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Introduction to Bootstrapping

First let me emphasise that Random Variables are a very important part of the Statistical
Uncertainty that occurs in Simulation Modelling. Bootstrapping is a very simple method of
studying this uncertainty, which it does by answering a question that we can ask of all Random
Variables. Indeed it is the ONLY single question you can ask about a Random Variable.

Bootstrapping is all about answering this single question in a simple way!

Before we look at this question, let me summarise the Course so far: You will have been
introduced to the idea of using Statistical Simulation Models to represent Real Life systems of
interest. Use of the word Statistical highlights the fact that these systems are subject to statistical
variation which can occur in the Input quantities, or which can occur within the System
themselves. In a simulation model these quantities are treated as random variables which are
generated by random variate generators.

A simple example i1s an M/M/1 queue where the first M denotes customers who arrive
randomly with interarrival times that are exponentially distributed with PDF

le ™ t>0

where A is the mean arrival rate. These interarrival times are the Inputs.



Within the queue the customers are served by a single server indicated by the ‘1°. The times
to serve each customer are system generated random quantities with the second M which
indicating that the service times are also exponentially distributed

pue * , t=>0

with u the mean service rate of the server when busy.

In general, the quantity of interest is regarded as Output. This 1s will depend depend on the
random input quantities and the system generated random quantities, so will also be a quantity
that varies statistically.

In our example we might take the quantity of interest to be the mean waiting time in the
queue, which happens to be known, with

A

W ) ulp—2)
For more complicated queues the formula is not always so simple, which is why the simulation
model is needed to estimate the Output value numerically.

Even when the formula for the output is known, numerical estimation 1is still required to
estimate the parameters, as in our M/M/1. We could consider this numerical estimation to be
part of Input Modelling, as parameter values are needed as inputs in order to run the Simulation



Model. But our real interest is in estimating the Output and its statistical variability. So
estimating the parameters could equally be thought of as part of the Output Modelling.
Personally I think that trying to make a distinction between Input and Output Modelling is
unhelpful and confusing. So though I will be paying lip service to these terms I will actually
simply be focusing on Random Variables as these are a big source of uncertainty in Simulation.
You will have been shown, in the previous lectures, how to estimate the parameter using
Maximum Likelihood (ML) estimation. This does this by fitting parameters to data. The data
can have been obtained in different ways, but will depend on the parameters so are random
variables which depend on the parameters. ML works by fitting the probability distributions to
the data. Moreover, you will have been shown the attractive property of ML estimators in
allowing the accuracy of the ML estimates to be assessed using Asymptotic Normal Theory,
which shows that, as more data are obtained the parameter estimates become increasingly close
to normally distributed which moreover can be estimated, so that confidence intervals can be
obtained that allow one to gauge how accurate are the results.
Bootstrapping steps in here as it offers a simple alternative to Asymptotic Normal Theory.
One thing to realise at the outset is that there often is a common misconception that
bootstrapping gives you something for nothing and that it somehow allows one to estimate
parameters more accurately without having to obtain more data. This has led to an initial

mistrust, when bootstrapping was first proposed. Bootstrapping is summarised in Chapter 4 of
my book Cheng (2017).



What bootstrapping does is to give one an easy numerical way of assessing the accuracy of
results wihout having to invoke the more complicated mathematics of asymptotic theory,
moreover without requiring one to obtain more results by running more simulations.

A Point to Note: Though I have introduced bootstrapping as an attractive alternative
to asymptotic normal theory when using ML, it has more general uses, as it solves the
following

Basic Statistical Question

Fy(y)

Distribution of Y Sample Test Statistic Distribution of 7
What is the Distribution of 7(Y)?

A 4

A 4

Y T(Y) Fr(f)

Example. Voting in an Election. We have a constituency of voters.
Distribution of interest is how they will vote.

Sample 1s an Opinion Poll.

Test Statistic of interest to a candidate is the proportion voting for her/him.
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Bootstrapping depends on the properties of:

The empirical distribution function (EDF) defined as
ﬁy(y):#of Y's<y

where Y, i =1, 2, ..., n1s a random sample

EDF of the Y;, Fy(y)

,_I_
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_
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Ya ¥ Y
The EDF estimates the cumulative distribution function (CDF) of Y.
Fundamental Theorem of Sampling

EDF — CDF with probability one, as n— oo
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? How does this and bootstrapping help with:
The Basic Sampling Question

A 4

Fr(y) Y

Distribution Sample Test Statistic ?

TY) | Fi()

What is the Distribution of 7(Y)?



? How does this and bootstrapping help with:
The Basic Sampling Question

A 4

Fr(y) Y

Distribution Sample Test Statistic ?

TY) | Fi()

What is the Distribution of 7(Y)?

The Basic Statistical Question is answered if we could replicate the process a
large number of times

T Original sample

Fy(y)

\

T

L FL(6) > Fr (1)

Problem: Sampling from the Distribution often difficult (Expensive, time consuming)
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Let us focus on the difficult part:

Y T | Original Sample

FY()’)\:‘

WAGEYAG

A 4
-

Note that the Fundamental Theorem applies to this original sample Y:

EDF Fy(y) = Fy(y) as n—>

Replace Fy (y) by EDF Fy(») of original sample to get the Bootstrap Version

/Yl* T |
Fy (y) = Y2* * ] | Fpao)

4
-
*




The pseudocode for the entire bootstrap process is as follows:

/Iy =@(1),y?2), ..., y(n)) is the original sample.
// T=1T(yp) is the calculation that produced 7 from y.

For k=1 to B
{

For 1 =1 to n
{
j =Int [1 + n x Unif()] // Unif~U(0,1)
y*(1) = y(J)
}
T* (k) = T(y*)
}

10



Confidence Intervals
The EDF of the bootstrap sample estimates the distribution of 7.

Empirical Distribution Function of the 7™

t
0.05
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Original
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The p-value the original statistic value, T, 1s
p=1-F*(Tp).
If the p-value is small then 7o 1s in some sense unusual.

Empirical Diastribution Function of the 7i,*

L g
L PV alue

I * 5 i o I5*

(O ginal®Walue)

Excel Example 1 Here
BasicBootstrapMeanMedian
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Basic Bootstrap

Y * T*

N

Y, * T*

Fr(»)

Y3 Tz*

{

If we have a parametric representation of Fy (), possibly with estimated parameters
We can use the:
Parametric Bootstrap

Y * T*

F,(3,0) — 1Y° &N
T

Excel Example 2 Here ParametricBootstrap Mean/Median

\ 4

Ts*
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We usually need to fit a parametric statistical model to data, as we did in
our Example 2, need to use parametric bootstrapping. This has already
been covered in the Course. We use a real data sample to remind you of
what is needed.

The sample occurs in an Excel Toll Booth Example which we will also be
using to discuss other issues in what follows.

The sample comprises47 observed times in seconds taken to process vehicles at a
toll booth waiting to cross a bridge.

4.3 10.9 47 477 31 52 6.7 45 3.6 7.2
6.6 5.8 63 4.7 82 6.2 42 4.1 33 4.6
6.3 4.0 31 35 78 5.0 5.7 5.8 64 5.2
8.0 10.5 49 6.1 8.0 7.7 43 12579 3.9
4.0 44 6.7 38 64 7.2 48
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We suppose that these are gamma variates with PDF:
fo(y,a,)=T" () y* " exp(-y/ )
We shall use Maximum Likelihood Estimation.to obtain

ML Estimates &, 3

Maximize the Log likelthood:
Lg(a, 5,X) =-n{logl(a))-alogf]—(a—1)D logk,)— " > x,. A very convenient general
j=1 j=1

numerical optimization method for doing this is the well-known simplex search
procedure proposed by Nelder and Mead (1965).

0=(a,f) ML estimatoris 8= (a,p)
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Asymptotic probability distribution of 0 is known to be normal.

As the sample size n — o,

0 ~ N{08o,V(09)}
WwWE Can usc
0 ~ N{0o,V(0))
where

V() =[ -0°L(0,y)/ 00> 9:6]'1

The second derivative of the loglikelihood, 62L(0,y)/602, that appears in the

expression for V(0) is called the Hessian (of L). A numerical procedure is needed for
this inversion.

A (1-0)100% confidence interval for the coefficient 6 is

O £ 2o 12/ V11(0)

where z, /2 1s the upper 1000/2 percentage point of the standard normal distribution.
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Show Excel Examples 3 and 4 here

Example 3 gives the Gamma fit to Toll Booth Data. (show Optimize & Fit Sheets)
For comparison:

Example 4 gives the Normal fit to Toll Booth Data. (shoe Optimize & Fit Sheets)

Question: are either fits satisfactory?
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Classical Goodness of Fit

Does the model that we have fitted actually fit the data very well?

Use a goodness of fit test (GOF test).
A popular test is the chi-squared goodness of fit test.
(1) The test statistic 1s easy to calculate
(i1) It has a known chi-squared distribution, under the null.

But (1) It is not all that powerful
(i1) The user has to decide how to group the data

The best GOF tests compare the fitted CDF Fy (y,0) with the EDF Fy ()
Such tests are called EDF goodness of fit tests.

The Anderson - Darling test, 1s the best by far. (Stephens, 1974)

But The critical values are very dependent on the model being tested
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This means that different tables of test values are required for different models (see
d’Agostino and Stephens, 1986).

Anderson-Darling test statistic:

(B0 -FO)
Froyi-Roy ™Y

- —i 2i-D[InZ; +In(0l-Z,11-i)]/n)—n
i=1

where Z; = F'(Y(; ,0)

19



The basic idea in using a goodness of fit test statistic is as follows:

If the sample has really been drawn from Fy(y) then 4% will not be large.
This follows from the Fundamental Theorem F(y) = Fo(y)
Thus A* will be a typical value. But what is a typical value?

Typical values given by its null distribution

If the sample is drawn from a distribution different from Fy(y) then 4> will be
large.

Its p - value will then be small.

This indicates that 7 has not been drawn from the supposed null distribution.
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How a GOF Test Works
Null Case: Fitted model F (y,@) is the correct

N( : Null
| F Distribution
F(»,0 - . .
(»,9) Y ~ R r where T 1is
F(y.0) likely to be

small

Alternative Case: Fitted model F/( V,é) iS an incorrect

= Non-Null
G(y,0) J Y 7 G(p) ” T Distribution
~ where T 1is
F(5.9) likely to be
large

GOF test hinges on being able to calculate the null distribution of 7.

The null distribution of the Anderson-Darling statistic is difficult to obtain. So
not used as often as it should in practice.
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Bootstrapping provides a simple and accurate way of resolving this problem.

Bootstrap Calculation of the Null Distribution
of a GOF Test Statistic, T

F(y|YS
i : /v 1Y)
F(y,0) Y, — 7,

\{ F(7.0))

i=12,..,B

\ 4

Show Excel Example 3 here again

GammakFitToll Booth Example only now including Bootstrapping Sheet
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Model Uncertainty:

Our discussion so far has focused on how bootstrapping is useful for measuring the
variability of a statistical quantity of interest.

In the basic bootstrap the actual probability distribution of the statistical quantity is not
particular concern. However when using parametric bootstrapping which applies to
particular distribution like the example of the M/M/1 queue involves only the
exponential distribution.

In a full simulation model, various different probability distributions may be involved.
In the M/M/1 queue, the interarrival times and the service times are both assumed to
have the Exponential Distribution. This 1s often okay for interarrival times but the
service times can be different.

We have already mentioned one example, the Toll Booth Example where we have
tried both the gamma and normal distributions. We now describe this example in
more detail, as it is a good example of or next topic which focuses on use of
Bootstrapping in Output Analysis.
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Toll Booth Example

Griffiths and

9

UK

of the old Severn River bridge,

Operation of toll booths

Williams (1984)

[<]
[o]
o
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Unsatisfactory Original Bridge. Can you see why?

il j,‘“ il AM

| TR Fﬁ[m
i I { l“f‘ﬁf.n v!n. ":‘
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Each toll booth was modelled as a single server queue
Simulation model simulates the service of / vehicles.
Of interest: W - the average vehicle waiting time in the queue.

Service time data: Time taken for a vehicle to pay at the toll booth before crossing the
bridge.
1 Parameter Uncertainty

Poisson arrivals (Exponential Interarrivals)

Gamma service times (Both part of the Input
Uncertainty in this Course)

2 Simulation Uncertainty
Vehicle Waiting Time ( Simulation Uncertainty in
this Course)
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___________________________________________________________________

Input The Statistical Output :

A Model Data |
Input:A \ 1: Real System v
6 or 0 2: Simulation model [ Y
3 Random
X
_____________________________________________________ 3

__________________________
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____________________________________________________________________________________________________

Arrival Rate Output
A 1: TollBooth —
\ 2: Simulation model Wii=1,2,....0
Gamma Pars A= — 2 In(U) 7
“h ol S$=G'Vsaf) [ i=12,..1
Random Input / i=12,.,1 7
Streams: U, V

Actual Sample of
Service Times:
X], Xz, ceey Xn

1 Statistical model
2 Statistical metamodel



Use of Parametric Functions in Qutput Analysis

Suppose are real interest is not in the parameters themselves but in a function of 0, g(A, 0),

say, where g(A, 0) 1s a function of 4, Ao < A < A4
What is the MLE of g(1,0), Ao < 4 < A44?

Answer is simple: The MLE of g is ¢ = g(1,90).
Toll booth example: The steady state mean waiting time in the queue is known to be

A(1+a)ap?

A< A < A

Its ML estimated is simply W (1|&, ) where we have replaced o, B by &, 3

An approximate (1-a)100% confidence interval for g(4, 0) at a given A is then

g(4,0) £ 24/2./(0g/ 20)|, ;" V(0)(@g/09), ;

This is conventionally called the delta-method.
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The above shows how to calculate Confidence Intervals for g(A, 0), but these apply
only for individual A and are not suitable if confidence intervals for several
diferent A are needed simultaneously.

Excel Examples 3 here again to give the Bootstrap Answer
Gamma Fit to Toll Booth Data now including the Performancelndex page

Note

I have used Performance Index (PI) and Performance Measure (PM)
synonymously. In the case of the Toll Booth example the PI/PM is
simply the expected waiting time W
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Confidence Bands for Functions with Estimated Parameters

As we have aleady seen, a confidence interval for the case
W (A&, B) at a given Ais straightforward. But what about constructing a Band with
upper and lower limits

WUu@a,p) o< A<k
WLA|@a,B) A< A< XA

Within which the entire MLestimate W(A|@, B) A < A < A1 lies?

This question can be answered using Bootstrapping.
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Use of ScatterPlot for calculating confidence bands

1.4

1.2
1.0
B oo
0.6

0.4

0.2 T T T T T T T
4 6 8 10 12 14 16 18 20

o
Red point: Location of the parameter MLEs @, B

Black points: { R} =90% of the total number of points with highest likelihood values
Green points: {Not in R} = 10%, the Rest of the points with lowest likelithood values
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1.4

= \ _~ mn=15
1.2 \ mi2) = 1.1

wi2)=038

0.2

4 é Eli ‘1I0 & 2 “1I2 ‘1I4 ‘]IB ‘1I8 20
Contours of W = [A(1 + a)aB?]/[2(1 — afA)] at a given A

Confidence band is

Wiin(4) = mingW(4]| o, ) Wmax(A) =maxrW(A|a,f) Ao < 1 < X

Example 5 Here to show difference between Cls and Bands
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Reparametrized parameters makes the band more accurate and symmetrical

n=aop o=ap? a=p}o B=o/u
Pts In R, Mot in R and MLE Pts In R, Notin R and MLE
3.0 1.4
o *
2.8 -
26 -
» Pts In
2.4 4 R
i + Mot in
2.2 R
2.0 4 = MLE
1.8
16
*
1.4 4
1.2
49 5.4 59 6.4 6.9 4.1 8.0 14.0 19.0
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Second Bridge. Built after OR Simulation Study
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Additional Recommendation

Adopted
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Review of the Role of Parametric Bootstrapping (BS) as so far used in the Toll
Booth Example.

(1) It enables the accuracy of estimate of the parameters to be assessed of the assumed
Gamma service times. (By BS sampling of the estimates)

(2) It enables the suitability of the assumption of the gamma service times to be
assessed. (Using BS GoF Testing)

(3) It enables the accuracy of the estimate of the Performance Measure (PM) to be
assessed when its mathematical form is a known function of the parameters. (By BS
sampling of estimates of the PM)

Note that (1) and (2) are issues that arise from Input Uncertainty, whereas (3) is an
issue of Output Analysis, In the present context of Simulation Modelling. these two

issues were respectively termed Parameter Uncertainty and Simulation Uncertainty by
Cheng and Holland (1997)
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Question: What happens when the Performance Measure is not a known mathematical
function, but instead is a quantity that is obtained numerically from runs of the
Simulation Model, so that it becomes an issue of Simulation Uncertainty?

The interesting answer i1s that, to first order of approximation, the overall variability
of the PM is measured as a statistical variance, the the overall variance 1s simply the
sum of the variance of the Parameter Uncertainty and the variance of the Simulation
Uncertainty. This was first pointed by Cheng and Holland (1997).

We can therefore do the following

Simply make B independent runs of the Simulation Model, where, in the ith run, the

ith BS estimate, 0, of the vector of parameters as obtained in (1) above, is used. This
allows us to estimate simultaneously the overall variability of the PM’s obtained from
these runs.

Excel Example 5 Here
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