
39

Input Modelling for Multimodal Data: Using Bayesian Model Selection
to Fit Finite Mixture Models

Russell C.H. Cheng, University of Southampton
Christine S.M. Currie, University of Southampton

We describe a method that can be used to fit finite mixture models to multimodal simulation input data.
Mixture models provide a proper representation of an input stream that is an amalgam of data from different
sources but are also convenient for describing multimodal data from a single source. A key problem in fitting
finite mixture models is identifying the different components in the mixture and determining how many
components there are. This is known to be a non-regular/non-standard problem in the statistical sense and
is difficult to handle properly using classical inferential methods. The problem is most acute when there
are components with a small variance. We describe a Bayesian approach particularly suited to handling
this latter situation, which we have encoded in a publicly available program FineMix. Numerical examples
are given showing its application and comparing it with other approaches showing the advantages of the
method.
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1. INTRODUCTION
Input modelling for simulation aims to identify appropriate probability distributions
for characterising the behaviour of the streams of random variables that represent the
inputs to simulation models. There is a large literature on this topic and a good general
reference is [Law 2007]. Input modelling literature tends to discuss relatively simple
situations where input random variables are independently and identically distributed
and drawn from well-known distributions such as the normal, lognormal, gamma or
Weibull; although [Kuhl et al. 2010] discuss input modelling for a wider range of dis-
tributional shapes. Two generalisations have been studied in some detail, namely: (i)
where the random variables are multivariate, and (ii) where they are correlated. See
for example [Nelson and Yamnitsky 1998; Deler and Nelson 2001; Ghosh and Hender-
son 2001]. A third generalisation has not been so well discussed, where input random
variables have a multimodal distribution, and most likely have a so-called finite mix-
ture distribution. The purpose of this article is to discuss such distributions and their
modelling.

A finite mixture distribution is the weighted sum of a finite number, denoted by
k in this paper, of component distributions; the latter usually all belonging to one
family like the normal. A finite mixture distribution is well suited to modelling data
samples that are multimodal. This occurs quite naturally if the data is a mixture of
different input sources each with a distinct distribution. Finite mixture models have
a wide range of application; in this paper we give just three examples, two from real
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applications in manufacturing and finance, but in the Online Supplement we provide
real data samples from over a dozen other application areas.

Computer sampling from finite mixture models is easily implemented to provide
input models for discrete event simulation.

There is a very extensive literature on fitting finite mixture models to data and this
is well reviewed in [McLachlan and Peel 2000] which lists many packages for fitting
such models. Most of these are likelihood based including both maximum likelihood
(ML) and Bayesian methods.

When fitting such a finite mixture model to data, a problem of particular interest is
the estimation of k, the number of components that the model should have. Though
several of the existing packages have provision for handling this problem, there still
seems room for improvement. The EMMIX program described in [McLachlan and Peel
2000] is an example of a good implementation using ML estimation, carried out using
the EM algorithm, and which uses the Akaike Information Criterion (AIC) for select-
ing k. However a problem can occur with the likelihood becoming infinite, discussed
for example in [McLachlan and Basford 1988]. This is most likely when there are one
or more components with a small variance, so that the sample contains one or more
subsamples with tightly clustered observations. Any method based purely on the like-
lihood can become unstable when fitting a mixture model to such a sample.

The difficulty can be avoided using a Bayesian formulation. In this case either the
Bayes Information Criterion (BIC) or the posterior probability distribution of k can be
used for selecting k. A leading method using a Bayesian formulation is the reversible
jump Markov chain Monte Carlo (RJMCMC) method described in [Richardson and
Green 1997]. Though theoretically attractive, we have found that in practice RJMCMC
seems over cautious when handling tightly clustered data; this is illustrated in our
examples. In this paper we use a different Bayesian approach which overcomes this
problem with RJMCMC.

In our Bayesian approach we use importance sampling (IS) to estimate k. Our
method includes an initial point estimation of all the parameters of the model based
on optimization of the posterior distribution. This initial optimization allows tightly
clustered observations to be readily identified, thus avoiding the conservatism of RJM-
CMC.

The present paper concentrates on the methodology of our approach, but given that
the fitting method needs to be sufficiently stable for reliable practical use, we have
made a serious attempt to implement our method in a sufficiently robust form that
can be used on genuinely demanding real data sets. Our implementation, which we
have called FineMix, is a computer program written in C with an Excel interface, and
is available for download at http://www.soton.ac.uk/ ccurrie/.

IS is a well known approach but has not been fully considered for finite mixture
modelling in the literature. In contrast Markov chain Monte Carlo (MCMC) methods
have received considerable attention. We believe however that use of parameter point
estimators when carrying out IS has a definite advantage when it comes to fitting
components with small variances. We will be discussing this and other advantages
that we feel IS has over MCMC in what follows.

We consider a random sample y = (y1, y2, ..., yn)T drawn from a finite mixture distri-
bution, i.e. a distribution with probability density function (PDF) that is the weighted
sum of a finite number of continuous PDFs:

f(y|ψ(k),w(k), k) =
k∑

i=1

wig(y|ψi), (1)
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where ψ(k) = (ψ1, ψ2, ..., ψk)T and w(k) = (w1, w2, ..., wk)T . The wi are the weights,
satisfying 0 ≤ w1, w2, ..., wk ≤ 1,

∑k
i=1 wi = 1. Each component has the same form of

density g(·). We call g(·) the base density. The cases we consider are: normal, lognor-
mal, extreme value (EV), negative extreme value (NEV), Weibull, gamma, and inverse
gaussian (IG). We consider all these in their two parameter form, these two param-
eters being denoted individually by α and β, and in vector form by ψi in (1). Table 1
lists the densities of all these cases except the NEV (this being simply the negative of
the EV), and the way that these distributions are conventionally defined. The quanti-
ties k, ψ(k) and w(k) are all assumed to be unknown. For reasons to be discussed it is
useful to consider an alternative parametrization in terms of the mean µ and standard
deviation σ. Also tabulated in Table 1 are the transformations expressing the more
standard parameters α and β as functions of µ and σ.

Table I. Conventional parametrizations of base distributions considered in the paper, and these pa-
rameters as functions of the mean, µ, and standard deviation, σ, of the distribution; γE is Euler’s
constant, ω(·) is as in eqn. 3

Base
Distribution PDF α(µ, σ) β(µ, σ)

Normal 1√
2πβ2

exp
[−(y − α)2/2β2

]
µ σ

Lognormal 1
β
√

2πy
exp

[
− 1

2
( ln y−α

β
)2

]
ln µ− 1

2
ln(1 + (σ

µ
)2)

√
ln(1 + (σ

µ
)2)

EV 1
β

exp{−( y−α
β

)− exp[−( y−α
β

)} µ− (γE

√
6/π)σ (

√
6/π)σ

Weibull α
β

(y/β)α−1 exp [− (y/β)α] ω(σ/µ) µ/Γ
[
1 + 1

ω(σ/µ)

]

Gamma yα−1β−α exp(−y/β)
Γ(α)

(µ/σ)2 σ2/µ

IG
√

α
2πy3 exp

[
−α(y/β−1)2

2y

]
µ3/σ2 µ

The estimation of the number of components k in (1) is non-standard, at least when
using the frequentist likelihood approach. Two problem issues have been discussed in
detail in the literature.

P1. Ambiguous parametric model specification. This is not simply the replicated
parameter space problem (discussed for example in [Titterington et al. 1985] and in
[Richardson and Green 1997]), and which is easily handled, but concerns the fact that
the parametrization of (1) does not provide an injective mapping of the parameter
space onto the set of actual models (i.e. different parameter combinations can give rise
to the same model). This problem has been discussed in [Feng and McCulloch 1996]
and in [Cheng and Liu 2001] from the classical frequentist viewpoint.

P2. Statistical consistency. Suppose a random sample is drawn from a mixture dis-
tribution (1) where there is a ‘true’ but unknown value for k, ψ(k) and w(k). We would
expect and want an estimate of these quantities to converge to these true values as the
sample size increases. This is mainly a theoretical problem and has been discussed in
[Barron et al. 1999], but it is one which is not universally accepted as pertinent in the
Bayesian context.

The above references provide a good understanding of problems P1 and P2, and we
will not need to discuss them further here. However there is one important third prob-
lem (discussed for example in [McLachlan and Basford 1988]) which deserves mention
especially in view of our wish to be able to fit components with a small variance. The
problem does not really arise from the above two theoretical aspects, but stems from
the fact that, by their nature, mixture models are extremely flexible. This very flexi-
bility gives rise to the following problem

P3. Limiting Discrete Components. A finite mixture model includes limiting mixed
discrete/continuous component models at the boundaries of the parameter space.
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These models correspond to situations where one or more of the components in (1)
collapse into delta functions representing discrete probability atoms located at indi-
vidual sample points y. The likelihood, instead of tending to zero as such points are
approached, actually tends to infinity. For example, consider fitting a normal mixture
with just two components to a sample {yi} using maximum likelihood. Consider the
line in the parameter space obtained by varying σ2 > 0, but with w1, w2, µ1, σ1 all fixed
and positive and with µ2 = yi for any fixed i. On this line the loglikelihood takes the
form

L = log{w1ϕ(y1;µ1, σ1)] + w2(2π)−1/2σ−1
2 }+

n∑

i=2

log{w1ϕ(yi; µ1, σ1) + w2ϕ(yi;µ2, σ2)},

where ϕ(·, µ, σ) is the normal PDF with mean µ and SD σ. It is evident the first term
tends to infinity as σ2 → 0, whilst the summation is bounded below with

n∑

i=2

log{w1ϕ(yi; µ1, σ1) + w2ϕ(yi;µ2, σ2)} >

n∑

i=2

log{w1ϕ(yi;µ1, σ1)}.

Thus L → ∞ as σ2 → 0. As µ2 = yi for any i, this shows that globally maximizing the
likelihood is not meaningful.

The practical problem which arises is that we would wish our fitting method to be
able to fit components with a small variance (these giving rise to a sharp ‘spike’ in the
full mixture density) when such components are really present, but at the same time
avoiding the method becoming unstable in trying to fit delta function spikes to what
may be just random clustering in the data.

A simple but somewhat arbitrary way of handling the difficulty is to impose con-
straints on parameter values that bar such discrete component spikes. Sieve methods
(see for example [Barron et al. 1999]) act in this way, but subtly, allowing the con-
straints to be relaxed as sample size increases. However for finite samples a sieve
method still excludes small portions of the parameter space.

This difficulty is one of the reasons why we have used a Bayesian approach. We still
need to ensure that boundary points of the parameter space, corresponding to unreal-
istic spikey models, are avoided. However with a Bayesian approach, this can be done
in a fairly natural and automatic way by choice of an appropriate prior distribution for
the parameters.

In our approach we have used IS to estimate the posterior distribution. This is done
by sampling from a importance sampling distribution and reweighting the sampled
values. (See e.g. [Hammersley and Handscomb 1964] or [Robert and Casella 1999] for
more details.) It is well known (see [Geweke 1989] for example) that the IS method is
most reliable if the IS distribution is a good approximation of the posterior distribu-
tion. We have followed [Geweke 1989] in the way we construct the IS distribution, but
modified to allow k to be treated as a parameter as well.

Before discussing our method in more detail, we review two alternative approaches
which we shall be comparing with our approach.

There has been much work where the Bayesian approach is implemented using the
Markov Chain Monte Carlo (MCMC) method to find the posterior probability distribu-
tion of the data [Richardson and Green 1997; Phillips and Smith 1996; Stephens 2000;
Raftery 1996; Cheng 1998; Escobar and West 1995]. An MCMC algorithm is proposed
in [Stephens 2000] that creates a Markov birth-death process, in which components of
the mixture model are allowed to be born and to die, allowing movement between mod-
els corresponding to different values of k. Other methods of estimating the marginal
likelihood such as the Laplace-Metropolis estimator, the candidate’s estimator and the
data augmentation estimator are discussed in [Raftery 1996].
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A particularly attractive Bayesian method is the reversible jump (RJMCMC) ver-
sion, as described in [Richardson and Green 1997] and [Phillips and Smith 1996]. In
RJMCMC, the steps in the Markov chain can either be discrete transitions between
different models with different k (jumps) or, between jumps, are simply changes in
model-specific parameter values (diffusion). Reversibility of the jumps (as defined in
Richardson and Green) ensures that the Markov chain is ergodic with stationary dis-
tribution equal to the joint posterior distribution of the parameters, including k.

Though RJMCMC is arguably the most highly regarded of the MC methods to date,
the reversible jump calculations are quite elaborate to set up. The formulas used are
very dependent on the form of the base density, and to date only the normal and expo-
nential cases have been considered in any detail.

For all MCMC methods, the steps in a run of the MC are not independent. This
means that the convergence of estimators is not easy to determine. One consequen-
tial complication is that sampling in MCMC requires a ‘burn-in’ or ‘warm-up’ period
to achieve steady state in the chain before sampled observations can be recorded. In
contrast when using IS the sampling replications are essentially independent. The ob-
servations are not completely independent as all observations involve a normalizing
constant dependent on all the observations. Convergence statistics are nevertheless
straightforward to calculate in IS. An interesting consequence, which we mention here
but do not consider further, is that independence of replications allows IS to be easily
extended to parallel thread computing environments without loss of efficiency.

Though the Bayesian approach does not target point estimators as being of special
interest, we feel that in the case of finite mixtures such estimators are valuable in
assessing how individual components contribute to the mixture. Our implementation
of IS makes use of such point estimators and highlights their use in the interpretation
of the results. Such estimators can be obtained using RJMCMC, but it is clear from the
discussion in [Richardson and Green 1997], that the nature of the RJMCMC process
means that the contribution of individual components is not so easy to assess. We will
return to this point when considering the examples.

Perhaps the most important comparison of RJMCMC and IS is how they cope with
P3, the difficulty of limiting discrete components discussed earlier. Our IS method in-
volves optimization of the posterior distribution for each k, with k increasing stepwise,
prior to carrying out the sampling. This ensures that potential components with small
variances are quickly identified. Possible instability in the optimization process aris-
ing from the difficulty discussed in P3, can be controlled by choice of prior. One of the
numerical examples discussed contains a very spikey component which our IS method
readily identifies. In contrast the RJMCMC method does not involve an optimization
process, and this seems to render it very conservative in identifying components with
small variances. Rather than being affected by P3 it fails to correctly identify spikey
components in the numerical examples, fitting an overall mixture density that is overly
smooth. We have observed this not only in the numerical examples presented but with
other similar examples, and it seems to be a characteristic difference between the two
methods.

A rather different approach to fitting a distribution to multimodal data has
been proposed by Wagner and Wilson [Wagner and Wilson 1996b] using a sum of
Bézier curves to describe the cumulative distribution function (CDF). The approach
is very practically oriented and Wagner and Wilson have provided a very user-
friendly implementation with a graphical interface, called PRIME, publicly available
at www.ise.ncsu.edu/jwilson/page3. It is able to optimise the number of control points
used in forming the Bézier distribution function and find their optimal positions using
one of a number of different fitting criteria. Bézier distributions provide flexible fits to
multimodal distributions, although the authors do admit that it is often necessary to do
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some work setting up the initial conditions for PRIME when fitting to multimodal data
([Wagner and Wilson 1996a] and personal communication). In the numerical section
we give an example to compare our IS method with Wagner and Wilson’s method. It
should be said that the components of a mixture model arguably have a more intuitive
meaning than the parameters in the Bézier distribution. One immediate consequence
is that, in terms of generating random variates for simulation use, it would seem easier
to implement a mixture model.

In the following sections, we first set out the general Bayesian approach to the fitting
models more formally, we then discuss the case of finite mixture models, describing
the priors to be used in this case, and then our proposed IS approach for such models.
Three examples are discussed in detail in the Examples Section.

2. BAYESIAN ANALYSIS
It is simplest to summarize the Bayesian approach in general terms first, before dis-
cussing its application to finite mixture models.

Let y = (y1, y2, ..., yn)T denote a random sample drawn from a continuous distribu-
tion with density f(y|θ) depending on a d-dimensional vector of parameters θ, with
θ ∈ Θ, some region in d dimensional space. We assume that θ is not precisely known,
but is stochastic with some prior distribution having density π(θ). Denote the likeli-
hood of the sample by f(y|θ). The posterior distribution then has density

π(θ|y) =
f(y|θ)π(θ)∫

Θ
f(y|θ)π(θ)dθ

.

Thus the posterior distribution incorporates the best information that we have about
the distribution of θ from the data and our initial prior information, and the main
objective of Bayesian analysis is to estimate this posterior distribution.

Consider the estimation of π(θ|y) by IS. The general methodology is set out clearly in
[Geweke 1989], which we summarize here. Note that π(θ|y) is proportional to p(θ|y) =
f(y|θ)π(θ). Most quantities of interest associated with π(θ|y) can be expressed as an
expectation under the posterior:

E[h(θ)] =

∫
Θ

h(θ)p(θ|y)dθ∫
Θ

p(θ|y)dθ
,

where h(θ) is a suitably defined function of θ. In particular this includes probabilities
of the form Pr(θ ∈ A), which we can express as

Pr(θ ∈ A) = E[IA(θ)],

where IA(θ) is the indicator function with IA(θ) = 1 if θ ∈ A, IA(θ) = 0 otherwise.
Let θ1, θ2, .. be a sequence of independent and identically distributed random vari-

ables from a continuous distribution with density c(θ), which we call the IS distribu-
tion. Define the IS ratios ρ(θi) = p(θi|y)/c(θi). Then, provided π(θ|y) is a proper den-
sity function defined on Θ (i.e. π(θ|y) ≥ 0 and integrable on Θ, with

∫
Θ

π(θ|y)dθ = 1),
c(θ) has support that includes Θ, and E[h(θ)] is finite, we have (Theorem 1 in [Geweke
1989] )

h̄m =
m∑

i=1

h(θi)ρ(θi)/
m∑

i=1

ρ(θi) → E[h(θ)] almost surely as m →∞ (2)

In practice convergence can be slow if, loosely speaking, c(θ) does not mimic π(θ|y),
or p(θ|y), sufficiently well. The main requirement is that c(θ) does not tail off too fast
compared with p(θ|y).
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In the next Section we describe the prior distributions that we propose using when
fitting finite mixture models.

3. PRIOR DISTRIBUTIONS
Turning now to the model (1), we consider first the prior distributions to be used for
k, ψ(k) and w(k). We focus on situations where little or no prior information exists
about these parameter values. We will however not use improper priors that are fully
non-informative, but proper priors which we can adjust in order to handle the already
mentioned problem P3.

To make it explicit that k, ψ(k) and w(k) are being treated as stochastic variables
we denote them by capitals, reserving lower case for specific values. We write K for
the number of components, Ψ(K) = (Ψ1,Ψ2, ...,ΨK)T for the component distribution
parameters, and W (K) = (W1,W2, ..., WK)T for the weights.

For the six base densities g(.) considered in this paper: the normal, lognormal, EV,
Weibull, gamma and IG, all in their two parameter form, we shall use the mean M and
standard distribution S as the parameters (as with K and W (K), we use upper case
M and S to indicate that they are stochastic variables, reserving µ and σ for specific
values of M and S). Thus Ψi = (Mi, Si). We use this parametrization rather than
more conventional ones for the following reasons: (i) it is usually easier to study and
discuss the behaviour of different components in terms of their location and spread,
and indeed this use of the mean and variance has been made by previous authors; (ii)
it also enables the fits obtained using different base distributions to be more easily
compared; and (iii) finally, and perhaps most importantly, we found that use of M and
S gave rise to significantly more stable and consistent behaviour in the numerical
optimization methods used in calculating the posterior distribution.

For the six base distributions we consider, it is easy to express the mean µ and stan-
dard deviation σ in terms of the standard parametrizations appearing in the literature,
and, except in the case of the Weibull, these relationships are easily inverted to give
the conventional parameters in terms of µ and σ. Table 1 lists these relationships.
Thus it is easy to set out our numerical procedures in terms of how µ and σ are up-
dated, but calculate actual density and probability values in terms of the conventional
parametrization.

For the Weibull case, the shape parameter, α in Table 1, is an explicit function of
the coefficient of variation γ = σ/µ. We write this function as α = ω(γ). A simple
approximation for ω(γ) is

α = exp
(
0.5282− 0.7565t− 0.3132

√
6.179− 0.5561t + 0.7057t2

)
(3)

where t = ln(1 + γ2), which has a relative error of less than 1% in the range 0.0001 ≤
γ ≤ 1000. This is derived in Appendix A.2. Using this approximation we are thus able
to express the usual parameters in terms of µ and σ over a reasonably practical range
of values, so that in the Bayesian analysis the Weibull distribution can be handled in
exactly the same way as the other base distributions.

The choice of priors even just for finite mixture distributions has been addressed
by a number of authors. Most of the issues they raise are not of major concern in our
work, so we cite here only authors whose work is directly relevant to the priors that
we chosen. For the interested reader we provide a fuller review of the choice of priors
in the Online Supplement.

For the priors of K and W (K) we follow [Richardson and Green 1997] and [Roeder
and Wasserman 1997].
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We use a discrete uniform distribution as our prior distribution for K, namely

pK(k) = Pr{K = k} = 1/kmax, 1 ≤ k ≤ kmax

and zero for all other values of k. Here kmax is a prescribed maximum number of com-
ponents, which it is assumed will definitely not be exceeded.

The prior for the component weights W (K), is defined by conditioning on K. For
given K = k we use the Dirichlet distribution with density

fW (k)(w(k)) =
Γ[(k + 1)δ]
[Γ(δ)]k+1

k∏

j=1

wδ−1
j , 0 ≤ w1, w2, ..., wk ≤ 1. (4)

If the parameter δ is set greater than unity this prevents the weights being equal
to zero. This guards against encountering degeneracy, when we are conditioning on
K = k, with a component vanishing because its weight becomes zero. We used δ = 1.5,
at least as a starting value, in our analysis of the example data described below.

Consider now the priors for the parameters, M and S, of the component distribu-
tions themselves. The majority of previous work, as in [Richardson and Green 1997],
has concentrated on mixtures of normal distributions, with use of a normal prior for
the means of the components and a gamma distribution for the inverse variances (or
equivalently an inverse gamma distribution for the variances). This choice of distribu-
tions gives some advantages of conjugacy. Our main concern however is to have priors
with ranges appropriate to the parameters concerned.

We use two forms of prior for the parameter M, depending on whether M is unre-
stricted in range or whether it has to be positive.

In the case of the normal and EV distributions where M is unrestricted in range we
use a uniform prior for M . This prior is the least sensitive of the priors and has density

fM (µ) = (2κs)−1I[ȳ−κs, ȳ+κs](µ), (5)

where I(·) is the previously defined indicator function, ȳ and s are the sample mean
and standard deviation, and κ is an arbitrary constant made sufficiently large (κ = 10
in the examples) to ensure that the range over which the density is positive is greater
than the sample range. Strictly speaking priors should be set completely indepen-
dently of the data; however, given that we wish our procedure to be robust over a
wide compass of data samples, we have given ourselves a little latitude by allowing
the support of this prior to be data dependent.

For the lognormal, gamma, Weibull and IG distributions, we require M ≥ 0. In these
cases we use, for the prior, the beta distribution of the second kind with density

fM (µ) =
Γ(ν1+ν2

2 )
Γ( ν1

2 )Γ(ν2
2 )

r(rµ)
ν1
2 −1

(1 + rµ)
ν1+ν2

2

, µ > 0, (6)

where r = ν1/(γν2), with γ, ν1, ν2 the three parameters of the distribution to be chosen.
We note that the density has mean m = γν2/(ν2 − 2), and that we can write ν2 =
4 + 2(ν1 + 2)/(c2ν1 − 2), where c is the coefficient of variation of the distribution. In
our choice of priors, setting appropriate values for these three parameters was the
most critical to obtaining a satisfactory final mixture model. Our suggested choice is
as follows.

(i) Choose ν1 sufficiently large so that there is sufficient degree of contact of the
density with the abscissa to ensure that the posterior probability becomes increasingly
small, tending to zero as the parameter value tends to zero. This requires choosing
ν1 > 2.
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(ii) Set ν2 using ν2 = 4 + 2(ν1 + 2)/(c2ν1 − 2) with c reasonably large, corresponding
to significant prior uncertainty. We used c2 = 10.

(iii) Set γ so that γν2/(ν2−2) = ȳ, where ȳ is the sample mean of the sample y. Thus
the prior mean is set to a value that reflects what one might expect the mean such a
prior would have for the sample y.

Finally consider fS(σ), the prior distribution of S. As S is a standard deviation we
require S ≥ 0. We therefore use the same form for fS(σ) that we use for M when
this had to be positive. Thus we take fS(σ) to be exactly the same form as (6), with
three parameters γ, ν1, ν2 to be chosen. We set ν1 and ν2 to the same values as in (6).
However in this case we set γ to satisfy γν2/(ν2−2) = s, where s is the sample standard
deviation of the sample y.

In summary, the complete prior is

π[θ(k), k] = {
k∏

i=1

[fM (µi)fS(σi)]}fW (k)[w(k)]pK(k),

where θ(k) = [ψ(k),w(k)] ∈ Θ(k), the latter being the support of the prior distribution
in [ψ(k),w(k)] space.

4. IMPORTANCE SAMPLING
4.1. Posterior & Importance Sampling Distributions in the Mixture Model
As with the prior distributions, the posterior distribution is most readily specified for
different K = k, under the assumption that there is no degeneracy when we do this,
so that there are precisely k and only k components in the mixture when K = k. This
is equivalent to assuming that π(ψ(j),w(j), k|y) = 0 if j 6= k. The only non-zero parts
of the posterior density are therefore

π(θ(k)|y) =
f [y|θ(k), k]π[θ(k), k]

kmax∑
κ=1

∫
Θ(κ)

f [y|(κ), κ]π[θ(κ), κ]dθ(κ)
,

θ(k) = [ψ(k),w(k)] ∈ Θ(k), k = 1, 2, ..., kmax.

For IS we can therefore use an IS distribution of the form

ck[θ(k)], θ(k) ∈ Θ(k), k = 1, 2, ..., kmax (7)

where ck[θ(k)] for each k is a continuous density scaled so that
∫

Θ(k)

ck[θ(k)]dθ(k) = k−1
max.

The IS procedure with sample size m is then as follows.
IS1. Draw a value of K, uniformly over 1, 2, ..., kmax, giving K = ki, for i = 1, 2, ...,m
IS2. Draw a value θ(ki) from the distribution with density cki [θ(ki)], for i = 1, 2, ..., m.

This produces a sequence of independent and identically distributed random variables
(θ(ki), ki) i = 1, 2, ..., m.

IS3. From (θ(ki), ki) i = 1, 2, ...,m, calculate the IS ratios

ρ[θi(ki)] = p[y|θi(ki), ki]/cki [θi(ki)] for i = 1, 2, ...,m, (8)

with p[y|θi(ki), ki] = f [y|θi(ki), ki]π[θi(ki), ki].
IS4. Use the ρ[θi(ki)] with appropriately defined functions h(θ(k), k), to estimate

posterior quantities of interest.
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An example of IS4 is the estimation of πK(k|y), the posterior probability that K = k.
This is simply done by appealing to (2), and noting that both the prior for K and the
importance sampling of K are uniform, so that we estimate πK(k|y) by

π̂K(k|y) =
∑

ki=k

ρ[θi(ki)]/
m∑

i=1

ρ[θi(ki)], k = 1, 2, ..., kmax (9)

It remains to select ck[θ(k)]. Here we follow [Geweke 1989] and take as ck[θ(k)] a
multivariate Student t distribution with mean located at the mode of p[y|θ(k), k] and
with variance equal to minus the inverse of the Hessian of ln(p[y|θ(k), k] evaluated at
the mode. The t distribution is preferred to a normal as the IS distribution, because
its longer tail guards against the problem of the IS distribution tailing off too quickly
compared with the posterior distribution being estimated.

Calculation of ck[θ(k)] therefore depends on estimating the maximum point θmax(k)
of ln(p[y|θ(k), k] for each k. We discuss this in the next subsection.

4.2. Obtaining the Maximum of the Posterior
It is well known (see [Geweke 1989], for example) that the IS method is most reli-
able if the IS distribution is a good approximation of the posterior distribution. We
obtain such an approximation by maximising the posterior distribution for each pos-
sible value of k. This gives us a set of values for the component means, shapes and
weights for each k, which for convenience we shall call the maximum posterior proba-
bility (MPP) estimates and denote by ψ̂(k), ŵ(k). We then construct the IS distribution,
conditional on k, based on these optimized posterior values. The IS distribution is spec-
ified completely by assuming that k is uniformly distributed over some suitable range
for k.

Though the optimized posterior values are obtained within a Bayesian framework,
they are actually rather useful in their own right as point estimators viewed from a
frequentist standpoint. To estimate the best k we can use (see [Schwarz 1978]) the
Bayesian Information Criterion (BIC)

Bk = log

(
n∑

i=1

f(yi|ψ̂(k), ŵ(k), k)

)
− 3k

2
log n, (10)

where the first term on the right is the log-likelihood evaluated at the optimized poste-
rior values of the parameters of the k-component model and the 3k factor in the second
term is the number of parameters in the k-component model, including the weights.
A smaller value Bk indicates a better fit. This yields a simple point estimate of k and
all the component weights, and the parameters associated with each fitted component.
However this does not give our objective, the posterior distribution of k, which we shall
obtain using IS.

We tested three methods for finding the maximum of the posterior distribution: con-
jugate gradient optimization, the EM algorithm and Nelder Mead [Nelder and Mead
1965] optimization.

A good review of conjugate gradient methods is given in Chapter Two of [Burley
1974]. We tried the BFGS (Broyden - Fletcher - Goldfarb - Shanno) method introduced
in [Davidon 1959]. We used the algorithm to minimise both the negative of the poste-
rior and negative of the log of the posterior. For the negative of the posterior, we found
that the algorithm did not move far from its starting point, as the gradients calcu-
lated at the initial points were very small. For the negative log of the posterior, the
algorithm frequently moved to areas of parameter space associated with a very low
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posterior probability. The errors causing this originated in the routine updating H, the
estimate of the covariance matrix and we suspect were due to the surface being a long
way from being quadratic.

We also considered the EM algorithm, introduced in [Dempster et al. 1977]. A good
introduction to the EM algorithm and its application to mixture models is given in
[Bilmes 1998].

We found that the EM algorithm was more sensitive to the starting point and also
that it was unstable for some initial solutions. Often this occurred when a large num-
ber of components were being fitted to a dataset for which only a small number of
components might be required, and took the form of one of the σl tending to infinity for
a component with a very small weighting. The sensitivity of the limiting solution to the
initial solution and the convergence to local maxima or saddle points are drawbacks
that have been discussed elsewhere in the literature, e.g. in [Diebolt and Ip 1996].

There is surprisingly little theory available for the Nelder Mead routine [Nelder and
Mead 1965]. Despite this we found the method the most robust of the three methods
tried and in addition it was certainly the simplest to implement. This was therefore the
method used in our current implementation. However we stress that we do not make
this a strong recommendation. The EM algorithm is much more efficient than the
Nelder Mead algorithm, performing about 100 iterations per model compared with a
few thousand for Nelder Mead. There is scope for further research in this area, possibly
considering an adaptation of a more sophisticated version of the EM algorithm, such
as that put forward in [Arcidiacono and Bailey Jones 2003], or the use of a stochastic
EM algorithm, which has previously been applied to mixture models in [Diebolt and
Robert 1994]. If a sufficiently good optimum could be obtained without a significant
increase in the number of runs required, this method could out-perform the Nelder
Mead.

We applied the Nelder Mead [Nelder and Mead 1965] routine in the following way.
The basic version of the Nelder Mead method is for unconstrained optimization. We

dealt with the positivity constraints on ψi and wi simply by setting a parameter to
half its current value, whenever the basic Nelder Mead algorithm proposes a negative
value for the next step. We ensured the sum of the weights remains equal to unity
simply by not treating the weight of the last component as being a parameter of the
Nelder Mead search, but directly setting its value at each step of the search so that
the weights sum to one. If, at any step and with the last weight omitted, the sum
of the remaining weights is greater than unity, then all these remaining weights are
rescaled so that they sum to nearly unity and the last weight is given a near zero
value. A warning flag is raised if the routine exits with a supposed optimum, but with
a weight near zero.

We used the Nelder Mead routine to maximize ln(p[y|θ(k), k] for each k, doing this
sequentially for increasing k = 1, 2, ..., kmax, with the optimum point for the k com-
ponent fit modified to provide the starting point for k + 1. With this sequential ap-
proach, a starting value, as required by the algorithm, is only really needed for the
case k = 1. With the parametrization used an obvious starting point for this case is
µ0 = ȳ and σ0 = s , the respective sample mean and sample standard deviation of
the sample y. The starting parameters for the model with k + 1 components are then
determined from the best estimates for the model with k components. The first k com-
ponents of the k + 1 model are set to be identical to those of the k component model,
but with reduced weights to allow some weight to be given to the (k + 1)th component.
The (k+1)th component is then chosen based on the discrepancies between the sample
and the fitted k component model.

Specifically, let yi, i = 1, . . . , n be the observations, and let Fk(y) be the cumulative
density function (CDF) of the fitted k-component model. We define Di, i = 1, . . . , n to be
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the difference between the empirical distribution function (EDF) and the fitted model
with k components, such that

Di =
i− 0.5

n
− Fk(yi).

Let

p0 = max{Dj −Di|1 ≤ i < j ≤ n},
and suppose that this maximum is obtained at i = i0, j = j0. Also let

p1 = max{Dj −Di|1 ≤ i < j ≤ n and (i, j < i0 or i, j > j0)},
where this secondary maximum occurs at i = i1, j = j1. The (k + 1)th component is
then given the initial mean

µk+1 = (yi0 + yj0)/2

and variance

σk+1 = (yj0 − yi0)/2

and the weight of the (k + 1)th component is set to be p0, while the weights of the
remaining k components are multiplied by a factor (1 − p0). It is readliy verifiied that
this procedure will reduce this maximum p0, though it has to be admitted that there is
some possibility that other, smaller, differences could be increased. However in exten-
sive experimentation, not reported here, we found the procedure very reliable in pro-
ducing acceptable optimizations over all k. The advantage of parametrizing the base
distribution using its mean and standard deviation is evident in making this process
of introducing additional components a straightforward one.

A second attempt is made with parameters i1, j1 and p1 and the model with the
greatest log likelihood is chosen as the starting point for the Nelder Mead optimisa-
tion routine. By considering an alternative starting point for the optimisation we are
allowing for some of the multimodality of the posterior distribution, which will give us
some protection against missing the mode.

4.3. Estimation of the Covariance Matrix
With the mean of the IS distribution ck[θ(k)] located at the mode of p[y|θ(k), k] we con-
tinue following [Geweke 1989] and set its variance equal to minus the inverse of the
Hessian of L(ψ(k),w(k), k) = ln(p[y|θ(k), k] evaluated at the mode. This is non-trivial
because the weights, wi must sum to one. Throughout this subsection, we focus on the
kth component, where k is given. To simplify the notation we therefore write, through-
out this subsection, L for L(ψ(k),w(k), k), ψ for ψ(k), and w for w(k). The dimension
of ψ(k) is l = 2k. Suppose the maximum of L occurs at (ψ̂, ŵ), where this optimum has
been obtained subject to

∑
wj = 1. Let the negative unconstrained Hessian of second

partial derivatives be

H =
(

Hψ,ψ Hψ,w

HT
ψ,w Hw,w

)
(11)

with, in particular,

Hw,w(ŵ) = −∂2L(w)
∂w2

∣∣∣∣
w=ŵ

. (12)

These partial derivatives in H are unconstrained in that they are obtained ignoring
the restriction that

∑
wi = 1. To include this restriction we write wi as
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wi = λi + k−1


1−

k∑

j=1

λj


 , i = 1, ..., k. (13)

This ensures that
k∑

i=1

wi = 1. (14)

The Jacobian matrix of the transformation is

J =
∂w
∂λ

= (Ik − k−11k1T
k ), (15)

where Ik is the k−component identity matrix and 1k= (1, 1, ..., 1)T is the k-component
vector with unit entries. The log posterior density in terms of this parameterization,
L = L(ψ(k),λ(k), k), where λ = (λ1, λ2..., λk)T , has Hessian

A(ψ, λ) = A(ψ,w) =
(

Hψ,ψ Hψ,wJT

JHT
ψ,w JHw,wJT

)
, (16)

which we write as A from now on. This is the required Hessian because the inverse of
A gives the covariance of (ψ̂, ŵ) subject to

∑k
i=1 ŵi = 1.

The matrix A must clearly be singular, and indeed the submatrix JHw,wJT is sin-
gular as det(J) = 0. Thus A does not have a full inverse, but it does have a generalised
inverse, G, which by definition will satisfy

AGA = A. (17)

To find the generalised inverse, we consider P, the orthogonal matrix formed from
the eigenvectors of A as defined in the following Lemma.

Lemma
(i) The vector

p0 =
(

0l

1k

) }l
}k (18)

is an eigenvector of A with eigenvalue 0, where 0l is the l-dimensional column vector
of zeros.

(ii) All other eigenvectors of A, which we write as

pj =
(

pψ
j

pw
j

) }l
}k , j = 1, 2, ..., ν (19)

where ν = l + k − 1, satisfy

1T
k pw

j = 0. (20)

Proof The matrix A is singular and so, by definition, has at least one eigenvalue that
is equal to zero. Therefore, in order to prove part (i) of the lemma, we need only show
that

Ap0 = 0(l+k). (21)

Using the expansion given in (16), we can rewrite this condition as

Ap0 =
(

Hψ,wJT 1k

JHw,wJT 1k

)
. (22)
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The expression for the Jacobian J is given in (15) and it is easy to show that JT 1k is
equal to 0k. Hence, (21) holds and part (i) of the lemma is proved.

To prove part (ii) we simply note that the matrix A is symmetric and therefore has
distinct orthogonal eigenvectors pj , j = 1, 2, . . . , ν, for which pjp0 = 0ν+1. As the upper
l components of p0 are zero, the orthogonality condition reduces to pj1k = 0k, hence
proving part (ii) of the lemma. ¤

Using the Lemma we write P as
P = ( P1 p0 ) (23)

with p0 in the last column of P and
P1 = ( p1 p2 ... pν ) (24)

the matrix comprising the other eigenvectors.

Then

PT AP = D =
(

Λ 0
0 0

) }ν
}1 , (25)

where D is the diagonal matrix of eigenvalues corresponding to the eigenvectors form-
ing P.

From now on we assume that A is positive semidefinite so that all its eigenvalues are
non-negative. The main diagonal entries of D and Λ will therefore all be non-negative.
In practice it will usually be the case, in maximizing the logposterior density subject
to

∑
wi = 1, that all the main diagonal entries in Λ will be strictly positive, but our

construction of the generalized inverse does not require this. However the last main
diagonal entry of D is definitely zero by construction.

Let S be the (l + k)× (l + k) diagonal matrix

S =
(

R 0ν

0T
ν 0

) }ν
}1

where
R = diag(lii| lii = 1/

√
λii if λii > 0, lii = 0 if λii = 0)

and λii is the ith main diagonal entry of Λ. Define L as
L = PS. (26)

Explicitly we have

L = ( P1 p0 )
(

R 0ν

0T
ν 0

)
(27)

= ( P1R 0l+k ) . (28)
Define G as

G = PSSPT = LLT . (29)
From the definition of S we have

DSSD = D (30)
and from (25),

A = PDPT . (31)
Using these two expressions we have

AGA = PDPT PSSPT PDPT = PDSSDPT = PDPT = A. (32)
So G satisfies (17) and is thus a generalised inverse of A.
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4.4. IS in the Finite Mixture Model
We can now describe explicitly our proposed IS method of generating the parameters
θ(k) of Step IS2 from a modified multivariate t-distribution. Specifically we generate
this as

θ =
(

ψ
w

)
∼ StudentT

((
ψ̂
ŵ

)
,LLT

)
, (33)

where StudentT(θ̃,V) is the multivariate t-distribution with mean θ̃ and variance V.
A variate from this distribution can be generated using

θ =
(

ψ̂
ŵ

)
+ P1Rzν , (34)

where zν is a vector of independent Student-t variates, each normalized to have mean
zero and variance unity. These can have arbitrary degrees of freedom, d, and are de-
rived by rescaling non-standardised t-variates. The variance-covariance of θ generated
in this way is then

Var(θ) = E(P1 RzνzT
ν RPT

1 ) = P1RRPT
1 . (35)

But from (28) and (29) we have that P1RRPT
1 = PSSPT . Therefore

Var(θ) = P1RRPT
1 = PSSPT = G.

Moreover, using the result (20) that

(0T
l ,1T

k )P1 = 0T
ν , (36)

the sum of the component weights is given by

k∑

i=1

wi = (0T
l ,1T

k )
(

ψ
w

)
(37)

= (0T
l ,1T

k )
(

ψ̂
ŵ

)
+ (0T

l ,1T
k )P1Rzν (38)

= (0T
l ,1T

k )
(

ψ̂
ŵ

)
+ 0T

ν Rzν (39)

=
k∑

i=1

ŵi = 1. (40)

Thus under this sampling we are restricted to the simplex
∑k

i=1 wi = 1.
The vector of weights, W = (W1, W2, ..., Wk) clearly has a singular distribution. Let

Ω be the (k− 1) dimensional vector formed from the first (k− 1) components of W and
write

Φ =(Ψ,Ω) (41)

for the vector of component distribution parameters and this reduced set of weights,
with φ =(ψ,ω) for a particular instance. In the importance sampling process IS1-IS4
we can think of the PDF ck[θ(k), k] of (7) as being completely determined just by φ.
Therefore, we can replace ck[θ(k), k] appearing in the IS ratio (8) by fΦ(ψ, ω), the IS
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PDF of φ, which is nondegenerate and given by

fΦ(ψ,ω) = fzν
(zν)

∣∣∣∣
∂zν

∂(ψ, ω)

∣∣∣∣ (42)

= fzν
(zν)

∣∣∣∣
∂(ψ, ω)
∂(zν)

∣∣∣∣
−1

, (43)

where fzν
(zν) is the joint PDF of sampling the ν standard t-variates. From the form of

(34) it is clear that
∂(ψ,ω)/∂(zν) = M

where M is the matrix P1R but with the last row omitted. Thus |∂(ψ,ω)/∂(zν)| =
det(M), so that

fΦ(ψ, ω) = [det(M)]−1fzν
(zν). (44)

Use of (34) to generate IS variates does not guarantee that parameters which should
be positive necessarily are positive, nor that all weights are necessarily less than unity.
This is easily handled by rejecting any θ sample where any such constraint which
should be satisfied is not. This restricts the support of the IS distribution to precisely
the region where all parameter constraints are satisfied. The IS sampling is there-
fore an acceptance/rejection procedure. Thus given K = k, the IS distribution actually
sampled is modified from (44) to

ck[ψ(k), ω(k)] = [det(M(k))]−1fzν (zν)/R(k) (45)
where we have included dependency on k explicitly, and R(k) is the probability that a
value sampled from (44) is accepted (because it falls in the support of the k component
form of the mixture model being fitted). The value of R(k) is easily estimated in from
the IS sampling by

R̂(k) = (# of replications sampled from (44) for the given k and accepted) /mk

where
mk = (# of replications sampled from (44) for the given k ).

Acceptance/rejection adds to the computational effort, but would only be problem-
atic if R(k) were ever to be small, which we have not encountered. Our proposed IS
procedure appears acceptably fast in practice. We have tried more elaborate IS distri-
butions which directly satisfy the required parameter constraints, but such distribu-
tions made the calculations significantly more complicated and less transparent and
actually slowed the IS procedure.

We summarize the IS as it applies to estimation of the posterior distribution of K.
In the previous section we assumed, for ease of exposition, that the number of com-

ponents k in each IS replication was sampled independently. However we can remove
the inherent variability in this sampling of k by using stratified sampling. We thus
replace IS1 by:

IS1’. Sample k cyclically with k = 1, 2, .., kmax, 1, 2, ..., kmax, 1, 2, ... and so on, so that if
m replications are drawn, where for simplicity we assume that m is divisible by kmax,
we sample the same number of replications for each possible k, i.e. if mk is the number
of replications where K = k then

mk = m/kmax, k = 1, 2, ..., kmax

so that all the mk are equal. All the IS formulas derived in the previous section are
unchanged by this.
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IS2’. For each ki obtained in IS1’, sample the mixture model parameters
ψ(ki), ω(ki) using (34) but applying acceptance/rejection so that each accepted
ψ(ki), ω(ki) satisfies all parameter constraints for the given ki component mixture
model.

IS3’. For each replication calculate the IS ratio, ρi, as given in 8 with the divisor
given by (45).

IS4’. Estimate π̂K(k|y), k = 1, 2, .., kmax, the posterior distribution of the number of
components from (9)

Other quantities of interest such as the PDF of the parameters ψ(k),w(k) condi-
tional on k, can then be estimated by appropriate weighted frequency histograms using
the IS ratios as the weights.

4.5. Convergence Statistics

An advantage of the use of IS over MCMC is that convergence statistics are more read-
ily obtained because the observations of the IS sample are essentially independent.
The analysis is not completely straightforward because the estimator of (2) involves a
ratio of two means; however [Geweke 1989] shows that this can be characterized by a
central limit theorem. Geweke’s Theorem 2 shows that if

σ̂2
m =

m∑

i=1

[h(θi)− h̄m]ρ2(θi)/
m∑

i=1

ρ2(θi) (46)

then
m1/2{h̄m − E[h(θ)]} =⇒ N(0, σ2)

and
mσ̂2

m → σ2

for a suitably defined variance σ2. (The formula for σ2 appearing in the statement of
Geweke’s Theorem 2 is different from the version appearing in the proof. The one in
the proof is correct. Further details are in A.3). Put simply, for large m, σ̂2

m estimates
the variance of h̄m.

Applying this to the estimate, π̂K(k|y), of the posterior probability that the number
of components in the model is equal to k as given in (9), we only need take h(θi) to be

hk(θi) =
{

1 if the number of components is k, i.e. if ki = k
0 otherwise (47)

and
h̄m(k) = πK(k|y),

in (46) so that σ̂2
m specialises to

σ̂2
m(k) =

{
∑

ki=k

[(1− h̄m(k))ω(θi(ki))]2 +
∑

ki 6=k

[h̄m(k)ω(θi(ki))]2
}

{
m∑

i=1

ω[θi(ki)]
}2 , (48)

k = 1, . . . , kmax.

This provides an indication of the accuracy of the estimates πK(k|y). Note that the
σ̂2

m(k) are not mutually independent.
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5. EXAMPLES
We consider three examples. Our main comparison is between our proposed optimiza-
tion/IS approach. which in this section we refer to simply as the ‘IS method’, and the
RJMCMC method, which we refer to simply as the ‘MC method’.

Note that the RJMCMC method is availabe in a Fortran code implementation called
Nmix, downloadable from http://www.stats.bris.ac.uk/˜peter/Nmix/. We have included
Nmix as an option in the FineMix implementation, so both the ‘IS method’ and the
‘MC method’ can be run using just FineMix, and this is what we did in the examples.

The first example is an artificial data set comprising a set of 100 observations gen-
erated from a normal mixture distribution with three quite distinct components. The
three true (µi, σi, wi) vectors used to generate the components and form the sample
were (12.0, 0.125, 0.25), (12.5, 0.02, 0.2), and (13.0, 0.3, 0.55). We shall refer to this sam-
ple as the ‘3ClearNorms’ example. The second component has a small variance and is
specifically included to test if the methods can accurately identify such a component.

The other two samples are fairly large compared with most examples considered in
previously published work. One comprises the lot-sizes of surface mounted capacitors,
with sample size 2083, to which Wagner and Wilson [Wagner and Wilson 1996b] fitted
a multimodal distribution using PRIME, their proposed Bézier fitting method. We re-
fer to this sample as the ‘LotSize’ data set. This example allows our IS method to be
directly compared with this very different approach.

The third data set is a complex financial one comprising the loss given defaults
(LGD) of 7051 clients. This sample, like the first also has a small but distinctive cluster,
due possibly to a component with a small variance.

We consider all three examples using the FineMix program in order to illustrate
some of the features incorporated in it. FineMix should be able to detect and model
components with small variances and/or small weights. Two of the parameters in Fine-
Mix specifying the priors are adjustable to ensure that any particular sample can be
handled with a balance of sensitivity and stability.

One is the shape parameter, δ, of the Dirichlet distribution in the prior (4) for the
component weights. We need δ ≥ 1 to avoid any of the weights tending to zero in the
Nelder-Mead optimization, but if δ is set too large this can over-restrict the search
in its choice of small weight values. This can have the computational side effect of
components ‘merging’ so that some of the components, though calculated separately,
end up having the same parameter values. Recalling that the Nelder-Mead routine is
carried out on individual k, with the k being sequentially increased, this would mean
that a final fit for a given k would be indistinguishable from a fit with a lower k,
because two or more of the components are effectively the same. Though undesirable,
this is actually not all that serious from a practical point of view because it tends only
to occur when k is larger than needed. The posterior probabilities for such k values will
then be small, so that inaccuracies in their estimated value have negligible practical
consequence. Nevertheless it would be preferable not to have this problem occur, and
in the FineMix implementation a check is made to ensure that for any fitted k the
estimated component values are all distinct.

The other parameter we have allowed to be adjustable is the shape parameter ν1

used in the priors for component SDs and for component means that have to be pos-
itive. This parameter behaves like δ in that we would prefer ν1 ' 2 to express prior
uncertainty, but need ν1 > 2 to avoid component parameters that should be positive
tending to zero in the Nelder-Mead routine, rendering degenerate the component in
question. The FineMix implementation checks component variances in particular, is-
suing a warning if such a value is near zero.
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Table II. Estimated posterior distribution of k for the ’3ClearNorms’ sample using the IS and MC methods. For the
IS case the SD of the estimate of p̂k is included

Method k 1 2 3 4 5 6 7 8 9 10
IS p̂k 0.996 0.004

σIS 0.0033 0.0033
MC p̂k 0.001 0.023 0.329 0.281 0.177 0.098 0.050 0.022 0.010 0.005

We have found that δ and ν1 can almost invariably be adjusted together, with (δ, ν1)
in the range (1.1, 2.2) to (2, 4) providing enough flexibility.

The FineMix implementation includes one other diagnostic check. At the end of the
Nelder-Mead routine, the eigenvalues of the negative of the Hessian of the posterior
distribution evaluated at the optimal point, are examined and any found to be negative
are reported. If all of the eigenvalues are positive, this is an indication that at least
a local optimum has been obtained. It is possible, especially when k is much larger
than needed, for the posterior to become rather flat and the Nelder-Mead routine can
terminate before all the eigenvalues become positive. The IS sampling can still return
a useful estimate of the posterior distribution of k in this case as a negative eigenvalue
is usually associated with a k that is an extreme value for which pk is very small and
the IS sampling will reflect this, so that the overall distribution of k is still correctly
estimated. However if there is any concern then it is usually easiest to refit using a
smaller kmax, so that the problem is not encountered for the range of k considered.

FineMix can be downloaded from http://www.soton.ac.uk/ ccurrie/, including fuller
details of how to run the user interface and of the output that it produces. In addition
to the examples described in the Examples Section of this paper, we have considered a
large number of other mainly rather smaller data sets coming from diverse application
areas. The FineMix interface includes a spreadsheet containing over a dozen of these,
including the three data sets considered in [Richardson and Green 1997].

5.1. Example 1: Mixture of Three Normals
In this example we set kmax = 8 and δ = 1.5, ν1 = 3 for the main smoothing parameters.
We applied the IS method with a sampling size of m = 50, 000 to estimate the posterior
distribution of k. This gave the estimates p̂3 = 0.996 and p̂4 = 0.004 as shown in Table
2, with other posterior probabilities negligible in comparison. The probabilities must
sum to unity and as in effect only p̂3 and p̂4 are positive this means that their SDs
(calculated from (48) must be effectively the same.

We can estimate what is called the predictive density conditional on k in [Richardson
and Green 1997], i.e. the posterior distribution of the full mixture model conditional
on k, in two ways: (i) The MPP parameters method where for each k the posterior
distribution for that particular k is calculated with the parameters set equal to their
MPP estimates for that k, calculated as described in subsection 4.2; (ii) The averaged
IS parameters method which calculates the full mixture density for the given k with
parameter values set equal to the average of the values obtained just at IS observations
with K = k. The predictive density, obtained both ways, for the normal mixture model
with k = 3, when fitted to the 3ClearNorms dataset using IS, is shown Figure 1.

It will be seen that both ways of calculating the predictive density clearly identify
the component with the small variance, with the MPP method perhaps appearing to
be the more accurate visually in this case.

We also fitted the normal mixtures model using the MC method. We used a burn-in
of 100, 000 steps and 50, 000 recorded observations. As shown in Table 2 the MC method
does not give a very clear result for the estimated posterior distribution of k, assigning
higher posterior probabilities to a larger number of components than the data would
suggest.
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Fig. 1. 3ClearNorms example: frequency histogram; IS 3 component normal fits using averaged parame-
ter values and MPP estimators; 3 component MC normal fits using averaged density values and averaged
parameter values

Richardson and Green give two methods when using the MC method for estimating
the predictive densities of the full mixture distribution for each given k: (i) The av-
eraged density method where the full mixture density is calculated at all those steps
of the Markov chain in which the given k value is obtained, and the predictive den-
sity conditional on k is the average of these values; (ii) The averaged MC parameters
method which is the analogue of the averaged IS parameters method, calculating the
full mixture density for the given k with parameters set equal to the average of the
values obtained at just those observations of the Markov chain where K = k. The
predictive densities for k = 3 obtained using both these MC based methods is also de-
picted in Figure 1. Neither predictive density is very satisfactory, with an over-smooth
density at the histogram peak evident at the location of the second component.

As pointed out in [Richardson and Green 1997] the averaged MC parameters method
can result in a predictive density that is too smooth as has occurred in this example.
A possible reason is that an averaged parameter value can be an unrepresentative
estimate of the values sampled. Figure 4 in Appendix A.4 shows the histogram plots
of the posterior parameter and weight values obtained in the MC method for the case
k = 4 . Though this model has only one component more than the best value k = 3, the
shape of the distribution of a parameter or weight can be rather different - bimodal in
many cases, so that the average value is atypical.

For comparison Figure 5 in Appendix A.4 shows the histograms of the posterior pa-
rameter and weight values of the 4-component model as calculated using IS sampling
showing these to be unimodal, so that the average parameter value is more meaning-
ful in this case. Also included in the Appendix is Figure 6, the analogue of Figure 1 but
showing the 4-component rather than the 3-component predictive densities. It will be
seen that inclusion of the extra component leaves the difference in quality of the fits
essentially unchanged, with the densities obtained using the IS method identifying
the second component much more clearly than the densities obtained using the MC
method.

As mentioned in the Introduction, the Bayesian Influence Criterion (BIC) of (10)
can be used to compare different point estimates. Table 3 shows the values of Bk, k =
1, 2, ..., 10 for the present example, when fitting the mixture model using the normal
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Table III. BIC Values of k-component mixture models for the ’3ClearNorms’ sample

k 1 2 3 4 5 6 7 8 9 10
normal 662.5 549.2 525.2 536.8 543.7 551.7 554.7 565.3 573.4 579.8

as base distribution. It will be seen that the minimum Bk was obtained at k = 3,
corroborating the IS analysis.

5.2. Example 2: Capacitor Lot Sizes
Wagner and Wilson [Wagner and Wilson 1996b] consider a sample comprising the lot
sizes in thousands for 2083 lots of surface mounted capacitors being stored in a facility
while waiting for their insulation resistance to be tested. In their paper Wagner and
Wilson [Wagner and Wilson 1996b] described the sample as being bimodal. The fre-
quency histogram of the data set depicted in Figures 6 and 8 of their paper appears
bimodal, but its full nature is somewhat masked as the cell size appears large. We
include in Appendix A.5 in the Online Supplement a figure giving the fit we obtained
using PRIME, which is bimodal and similar to that shown in Figure 6 of Wagner and
Wilson. However their Figure 10, which also depicts the frequency histogram but us-
ing a smaller cell size, seems to show a more multimodal behaviour in the frequency
histogram. Given the fairly large sample size it is therefore of interest to examine if
some of the more detailed multimodality is part of a systematic pattern rather than
being the result of random variation.

We fitted the normal mixture model using the IS method with δ = 1.05, ν1 = 2.1. We
were able to set these close to their lower limits, because the large sample size leads
to a more stable Nelder-Mead search. For smaller sample sizes setting δ and ν1 can
lead to unstable fits with some component σ values tending to zero. The number of IS
replications was 50, 000. The estimated posterior distribution of k is shown in Table
4 with probabilities that are negligibly small not shown. There was some spread of
positive p̂k values with the peak at k = 6. The PDF of this fitted 6-component model is
shown in Figure 2.

We also fitted the normal mixture model using the MC method, with 50, 000 recorded
MC steps. The resulting estimate of the posterior distribution of k is also shown in
Table 4.

The predictive density for the 5-component mixtures model obtained by the averaged
density method from the MC run is also shown in Figure 2.

We also fitted the Weibull mixture model using the IS approach, again with δ = 1.05,
ν1 = 2.1 and 50, 000 IS replications and this gave a definitive result with p̂4 = 0.9995,
and other probabilities negligible. The reason for this is probably because the Weibull
has quite a flexible shape range including both negative and positive skewness. The
4-component Weibull fit is also shown in Figure 2. It will be seen that at least 4 compo-
nents are needed, with the IS method suggesting that some of the smaller fluctuations
might be due to extra components.

Table IV. Estimated posterior distribution of k for the ’LotSize’ sample. The values of p̂k are given for
the normal and Weibull cases fitted by the IS method. Values of p̂k are also shown for the normal
case fitted by the MC method.

Base Model Method k 3 4 5 6 7 8 9 10
normal IS p̂k 0.075 0.466 0.367 0.091
Weibull IS p̂k 1.000
normal MC p̂k 0.396 0.424 0.142 0.031 0.006 0.001

The BIC values for the k-component normal and Weibull fits using IS are shown in
Table 5 with the lowest values highlighted. In the normal case the BIC values for k
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Fig. 2. LotSize example: frequency histogram; IS 6 component normal fit; 5 component MC normal fit using
averaged density values; IS 4 component Weibull fit

Table V. BIC Values ×10−1 of k-component mixture models for the ’LotSize’ data set

k 1 2 3 4 5 6 7 8 9 10 11 12
normal 2561 2500 2481 2451 2448 2448 2449 2451 2453 2454 2455 2457
Weibull 2512 2449 2445 2442 2444 2445 2447 2449 2450 2452 2454 2456

between 4 to 7 are not very different. Though only k = 6 is depicted, the fits for k = 4,
5 and 7 are quite similar.

The data set illustrates one of the difficulties of using a package like PRIME. Little
knowledge is needed to use PRIME especially given the very user-friendly interface
that allows easy movement of the control points around the screen showing how this
impacts on the fit. However as the actual parameter values have little meaning outside
of how they influence the shape of the PDF, it is less easy to decide at the outset how
much of the detail of a data set should be taken into account in the fitting.

In using PRIME we found that choice of initial conditions strongly influenced the
fitting process. This is backed up by Wagner and Wilson’s own comment [Wagner and
Wilson 1996a] “Some manual intervention beyond routine application of the likelihood
ratio is often required to obtain adequate fits to multimodal data sets”. The last exam-
ple which we consider in the next subsection, is another instance that is hard to model
due to a spike in the data.

5.3. Example 3: Credit Risk
In this example the data are the loss given default (LGD) for clients at a bank. Approx-
imately 30% of debtors paid in full and so had an LGD of zero. We have removed these
values from the data set and just consider the non-zero losses, leaving us with 7051
data points. An LGD of 1 corresponds to the debtor having paid off their loan in full,
but if fees and legal costs have been incurred the LGD can be greater than 1, which is
the case for approximately 15% of the non-zero losses.

The data histogram includes a small, but statistically significant, spike at just less
than 0.15, representing the behaviour of a certain kind of client. As the sample size is
quite large, we are able to use a relatively high value for the smoothing parameters
with δ = 2 and ν1 = 4, to avoid fitting to spurious clusters. We again set the number of
IS relpications at 50, 000. As can be seen from Table 6 the minimum value of the BIC,
taken over the seven base distributions considered, corresponds to a mixture of EV
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Table VI. Credit risk data in Example 3, showing for each base distri-
bution, the number of components giving the lowest BIC value, and
BIC value obtained.

Component Distribution Number of Components BIC
Normal 7 1296.23
Lognormal 7 1297.24
EV 5 1249.44
NEV 5 1514.97
Weibull 5 1331.88
Gamma 7 1291.81
IG 7 1318.83

distributions, with BIC value minimized at k = 5. The IS method yielded the estimate
of the posterior distribution of k as given in Table 7 with the maximum of p̂5 = 0.682.
We also used the IS method to estimate the posterior distribution of k for the mixture
model with Weibull base distribution; this being when the minimized BIC is one of the
largest, i.e. worst cases. The estimates are also given in Table 7. In this case the result
is very clear cut with the largest probability of p̂5 = 0.998, still at k = 5.

The plots of the 5-component fitted distributions for both the EV and Weibull cases
are shown in Figure 3. Both provide a similar fit, with the EV fit perhaps being slightly
better. Both fit a component to the observations clustered just below 0.15 with esti-
mated weight w = 0.0244; in the EV case this component has µ = 0.147 and σ = 0.0047
and in the Weibull case µ = 0.146 and σ = 0.0051.

We also used the MC method to analyse this data set. The estimated the posterior
distribution, which has a wider spread, is again shown in Table 7. Despite estimating a
higher number of components than that obtained using the IS method, the MC method
did not accurately identify the cluster at 0.15. Figure 3 includes the 6-component fit
using the averaged density method, and it will be seen that the cluster at 0.15 is not
well represented. The MC method does not seem to identify such clusters all that well.
Though not discussed here, the FineMix program also includes a real data sample
from car manufacturing giving the times of a certain activity cycle, which includes a
remarkably tight cluster. The MC method also fails to properly identify the subsample
involved in this data set. In contrast the IS method fitted a clear component to this
subsample.

Summarizing, using the IS method to fit a mixture model in our present sample,
even using base distributions with rather different properties, has still allowed a small
but important component to be identified quite clearly.

Table VII. Estimated posterior distribution of k for the ’CreditRisk’ sample. The values of p̂k are given
for the EV and Weibull cases fitted by IS and for the normal case fitted by the MC method

Base Model Method k 3 4 5 6 7 8 9 10
EV IS p̂k 0.015 0.682 0.303
Weibull IS p̂k 0.998 0.002
normal MC p̂k 0.351 0.363 0.194 0.075 0.013 0.004

6. FINAL SUMMARY
Finite mixture models are ideally suited to describing multimodal data and are partic-
ularly appropriate in simulation input modelling because of the ease of incorporating
them into any simulation package. This paper describes a Bayesian method that has
an established theoretical basis, which can be used to fit finite mixture models to mul-
timodal data including the fitting of spikes and which can handle quite large sample
sizes. A program implementing this method, FineMix, can be downloaded from the
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Fig. 3. Credit Risk example: frequency histogram; IS 5 component EV and Weibull fits and MC 6 component
fit

authors’ website, with a number of different options for the base component distri-
bution. The fitting process offers a clear alternative to RJMCMC with the particular
advantage of allowing easy implementation of other base distributions. An alternative,
PRIME, proposed by Wagner and Wilson [Wagner and Wilson 1996b] though easy to
use produces results that are less easy to interpret and to implement in simulation
studies.

In this paper we have focussed discussion on the simple situation where we have al-
ready chosen our base distribution and are concentrating on identifying an appropriate
number of components to use in the mixture. We have not discussed how to choose the
base distribution. A simple approach would be a more formal extension of what we
considered in the third example, where we fitted mixtures for a number of different
base distributions and chose from these fits. Such a comprehensive approach would
seem rather over elaborate in most applications and would have taken the discussion
further than we wish in the present paper. In many applications the context may sug-
gest an appropriate base. For example if the data is obviously positively skewed, then
the lognormal, gamma or IG may be suitable, with the EV appropriate if there is no
need to bound the support of the distribution from below. The Weibull is useful as it
can be negatively as well as positively skewed.
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A. APPENDIX
A.1. Choice of priors
Consider first the prior distribution for K, the number of components. A modified Pois-
son distribution is proposed in [Phillips and Smith 1996], which places greater prob-
ability mass on values close to the input parameter of the distribution, a value set by
the user. This introduces some influence on the values of K obtained. In [Escobar and
West 1995] a Dirichlet process is used to provide the prior distribution for K. With
this choice of prior, the expected number of components in the mixture model for a
sample of size n is proportional to ln(1 + n/α); therefore, as the sample size increases,
the expected number of components also increases. Although to a certain extent this is
logical, it does lead to some influence in the prior distribution.

Consider now the priors for the parameters, M and S, of the component distributions
themselves. The majority of previous work has concentrated on mixtures of normal
distributions. Most authors use a normal prior for the means of the components and
a gamma distribution for the inverse variances (or equivalently and inverse gamma
distribution for the variances). This choice of distributions gives some advantages of
conjugacy. This structure is extended in [Richardson and Green 1997] to include a
hyperprior structure for the shape parameter in the gamma distribution for the in-
verse variance. Adding such a hyperprior makes the prior distribution for the compo-
nent variances a little vaguer and can result in more sensible posterior distributions
[Berkhof et al. 2003]. However, hyperpriors add to the complexity of the set up for the
model and make the prior structure less transparent to a non-expert user. For example
adding a hyperprior gamma distribution for the shape parameter in the gamma prior
is equivalent to assuming a three parameter prior which includes a factor that is a
modified Bessel function of the second kind.

The authors in [Roeder and Wasserman 1997] use what they describe as partially
proper priors for the means and standard deviations of the component parameters.
These are partially proper in the sense that the overall scale and location of the pa-
rameters require no subjective input but the parameters for different components are
linked. The means are loosely linked through a Markov Chain, which means that the
prior distribution for the position of an individual component mean in parameter space
is flat but the distribution describing the distance between two component means is
not. The joint prior distribution for the component variances is a product of scaled
inverse-chi distributions with a common scale parameter and common degrees of free-
dom. This has the effect of pushing all of the component standard deviations towards
some common, unspecified value. The prior requires two hyperparameters, one influ-
encing the distance between the component means and the other affecting the differ-
ence in the scale of the component variances.

Although this choice of prior distribution could be used in many different applica-
tions without adaptation, it does impose some structure on the problem through having
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non-flat distributions describing the distance between the component means and the
difference in scale of the component variances. A prior distribution that imposes some
scale on the component means and variances but treats them independently may ac-
tually impart less information. Further problems occur with Roeder and Wasserman’s
approach if the data being modelled comes from a mixture of components when two or
more of those components have the same mean. The prior that they use has zero prob-
ability of this occurring and so prevents the correct posterior probability distribution
being obtained.

The choice of prior for the base distribution parameters moreover does have some
effect on the prior probability for the number of components in the model and so choos-
ing a suitably vague prior for this problem is more difficult than it might first appear.
The way the prior probability for the number of components can vary, dependent on the
variance of the prior distributions for the component means, is described in [Stephens
2000] . For a very small variance, representing a strong belief that the prior infor-
mation about the means is correct, the prior distribution favours models with a low
number of components. As the variance is increased, to represent vaguer prior knowl-
edge of the position of the component means, initially more components are fitted with
means spread across the range of the data, but continuing to increase the variance will
eventually favour fitting fewer components. In the limit of the variance tending to ∞,
the distribution of k becomes independent of the data [Stephens 2000] and this heavily
favours a one component model.

A.2. Approximation for ω(·) function
Consider the Weibull distribution with PDF

f(y) =
α

β
(
y

β
)α−1 exp(−(

y

β
)α)

This has mean µ = βΓ( 1
α +1) and variance σ2 = β2(Γ( 2

α +1)−(Γ( 1
α +1))2). We therefore

have

ln ln(1 + (σ/µ)2) = ln{ln[Γ(2z + 1)]− 2 ln[Γ(z + 1)]}
= R(z), say, where z = 1/α.

Consider first the behaviour of R(z) as z → 0. Expanding R(z) as a power series, we
have

ln(ln(Γ(2z + 1))− 2 ln(Γ(z + 1))) = ln(π2/6) + 2 ln z + O(z). (49)

Now consider R(z) as z → ∞. Using a standard asymptotic formula, as given by
Abramowitz and Stegun (1965, 6.1.41), we have

r1 = ln(Γ(2z + 1)) ∼ (2z + 1− 1
2
) ln(2z + 1)− (2z + 1) +

1
2

ln(2π)

+
1

12(2z + 1)
− 1

360(2z + 1)3
+ O(

1
z4

)

and

r2 = 2 ln(Γ(z + 1)) ∼ 2(z + 1− 1
2
) ln(z + 1)− 2(z + 1) + ln(2π)

+
1

6(z + 1)
− 1

180(z + 1)3
+ O(

1
z4

).
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The log factor in the first term in the expression for r1 is

ln(2z + 1) = ln 2z + ln(1 +
1
2z

) = ln 2z +
1
2z
− 1

2(2z)2

+
1

3(2z)3
− 1

4(2z)4
+ O(

1
z5

).

Therefore the first term in r1 is

(2z + 1− 1
2
) ln(2z + 1) = (2z +

1
2
)(ln 2z +

1
2z
− 1

2(2z)2

+
1

3(2z)3
− 1

4(2z)4
+ O(

1
z5

))

= 2 (ln 2) z + 2z ln z + 1 +
1

48z2
− 1

96z3

+
1
2

ln 2 +
1
2

ln z + +O(
1
z4

).

We also have that the first term in r2 is

2(z + 1− 1
2
) ln(z + 1) = 2(z + 1− 1

2
)(ln z +

1
z
− 1

2(z)2
+

1
3(z)3

− 1
4(z)4

+ O(
1
z5

))

= 2z ln z + ln z + 2 +
1

6z2
− 1

6z3
+ O(

1
z4

).

The difference in these two first terms is therefore

2 (ln 2) z + 2z ln z + 1 +
1

48z2
− 1

96z3
+

1
2

ln 2 +

1
2

ln z − (2z ln z + ln z + 2 +
1

6z2
− 1

6z3
) + O(

1
z4

)

= 2 (ln 2) z − 1
2

ln z +
1
2

ln 2− 1− 7
48z2

+
5

32z3
+ O(

1
z4

).

Thus

r1 − r2 = ln(Γ(2z + 1))− 2 ln(Γ(z + 1))

= 2 (ln 2) z − 1
2

ln z +
1
2

ln 2− 1 + O(
1
z2

).

Hence

R(z) = ln(r1 − r2) = ln(z(2 (ln 2)− 1
2z

ln z + (
1
2

ln 2− 1)
1
z
) + O(

1
z3

))) (50)

= ln z + ln(2 (ln 2)− 1
2z

ln z + (
1
2

ln 2− 1)
1
z

+ O(
1
z3

)) (51)

= ln z + ln(2(ln 2)) + O(
ln z

z
) as z →∞. (52)
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If we write x = − ln z, so that α = exp(x), we have from (49) and (52) that

R(exp(−x)) =
{

g(x) + O( x
exp(−x) ) as x → −∞

h(x) + O(exp(−x)) as x →∞
= y(x), say,

where

g(x) = 0.3266− x (using ln(2(ln 2)) ' 0.326 63),
h(x) = 0.4977− 2x (using ln(π2/6) ' 0.49770).

The function y(x) = R(exp(−x)) can be represented by one arm of the hyperbola

(y + x− a)(y + 2x− b) = A,

for suitable chosen coefficients A, a, and b. Use of such a hyperbolic approximation
allows inversion to express x in terms of y. The required solution is

x =
1
2
a +

1
4
b− 3

4
y − 1

4

√
4a2 − 4ab + b2 + 8A + (2b− 4a)y + y2,

with a and b having values similar to a = ln(2(ln 2)), b = ln(π2/6). The coefficients in
(3) used in the spreadsheet version (the function subroutine WeibAlfa) correspond to
the approximation

x = 0.5282− 0.7565y − 0.3132
√

6.180− 0.5561y + 0.7057y2

which gives an α relative accuracy within 1% over the range coefficient of variation
range 0.0001 ≤ σ/µ ≤ 1000.

A.3. Geweke’s Theorem 2
Theorem 2 in [Geweke 1989], which is cited in the main paper, concerns the use of
importance sampling (IS) to estimate

ḡ =
∫

g(θ)ρ(θ)dθ

In this subsection alone, the notation is as in Geweke, except for ρ(θ) which is not used
in [Geweke 1989] and which we use, again in this subsection alone, to represent the
posterior distribution of θ.

Let the IS distribution have density I(θ). Normalizing constants are avoided by
working with p(θ) and I∗(θ) instead, where p(θ) = cρ(θ), and I∗(θ) = d−1I(θ), the
constants c and d being unknown. An estimator for ḡ = E[g(θ)] is

ḡn =
n∑

i=1

g(θi)w(θi)/
n∑

i=1

w(θi)

where the θi have been drawn from I(θ), and

w(θ) = p(θ)/I∗(θ).

Theorem 2 in [Geweke 1989] states that

n1/2(ḡn − ḡ) ⇒ N(0, σ2)

nσ̂2
n → σ2
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where

σ̂2
n =

n∑

i=1

(g(θi)− ḡn)2w2(θi)/(
n∑

i=1

w(θi))2

is the sample variance of the individual terms used to form ḡn. This is correct but the
statement of the Theorem actually gives a formula for σ2 that is different from that
derived in the proof. The version in the proof, namely

σ2 = c−2d−1

∫

Θ

[g(θ)− ḡ]2w(θ)p(θ)dθ, (53)

is the correct one. We note that σ2 should not depend on the constants c and d. From
(53) we have

σ2 = c−2d−1

∫

Θ

[g(θ)− ḡ]2
p(θ

I∗(θ)
p(θ)dθ,

= c−2d−1

∫

Θ

[g(θ)− ḡ]2
(c2d)ρ2(θ)

I(θ)
dθ

=
∫

Θ

[g(θ)− ḡ]2
ρ2(θ)
I2(θ)

I(θ)dθ

= VarI

{
[g(θ)− ḡ]

ρ(θ)
I(θ)

}

which is independent of c and d, as required.
Geweke does not actually demonstrate the second part of the Theorem, that nσ̂2

n →
σ2. We can show the weak version of this by writing nσ̂2

n as

nσ̂2
n =

(
n−1

n∑

i=1

[(g(θi)− ḡ) + (ḡ − ḡn)]2w2(θi)

)/(
n−1

n∑

i=1

w(θi)

)2

The numerator is

[n−1
n∑

i=1

(g(θi)− ḡ)2w2(θi)]+ 2(ḡ− ḡn)[n−1
n∑

i=1

g(θi)− ḡ)w2(θi)]+ (ḡ− ḡn)2[n−1
n∑

i=1

w2(θi)].

The three terms in the square brackets all tend to constants in probability. In the first
we have that

EI [(g(θi)− ḡ)2w2(θi)] =
∫

[g(θ)− ḡ]2
p2(θ)
I∗2(θ)

I(θ)dθ

= c2d2

∫
[g(θ)− ḡ]2

p2(θ)
I2(θ)

I(θ)dθ

= c2d2VarI

{
[g(θ)− ḡ]

ρ(θ)
I(θ)

}
. (54)

Both the second and third terms contain the factor ḡn− ḡ which tends to zero in proba-
bility. Thus, applying Slutsky’s Theorem, the second and third terms also tend to zero
in probability, so that the numerator, applying Slutsky’s theorem again, tends (54).
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The denominator is the product of two identical random variables each tending to
the constant cd. By Slutsky’s theorem their product tends to the square of this con-
stant. Thus combining numerator and denominator and applying Slutsky’s Theorem
one more time, yields

nσ̂2
n → c2d2VarI

{
[g(θ)− ḡ]

ρ(θ)
I(θ)

} /
(cd)2 = σ2

in probability as required.

A.4. 3ClearNorms Example, Additional Plots
Figures 4 and 5 contrast the posterior distributions of the component mean and SD
parameters and weights for the 4-component normal mixture distribution fitted by the
IS and MC methods to the 3ClearNorms data set. The distributions are unimodal in
the IS case. The weights in the MC case are bimodal.

Figure 5 may explain why it may be unsatisfactory to estimate the value of a given
parameter in the k-component mixture, for given k, by taking the average of the values
obtained for this parameter over all steps of an MC run where the component value
sampled is k. When the distribution of the parameter is not unimodal, this average
value is not a very representative value.

Figure 6 is the analogue of Figure 1 but showing the predictive densities conditional
on k = 4 instead of k = 3. The densities obtained using the IS averaged parameters
method and the MPP parameters method identify the sharp peak due to the second
component. The densities obtained using the MC method are too smooth, with the
density obtained using the MC averaged parameters method particularly so.
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Fig. 4. 3ClearNorms Example: Posterior distributions of component mean and SD parameters and weights
for the 4-component MC normal mixture fit

Fig. 5. 3ClearNorms Example: Posterior distributions of component mean and SD parameters and weights
for the 4-component IS normal mixture fit
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Fig. 6. 3ClearNorms example: frequency histogram; IS 4 component normal fits using averaged parame-
ter values and MPP estimators; 4 component MC normal fits using averaged density values and averaged
parameter values

A.5. LotSize Example, Bezier distribution fitted using PRIME

Fig. 7. LotSize Example: Bezier distribution fit using PRIME package
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