Computer Analysis of Data Models Part II
6.
Empirical Distribution Functions
Consider first a single random sample of observations 
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, for i  = 1, 2, ..., n. The empirical distribution function (EDF) is defined as:
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The EDF is illustrated in Figure 2. It is usually simplest to think of the observations as being ordered:

Y(1) < Y(2) < … < Y(n) .






(2)

Figure 2: EDF of the Yi , 
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These are what are depicted in Figure 2. Note that the subscript are placed in brackets to indicate that this is an ordered sample. 
The key point is that the EDF estimates the (unknown) cumulative distribution function (CDF) of Y.  We shall make repeated use of the following:
Fundamental Theorem of Sampling: As the size of a random sample tends to infinity then the EDF constructed from the sample will tend, with probability one, to the underlying cumulative distribution function (CDF) of the distribution from which the sample is drawn.
(This result when stated in full mathematical rigour, is known as the Glivenko-Cantelli Lemma, and it underpins all of statistical methodology. It guarantees that study of increasingly large samples is ultimately equivalent to studying the underlying population.)

In the previous section we studied the CDF of the Yi ‘s of a random sample by fitting a parametric distribution and then studying the fitted parameters and the fitted parametric CDF. Using the EDF, we can do one of two things:
(i)

We can study the properties of the Yi  directly using the EDF, without bothering to fit a parametric model at all.

(ii)
We can use the EDF to study properties of the fitted parameters and fitted parametric distribution.
We shall discuss both approaches. We shall focus first on (ii) as we wish to utilise bootstrapping to give us an alternative way of studying the properties of MLE’s, to that provided by asymptotic normality theory which was discussed in Section ???.

We postpone discussion of (i) until later. We simply note at this juncture that the attraction of using the EDF directly, rather than a fitted parametric CDF, is that we make no assumption about the underlying distributional properties of Y. Thus Y can be either a continuous or a discrete random variable. Nor is it assumed to come from any particular family of distributions like the normal or Weibull. This flexibility is particularly important when studying or comparing the output from complex simulations where it is possible that the distribution of the output may be unusual. For example it may well be skew, or possibly even multimodal.

7.
Basic Bootstrap Method

The basic process of constructing a given statistic of interest is illustrated in Figure 3. This depicts the steps of drawing a sample Y = (Y1, Y1, ..., Yn) of size n from a distribution F0(y), and then the calculating the statistic of interest T from Y. The problem is then to find the distribution of T.
Bootstrapping is a very general method for numerically estimating the distribution of a statistic. It is a resampling method that operates by sampling from the data used to calculate the original statistic. 

Bootstrapping is based on the following idea. Suppose we could repeat the basic process, as depicted in Figure 3, a large number of times, B say. This would give a large sample {T1, T2,..., TB} of test statistics, and, by the Fundamental Theorem of Section 3, the EDF of the Ti will tend to the CDF of T as B tends to infinity. Thus, not simply does the EDF estimate the CDF, it can be made accurate to arbitrary accuracy at least in principle, simply by making B sufficiently large.

Figure 3: Basic Sampling Process
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Unfortunately to apply this result requires repeating the basic process many times. In the present context this means having to repeat the simulation trials many times - something that is certainly too expensive and impractical to do.

The bootstrap method is based on the idea of replacing F0(y) by the best estimate we have for it. The best available estimate is the EDF constructed from the sample Y. Thus we mimic the basic process depicted in Figure 3 but instead of sampling from F0(y) we sample from the EDF of Y. This is exactly the same as sampling with replacement from Y. We carry out this process B times to get B bootstrap samples Y1*, Y2*, ..., YB*. (We have adopted the standard convention of adding an asterisk to indicate that a sample is a bootstrap sample.) From each of these bootstrap samples we calculate a corresponding bootstrap statistic value Ti* = T(Yi*), i = 1, 2, ..., B. The process is depicted in Figure 4.
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Figure 4: Bootstrap Process

The EDF of the bootstrap sample, which without loss of generality we can assume to be reordered, so that T1* < T2* < ... < TB*, now estimates the distribution of T. This is depicted in Figure 5. Figure 5 also includes the original statistic value, T0. Its p-value, as estimated from the EDF, can be read off as
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If the p-value is small then this is an indication that T is in some sense unusual. We shall see how this idea can be developed into a full methodology for making differnet kinds of comparisons.
In practice typical values of B used for bootstrapping are 500 or 1000, and such a value is generally large enough. With current computing power resampling 1000 values (which is the default value used in the our spreadsheet demonstrations) is, to all intents and purposes, instantaneous. A good reference for bootstrap methods is Davison and Hinkley (1997).
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Figure 5: Empirical Distribution Function of the T(i)
8.
Evaluating the Distribution of MLEs by Bootstrapping
Let us apply the bootstrapping idea to the evaluation of the distribution of MLE’s. All that is required is to simply treat the MLE, 
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 as being the statistic T of interest! 
All we need to do is to follow the scheme depicted in Figure 4. We generate bootstrap samples by resampling with replacement from the original sample. Then we use the code to produce the bootstrap T from this sample. The pseudocode for the entire bootstrap process is as follows:


//  y = (y(1), y(2), ..., y(n)) is the original sample.



//  T=T(y) is the calculation that produced T from y.


For k = 1 to B


{




For i = 1 to n



{





j = 1 + n × Unif()

//  Unif() returns a uniformly distributed 












//  U(0,1) variate each time it is called.




y*(i) = y(j) 



}



T*(k) = T(y*)


}

The beautiful simplicity of bootstrapping is now apparent. The resampling is trivially easy. The step that produces T*(k) invokes the procedure that produced T from y, only y is replaced by y*. The key point here is that no matter how elaborate the original procedure was to produce T, we will already have it available, as we must have set it up in order to calculate T = T(y) in the first place. The bootstrap procedure simply calls it a further B times.
Example:  Use bootstrapping to produce 100 bootstrap versions of 
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 of Example ???. Compare these with the confidence intervals produced for 
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 using the asymptotic normality theory. Gamma Bootstrap
Produce confidence intervals for the waiting time in the queue using bootstrapping. Again compare these results with those produced by asymptotic theory. 

9.
Comparing Samples Using the Basic Bootstrap
Next we consider the problem where we have two samples of observations Y and Z and we wish to know if they have been drawn from the same or different distributions. We consider how the basic bootstrap provides a convenient way of answering this question.

To illustrate the ideas involved we consider the simple situation where we have calculated the same statistic from each of the samples Y and Z. This statistic might be the sample mean or sample variance say. We shall call this statistic S and denote its values calculated from the two samples by S(Y) and S(Z). An obvious statistic to use for the comparison, which we call the comparator statistic, is the difference 
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. We therefore need the null distribution of T, corresponding to when Y and Z have been drawn from the same distribution. This null situation is depicted in Figure 6.
Figure 6: Calculation of a Comparator Statistic
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The procedure for producing a bootstrap version of T under the (null) assumption that the two samples are drawn from the same distribution is simple. We obtain bootstrap samples Y* and Z* from just one of the samples Y say. The bootstrap process is given in Figure 7. In the Figure 
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 is the EDF constructed from Y. Alternatively the EDF 
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 of Z, or perhaps even better, the EDF 
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 of the two samples Y and Z when they are combined, could be used.

The test follows the standard test procedure. The p–value is calculated of original comparator statistic T relative to the bootstrap EDF of the {Ti*} and null hypothesis that the two samples Y and Z are drawn from the same distribution is rejected if the p–value is too small. 

Figure 7: Bootstrap Comparison of Two Samples
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Example Consider the data given in Law and Kelton.
10.
The Parametric Bootstrap
The previous discussion has considered the use of the basic bootstrap. There is a second method of bootstrapping which is unfairly sometimes considered to be less effective. This view arises probably because it has overlapping uses to the basic bootstrap, but where it might be less accurate.  However this difference can be advantageous in certain specific situations when we are comparing models. We will discuss these problems in Section ???. but before doing so we describe need to describe how the parametric bootstrap works.
Suppose we have fitted a parametric model to data. If the parametric model is the correct one and describes the form of the data accurately, then the fitted parametric model will be a close representation of the unknown true parametric model. We can therefore generate bootstrap samples not by resampling from the original data, but by sampling from the fitted parametric model. This is called the parametric bootstrap. 
The basic process is depicted in Figure 8. It will be seen that the method is similar to the basic bootstrap. (Compare Figure ??? with Figure ???) The difference is that in the parametric version one has to generate samples from a given distribution, like the gamma say. A method has to be available to enable this to be done.

Figure 8: Parametric Bootstrap Process
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Example Consider the queueing example where we have already used asymptotic theory and the basic bootstrap to analyse the effect of estimated parameter uncertainty. Repeat the exercise but now use the parametric bootstrap instead of the basic bootstrap.  ParametricBS-GammaEG
At first sight the parametric bootstrap does not seem to be a particularly good idea because it adds an extra layer of uncertainty into the process, requiring selection of a model that may or may not be right.
However there are situations where its use is advantageous and we discuss one in the next section.

11

Goodness of Fit Testing

11.1 Classical Goodness of Fit

We consider the natural question: Does the model that we have fitted actually fit the data very well? For instance in Example ??? we fitted a gamma distribution to toll booth service time data, but does the fitted gamma distribution capture the characteristics of the data properly?

The classical way to answer this question is to use a goodness of fit test (GOF test). A very popular test is the chi-squared goodness of fit test. The main reason for its popularity is that it is relatively easy to implement. The test statistic is easy to calculate and moreover it has a known chi-squared distribution, under the null, which makes critical values easy to obtain.

However the chi-squared test has two obvious weaknesses. It is actually not all that powerful, and it has a certain subjective element because the user has to divide the data into groups of her/his own choosing.

The best general GOF tests directly compare the EDF with the fitted CDF. Such tests are called EDF goodness of fit tests. In the past the Kolmogorov-Smirnov test has been the most popular, but the Cramér – von Mises test and the Anderson Darling test, defined below, are generally more powerful and should be used in preference. The trouble with these tests is that, because of their sensitivity, their critical values are very dependent on the model being tested, and on whether the model has been fitted (with parameters having to be estimated in consequence). This means that different tables of test values are required for different models (see d’Agostino and Stephens, 1986).
First we describe EDF tests in more detail. Applying the Fundamental Theorem of Section ???, we see that a natural way to test if a sample has been drawn from the distribution with CDF F0(y), is to compare 
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 – F0(y). Such an EDF test statistic typically has the form
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Here ((y) is a weighting function. Special cases are the Cramér-von Mises test statistic:
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where ((y) = 1, and the Anderson-Darling test statistic:
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where ((y) = [F0(y)(1 – F0 (x))]-1 .

The basic idea in using a goodness of fit test statistic is as follows. When the sample has really been drawn from F0(y) then the value of the test statistic will be small. This follows from the Fundamental Theorem of Section ??? which guarantees that 
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 will be close in value to F0(y) across the range of possible y values. Thus T will be small. Nevertheless because the test statistic is a random quantity, it will have some variability according to a null distribution depending on the sample size n. If the null distribution is known then we can assess an observed value of T against this distribution. If the sample is drawn from a distribution different from F0(y) then the T will be large. Statistically, what is conventionally called its p - value will then be small, indicating that the distribution has not been drawn from the supposed null distribution.

Figure 9 illustrates the process involved in calculating a GOF test statistic for the parametric case. Two cases are shown. In both cases the distribution from which Y has been drawn is assumed to be 
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 has been fitted to the random sample Y giving the ML estimate 
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 which will therefore converge to this distribution. In the second case the true model, 
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. Thus in the second case, T, which is a measure of the difference between the two, will be larger than in the first case.
The null situation is the first case where we are fitting the correct model. We need to calculate the distribution of T for this case. A complication arises because the difference between 
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. This is because the fitted distribution 
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 because it has been fitted to the sample. This has to be allowed for in calculating the null distribution of the test statistic.

Figure 9: Process Underlying the Calculation of a GOF Test, T

[image: image42]
It will be seen that the GOF test hinges on being able to calculate the null distribution. This is a big issue and has meant that many potentially powerful test statistics, like the Cramér - von Mises, have not been fully utilized in practice because the null distribution is difficult to obtain.

In the next subsection we show how resampling provides a simple and accurate way of resolving this problem.
11.2.
Bootstrapping a GOF statistic
The null case calculation of the GOF statistic depicted in Figure 9 is identical to that of Figure 3. Thus if we could obtain many values of T using this process then the EDF of the Ti will converge to the CDF of T.  This is almost certainly too expensive or impractical to do. However we can get a close approximation by simply replacing the unknown 
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 by its MLE 
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. This is precisely the parametric bootstrap process as given in Figure 8. 
All being well 
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obtained under the null case calculation of Figure 9.
The parametric bootstrap method as it applies to a GOF statistic is illustrated in more detail in Figure 10, where 
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 is the EDF of the bootstrap sample 
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obtained from the bootstrap sample 
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Example Examine whether the gamma model is a good fit to the toll booth data. Examine also whether the normal model is a good fit to the toll booth data.
Use the Anderson-Darling goodness of fit statistic. this has the simple computational form:
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Figure 10: Bootstrap Process to Calculation the Distribution of a GOF Test, T
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Comparison of Different Models; Model Selection
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