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ABSTRACT

In the analysis of input and output models used in computer simulation, parametric bootstrapping provides

an attractive alternative to asymptotic theory for constructing confidence intervals for unknown parameter

values and functions involving such parameter values, and also for calculating critical values of EDF

statistics used in goodness-of-fit tests, such as the Anderson-Darling A2 statistic. This latter is known to

give a GoF test that clearly out-performs better known tests such as the chi-squared test, but is hampered

by having a null distribution that varies with different null hypotheses including whether parameters are

estimated or not. Parametric bootstrapping offers an easy way round the difficulty, so that the A2 test can

routinely be applied. Moreover we show that bootstrapping is probabilistically exact for location-scale

models, and so in general will be reasonably accurate using a mean and standard deviation parametrization.

A numerical example is given.

1 PARAMETRIC SAMPLING

The purpose of this article is to point out the ease and effectiveness with which parametric sampling can be

used to calculate confidence intervals (CI) and confidence bands (CB), and to make goodness-of-fit (GoF)

tests in the analysis of input and output models used in simulation experimentation.

The fundamental statistical problem we face is as follows. We view a statistic T as a function of a

sample Y = (Y1,Y2, ...,Yn) , so that T = T (Y). The Yi values are assumed to be independent observations

from the same distribution with cumulative distribution function (CDF) F(·,θ). To make any statistical

inference with T we will need to know the distribution of T itself. Let Gn(·,θ) be its CDF, the notation

making it clear that this will depend on n as well as θ . The objective of parametric sampling is to estimate

Gn(·,θ). We distinguish two forms of parametric sampling (i) Monte-Carlo estimation and (ii) parametric

bootstrapping depending on whether θ is known or not.

1.1 Monte Carlo Estimation

We call the version of parametric sampling, when θ is known, Monte Carlo estimation. In this version

we generate B independent values of T : T1,T2, ...,TB then estimate Gn(t,θ) by the empirical distribution

function (EDF) formed from the T1,T2, ...,TB, namely

G̃n(t,θ) =
# of Tj ≤ t

B
, −∞ < t < ∞.
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The Glivenko-Cantelli lemma states that G̃n(t,θ) → Gn(t,θ) uniformly over all t, with probability 1 as

B → ∞. Thus in principle Gn(t,θ), for all practical purposes, can be found numerically to any given

accuracy by choosing B sufficiently large. This holds for any given n no matter how large or small.

In what follows we shall speak of this use of the EDF to estimate the CDF as being probabilistically

exact, or just simply as being exact, in the sense that any desired accuracy is achievable in principle, whatever

the n, by taking B sufficiently large. For the purposes of statistical inference, a value of B = 1000 is usually

sufficient. For exploratory work or for illustrative purposes, where results only need to be indicative rather

than sufficiently precise for formal decision taking, a value of B of just a few hundred is often sufficient.

1.2 Parametric Bootstrapping

The second case is when θ is unknown, so that Monte Carlo estimation cannot be applied directly, but we

suppose that we have an actual sample y = (y1,y2, ...,yn) from which to estimate θ . In what follows, we

will use the maximum likelihood estimator (MLE), denoted by θ̂ .
Parametric bootstrapping is simply Monte Carlo estimation of Gn(t, θ̂) with the assumption that this will

then provide an estimate of Gn(t,θ). We generate by computer, B independent random samples Y∗
j = (Y ∗

i j,

i = 1,2, ...,n), j = 1,2, ...,B, with the Y ∗
i j all generated from the fitted distribution F(·, θ̂). We then calculate

the statistic of interest T from each sample Y∗
j : T ∗

j = T (Y∗
j) j = 1,2, ...,B. Here the superscript ∗ indicates

a computer generated ‘bootstrap’ quantity obtained in a statistically identical way to the corresponding

quantity obtained in the original process, except that θ̂ replaces the unknown true value θ . The EDF

G̃∗
n(t, θ̂) of the T ∗

1 ,T ∗
2 , ...,T ∗

B estimates Gn(t, θ̂) to whatever accuracy desired, by making B sufficiently

large. We have written G̃∗
n(t, θ̂) with the added superscript ∗, instead of simply G̃n(t, θ̂), to emphasize that

this EDF has been obtained by bootstrapping.The EDF G̃∗(t, θ̂) only estimates G(t, θ̂), but as θ̂ estimates

the unknown true θ it is reasonable to consider G̃∗(t, θ̂) as an estimator of G(t,θ) and not just of G(t, θ̂).

Much of bootstrap theory is given to establishing conditions under which G̃∗
n(t, θ̂) is a satisfactory

estimator of Gn(t,θ). The ideal case is when limB→∞ G̃∗
n(t, θ̂) = Gn(t,θ) for all t, θ and n. Like Monte-Carlo

estimation the parametric bootstrap is then (probabilistically) exact. We emphasize that only B → ∞ is

needed to achieve actual exactness, which will then hold for all n. Thus n → ∞ is not required as well.

Under suitable regularity conditions the MLEs of θ and smooth functions g(·,θ) will be asymptotically

normally distributed, so that |θ̂ −θ | = Op(n
−1/2) as n → ∞, and, assuming Gn(t,θ) is twice differentiable

in θ , also that |G̃n(t, θ̂)−Gn(t,θ)| = Op(n
−1/2), as n → ∞. In this case G̃∗

n(t, θ̂) can be expected to

match, at least asymptotically, the behaviour of any theoretically derived estimator of Gn(t,θ). We shall

not discuss bootstrap theory in much detail. Hjorth (1994) provides a clear and succinct account from a

viewpoint well suited to that of this article. A clear but brief summary is provided by Young and Smith

(2005). There is now a vast literature on the subject. Chernick (2008) provides over 140 pages of selected

references covering research and practice up to 2007.

We discuss the use of parametric sampling for calculating confidence intervals (CIs) and for GoF tests,

including an important case where it is exact rather than only approximate.

For simplicity we will omit the subscript n from now on, writing G̃n(t, θ̂), Gn(t,θ) and so on, simply

as G̃(t, θ̂), G(t,θ).

1.3 Bootstrap Confidence Intervals

In standard asymptotic theory the simplest two-sided (1−α)100% confidence interval for ϕi, the ith

component of θ (where we have used ϕi rather than θi for symbolic clarity), takes the well-known form

(

ϕ̂i + zα/2

√

V̂ii, ϕ̂i + z(1−α/2)

√

V̂ii

)

, (1)
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where V̂ii is the ith main diagonal entry of V̂ = [J(θ̂)]−1, the estimated covariance matrix of θ̂ obtained by

inverting the observed information matrix J(θ̂), and zα is the α quantile of the standard normal distribution.

Note that here and in the rest of the paper we have used zα to denote the α quantile. Often zα is

used to denote the upper α quantile, that is z1−α in our notation, to take advantage of the fact that, for a

distribution symmetric about zero, the lower quantile can then be written as −zα . We have not used this

notation as we will be dealing with quantiles of some distributions not symmetric about zero.

This can be extended to a function λ (x,θ), a ≤ x ≤ b, that is dependent on the parameter values. A

first order correct two-sided (1−α)100 % confidence interval for λ (x,θ) is

(λ (x, θ̂)+ zα/2δ , λ (x, θ̂)+ z(1−α/2)δ ), (2)

where

δ =

√

∂λ (x,θ)

∂θ

∣

∣

∣

∣

T

θ̂

V (θ̂)
∂λ (x,θ)

∂θ

∣

∣

∣

∣

θ̂

.

Under the same standard conditions we can construct a CI using bootstrapping. Several forms of CIs

have been proposed, see Hjorth (1994) for a clear description. We describe just the simplest form.

We assume that the situation is exactly as just described with the observations in the data sample

y = (y1,y2, ...,yn) assumed to have the distribution with CDF F(y,θ) and that estimation of θ by ML

yields the estimator θ̂ . We then obtain B samples, called bootstrap (BS) samples, y∗j , j = 1,2, ...,B, each

of size n, by sampling from the fitted distribution F(y, θ̂). Now take T equal to the MLE θ̂ itself, that is

T (Y) = θ̂(Y) so that from each BS sample y∗j , j = 1,2, ...,B we calculate T ∗
j = θ̂ ∗

j , the MLE of θ based

on that BS sample. A CI with confidence level (1−α) for an individual component, denoted by ϕ for

symbolic clarity, can be constructed by arranging the bootstrap ML estimates of ϕ : ϕ̂∗
j , j = 1,2, ...,B in

rank order: ϕ̂∗
(1) ≤ ϕ̂∗

(2) ≤ ... ≤ ϕ̂∗
(B), then taking the (1−α)100% confidence inequality ϕ̂(l) ≤ ϕ̂∗ ≤ ϕ̂∗

(m),

where l = (α/2)B and m = (1−α/2)B, and replacing ϕ̂∗ by the unknown true ϕ. The resulting confidence

interval for ϕ takes the form

ϕ̂∗
(l) ≤ ϕ ≤ ϕ̂∗

(m).

This is called the percentile CI.

The bias of ϕ̂∗ can be estimated by

β̂ = B−1
B

∑
j=1

ϕ̂∗
j − ϕ̂,

though it has to be said that this bias correction give rather mixed results in practice.

The following flowchart summarizes the steps of the percentile CI calculation including the bias

correction.

Flowchart for calculating a (1−α)100% BS CI for a component ϕ of θ (3)

Given y = (y1,y2, ...,yn), a random sample drawn from distribution with CDFF(y,θ)

θ̂ = θ̂(y) MLE

For j = 1 to B

y∗j = (y∗i j ∼ F(y, θ̂), i = 1,2, ...,n) jth BS sample

↓
θ̂ ∗

j = θ̂(y∗j) jth BS MLE

↓
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ϕ̂∗
j jth BS MLE of ϕ , the component of interest

↓
β̂ = n−1 ∑

n
j−1 ϕ̂∗

j − ϕ̂ Estimate of bias due to bootstrapping

End j

ϕ̂∗
(1) ≤ ϕ̂∗

(2) ≤ ... ≤ ϕ̂∗
(B) Ordered BS MLEs of component of interest

↓
l = max[1,(α/2)B], m = (1−α/2)B Rounded integer subscripts

↓
ϕ̂∗

(l)− β̂ ≤ ϕ ≤ ϕ̂∗
(m)− β̂ Bias corrected (1−α)100 percentile CI for ϕ

1.4 Toll Booth Example

We illustrate the discussion so far with an example arising in a study made of the operation of toll booths

of the (old) Severn River bridge in the United Kingdom, see Griffiths and Williams (1984). Each toll booth

is modelled as a single server queue and data was collected of the service time of vehicles, that is the time

taken for a vehicle to pay at the toll booth before crossing the bridge. As the example is for illustration

only we use a small sample of size n = 47. The observations are in seconds.

4.3 4.7 4.7 3.1 5.2 6.7 4.5 3.6 7.2 10.9 6.6 5.8

6.3 4.7 8.2 6.2 4.2 4.1 3.3 4.6 6.3 4.0 3.1 3.5

7.8 5.0 5.7 5.8 6.4 5.2 8.0 4.9 6.1 8.0 7.7 4.3

12.5 7.9 3.9 4.0 4.4 6.7 3.8 6.4 7.2 4.8 10.5

The service times are treated as independent random variates with a gamma distribution G(a,b) with

probability density function (PDF)

f (y) =
1

Γ(a)ba
ya−1 exp(−y/b) , a,b > 0, 0 < y < ∞. (4)

with parameters a and b that are unknown. The MLEs are â = 9.20 and b̂ = 0.63. The left-hand plot in

Figure 1 compares the fitted CDF with the EDF, and the right-hand plot compares the fitted PDF with a

frequency histogram of the sample; 90% CIs calculated from (1) gave (6.14,12.27) for a and (0.41,0.85)
for b. We also calculated the BS percentile CIs for a and b, with α = 0.1, B = 1000.The BS CI for a was

(7.06,13.93) showing this to be biased to the right compared with the CI using the asymptotic formula.

The CI for b was (0.42,0.85) which is almost identical to the asymptotic CI.

Figure 1: Toll Booth Data. Fitted CDF, EDF, fitted PDF and frequency histogram

However the main interest is not the parameter estimates themselves but a quantity such as the steady-

state expected overall waiting time, w(x,α,b), of customers in the queue, regarded as a function of the
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average arrival rate x. For instance, if the arrival pattern is Poisson with rate x, then it is known that

w(x,a,b) =
(1+a)ab2x

2(1−abx)
. (5)

We would be interested in examining the value of w(x,a,b) over a range, x0 ≤ x ≤ x1, of arrival rates.

The MLE of w is simply ŵ = w(x, â, b̂), x0 ≤ x ≤ x1, with a CI for any given x that can be calculated

using asymptotic theory by (2). We postpone presenting the results for ŵ until after we have considered

calculating CIs using of bootstrapping, so as to directly compare the results using the two approaches.

1.5 Coverage Error and Scatterplots

The quality of CIs is usually discussed in terms of their coverage error, that is the difference between the

actual confidence level achieved and the target value of 1−α. If its coverage error tends to zero as n → ∞, a

CI said to be consistent. The coverage error is usually given in terms of a probabilistic order of magnitude,

which can be determined by asymptotic theory that also extends to cover bootstrap CIs especially for

parametric bootstrapping where the MLE θ̂ is used. In general the coverage error is typically O(n−1/2),

see Young and Smith (2005, Section 11.1), a disappointing result given that

∣

∣

∣
θ̂− θ 0

∣

∣

∣
= Op(n

−1/2) as

previously discussed.

However there is the proviso that for balanced two-sided CIs where the target confidence level is the

same (i.e. α/2) at both ends of the interval both, the coverage error is then usually reduced to O(n−1).
We do not go into details, but this improved performance of a balanced CI arises because coverage error

comes mainly from bias in the estimators. However the effect of this bias is in opposite directions at the

two ends of the CI, so that when the CI is balanced and the distribution of θ̂ is asymptotically normal and

so symmetric, then they cancel sufficiently precisely to reduce the coverage error to O(n−1).
Coverage error can be usefully viewed as the discrepancy between the coverage actually achieved and

the target value when the latter is derived under asymptotic normality assumptions. As a general guide one

would therefore expect the coverage to be lower the closer that the distribution of the estimated parameter

of interest, θ̂ say, is to being normal.

Scatterplots are a useful feature of BS analysis for indicating if the distribution of θ̂ is normal or not.

As an illustration consider the toll booth example again but where we consider two alternative parametriza-

tions. Figure 2 gives the scatterplots of the B = 1000 BS MLEs (â∗j , b̂
∗
j), j = 1,2, ...,B and of (µ̂∗

j , σ̂
∗
j ),

j = 1,2, ...,B where µ = ab and σ =
√

ab are the mean and standard deviation (SD) of the gamma distri-

bution. The points in each plot are divided into two types. The black points corresponding to (1−α)100%

(where α = 0.1, in the plots) of the total number of points. These points estimate what is called a

(1−α)100% loglikelihood-based confidence region as discussed by Hall (1987) the construction of which

we will describe in Section 2. The green points lie outside the confidence region. For now we simply

look at all the points in each plot as a whole and note that the scatter plot of the original (â∗j , b̂
∗
j) has a

very noticeable asymmetrically curved ‘banana’ form. This is typical of such plots, see Hjorth (1994, Fig

6.1) or Davison and Hinkley (1997, Fig 7.11, left lower plot). In contrast, the scatter of (µ̂∗
j , σ̂

∗
j ) points,

though indicating strong correlation between µ̂∗
j and σ̂∗

j , has a much more elliptically symmetrical form,

indicative of normality.

In Section 2 we will consider a practical use of such scatterplots not often discussed.

In general the coverage error of the percentile CI and the simple CI can be noticeable especially when

n is relatively small, but perhaps not so large as to preclude their use. As an example we consider fitting the

gamma distribution G(a,b) with PDF (4) to a sample of size n = 50 drawn from the standard exponential

distribution, so that the true parameter values are a = 1 and b = 1. The value of b is unimportant being

a scale parameter, so that the form of the distribution of the MLEs depends only on the value of a. The

value a = 1 is a fairly extreme choice making the joint distribution of (â, b̂) distinctly non-normal when

n = 50, so provides a difficult coverage error test. Table(1) gives the results.
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Figure 2: Toll Booth Example. Left: Scatterplots of 1000 BS MLEs µ̂ and σ̂ and Right: 1000 BS MLEs

â and b̂. The MLE from the original sample is the red square. Each plot divides the points into those

estimated to be in a likelihood-based region Rα (black) and those not in Rα (green). Here α = 0.1

Table 1: Coverage Error Results: Actual coverage of 1000 CIs for parameters a,b,µ,σ of G(1,1) distribution

with nominal coverage level (1−α) = 0.9

a b µ σ

BS not bias corrected In CI 862 858 887 863

Not in CI 138 142 113 137

BS bias corrected In CI 916 871 884 866

Not in CI 84 129 116 134

Asymptotic In CI 899 860

Not in CI 101 140

It will be seen that the bias-corrected BS CI gives is not too unsatisfactory taking the coverage of both

a and b into account.

2 CONFIDENCE BANDS FOR FUNCTIONS

We can extend comparison of the asymptotic theory and bootstrapping approaches to estimation of a

function λ (x,θ), x0 ≤ x ≤ x1, taking as our example, the waiting time function distribution in the toll booth

example, w(x,a,b), x0 ≤ x ≤ x1, as given in (5).

Consider first a two-sided CI for a given x. Using asymptotic theory the MLE is w(x, â, b̂), x0 ≤ x ≤ x1

and we can apply (2) directly to construct an asymptotic (1−α) level CI for w(x,a,b) at any fixed

x. The left-hand plot in Figure 3 shows the MLE of the function w(x, â, b̂) (red line) calculated at 10

equally spaced values of x in the range 0 ≤ x ≤ 0.1. The solid (green) upper line and solid (blue) lower

line, give the corresponding limits of the CI at level (1−α), which allows the limits to be read off for

any one given x. It should be stressed that the two lines do not enable CI’s to be calculated at several

different x with confidence level (1−α) holding simultaneously across all values. A simple but very

conservative (simultaneous) Bonferroni confidence level (see for example Miller, 1981) can be constructed

for M different x’s simultaneously by setting the level to be (1−M−1α) for each x with overall level

≥ (1−α). The right-hand plot in Figure 3 shows the CI limits calculated by bootstrapping. As in the

asymptotic formula case, the BS CI limits were calculated over ten equally spaced x− intervals. At each

xi, the B = 1000 BS waiting time values w∗
j(xi) = w(xi, â

∗
j , b̂

∗
j), j = 1,2, ...,B were calculated then ordered
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so that w∗
(1)(xi) ≤ w∗

(2)(xi) ≤ ... ≤ w∗(B) (xi) and the confidence interval at that xi taken as

w∗
(l)(xi) ≤ w(xi,a,b) ≤ w∗

(m)(xi)

where l and m are as given in the flowchart (3).

It will be seen that in the bootstrap case the CI is slightly asymmetric at each x value.

Figure 3: Toll Booth Example. Plots of expected waiting time versus arrival rate. From calculations using

asymptotic normal theory - left graph; using bootstrapping - right graph. Upper CB limit - dashed green,

Upper CI Limit - green, MLE - red, Lower CI Limit - blue, Lower CB Limit - dashed blue

For simultaneous CI’s, rather than use a Bonferroni CI, it is more efficient to calculate a confidence

band, which with given confidence level, will entirely contain the unknown curve w(x,a,b), x0 ≤ x ≤ x1.
Simultaneous confidence intervals are discussed by Miller (1981). The construction of confidence bands

based on asymptotic theory has been described by Cheng and Iles (1983) for continuous CDFs and by

Cheng (1987) more generally. Setting θ = (a,b), we have asymptotically as n → ∞, that

(θ̂ −θ)TJ(θ̂)(θ̂ −θ) ∼ χ2
2 , (6)

where χ2
2 is the chi-squared distribution with two degrees of freedom, that is the exponential distribution.

Writing χ2
2 (α) for the α quantile, inversion of the probability statement Pr((θ̂ −θ)TJ(θ̂)(θ̂ −θ)≤ χ2

2 (1−
α)) = 1−α, in the usual way gives the (1−α) confidence region

R1−α = {θ : (θ̂ −θ)TJ(θ̂)(θ̂ −θ) ≤ χ2
2 (1−α)}. (7)

Thus if

wmin(x) = min
θ∈R1−α

w(x,θ), wmax(x) = max
θ∈R1−α

w(x,θ), x0 ≤ x ≤ x1, (8)

then the condition

wmin(x) ≤ w(x,θ) ≤ wmax(x), x0 ≤ x ≤ x1 (9)

holds simultaneously for all θ ∈ R1−α with asymptotic confidence level no less than (1−α), so that (9) is

an asymptotic confidence band containing w(x,θ), for all x0 ≤ x ≤ x1, with confidence level no less than

(1−α) as n → ∞.

We can obtain a bootstrap version of the confidence band by using B BS MLEs θ̂ ∗
j , j = 1,2, ...,B to

construct a bootstrap equivalent of R1−α . When θ̂ is exactly normally distributed, the region R1−α has the

property that all points in R1−α have higher likelihood values than all those outside it. Cox and Hinkley

(1974, p.218) call such a region a likelihood-based region. Methods for calculating such a region are

described by Hall (1987) who recommends the percentile-t bootstrap method of generating a set of θ ∗
j
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points and then use of a non-parametric kernel smoothing method to identify the boundary of R1−α . This

method will usually have the attractive property of making the coverage error in R1−α of order O(n−1).
In our example we use a significantly simpler BS approach to obtain an estimate of R1−α which

nevertheless has the same motivation as the approach proposed by Hall. First note that we are free to

choose the parametrization θ in constructing the confidence band. We so therefore choose θ to make the

distribution of its MLE θ̂ as close to being normal as possible when (6) will be a good approximation. In

the toll booth example if we compare the scatterplot of (â∗, b̂∗) with that of (µ̂∗, σ̂∗) in Figure 2 the latter is

clearly much more normally distributed. To construct an estimate of R1−α we note that the quadratic in (7)

is the leading term in the Taylor expansion of the usual loglikelihood ratio 2(L(θ̂)−L(θ)), corresponding

to distributions that are asymptotically normal. The equation

q(θ) = (θ̂ −θ)TJ(θ̂)(θ̂ −θ) = c,

with c a constant thus gives loci where L(θ) is constant with smaller q(θ) = c corresponding to larger

L(θ). Therefore if we calculate q∗j = (θ̂ − θ̂ ∗
j )

TJ(θ̂)(θ̂ − θ̂ ∗
j ), j = 1,2, ...,B, corresponding to the BS θ̂ ∗

j

and order the points so that

q∗(1) ≤ q∗(2) ≤ ... ≤ q∗(B),

then the points θ̂ ∗
( j) corresponding to the first m = ⌊(1−α)B⌋ q∗( j) values, that is q∗(1) ≤ q∗(2) ≤ ...≤ q∗(m), will

estimate a likelihood-based region of level (1−α). These points can be used directly in (8) to represent

R1−α to calculate wmin(x) and wmax(x).
The black points in the right-hand plot of Figure 2 are for the case B = 1000, α = 0.1 in the toll booth

example. The left-hand plot are the same selection of bootstrap points in their original parametrization

θ = (a,b). These are the points used in calculating the CB. Figure 3 shows the upper and lower CI and

CB limit curves (solid for CI, dashed for CB) using both the asymptotic and BS approaches. It will be

seen that the BS curves compared with the asymptotic curves are skewed slightly higher, and the CB limits

are wider than the CI limits for either approach.

3 CONFIDENCE INTERVALS USING PIVOTS

Coverage error can be entirely eliminated if the CI can be constructed using a pivotal quantity. This has

interesting repercussions not only for CI construction but for parametric bootstrap GoF tests so we will

discuss this rather more fully here.

A pivotal statistic is usually defined somewhat cryptically and rather unspecifically as a function of a

random sample, Y, that also depends on θ the parameter of interest but whose distribution does not depend

on the value of θ .
In practice the form of pivotal statistics tends to follow the two used in constructing CIs for the

parameters µ and σ2 from a sample Y drawn from the normal distribution N(µ,σ2), namely the celebrated

studentized statistics T and W defined by

T =
Ȳ −µ

S/
√

νn
, W =

S2

σ2
, where S2 =

n

∑
i=1

(Yi − Ȳ )2, with ν = n−1. (10)

Note that we have used S2 to denote a sum of squares. This is not to be confused with the lower case

notation s2 conventionally used to denote the sample variance.

If µ and σ2 are the true values then T has the Student’s t-distribution and W has the chi-squared

distribution both with ν degrees of freedom. We shall write tν(α) and χ2
ν(α) for the α quantiles of

these two distributions. As with zα , many authors use tν(α) and −tν(α) to denote the upper and lower

tν quantiles when α < 0.5 as the t-distribution is symmetric about zero. We have not used this notation

in view of our discussion of non-symmetric pivot distributions shortly to follow. An exact balanced two
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sided (1−α)100% CI for µ and for σ2 is obtained by replacing the random variables in the probability

statements (assuming α < 0.5)

Pr{tν(α/2) ≤ Ȳ −µ

S/
√

νn
≤ tν(1−α/2)} = 1−α and Pr{χ2

ν(α/2) ≤ S2

σ2
≤ χ2

ν(1−α/2)} = 1−α

by their sample values and inverting the inequalities to give the well-known studentized confidence intervals

for µ and σ2:

(

ȳ− tν(1−α/2)S/
√

νn, ȳ− tν(α/2)S/
√

νn
)

and

(

S2

χ2
ν(1−α/2)

,
S2

χ2
ν(α/2)

)

. (11)

In this particular case, where the Y ’s are normal, the distributions of T and W are well-known with

Student’s t-quantiles and χ2
ν quantiles well tabulated and available in standard computer routines. There is

therefore no need to use Monte-Carlo estimation to estimate them.

However there is a more general situation where Y is not normal, but the same statistics T and W can

still be used to construct CIs, if their CDFs are known. If not known, they can easily be estimated by

Monte-Carlo estimation.

Consider a sample Y1,Y2, ...,Yn drawn from the location-scale model Y = µ +σX , where µ and σ are

fixed but unknown parameters, and X is a random variable with CDF F(x), whose form F(·) is completely

known and not dependent on unknown parameters. The normal model N(µ,σ2) just considered is an

example with X simply the standard normal distribution N(0,1). Other examples include the exponential,

logistic, extreme value and Weibull distributions, (the last under an appropriate transformation so that it

becomes the extreme value distribution). Consider

T ′ =
Ȳ −µ

S/n
, W =

S2

σ2
where S2 =

n

∑
i=1

(Yi − Ȳ )2,

these being essentially the T and W statistics defined in (10) with a slight simplification in T where the

factor ν is replaced by n. Now write Yi = µ +σXi and we get

T ′ =
X̄

√

∑
n
i=1(Xi − X̄)2

, W =
n

∑
i=1

(Xi − X̄)2, (12)

showing that T ′ and W are pivotal quantities. The confidence sets for µ and σ2 take the same form as (11)

for the normal model, except that appropriate quantiles of GT
′ (·), the CDF of T ′, and of GW (·), the CDF

of W , need to be substituted for the Student’s t and χ2-quantiles appearing in (11).

If these CDFs are not known, Monte-Carlo estimation, as described in subsection 1.1 provides a simple

way to produce samples T ′
j , Wj , j = 1,2, ...,B from (12) with the EDF of the {T ′

j} estimating GT
′ (·) and

of the {Wj} estimating GW (·), from which the required quantiles can be read off.

The EDFs are probabilistically exact. Therefore, for location-scale models, CIs calculated in this way

have no coverage error, whatever the sample size n.

4 BOOTSTRAP GOODNESS OF FIT

Once we have fitted a model, the natural question is: Does the model that we have fitted actually match

the data very well? For instance when we fitted a gamma distribution to toll booth service time data, does

the fitted gamma distribution capture the characteristics of the data properly?

The classical way to answer this question is to use a GOF test. Let Y = (Y1,Y2, ...,Yn) where our null

hypothesis, denoted by H0, is that Yi ∼ F(·,θ), where the form of F is known. We consider GoF tests based

on an EDF test statistic of the form T = T (Y ) that measures the difference between the EDF F̃(y) of the
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sample values (Y1,Y2, ...,Yn) and the fitted F(y,θ). We will consider both the case where θ is known, and

where it is not known. In the latter case we use the MLE θ̂ to estimate it. The distribution of T under the

null hypothesis has to be known to apply the GoF test. We simply calculate T = T (Y) for the given sample,

and compare the value with a high quantile T1−α of the null distribution, for which Pr(T ≤ T1−α) = 1−α.
A small value of α is used, α = 0.1 or 0.05 or 0.01 is typical, so that if the null hypothesis is true then it is

unlikely that the T value calculated from the actual observations Y will be greater than T1−α . If T > T1−α

the GoF test has failed at the (1−α) level, and H0 is rejected with the inference that the Yi have not been

drawn from F(·,θ).
Two well-known EDF test statistics are the Cramér-von Mises W 2 statistic and the Anderson-Darling

A2 statistic both of which have the form

T =
∫ ∞

−∞
ψ(y,θ)[F̃(y)−F(y,θ)]2dF(y,θ),

where ψ(y,θ) = 1 for the W 2 statistic and ψ(y,θ) = [F(y,θ)(1−F(y,θ))]−1 for the A2 statistic. Equivalent

versions that are computationally more convenient are, for the W 2 case

W 2 =
1

12n
+

n

∑
i=1

[Zi −
2i−1

2n
]2

and for the A2 case

A2 = −n−
n

∑
i=1

(2i−1)[lnZi + ln(1−Zi)]/n (13)

where, in either case, Zi = F(y(i),θ) if θ is known and θ is replaced by θ̂ if not, with y(i) the ith order

statistic.

Another well-known EDF statistic is the Kolmogorov-Smirnov D statistic. Perhaps the best known test

is the chi-squared GoF test. The main reason for its popularity is that it is relatively easy to implement.

The test statistic is easy to calculate and moreover it has a known chi-squared distribution under the null,

which makes critical values easy to obtain. However the chi-squared test has two obvious weaknesses. It

is significantly less powerful than EDF tests, and it has a certain subjective element because the user has

to divide the data into groups of her/his own choosing.

It is quite clear from work done notably by Stephens, see Stephens (1970, 1974) and D’Agostino and

Stephens (1986), that A2 yields the most powerful test and so should be the test statistic of choice.

The problem with the W 2 and A2 statistics is that their distribution does not remain the same but

changes depending on the null. Thus different critical values are needed. D’Agostino and Stephens (1986)

have tabulated a range of critical values for different GoF statistics and different nulls including those for

the exponential, gamma, Weibull, extreme value, logistic and Cauchy distributions. Though the situation

has improved, statistical packages that offer GoF tests do not always make it clear what critical values are

implemented.

The parametric bootstrap offers a very practical way out of the difficulty, whether parameters have to

be estimated or not. Stute, Mantega and Quindimil (1993) show that under regularity conditions, so that

the MLE, θ̂ , is a consistent estimator, and provided F(y,θ) is a sufficiently smooth function of y and θ ,

then the distribution of an EDF GoF test statistic is consistently estimated by its bootstrap version. Stute,

Mantega and Quindimil (1993) demonstrate this specifically for the D and W 2 statistics. Babu and Rao

(2004) give a rigorous proof of the weak consistency of the parametric bootstrap, examining a number of

examples, including the normal and Cauchy distributions.

In what follows we focus on the Anderson-Darling statistic A2. In view of its similarity, our discussion

applies also to W 2 but for reasons of space we do not discuss W 2 further.

We will write A2(y,θ) for the value of A2 as calculated in (13) from the EDF F̃ of a sample y and the

CDF F(·,θ). For the case when the MLE θ̂ is used instead of θ we write A2(y, θ̂).
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In the case where θ is known, we use Monte-Carlo estimation to generate samples y j = (y1 j,y2 j, ...,yn j),
j = 1,2, ...,B, with all yi j ∼ F(·,θ) drawn from the known distribution, from which we calculate test statistic

values Tj = A2
j = A2(y j,θ), j = 1,2, ...,B. The EDF of the A2

j is (probabilistically) exact for estimating the

null distribution of the test statistic in this case.

If parameters have to be estimated we still generate B samples y∗j , j = 1,2, ...,B, each of size n, but

now with sampled values y∗i j ∼ F(·, θ̂) where the MLE θ̂ , calculated from the original sample, replaces

the unknown θ . For each j we have to again estimate θ , calculating the MLE θ̂ ∗
j = θ̂(y∗j) based on

the jth sample. We can then calculate T ∗
j = A∗2

j = A2(y∗j , θ̂ ∗
j ), j = 1,2, ...,B, using the formula for A2

with zi j = F(y∗(i), j
, θ̂ ∗

j ), where y∗(1), j
,y∗(2), j

, ...,y∗(n), j
is the ordered jth BS sample. The EDF of the sample

A∗2
j = A2(y∗j , θ̂ ∗

j ), j = 1,2, ...,B, estimates the null distribution of A2 for the case where the parameters

have been estimated by MLE. Writing the GoF critical value at level (1−α) as A2
(1−α), this is estimated

by the (1−α) quantile of the EDF, so if the A∗2
j are placed in order A∗2

(1) ≤ A∗2
(2) ≤ ...,≤ A∗2

(B), the estimate

is then A2
(1−α) = A∗2

(m′), where m′ = ⌊(1−α)B⌋. These calculations are set out in the GoF flowchart (14).

Flowchart for the A2 GoF test when θ is estimated by the MLE θ̂ (14)

Given y = (y1,y2, ...,yn), a random sample drawn from distribution with CDF F(y,θ), θ unknown

↓
θ̂ = θ̂(y) MLE

↓
A2(y, θ̂) A2 GoF test statistic

For j = 1 to B

y∗j = (y∗i j ∼ F(y, θ̂), i = 1,2, ...,n) jth BS sample

↓
θ̂ ∗

j = θ̂(y∗j) jth BS MLE

↓
A∗2

j = A2(y∗j , θ̂
∗
j ) jth BS A2 GoF test statistic

End j

A∗2
(1) ≤ A∗2

(2) ≤ ... ≤ A∗2
(B) Ordered null-distributed A∗2

j values

↓
m = (1−α)B Rounded integer subscript

↓
A∗2

(1−α) = A∗2
(m) BS estimate of GoF critical value at level (1−α)

↓
GoFTest: If A∗2

(1−α) < A2(y, θ̂) Reject null hypothesis H0 at level (1−α).

In general, the bootstrap at each j introduces an approximation error as θ̂ has to be used in place of the

unknown true θ 0 in forming the sample y∗j . This introduces an error of order |θ̂ −θ 0| = Op(n
−1/2). It is

relatively easy to incorporate a sensitivity assessment into the procedure to gauge the importance of this

error. We will discuss how this is done, but before we do so we discuss an important family of models

where the bootstrapping remains exact even when parameters are estimated.

For location-scale models the use of MLE’s in EDF GoF tests is equivalent to studentization so that GoF

test is exact. This property has been recognized and commented on in Stephens (1974) and D’Agostino and

Stephens (1986), however their focus was on the calculation of tables of critical values and so attention was

not drawn to the usefulness of the property in carrying out BS GoF tests. The property is also pointed out
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by Babu and Rao (2004), but their proof is quite technical. We give a simpler, we hope more transparent,

proof that covers the case where the location and scale parameters are both unknown.

Consider the location-scale model where the observations have the form Yi = µ +σXi. We write Xi as

Xi = F−1(Ui), with F the completely known continuous CDF of X . We can think of the Ui, i = 1,2, ...,n
as being the fundamental random variables from which the Xi and then the Yi are formed. Thus there is a

one-to-one correspondence between each sample of Ui’s and the observed sample {Yi} that it gives rise to.

Our key result is that whatever the underlying sample of uniforms {Ui}, using MLE to estimate µ and σ ,
yields an estimated standardized set of Yi’s, (Yi − µ̂)/σ̂ , i = 1,2, ...,n, each value of which, whatever the

i, is the same whether calculated for the original sample or under bootstrapping. We show this as follows.

Let {u0
i } be the uniforms that give rise to {y0

i } our observed sample, so that y0
i = µ0 + σ0x0

i where

x0
i = F−1(u0

i ) and µ0, σ0 are the true but unobserved µ and σ values. Let f be the PDF. The loglikelihood

in terms of the y0
i is L = −n lnσ + ∑

n
i=1 ln f [(y0

i − µ)/σ ] for which the likelihood equations ∂L/∂ µ = 0

and ∂L/∂σ = 0 can be written as

−
n

∑
i=1

1

f [(y0
i −µ)/σ ]

∂ f

∂y

∣

∣

∣

∣ y0
i
−µ

σ

= 0 and −n+
n

∑
i=1

(y0
i −µ)/σ

f [(y0
i −µ)/σ ]

∂ f

∂y

∣

∣

∣

∣ y0
i
−µ

σ

= 0, (15)

showing they depend on the y0
i , µ and σ only through the standardized values (y0

i −µ)/σ for i = 1,2, ...,n.
Let the MLE’s obtained from the original sample be µ̂0 and σ̂0 so that they satisfy (15) .

Now suppose that, using bootstrap sampling with µ̂0 and σ̂0 in place of the unknown µ0, σ0, we had

generated the same set of uniforms {u0
i } as in the original sample. The BS y∗i would take the form y∗i =

µ̂0 + σ̂0x0
i . The MLE’s µ̂∗ and σ̂∗ corresponding to these y∗i must satisfy (15) only with y0

i replaced by

y∗i . Thus the only difference is that, for the original observations, the standardized values are (y0
i −µ)/σ

whilst they are (y∗i −µ)/σ in the bootstrap version. However these are identical simultaneously for all i if

µ̂∗ = µ̂0 +
σ̂0

σ0
(µ̂0 −µ0) and σ̂∗ =

σ̂2
0

σ0

,

so that this must be the form of the MLE’s in the BS version. We therefore have

(y0
i − µ̂0)/σ̂0 = (y∗i − µ̂∗)/σ̂∗, i = 1,2, ...,n. (16)

This equality of the standardized versions holds for any given uniform sample {u0
i }. Allowing {u0

i } to vary

over its sample space [0,1]n clearly generates the entire joint distribution of both (Y 0
i − µ̂0)/σ̂0, i = 1,2, ..,n

and (Y ∗
i − µ̂∗)/σ̂∗, i = 1,2, ...,n. The equality (16) therefore shows that the joint distribution of the BS

standardized quantities is identical to that of the original.

We now apply this result to the A2 statistic. This depends only on the quantities Zi = F(y(i), θ̂). For the

location-scale model we have from (16) that Z∗
i = F((y∗(i)− µ̂∗)/σ̂∗) = F(y0

i − µ̂0)/σ̂0) = Zi for all i. Thus,

for any uniform sample {u0
i }, the bootstrap version A∗2 is identical in value to the A2 value obtained for

the original sample. The bootstrap EDF of a BS sample of A∗2 values therefore remains an exact estimator

of the null distribution of A2 for any n (> 2) when unknown parameter location and scale parameters are

replaced by their MLEs.

The same result holds for the W 2 as this also depends only on the Zi quantities.

For the general case where F may not be a location-scale model, and when θ 0 is unknown, we need

to identify the error that arises from using the BS estimated critical value A∗2
(1−α) in the GoF test instead of

the true value A2
(1−α). As A∗2

(1−α) is a random quantity based on sampling from F(·, θ̂) we therefore need

to estimate its distribution.

The flowchart (14) shows how the critical value A∗2
(1−α) actually used in the GoF test can be calculated

as the (1−α) quantile of the EDF formed from a bootstrap random sample, A2(y∗j , θ̂
∗
j ) j = 1,2, ...,B of
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A2 values; this EDF being a consistent estimator of the desired null distribution. In this calculation each

BS sample y∗j is drawn from F(·, θ̂) so that θ̂ is the underlying parameter value determining just this one

value of A∗2
(1−α). We can obtain an estimate the distribution of A∗2

(1−α) by adding an additional level of

bootstrapping in the flowchart to form a random sample of critical values, A∗2
(1−α), j

j = 1,2, ...,B′, where

each A∗2
(1−α), j

is calculated in the same way as the original A∗2
(1−α), but using a BS value θ̂ ∗

j that varies with

j as the underlying parameter value instead of θ̂ to reflect the additional variation in calculating A∗2
(1−α)

from bootstrap samples rather than from the true samples. This calculation can be regarded as an inner

bootstrap executed at each step j of the now outer bootstrap of (14). The flowchart for the calculation is

as follows.

Flowchart for BS estimation of the distribution of A∗2
(1−α), the BS estimate

of the critical value when θ is estimated by the MLE θ̂ (17)

Given y = (y1,y2, ...,yn), a random sample drawn from distribution with CDF F(y,θ), θ unknown

↓
θ̂ = θ̂(y) MLE

↓
m = (1−α)B Rounded integer subscript

For j = 1 to B′ Outer bootstrap [typically B′ ≤ B]

y∗j = (y∗i j ∼ F(y, θ̂), i = 1,2, ...,n) jth BS sample

↓
θ̂ ∗

j = θ̂(y∗j) jth BS MLE

For k = 1 to B Inner bootstrap

F(·, θ̂ ∗
j )

↓
y∗∗jk = (y1 jk,y2 jk, ...,yn jk) ( j,k)th BS sample with all yi jk ∼ F(·, θ̂ ∗

j )
↓

θ̂ ∗∗
jk MLE of θ , calculated from y∗∗jk

↓
A∗∗2

jk = A2(y∗∗jk , θ̂
∗∗
jk ) ( j,k)th BS A2 GoF test statistic

Next k

A∗∗2
j,(1) ≤ A∗∗2

j,(2) ≤ ... ≤ A∗∗2
j,(B) B ordered null-distributed BS A∗∗2

j values

↓
A∗∗2

(1−α), j
= A∗∗2

j,(m) jth GoF critical value at level (1−α)

Next j

EDF of A∗∗2
(1−α),1, A∗∗2

(1−α),2, ..., A∗∗2
(1−α),B′ is the BS estimate of the distribution of A2

(1−α)

A double superscript ‘∗∗’ is used to denote quantities calculated in the inner BS loop.

At the end of the outer BS loop there are B′ BS estimated critical values A∗∗2
(1−α), j

j = 1,2, ...,B, the EDF

of which estimates the distribution of A2
(1−α). If a formal assessment of the accuracy of A2

(1−α) is needed

this can be provided by calculating a percentile CI from this EDF. We have not included this calculation

in the flowchart.

Taken together, the outer and inner bootstraps, are commonly called a double bootstrap.

The double bootstrap is a misnomer as the effort required is not 2B but B′B, so is computationally

expensive if B′ is large. In practice B′ only needs to be large for a formal estimate of the BS error. The
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tabulated critical values given in D’Agostino and Stephens (1986) for different distributions suggests that

this BS error will not be large in general. For instance, in the case of the gamma distribution, when

parameters are estimated, the GoF critical values are affected by the shape parameter a, but the effect is

not great with, for instance, the critical values when α = 0.1 only varying from 0.657 at a = 1 to 0.631 at

a = ∞. Therefore a less formal more flexible approach to the sensitivity analysis is simply to increase B′

by adding replications one at a time, stopping once the magnitude of the error is clear.

We conducted such a double bootstrap experiment for the case θ 0 = (a,b) = (1,1), with B = 1000 and

in fact with B′ = 10, small but fixed. As we know the value of θ 0, and the example is for illustration only,

we generated each initial y directly from F(·,θ 0) rather than F(·, θ̂). The B′ = 10 BS EDFs of A∗2 are

depicted in Figure 4.

Figure 4: Bootstrap EDFs from ten runs of the BS GoF test set out in the flowchart (3) Also shown are

the α = 0.1 level critical values obtained from the EDFs and the A∗2 values corresponding to each Y and

MLE θ̂ calculated from Y as indicated in the square brackets in the flowchart.

The ten critical A∗2
(1−α)=0.9 values corresponding to the (1−α) = 0.9 critical value calculated from the

EDFs are shown in red. These values of A2
(1−α)=0.9 fell in the range 0.629−0.660, straddling the value of

0.657 tabulated in D’Agostino and Stephens (1986, Table 4.21). Also, as an added indication that there is

nothing untoward about the replications, the Figure also shows, in green, the ten ‘test’ A2(Y, θ̂(Y)) values

calculated from the initial sample Y and MLE θ̂(Y), this θ̂ being used to generate the BS samples in the

replication.

For the tollbooth data â = 9.20 and b̂ = 0.63 for which the BS estimated (1−α) = 0.9 critical value

using B = 1000, was A2 = 0.631. This is greater than the test value of A2 = 0.497, so that the null

hypothesis that the data are gamma distributed is not rejected. In comparision the tabulated critical values

in D’Agostino and Stephens (1986, Table 4.21) are 0.634 at â = 8 and 0.633 at â = 10.
In addition we tested fitting the normal distribution. The MLEs were µ̂ = 5.80 and σ̂ = 2.04, with a test

value of A2 = 1.109. Bootstrapping using B = 1000, gave a critical test value at the (1−α) = 0.9 level of

A2 = 0.620. The test value is greater, so we would reject the hypothesis that the data is normally distributed.

The D’Agostino and Stephens (1986, Table 4.7) tabulated critical value at α = 0.1 is A2 = 0.631, but to

apply the test with this critical value, the test value has to be inflated by a factor of (1+0.75/n+2.25/n2) =
1.017 at n = 47.This is equivalent to modifying the critical value to 0.631/1.017 = 0.620 if the test value

is retained at A2 = 1.109, making it the same as the BS version.
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5 SUMMARY

We have shown that parametric bootstrapping provides a very simple way of assessing the quality of

parametric models fitted to input and output data in simulation experiments. In particular we have (i) given

details of how to construct bootstrap confidence intervals (CIs) for parameters of interest and confidence

bands (CBs) for output functions of interest, and (ii) described how to carry out an Anderson-Darling GoF

test, using bootstrapping to calculate GoF critical values.

We have shown that bootstrap CIs and the Anderson-Darling GoF test are probabilistically exact for

location-scale models.
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