figure 8: Bootstrap sampling of comparator statistic under the null hypothesis

Test of the Null:

Calculate the p–value of the original statistic T according to the bootstrap EDF of the {Ti*}.

The null hypothesis that the two samples Y and Z are drawn from the same distribution is then rejected if the p–value is too small.
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Example 9: Consider the data given in Law and Kelton (1991) recording the results of a simulation experiment comparing the costs of five different inventory policies.
Five simulation runs were made for each of the five policies.

The cost of running the inventory was recorded in each run, together with the means obtained using each policy.

Use bootstrapping to see if there are any significant differences between the five means.

 <Law and Kelton EG>.
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11
THE PARAMETRIC BOOTSTRAP
A second method of bootstrapping:
Suppose we have fitted a parametric model to data, and it is correct, then the fitted parametric model will be a close representation of the unknown true parametric model. 
Can therefore generate bootstrap samples by sampling from the fitted parametric model. This is called the parametric bootstrap.
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Figure 9: Parametric bootstrap process
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Example 10: Consider the toll booth example. But now use the parametric bootstrap instead of the basic bootstrap.  <ParametricBS-GammaEG>
At first sight the parametric bootstrap does not seem to be a particularly good idea because it adds an extra layer of uncertainty into the process, requiring selection of a model that may or may not be right.

However there are situations where its use is advantageous and we discuss one in the next section.
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12
GOODNESS OF FIT TESTING
12.1 Classical Goodness of Fit

Does the model, that we have fitted, fit the data very well?  
Classical solution: Carry out a goodness of fit test (GOF test).
A very popular test is the chi-squared goodness of fit test.

This is relatively easy to implement, but it is not a very sensitive test to use.

The best GOF tests directly compare the EDF with the fitted CDF.

Such tests are called EDF goodness of fit tests.

The best is probably the Anderson - Darling test.
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Typically an EDF test statistic has the form
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Here ( (y) is a weighting function.

The Anderson-Darling test statistic has





( (y) = 1/[F0(y)(1 – F0 (x))] .

Computationally equivalent to
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The basic idea behind a goodness of fit test statistic:

If we know its null distribution. we can compare the observed value of T against this distribution. 

If the sample has really been drawn from F0(y) then the value of the test statistic T will be a typical value of this distribution.
If the sample is not from F0(y) then the T will be large. Its p - value will then be small.
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Figure 10: Process underlying the calculation of a GOF test, T
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The GOF test requires calculation of the null distribution.

Because of their sensitivity, the critical values of EDF-GOF tests are very dependent on the model being tested, and on whether the model has been fitted.

This means that different tables of test values are required for different models (see d’Agostino and Stephens, 1986).
This is a big issue. Many potentially powerful test statistics, like the Cramér - von Mises, have not been fully utilized in practice because the null distribution is difficult to obtain.

The parametric bootstrap gets over this problem.
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12.2
 Bootstrapping a GOF statistic
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We can approximate this by replacing the unknown 
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    Figure 11: Bootstrapping the distribution of a GOF test, T
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Example 11:

Examine, using bootstrapping, whether the gamma model is a good fit to the toll booth data.

Examine also whether the normal model is a good fit to the toll booth data.

Use the Anderson-Darling goodness of fit statistic A2, previously given.
<Gamma Fit Toll Booth Data>
<Normal Fit Toll Booth Data>
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13
MODEL SELECTION
Suppose we have a number of alternative models that might be fitted to a set of data, and we wish to choose which model is the best fit. 
We shall only discuss the multiple linear regression case:
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Which factors are important?
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A good criterion for selecting parameters is Mallow’s Statistic











[image: image78.wmf]n

k

RMS

RSS

C

M

k

k

-

+

=

+

2

1

,
where RSSk is the regression sum of squares from fitting k – 1 factors and RMSM +1 is the residual mean square from fitting the full model.
Choose model that minimizes Ck.
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When the design is orthogonal then Mallow’s statistic is equivalent to looking at each parameter estimate separately and to include factor j in the model if
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where 
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 is the standard error of the estimator 
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Once a ‘best’ model has been chosen in this way, what degree of confidence can we place on the choice made?

Bootstrapping provides a simple way of answering this question. 

Example 12 (continuation of Example 2): In the Ericsson supply chain model which of the 16 factors are important? <Ericsson EG>.
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14
FINAL COMMENTS
This tutorial has reviewed the process of constructing and fitting a statistical model to data whether this data arises from study of a real system or from a simulation. 


The classical approach using the method of maximum likelihood has been described for fitting the model.


Two approaches for assessing the variability of fitted parameters have been discussed: (i) The classical approach using asymptotic normality theory and (ii) Bootstrap resampling. 

Examples have been drawn mainly from regression and ANOVA applications.
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The VBA macros used in the examples have been designed to be of use in other applications and you are encouraged to make use of them in this way.
Example 13:

Fit a regression model to the traffic queue data of Example 1.

Allow the ‘error’ variability to depend on the traffic intensity.

The workbook <RegressionFitTrafficQueueData> is set out like the workbook used in the tutorial for analysing the toll booth data.

It includes both a classical asymptotic and a bootstrap analysis of the accuracy of the fitted regression line.

A guide to the spreadsheet is provided in

           <GuideToRegressionFitTrafficEG>.




































(
REFERENCES
Chernick, M. R. 1999. Bootstrap Methods, A Practitioner's Guide. New York: Wiley.
D'Agostino, R.B. and M.A. Stephens 1986. Goodness of Fit Techniques. New York: Marcel Dekker.
Davison, A.C., and D. V. Hinkley. 1997. Bootstrap Methods and their Application. Cambridge: Cambridge University Press.
Kleijnen, J.P.C., B. Bettonvil, and F. Persson. 2006. Screening for the Important Factors in Large Discrete-Event Simulation Models: Sequential Bifurcation and Its Applications. Chapter13, in Screening, Methods for Experimentation in Industry, Drug Discovery, and Genetics. Eds A. Dean and S Lewis. Springer.
Krzanowski, W. J. 1998. An Introduction to Statistical Modelling. London: Arnold.
Law, A.M., and W. D. Kelton. 1991. Simulation Modeling and analysis, 2nd Ed., New York: McGraw-Hill.

Mallows, C. L. 1973. Some comments on Cp. Technometrics, 15, 661-675.

Mallows, C. L. 1995. More comments on Cp. Technometrics 37, 362-372.

Urban Hjorth, J.S. 1994. Computer Intensive Statistical Methods. London: Chapman & Hall.
Use page height 17.4cm, page width 28cm, and fullscreen 115%

 





i = 1,2, ..., B











-





p - value





 





T0





 





� EMBED Equation.3  ���





  Y





 





T1*





Null Distribution   Sample          Statistic








Tn*





 





Real System


Statistical Model





i





Ti*





 





Decision input  λ





1





T(Y)





 





 





 





 





 








Ti*





Y(n)











Y(j)





Y(1)

















Input Data w








Noise ε








Parameters � EMBED Equation.3  ���, � EMBED Equation.3  ���





Alternative Case: Fitted model � EMBED Equation.3  ��� is incorrect one model.




















T





� EMBED Equation.3  ���











� EMBED Equation.3  ���





� EMBED Equation.3  ���





Y





� EMBED Equation.3  ���





Null Case: Fitted model � EMBED Equation.3  ��� is the correct one model.
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Fig 10: Null Case: Fitted model � EMBED Equation.3  ��� is the correct one model.
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