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Introduction to Bootstrapping 
 
First let me emphasise that Random Variables are a very important part of the Statistical  
Uncertainty that occurs in Simulation Modelling. Bootstrapping is a very simple method of 
studying this uncertainty, which it does by answering a question that we can ask of all Random 
Variables. Indeed it is the ONLY single question you can ask about a Random Variable. 
  
 Bootstrapping is all about answering this single question in a simple way! 

 

Before we look at this question, let me summarise the Course so far: You will have been 
introduced to the idea of using Statistical Simulation Models to represent Real Life systems of 
interest. Use of the word Statistical highlights the fact that these systems are subject to statistical 
variation which can occur in the Input quantities, or which can occur within the System 
themselves. In a simulation model these quantities are treated as random variables which are 
generated by random variate generators. 
 A simple example is an M/M/1 queue where the first M denotes customers who arrive 
randomly with interarrival times that are exponentially distributed with PDF 
        ିఒ௧  

 
where  is the mean arrival rate. These interarrival times are the Inputs. 
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 Within the queue the customers are served by a single server indicated by the ‘1’. The times 
to serve each customer are system generated random quantities with the second M which 
indicating that the service times are also exponentially distributed 
        ିఓ  

 
with the mean service rate of the server when busy. 
 In general, the quantity of interest is regarded as Output. This is will depend depend on the 
random input quantities and the system generated random quantities, so will also be a quantity 
that varies statistically. 
 In our example we might take the quantity of interest to be the mean waiting time in the 
queue, which happens to be known, with 
 

 

 
For more complicated queues the formula is not always so simple, which is why the simulation 
model is needed to estimate the Output value numerically. 
 Even when the formula for the output is known, numerical estimation is still required to 
estimate the parameters, as in our M/M/1. We could consider this numerical estimation to be 
part of Input Modelling, as parameter values are needed as inputs in order to run the Simulation 



4 
 

Model. But our real interest is in estimating the Output and its statistical variability. So 
estimating the parameters could equally be thought of as part of the Output Modelling. 
 Personally I think that trying to make a distinction between Input and Output Modelling is 
unhelpful and confusing. So though I will be paying lip service to these terms I will actually 
simply be focusing on Random Variables as these are a big source of uncertainty in Simulation. 
 You will have been shown, in the previous lectures, how to estimate the parameter using 
Maximum Likelihood (ML) estimation. This does this by fitting parameters to data. The data 
can have been obtained in different ways, but will depend on the parameters so are random 
variables which  depend on the parameters. ML works by fitting the probability distributions to 
the data. Moreover, you will have been shown the attractive property of ML estimators in 
allowing the accuracy of the ML estimates to be assessed using Asymptotic Normal Theory, 
which shows that, as more data are obtained the parameter estimates become increasingly close 
to normally distributed which moreover can be estimated, so that confidence intervals can be 
obtained that allow one to gauge how accurate are the results. 
 Bootstrapping steps in here as it offers a simple alternative to Asymptotic Normal Theory. 

One thing to realise at the outset is that there often is a common misconception that 
bootstrapping gives you something for nothing and that it somehow allows one to estimate 
parameters more accurately without having to obtain more data. This has led to an initial 
mistrust, when bootstrapping was first proposed. Bootstrapping is summarised in Chapter 4 of 
my book Cheng (2017). 
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What bootstrapping does is to give one an easy numerical way of assessing the accuracy of 
results wihout having to invoke the more complicated mathematics of asymptotic theory, 
moreover without requiring one to obtain more results by running more simulations. 
 

A Point to Note: Though I have introduced bootstrapping as an attractive alternative 
to asymptotic normal theory when using ML, it has more general uses, as it solves the 
following  

 

                       Basic Statistical Question 
 
 
 
 

        Distribution of Y          Sample            Test Statistic          Distribution of T 
 

                                                                         What is the Distribution of T(Y)? 
 
Example. Voting in an Election. We have a constituency of voters.
Distribution of interest is how they will vote. 
Sample is an Opinion Poll. 
Test Statistic of interest to a candidate is the proportion voting for her/him.  

 

FY (y) 
 

        Y 
 

   T(Y) 
 

   FT(t)
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Bootstrapping depends on the properties of: 
 

The empirical distribution function (EDF) defined as 
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where  Yi,  i  = 1, 2, ..., n is a random sample 
 

EDF of the Yi , )(
~

yFY  
 

 
 

 

 

 

 

 

 

 

 

  The EDF estimates the cumulative distribution function (CDF) of Y. 
 

Fundamental Theorem of Sampling 
 

         EDF  CDF with probability one, as n  

Y(1) Y(j) Y(n) 

0 

1 



7 
 

? How does this and bootstrapping help with: 
 

                 The Basic Sampling Question 

 

 
 
 

          Distribution               Sample            Test Statistic                  ? 
 

                                                                                What is the Distribution of T(Y)? 
 
 

  

 

FY (y) 
 

       Y 
 

  T(Y) 
 

  FT(t) 
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? How does this and bootstrapping help with: 
 

                 The Basic Sampling Question 

 

 
 
 

          Distribution               Sample            Test Statistic                  ? 
 

                                                                                What is the Distribution of T(Y)? 
 
 

The Basic Statistical Question is answered if we could replicate the process a 
large number of times 

        
Problem: Sampling from the Distribution often difficult (Expensive, time consuming) 

 

FY (y) 
Y1

 T1
 

Y 

YB
 

. 

. 
. 
. 

TB
 

T Original sample 

 

FY (y) 
 

       Y 
 

  T(Y) 
 

  FT(t) 
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Let us focus on the difficult part: 

         
 
Note that the Fundamental Theorem applies to this original sample Y: 

 

   EDF )(
~

yFY   )( yFY  as n 
 
Replace )( yFY  by EDF )(

~
yFY  of original sample to get the Bootstrap Version 

 

                        

Y1
 T1

 

Y 

YB
 

. 

. 
. 
. 

TB
 

T 

 

FY (y) Original Sample 

 Y2* T2* 

Y1* 

YB

. 

. 
. 
. 

TB* 

T1* 
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The pseudocode for the entire bootstrap process is as follows: 
 

 //  y = (y(1), y(2), ..., y(n)) is the original sample. 
 //  T=T(y) is the calculation that produced T from y. 
  
 For k = 1 to B 
 { 
  For i = 1 to n 
  { 
   j = Int [1 + n × Unif()] // Unif  U(0,1) 
   y*(i) = y(j)  
  } 
  T*(k) = T(y*) 
 } 
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Confidence Intervals 
 

The EDF of the bootstrap sample estimates the distribution of T. 
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The p-value the original statistic value, T0, is 
 

     )(*
~

1 0TFp  .   
 

If the p-value is small then T0 is in some sense unusual. 
 

 
 
Excel Example 1 Here 

BasicBootstrapMeanMedian 
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                                Basic Bootstrap 

                        
                        
 

If we have a parametric representation of FY (y), possibly with estimated parameters 
We can use the: 
                              Parametric Bootstrap 

 

            
 
Excel Example 2 Here ParametricBootstrap Mean/Median  

 
Y2* T2* 

Y1* 

YB
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. 
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Y2* T2* 

Y1* 

YB
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. 
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. 
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We usually need to fit a parametric statistical model to data, as we did in 
our Example 2, need to use parametric bootstrapping. This has already 
been covered in the Course. We use a real data sample to remind you of 
what is needed. 
 
The sample occurs in an Excel Toll Booth Example which we will also be 
using to discuss other issues in what follows.  
 

The sample comprises47 observed times in seconds taken to process vehicles at a 
toll booth waiting to cross a bridge. 
 
 4.3 10.9 4.7 4.7 3.1 5.2 6.7 4.5 3.6 7.2 
 6.6 5.8  6.3 4.7 8.2 6.2  4.2 4.1 3.3 4.6 
 6.3 4.0  3.1 3.5 7.8 5.0 5.7 5.8 6.4 5.2 
 8.0 10.5 4.9 6.1 8.0 7.7 4.3 12.5 7.9 3.9 
 4.0 4.4  6.7 3.8 6.4 7.2 4.8 
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We suppose that these are gamma variates with PDF: 
                 )/exp()(),,( 11   yyyfG    
 

We shall use Maximum Likelihood Estimation.to obtain 
                     ML Estimates   ˆ,ˆ  
 

 
Maximize the Log likelihood: 

.)log()1(]log))([log(),,(
1

1

1








n

j
j

n

j
jG xxnL  x A very convenient general 

numerical optimization method for doing this is the well-known simplex search 
procedure proposed by Nelder and Mead (1965). 
 

  ),( θ     ML estimator is )ˆ,ˆ(ˆ θ  
  



16 
 

 

Asymptotic probability distribution of θ̂ is known to be normal. 
 

As the sample size n → ∞,  
 

         θ̂ ~ )}(,{ 00 θVθN  
we can use 
     θ̂ ~ )}ˆ(,{ 0 θVθN  
where 

    )ˆ(θV  = 1-
ˆ

22 ]/),( [
θθ

θyθL


     

 

The second derivative of the loglikelihood, 22 /),( θyθL  , that appears in the 
expression for )ˆ(θV  is called the Hessian (of L). A numerical procedure is needed for 
this inversion. 

 
 

A (1-α)100% confidence interval for the coefficient θ1 is 

              )ˆ(ˆ 112/1 θVzθ       

 

where 2/z  is the upper 100α/2 percentage point of the standard normal distribution.  
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Show Excel Examples 3 and 4 here 
 Example 3 gives the Gamma fit to Toll Booth Data. (show Optimize & Fit Sheets) 
 For  comparison: 
 Example 4 gives the Normal fit to Toll Booth Data. (shoe Optimize & Fit Sheets) 
 
Question:  are either fits satisfactory? 
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Classical Goodness of Fit 
 

Does the model that we have fitted actually fit the data very well? 
 
 

Use a goodness of fit test (GOF test). 
A popular test is the chi-squared goodness of fit test. 

(i) The test statistic is easy to calculate 
(ii) It has a known chi-squared distribution, under the null. 

 

But  (i)   It is not all that powerful 
 (ii) The user has to decide how to group the data 

 
 

The best GOF tests compare the fitted CDF )ˆ,( θyFY  with the EDF )(
~

yFY  
 

Such tests are called EDF goodness of fit tests. 
 
The Anderson - Darling test, is the best by far. (Stephens, 1974) 
 
But The critical values are very dependent on the model being tested 
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This means that different tables of test values are required for different models (see 
d’Agostino and Stephens, 1986). 

 

 
Anderson-Darling test statistic: 
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where )ˆ,( )( θii YFZ   
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The basic idea in using a goodness of fit test statistic is as follows: 
 

 

If the sample has really been drawn from F0(y) then A2 will not be large. 
 

This follows from the Fundamental Theorem )(
~

yF   F0(y) 
 

Thus A2 will be a typical value. But what is a typical value? 
 

Typical values given by its null distribution 
 
 

 

If the sample is drawn from a distribution different from F0(y) then A2 will be 
large. 
 

Its p - value will then be small. 
 

This indicates that T has not been drawn from the supposed null distribution. 
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How a GOF Test Works 

 
 
GOF test hinges on being able to calculate the null distribution of T. 
 
The null distribution of the Anderson-Darling statistic is difficult to obtain. So 
not used as often as it should in practice.   

  

 
T 

 

Null Case: Fitted model  is the correct 
mode 

  
 

T 
 

Alternative Case: Fitted model  is an incorrect 

Null 
Distribution 
where T is 
likely to be 
small 

Non-Null 
Distribution 
where T is 
likely to be 
large 
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Bootstrapping provides a simple and accurate way of resolving this problem. 
 

 
Bootstrap Calculation of the Null Distribution 

of a GOF Test Statistic, T 

           
 
Show Excel Example 3  here again 

 
GammaFitToll Booth Example only now including Bootstrapping Sheet 
 

  

  

 

 

 

i = 1,2, ..., B 
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Model Uncertainty: 
 
Our discussion so far has focused on how bootstrapping is useful for measuring the 
variability of a statistical quantity of interest. 
In the basic bootstrap the actual probability distribution of the statistical quantity is not 
particular concern. However when using parametric bootstrapping which applies to 
particular distribution like the example of the M/M/1 queue involves only the 
exponential distribution. 
 
In a full simulation model, various different probability distributions may be involved. 
In the M/M/1 queue, the interarrival times and the service times are both assumed to 
have the Exponential Distribution. This is often okay for interarrival times but the 
service times can be different. 
 We have already mentioned one example, the Toll Booth Example where we have 
tried both the gamma and normal distributions.  We now describe this example in 
more detail, as it is a good example of or next topic which focuses on use of 
Bootstrapping in Output Analysis. 
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Toll Booth Example  
 
Operation of toll booths of the old Severn River bridge,  UK, Griffiths and 
Williams (1984) 
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              Unsatisfactory Original Bridge. Can you see why? 
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Each toll booth was modelled as a single server queue 
 

Simulation model simulates the service of l vehicles. 
 

Of interest: W - the average vehicle waiting time in the queue. 
 

Service time data: Time taken for a vehicle to pay at the toll booth before crossing the 
bridge. 
 

1 Parameter Uncertainty 
   Poisson arrivals (Exponential Interarrivals) 
   Gamma service times  (Both part of the Input 
                                        Uncertainty in this Course) 
 

2 Simulation Uncertainty 
   Vehicle Waiting Time ( Simulation Uncertainty in 
                                  this Course) 
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       Input 
           

1:  Real System 
 

2: Simulation model 
 

    Y 

Output 
  Data 

1:  Statistical model 
2:  Statistical metamodel 
 

    Y 
 Random 
Input:   U   Data 

    X 

   Input:  
  or   

The Statistical 
   Model 
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Toll BoothExample 

  

  Arrival Rate 
           1:  TollBooth 

2: Simulation model 
 Ai = -1ln(Ui) 
 Si = G-1(Vi; , ) 
         i = 1,2,..., l 
 

Wi  i=1,2,...,l 

  

        
Gamma Pars  
  or   

Output 
 

1:  Statistical model 
2:  Statistical metamodel 
 

Wi  i=1,2,...,l 

  

         Random Input 
Streams: U, V 

Actual Sample of 
Service Times: 
    X1, X2, ..., Xn 
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Use of Parametric Functions in Output Analysis 
 

Suppose are real interest is not in the parameters themselves but in a function of θ,  g(, θ), 
say, where g(, θ) is a function of ,  0 <  < 1  

   

                 What is the MLE of g(, θ),   0  <    <  1? 
 

Answer is simple: The MLE of g is )ˆ,(ˆ θgg  .  
Toll booth example: The steady state mean waiting time in the queue is known to be 
 

          
𝝀(𝟏ା𝜶)𝜶𝜷𝟐

𝟐[𝟏ି𝜶𝜷𝝀]
   0  <    <  1 

 

Its ML estimated is simply  ˆ,ˆ  where we have replaced α, β by  ˆ,ˆ : 
 

An approximate (1-α)100% confidence interval for g(, θ) at a given  is then 
 

      θθθθ
θθVθθ ˆˆ2/ )/()ˆ()/()ˆ,(   ggzg T

  

 
This is conventionally called the delta-method. 
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The above shows how to calculate Confidence Intervals for g(, θ), but these apply 
only for individual  and are not suitable if confidence intervals for several 
diferent   are needed simultaneously. 

 
Excel Examples 3 here again to give the Bootstrap Answer  
Gamma Fit to Toll Booth Data now including the PerformanceIndex page 
 
Note 
I have used Performance Index (PI) and Performance Measure (PM) 
synonymously. In the case of the  Toll Booth example the PI/PM is 
simply the expected waiting time W  
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Confidence Bands for Functions with Estimated Parameters 
 
 

As we have aleady seen, a  confidence interval for the case 

 at a given .is straightforward. But what about constructing a Band with 
upper and lower limits 
 
           0  <    <  1 
             0  <    <  1 
 

Within which the entire MLestimate    0  <    <  1 lies? 
 
This question can be answered using Bootstrapping.  



33 
 

 

       Use of ScatterPlot for calculating confidence bands 
 

                                   

 
Red point: Location of the parameter MLEs  
Black points:{ R} = 90% of the total number of points with highest likelihood values 
Green points: {Not in R} = 10%, the Rest of the points with lowest likelihood values 
 

0.2

0.4

0.6

0.8

1.0

1.2

1.4

4 6 8 10 12 14 16 18 20
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             Contours of ଶ  at a given  
 

    Confidence band is 
 

  Wmin() = min RW( | α,β )  Wmax() = max RW( | α,β )  0  <    <  1 

 
   Example 5 Here to show difference between CIs and Bands  
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Reparametrized parameters makes the band more accurate and symmetrical 
 

            =     = 2                                = 2/    = / 
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Second Bridge. Built after OR Simulation Study 
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Additional Recommendation Adopted 

 
  

Toll Booths going 
West only. 2 miles 
from bridge. 
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Review of the Role of Parametric Bootstrapping (BS) as so far used in the Toll 
Booth Example.  
 
 
 

(1) It enables the accuracy of estimate of the parameters to be assessed of the assumed 
Gamma service times. (By BS sampling of the estimates) 
 

(2) It enables the suitability of the assumption of the gamma service times to be 
assessed. (Using BS GoF Testing) 
 

(3) It enables the accuracy of the estimate of the Performance Measure (PM) to be 
assessed when its mathematical form is a known function of the parameters. (By BS 
sampling of estimates of the PM) 
 
 

Note that (1) and (2) are issues that arise from Input Uncertainty, whereas (3) is an 
issue of Output Analysis, In the present context of Simulation Modelling. these two 
issues were respectively termed Parameter Uncertainty and Simulation Uncertainty by 
Cheng and Holland (1997) 
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Question: What happens when the Performance Measure is not a known mathematical 
function, but instead is a quantity that is obtained numerically from runs of the 
Simulation Model, so that it becomes an issue of Simulation Uncertainty? 
 
 The interesting answer is that, to first order of approximation, the overall variability 
of the PM is measured as a statistical variance, the the overall variance is simply the 
sum of the variance of the Parameter Uncertainty and the variance of the Simulation 
Uncertainty. This was first pointed by Cheng and Holland (1997). 
 
 
 

We can therefore do the following 
 
Simply make B independent runs of the Simulation Model, where, in the ith run, the 
ith BS estimate, ()

, of the vector of parameters as obtained in (1) above, is used. This 
allows us to estimate simultaneously the overall variability of the PM’s obtained from 
these runs. 
 
Excel Example 5 Here 
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