Additional Notes: dstl Statistics Workshop 23rd November 2009

Here are some additional examples raised by suggestions from workshop participants:

1. One way analysis of variance, 1-way ANOVA

The problem below is a standard one, but a watchpoint is the way parameters should be included in the model to avoid the problem of non-estimable parameters.
	 DAY 0
	DAY 1
	DAY 3
	DAY 5
	DAY 7
	DAY 14
	DAY 21

	20.1
	20.1
	16.6
	15.3
	15.8
	17.9
	19.6

	20.5
	16.5
	15.8
	17.1
	16.5
	17.2
	19.1

	18
	20.1
	16.3
	15.8
	16.2
	19.4
	18.2

	19.1
	16.9
	18.4
	15.1
	18.4
	18.1
	19.7

	17.4
	17.5
	16.2
	15.4
	16.7
	18.4
	18.8

	17.4
	15.8
	16.2
	15.5
	17.9
	19.2
	19.9

	18.3
	17.7
	16.6
	16.3
	14.5
	16.7
	

	17.1
	16.2
	16.1
	16.3
	16.8
	17.1
	

	19.9
	17.5
	17.8
	16.4
	18.5
	17.3
	

	19.3
	17.6
	16.5
	17.5
	18.3
	18
	

	18.7
	16.8
	15.8
	18.9
	16.2
	16.2
	

	18.2
	17.5
	16.5
	16.1
	17.4
	19.7
	

	18.6
	18.1
	17
	15.7
	17.3
	
	

	18.6
	17.2
	16.9
	15.9
	15.4
	
	

	18.5
	17.3
	16.9
	17.2
	15.5
	
	

	18.4
	16.8
	18.4
	18.7
	15.8
	
	

	19.6
	16.1
	17.2
	17
	14.3
	
	

	18.1
	16.7
	19.3
	18.2
	19.5
	
	

	19.3
	18.6
	18.3
	15.7
	
	
	

	18.6
	18.5
	18.8
	14.5
	
	
	

	19
	17.3
	18.2
	16
	
	
	

	18.9
	17.4
	16.8
	18
	
	
	

	20
	16.7
	18.6
	16.1
	
	
	

	19.7
	16.6
	16.5
	19.3
	
	
	

	17.9
	19.2
	19.2
	
	
	
	

	19.9
	16.2
	15.8
	
	
	
	

	20.5
	18.5
	17.1
	
	
	
	

	21
	18.1
	18.6
	
	
	
	

	18.7
	18.7
	17.2
	
	
	
	

	18.2
	17.4
	17.1
	
	
	
	

	18.7
	17.4
	
	
	
	
	

	19.6
	18.2
	
	
	
	
	

	19.1
	18.6
	
	
	
	
	

	18.5
	18.5
	
	Different n at each time point. Is there a change in mass over time? (1-way ANOVA)

	18.7
	17.1
	
	

	19.6
	18
	
	

	18.7
	
	
	
	
	
	

	18.5
	
	
	
	
	
	

	20
	
	
	
	
	
	

	19
	
	
	
	
	
	

	19.5
	
	
	
	
	
	

	17.8
	
	
	
	
	
	


The Excel worksheet ANOVA is a simple way of checking if a parameterization is unsatisfactory.
ANOVD-1Way
2. Decay Rate Example
This concerns the estimation and comparison of decay rates.
	
	Method 1
	
	Method 2
	

	Time (mins)
	Virus 1
	Virus 2
	Virus 3
	
	Virus 1
	

	0
	491.4333
	30900
	82.26667
	
	74
	

	5
	615.0467
	9289.583
	68.565
	
	37
	

	15
	295.81
	5175.315
	55.33667
	
	37
	

	30
	247.4067
	4416.913
	19.45
	
	7.9
	

	45
	44.26
	2426.28
	12.13
	
	7.9
	

	60
	16.06667
	1113.45
	9.416667
	
	7.9
	

	90
	11.27667
	441.5133
	9.073333
	
	7.9
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	Is there a difference between virus decay rates? Is there a difference in methods? (regression analysis?)
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This can be modelled as a non-linear regression problem.

Alternatively by assuming multiplicative errors we can log the data and use the linear model.

3. Poisson Regression Example

A weapon firing at a target at distance x, hits with a certain probability generating N(x) fragments.

Possible model is that




N(x) ~ Poisson(λ(x))
i.e.
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Suppose



λ(x) = η(x | θ)




= 
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a decreasing function of x.  We have data




n(x1), n(x2), n(x3), ....n(xm)
The loglikelihood is
[image: image4.wmf]
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and θ is estimated by maximizing the loglikelihood.

Probability weapon does not hit is
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PoissonRegressionFit
4. Combining Uncertainty

[image: image7.png]Aircraft Mission Radius Uncertainty

Parameter | Uncertainty | Mean | Extreme — Mean | (Extreme — Mean)? | Comments
(Anm) | (nm) (A nm)
Uncertaintyin
it o5 | 2 3 9 usable /
unusable fuel
el Engine
A 0t0-40 | 25 15 225 performance
urn
uncertainty
Aerodynamics | +15t0-15 | 0 15 205 Drag
uncertainty
Empty Weight
Weight Oiio-10 s g S uncertainty
Total 32 484
Square Root 2

Therefore Best: -10nm, Most Likely: -32nm, Worst: -54nm





The evaluation above supposes the sources of uncertainty are additive, giving an overall uncertainty of



Y = X1 + X2 + X3 + X4
where the Xi are independent random variables contributing to the total uncertainty Y.

Then the “Most Likely” variability is based on




E(Y) = E(X1 + X2 + X3 + X4)





= E(X1) + E(X2) + E(X3) + E(X4)

And the “Worst Case” is based on




V(Y) = V(X1 + X2 + X3 + X4)





= V(X1) + V(X2) + V(X3) + V(X4)

so that




SD(Y) = SD[V(X1) + V(X2) + V(X3) + V(X4)]

A sampling approach is to create the CDF of Y numerically by simulation.
CombiningUncertaintiesbySimulation
5. Combining information from two sensors.

How to ‘fuse’ radar and infra-red sensor information?
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Step 1: Treat each signal as a regression:
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where




εij ~ N(0, σ i2)
and the fi are probability density functions (pdf) to be fitted. This gives estimated parameter values 
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Step 2: Then the best (in the sense of minimum variance) combined signal is the pdf of the random variable
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where Z1 has pdf 
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 and Z2 has pdf 
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If Y=aZ then f(y)dy=g(z)dz=g(z)dy/a i.e. f(y) = g(z)/a = g(y/a)/a.
Thus Z has pdf that is the convolution:
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This can be calculated numerically, or more easily by resampling.

SignalFusionExample
6. Sequential Estimation of Confidence Intervals

A common problem is the construction of a confidence interval of given width and level of confidence. This can be tackled using a two-stage method or a fully sequential method.

Suppose we have observations:


X1, X2, ......., Xn, .....

where each is is of the form



X = μ + ε,      ε ~N(0, σ2)

and we wish to estimate μ and find a confidence interval for it.

Then
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where
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and 
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 quantile of Student’s t distribution with 
[image: image22.wmf]ν

 degrees of freedom.
The width depends on s2, the estimate of σ 2, which is not known at the outset.

A well-known solution is to use a two-stage method first proposed by Stein (1945), where in the first stage one carries out a pilot set of n observations to calculate an estimate of σ 2. Then for any given interval width w and confidence level α, this allows a value N to be obtained , so that if a full set of N observations are obtained (i.e. N – n additional observations are obtained) then a confidence interval of the desired width can be found. Stein showed that setting the offset 
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  in (1) equal to the desired half width can be used to find the additional number of observations needed.
Stage 1: Sample n values of X, and calculate ths sample variance s2 from (1) above. Let h be the half width required (so that w = 2h). Then set
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(where 
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 denotes smallest integer greater than or equal to z).

Stage 2: Sample 
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Stein’s method is not fully efficient. A better, fully sequential, way allows observations to be added one at a time.This uses the same kind of probability statement
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 as starting point where 
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so that if additional observations Xn+1, Xn+2, ... are included then the corresponding Un, Un+1, ...can be added to the left hand sum in the stopping rule below without changing the previous Ui. The stopping rule is based on one suggested by Anscombe (1953):

     Take N as the first n ( ≥ 3 ) for which
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The 
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where 
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h1, h2 are both positive under the condition 
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ExtraNotesOnSequentialMethods






_1320156918.bin

_1320273561.unknown

_1320314466.unknown

_1320314536.unknown

_1320274439.unknown

_1320275594.unknown

_1320275726.unknown

_1320274503.unknown

_1320274042.unknown

_1320169869.unknown

_1320171124.unknown

_1320267640.unknown

_1320267946.unknown

_1320267051.unknown

_1320171339.unknown

_1320170717.unknown

_1320171062.unknown

_1320170296.unknown

_1320170498.unknown

_1320168407.unknown

_1320168752.unknown

_1320168940.unknown

_1320169771.unknown

_1320168886.unknown

_1320168697.unknown

_1320157547.unknown

_1320150214.unknown

_1320150334.unknown

_1320150754.unknown

_1320150912.unknown

_1320150945.unknown

_1320150807.unknown

_1320150361.unknown

_1320150254.unknown

_1320150291.unknown

_1320139837.unknown

_1320150128.unknown

_1320150042.unknown

_1320139650.unknown

