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SEIR model of COVID-19 transmission dynamics 

A SEIR Model is a well-known compartmental model of viral transmission framed in ordinary 
differential equations, and representing a homogeneously mixing population divided among 
susceptible, exposed, infectious and recovered or died (SEIR), as follows:  
 
 
 

 

Fig S1. The SEIR model. The compartments denote those in the population that are 
Susceptible, Exposed, Infected and Recovered. 

 

The variables S, E, I and R satisfy the ordinary differential equations: 
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= −𝛽𝑆(𝑡)𝐼(𝑡)     (1) 
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ௗ௧
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A convenient recent reference is Ma (1), though we have adjusted the notation here, reserving 
certain symbols for use in other standard ways. 

As this discussion focuses on the number that die due to the epidemic we adjust the SEIR 
model by splitting R, those that recover, to distinguish between Z, those that die, from those that 
recover well. This arrangement is depicted in Fig S2, and is a simplified version of that used by 
Dagpunar (2), which discusses the outcomes of hospitalization. 

  

 

 

 

Fig S2. Adjustment of the SEIR model where R is divided into two compartments, R \ Z, 

those that recover and Z, those that die; where 𝑝ோ is the proportion that recover. 
 

We allow this adjusted SEIR model to depend on certain parameters with the understanding 
that once these parameters are known the behaviour of the SEIR model is completely specified. 
There are nine parameters in the model: 
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Fig 1 

D = 𝜇ିଵ mean duration of infectiousness 7 

T = 𝛽ିଵ mean interval between infectious 
contacts 

2, 3 or 4 
R0 = D/T 

M = 𝜆ିଵ mean latent period 0.102 

𝑡଴ number of days from start of epidemic 
before observations began 

5.351 

𝑒଴  initial number of exposed 6.00E-05 

𝑠଴ initial population size 5.09E+04 or 2.64E+04 
to scale the epidemic 

𝜎 standard deviation of observational 
error 

68.44 

𝑝ோ probability of recovering 0.963 

𝜏 mean time between the end of 
infectiousness and recovery or death  

7.636 

 

  The last parameter 𝜏 is used to modify the last differential equation (4) to: 

ௗோ

ௗ௧
= 𝜇𝐼(𝑡 − 𝜏)      (5) 

We denote by  𝛉 = (𝑏1, 𝑏2, … , 𝑏9), the vector of parameters. With 𝛉 given, the four differential 
equations (1), (2), (3) and (5) can be solved by numerical integration to give the trajectories 

   𝑆(𝑡, 𝛉), 𝐸(𝑡, 𝛉), 𝐼(𝑡, 𝛉), 𝑅(𝑡, 𝛉), 𝑍(𝑡, 𝛉)   for  𝑡 = 1,2, … , 𝑁 (6) 

where t is the day and N is the number of days of interest. However, the parameters are 
assumed unknown. We therefore used the standard method of Maximum Likelihood (ML) as 
given for example in Cheng (3) to estimate the parameter values. 

Here we outline the approach (called fitting the model) used to estimate the parameters from a 
sample of observed daily deaths, this being used to prepare Fig 1 in the main text. Let the 
sample of observed number of daily deaths be denoted by 

𝐙 = {𝑧௧   𝑡 = 1,2, … 𝑁}     (7) 

where 𝑧௧ is the number of deaths on day t and 𝑁 is the number of days observed. If the 
observations were made without error and if, with the right parameter values are correct for 𝛉, 
then the death trajectory {𝑍(𝑡, 𝛉)   𝑡 = 1,2, … , 𝑁} would match the observed deaths Z in (7). So 
the model would be clearly successful in explaining deaths. 

To include statistical uncertainty in the model we assume instead 

   𝑧௧ = 𝑧(𝑡, 𝛉) + 𝑒(𝑡)    𝑡 = 1,2, … , 𝑁     (8) 

where 𝑒(𝑡) is random error. For simplicity the  𝑒(𝑡) are assumed to be normally and 
independently distributed (NID) with standard deviation 𝜎, i.e. 

   𝑒(𝑡) ∼ NID(0, 𝜎²), so that   𝑧௧ − 𝑧(𝑡, 𝛉) ∼ NID(0, 𝜎²)   (9) 
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The logarithm of the distribution of the sample is then 

      L(𝐙|𝛉) =– (𝑁/2)ln(2𝜋) – 𝑁ln𝜎– [1/(2𝜎ଶ)] ∑ [𝑧௧  –  𝑧(𝑡, 𝛉)]ଶே
௜ୀଵ  (10) 

where 𝐙 is the random argument, and the parameters 𝛉 are fixed. In ML estimation, this is 
turned on its head so that Z is simply the known sample of observations now regarded as fixed 
and we write L as L(𝐙|𝛉) = L(𝛉|𝐙)) calling it the (log)likelihood to indicate that it is now treated 

as a function of 𝛉. The ML estimator 𝛉෡ is simply the value of 𝛉 at which L(𝛉| 𝐙) is maximized. i.e. 

𝛉෡ = argmax 𝛉{(L(𝛉| 𝐙)}.       (11) 

Nelder-Mead numerical search for the maximum was used. This goes through different 𝛉௜ i=1, 

2, 3,… comparing the different L(𝛉௜, |𝐙) to find 𝛉෡, the best 𝛉. 

To simplify description of the estimation process, only fitting to deaths data, Z as in (7) has been 
described, but the method extends straightforwardly to include other data samples. For example 

        𝐘 = {𝑦௧    𝑡 = 1,2, … , 𝑁}      (12) 

where 𝑦௧ is the number of active cases on day t. Fitting simultaneously to both Y and Z can be 
carried out by adding to the right-hand side of (10) a corresponding set of terms for Y. 
Numerical solution of the differential equations requires initial values for S, E, I, R. These are 
essentially scale invariant with (𝑆 + 𝐸 + 𝐼 + 𝑅) constant and independent of t. So the numerical 
integration can conveniently be done using S(0, 𝛉) = 1, E(0, 𝛉) some small quantity 
subsequently adjustable as its initial value 𝑒଴ is a parameter; with I and R also initially zero. The 
population size, also a parameter, is only needed to provide scaled values S, E, I, R at each 
step for comparison with the data Y and Z. 
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