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ABSTRACT

Statistical resampling methods provide a simple, versatile and effective means of comparing and validating simulation models. The purpose of this paper is to introduce the framework that the author has found very effective in tackling a wide range of practical situations. Though the methods of analysis discussed are available through the more specialist statistical packages, the main message of this paper is that resampling is actually easily implemented on spreadsheets and does not need specialist knowledge to use effectively. The commonly occurring problems of input modelling, model validation and model comparison in simulation are considered in detail to illustrate how they can be tackled using resampling.
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INTRODUCTION
This paper discusses two topics and aims to show that they combine very effectively in the analysis of simulation output data.
The first is the use of a statistical model to analyse simulation data. Despite the extensive literature that exists on the subject (see for example Kleijnen and van Groenendaal, 1992 or Barton 1998), use of an explicit statistical model in simulation experiments is still relatively unusual. Often a statistical model is used implicitly and informally. One aim of this paper is therefore to show that a little more trouble in setting up a statistical model to represent simulation data, especially output data, is repaid by providing a far clearer framework for clarifying a whole range of issues that a simulation worker is typically interested in studying. We discuss statistical models and how they can be used in studying various problems of simulation input modelling and output analysis in the (next) section: Statistical Models and their Use in Simulation Analysis. 
The second topic is that of resampling or bootstrapping (we shall use the terms synonymously). Discrete-event simulation experiments produce outputs of interest that are random quantities, and typical questions involve whether the output obtained from simulation runs accurately reflect the behaviour of the system being investigated or whether outputs obtained under different conditions are similar or not. Such questions inevitably boil down to the single key question: What is the probability distribution of the outputs of interest? Resampling provides a remarkably general, simple and effective answer to this question. It is a simple mechanism for numerically investigating the distributional properties of random quantities. It does not require use of advanced or sophisticated statistical methods. Resampling is discussed in the section on Bootstrap Resampling.
We shall show how resampling using a statistical model can be applied in an easy and natural way to tackle two of the most commonly occurring types of problems in simulation analysis:


(i) Comparison of a data sample with a parametric model. Examples are: Input Modelling and Validating a Statistical Model of Simulation Output;

(ii) Non-parametric comparison of two data samples. Examples are: Comparing of Outputs of Different Simulation Models and Comparing Output from a Simulation Model against Observed Real Output.
Explicit examples will be given in the next section when we discuss statistical models. We will then go on to discuss how resampling can be used to solve the two problem types, using these examples for illustration.
Resampling methods come from general statistical methodology and indeed the literature on it is vast. Chernick (1999) shows how generally applicable is the bootstrap listing some 83 pages of carefully selected references. Our focus is on the uses of resampling methods in the context of simulation experiments and with this in mind our references list only those most relevant to our discussion. Additionally we have tried to limit citations to material that focuses on the methodology rather than specific applications.

Our focus on resampling in the context of simulation can give rise to situations that are unusual. Thus, for example, one form of resampling: parametric bootstrapping is often dismissed as being not particularly useful (See Chernick, 1999, §6.2.3). However our discussion of goodness of fit methods for validation makes use of parametric resampling in a fairly novel way and we show that it provides a simple and very effective solution to a problem that is otherwise often rather difficult. The use of parametric bootstrapping to validate specifically an input model was originally suggested by Cheng, Holland and Hughes (1996), but our treatment here shows the generality of the approach.
Similarly the method that we give for comparing two data samples was proposed by Kleijnen, Cheng and Bettonvil (2001) for validating simulation data against observed real so-called trace data, but our treatment here shows the generality of the approach for comparing any two different data samples.
STATISTICAL MODELS AND THEIR USE IN SIMULATION ANALYSIS
In this section we discuss how problems of validation and comparison can be defined using statistical models. Specific examples are given and these will be used to illustrate the bootstrapping methods discussed in the remainder of the paper.

Figure 1 illustrates our viewpoint. The system under study is represented by the main box in the middle. Suppose first that this is a real system. The system produces output information, which we simply call output and denote by Y (here, and in what follows, a bold-face symbol represents a vector quantity). We suppose Y is a sample of n observed values of the output, coming from the real system:






Yi 

 i = 1, 2, ..., n.






(1)
It will be assumed that n > 1 so that the situation where we have only a single replication will not be considered in this paper. In fact, as we are usually interested in assessing the variability of the Yi, we shall implicitly assume that n is large enough to allow this to be adequately done. Thus n should not be smaller 5, and ideally should be 10 or greater.
We also have input quantities, whose values are expected to influence the output. The inputs are divided into two types. The input X = (X1, X2, … , Xk) is a vector of k explanatory variables. These are known quantities and indeed may possibly be decision variables under the control of the investigator. The input θ = (θ1, θ2, …, θp) is a vector of parameters which influence the output but whose values are not controllable and possibly not even known. If known then θ can be considered to be a direct input into the simulation and this is depicted in Figure 1 (Case A). If θ is not known then we assume it can be estimated using data or past information, s, containing information about 
[image: image142.wmf] 

 

 

 

 

 

Null Distribution

                     

    

 

Sample

                            

Test Statistic

 

F

0

(

y

)

 

Y

 

T

(

Y

)

 

. This situation is also depicted in Figure 1 (Case B). In this case it is the estimate, which we write as 
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 using a circumflex to denote an estimated quantity, that is the input to the system.
In addition, the output Y will be stochastic. This will be assumed to arise because Y depends an input stream of random variables, 
[image: image4.wmf]u

, that for simplicity can be taken to be uniform U(0,1) variables, which may be transformed into other distributions possibly depending on the inputs X and θ. Thus we do not have to consider 
[image: image5.wmf]u

 explicitly, but can simply focus on the inputs, and on Y itself (this being a random variable).
Figure 1: The Situation under Study.
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An implication of our assumptions is that though 
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 may be unknown we expect its value to be unchanged when each of the n Yi values are observed. For simplicity we will make the same assumption about X assuming the same value is used in all observations. The Yi are thus independent and identically distributed and the sample Yi,  i = 1, 2, ..., n, is thus a random sample. The full experimental situation where the Yi are obtained at different combinations of input settings X is a very interesting one, but would take us into the area of design of experiments that is beyond the scope of this paper.
Though we may be interested in Y itself we shall assume that our main interest is in some characteristic property or function of Y which we write as T(Y). This aspect is also included in Figure 1.
In addition to depicting the situation where the output data has been obtained from a real system Figure 1 also illustrates the case where we have constructed a simulation model and have made simulation runs with it. The observations Yi are then simulated output data, but are otherwise no different from real data. This is indicated in Figure 1 simply by replacing the real system in the central block by a simulation model. All other blocks remain the same.
The following is a typical example of the situation depicted in Figure 1 for the case where the system under study is a simulation model. We shall use this example repeatedly thoughout the paper. 
Toll Booth Example: In a simulation study of the operation of toll booths suppose that the interest is in estimating the average waiting time of vehicles. The interarrival times are to be modelled as exponentially distributed random variables with a given arrival rate λ. The gamma distribution with density function
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(2)
is to be used as the model of service times. C, the number of toll booths open is set to just one. In this case we would treat λ and C as input variables of type X, whilst 
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and 
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 are regarded as input parameters of type 
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. A total of n runs are to be made, each consisting of the simulation of the service of m vehicles, with as output, Yi, the observed mean waiting time of the m vehicles. The expected waiting time E(Y) can be estimated by the overall sample mean
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so that 
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□
The use of the gamma distribution (2) in Toll Booth Example to model the service times is a typical instance of the use of a statistical model in a simulation study.  Figure 1 depicts various points where statistical models might be used. The guiding principle is that a statistical model can be used to represent the behaviour of any of the random quantities appearing in the figure namely: s, 
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, Y, and T(Y). (Note that 
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 and T(Y) are functions of the random quantities s and Y respectively and so are indeed random variables in their own right.)
The term statistical model is conventionally used when it represents the behaviour of random variables occurring in a real system. However a statistical model can be used just as well to represent the behaviour of random variables occurring in a simulation model. In this latter case, the statistical model is a model of a model, so to speak – and this is when the term metamodel is sometimes used.
We shall be considering two forms of statistical model: parametric and non-parametric.
The use of the gamma distribution to model service times in the Toll Booth Example is a typical use of a parametric model and gives rise to the first of our modelling problems. We continue to use the Toll Booth Example to illustrate.
Input Modelling Example: In the Toll Booth Example we have already selected the gamma distribution with density (2) as the service time distribution. Suppose that the parameters 
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 of the distribution are unknown, but that we have some existing real service time data, s. The problem then is to fit the gamma distribution by estimating 
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 from this data. This is an example of an input modelling problem (See Law and Kelton 1991, Ch. 6). (The alternative, where bootstrapping is used directly for generating inputs has been discussed by Demirel and Willemain (2002) and by Willemain, Bress and Halleck (2003) but we do not discuss this direct from of resampling here.) We use the method of maximum likelihood (ML), to estimate the parameters (see Stuart and Ord 1991, Ch. 18). This is a well established and often used technique, giving rise to estimates with easily calculated asymptotic properties.
The following is a random sample of 47 actually observed times in seconds taken to process vehicles at a toll booth on the Severn Bridge:
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The ML estimates are
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 for this data set.





□
A question that arises with the use of any parametric model is whether it has the right characteristics to accurately represent the distribution of the data of interest (assuming its parameters are appropriately estimated). This is a goodness-of-fit (GOF) problem. The parametric model is validated if it is a good fit.
The important characteristic of the GOF problem is that we compare data which is numeric and non-parametric (in the toll booth example it is real data, but it could just as well have been simulated data) with a parametric statistical model.  This is the first of the two problem types of main interest in this paper.
We give three examples of the GOF Problem arising in the Toll Booth example.

GOF Example 1. We wish to compare the sample of observed toll booth service times given in the Input Modelling Example with the fitted model 
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 to see if the latter is an adequate representation of the (unknown) true distribution of the sample.






□
GOF Example 2. This is just a variation of GOF Problem 1, but occurs in many situations, when T(Y) is a sample mean. For instance, suppose, in the Toll Booth example, we are interested in assessing the accuracy of the estimator 
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 for estimating the expected waiting time. As 
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 is a sample mean, it is natural to apply the Central Limit Theorem (See Stuart and Ord, 1991) and assume a normal distribution for it, namely:
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where
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 and 
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 are the mean and standard deviation of the individual Yi, and to estimate these from the sample Yi ,  i = 1, 2, ..., n. Though asymptotic normality for a mean is often assumed, when the data is skew the sample sizes needs to be quite large before the assumption is valid. A GOF test of the adequacy of a normal model is therefore needed to verify the assumption.



□
GOF Example 3. When the method of ML is used to obtain the parameter estimates 
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, it is then well known that 
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 will be asymptotically normally distributed under general conditions and normality is commonly assumed in consequence. However, since this is only an asymptotic result, the normal model may need to be validated when sample sizes are small.




□
In the next section (Bootstrap Resampling), we discuss a resampling method for tackling the GOF problem, and we demonstrate how the method is applied to GOF Examples.
At this juncture it should be pointed out that bootstrap resampling can sometimes be used ( in a different way to its use in the GOF problem) to enable a distribution of interest to be modelled numerically without having to assume a parametric distribution at all. The GOF problem then does not arise. We discuss how this is done, also in the next section, where we will be considering the following explicit example of a non-normal data set that would be difficult to fit a parametric distribution to.
Non-normal Data Set 1: In the Toll Booth Example, exponential interarrival times with mean 
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 were used and the service times were sampled from the gamma distribution with parameters values set to 
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, the ML values obtained in the Input Modelling Example. The following are the observed average waiting times, 
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, of 1000 vehicles obtained from 50 independent runs of the simulation model, each starting with the toll booth queue empty. 
Observed Average Waiting Times:

17.68  15.55  17.89  16.85  21.84  16.33  18.12  17.57  19.43  14.38 

20.72  14.11  16.62  14.26  17.53  16.26  14.45  15.17  14.94  14.74 

20.63  16.86  15.60  18.76  15.69  14.36  17.50  16.86  14.89  15.67 

17.79  14.97  16.18  15.46  15.68  16.78  14.81  15.15  19.98  15.60 

14.48  14.74  17.10  14.14  18.05  16.18  15.80  16.43  19.09  16.44 

The data is very skewed, so that the normal model is not appropriate for these individual Yi . The worry is that it may not even be satisfactory for the overall mean 
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. This is a specific instance of GOF Example 2. When we discuss bootstrap resampling we shall show how it can be used here to construct a confidence interval for the unknown true mean of 
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without having to use a parametric model for the distribution of 
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□
We now consider the second problem of main interest in this paper. This is where we wish to compare the outputs from two systems. We might for instance be interested in comparing the output of a simulation model with that of a real system. This is a problem of Simulation Model Validation. However we could just as well be comparing the outputs of two simulation models to see if there are differences between the two. This is a problem of Comparison of Simulation Models.
In both problems the comparison is between two data samples, so unlike the GOF situation, no parametric model is involved. The methodology for tackling either problem is the same. The following is an example based on the Toll Booth example. 
Non-normal Data Set 2: We study the effect of changing the shape of the service time distribution in the simulation model used to produce Non-normal Data Set 1 (which we denote here by Y). We change the shape parameter α value to half the MLE value using 
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. This keeps the means of the two distributions the same, but makes the new distribution much more skew. The following are the observed average waiting times of 1000 vehicles obtained from 50 independent runs of the modified model:
Observed Average Waiting Times:


17.91  15.54  18.05  16.05  23.20  15.84  19.09  19.50  19.96  14.91 

23.56  14.81  16.68  13.97  15.60  16.22  15.15  16.71  16.81  16.82 

21.32  16.56  16.61  19.10  17.00  16.08  19.69  17.97  16.54  16.11 

18.82  16.62  17.04  15.71  15.98  19.63  20.52  19.08  26.14  15.41 

14.58  16.19  15.63  15.83  19.59  16.78  18.11  17.32  18.13  16.78 

We denote this second sample by Z. We will not make any specific assumptions about the distributional form of the observed average waiting times, Yi, Zi, apart from the fact that they are independent. The problem is to compare the two samples Y and Z. We show how this is done using resampling in the section on Comparing Samples. 








□

It should be stressed that the method we present in the section on Comparing Samples does not depend on how the samples arose. Thus, though we shall be illustrating the method by using it to compare the two non-normal data sets which happen to be both simulated, the method applies equally to the comparison of a real world trace against a sample obtained from a simulation. This latter comparison is an especially important one for model validation and has been discussed by Kleijnen, Cheng and Bettonvil (2001).
BOOTSTRAP RESAMPLING
Bootstrapping is an extremely versatile method of carrying out statistical analysis. A thorough introduction is given by Efron and Tibshirani (1993). Detailed methods are provided in the handbook by Davison and Hinkley (1997). A very accessible and succinct introduction is given by Hjorth (1994, Chapter 5). 
For some initial discussion of bootstrapping in simulation see Barton and Schruben (1993), Kim et al. (1993) and Cheng (1995). The use of bootstrapping in simulation output analysis has been discussed by Shiue, Xu and REA (1993), Friedman and Friedman (1995) and Park et al. (2001).
In order to simplify and make clear our later discussion we give a brief summary of the method. 
Given a random sample of observations 
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 for i = 1,2, ... n, the empirical distribution function (EDF) is defined as:
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Examples of EDF appear in Figures 4 and 13.

Bootstrapping relies on the following:
Fundamental Theorem of Sampling: As the size of a random sample tends to infinity then the EDF constructed from the sample will tend, with probability one, to the underlying cumulative distribution function (CDF) of the distribution from which the sample is drawn.
This result when stated formally is known as the Glivenko-Cantelli Lemma. Stated more simply, the EDF estimates the (unknown) cumulative distribution function (CDF) of Y with guaranteed increasing accuracy as the sample size increases.
The Basic Bootstrap
The basic process of constructing a given statistic of interest is illustrated in Figure 2. This depicts the steps of drawing a sample Y = (Y1, Y1, ..., Yn) of size n from a distribution F0(y), and then calculating the statistic of interest T from Y. Statistical questions about T requires us to know the distribution of T and this may be difficult to obtain, even if F0(y) is known.
Now if we could repeat the basic process depicted in Figure 2, a large number of times, B say, this would give a large sample {T1, T2,..., TB} of the statistic of interest, and, by the Fundamental Theorem of the previous subsection, the EDF of the Ti will tend to the CDF of T as B tends to infinity.
Figure 2: Basic Sampling Process
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To apply this result requires repeating the basic process many times. This is likely to be too expensive and impractical to do. The bootstrap method overcomes this problem by instead sampling from the EDF formed from the sample Y. This will be a good approximation to sampling from F0(y) as, again applying the Fundamental Theorem, we know that the EDF will be close to F0(y), at least when n is large.
Sampling from the EDF of Y is exactly the same as sampling with replacement from Y. We carry out this process B times to get B bootstrap samples Y1*, Y2*, ..., YB*. (We have adopted the standard convention of adding an asterisk to indicate that a sample is a bootstrap sample. Also note that in practice typical values of B used for bootstrapping are 500 or 1000.) From each of these bootstrap samples we calculate the corresponding bootstrap statistic value Ti* = T(Yi*), i = 1, 2, ..., B. There is no problem in calculating the Ti*, as the procedure for  doing this must already have been available to calculate T from Y.
The process is depicted in Figure 3 and the pseudocode of the steps needed, showing the great simplicity of the process, is as follows.
The Basic Bootstrapping Algorithm


//  y = (y(1), y(2), ..., y(n)) is the original sample.


//  T=T(y) is the calculation that produced T from y.

For k = 1 to B

{


// Form a bootstrap sample by sampling with replacement from y


For i = 1 to n


{
//  Unif() returns a uniformly distributed U(0,1) variate each time it is called.



j = 1 + Int[n × Unif()]  //  Int denotes integer part of.



y*(i) = y(j)



}


T*(k) = T(y*)

}

//The EDF of theT*(k) is our estimate of the CDF of T.

Figure 3: Basic Bootstrap Process
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We give two immediate examples of the bootstrap in use. Strictly the examples do not address either of the two main problems of interest in the paper. However they do illustrate the ease of application of bootstrapping, and more importantly they show that bootstrapping can provide more robust and reliable results than use of, say, asymptotic normality theory.
Bootstrap Example 1: Consider the simulation model used to produce Non-normal Data Set 1. If we treat this sample as being the output Y then we can use 
[image: image43.wmf]Y

 to estimate the expected waiting time. We can construct a confidence interval for the expected waiting time by applying the basic bootstrap algorithm to the sample Y with 
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 as the statistic of interest T. Figure 4 gives the EDF formed from 500 bootstrap mean waiting times Ti* = 
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. There are a number of different ways of constructing confidence limits. A careful review is given in Davison and Hinkley (1997). We illustrate using the percentile method. The method is only first order accurate and more accurate variants like the BCa exist (see Davison and Hinkley, 1997). However these tend to be much more elaborate to set up and difficult to use. The percentile method  is intuitively obvious and very easy to implement and quite adequate for our discussion. For our problem it reduces simply to taking the lower and upper 5% percentiles, 14.2 and 20.7 as the limits of a 90% confidence interval for the mean waiting time. These are depicted in Figure 4, as is the original sample mean 
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 = 16.5. Notice that the confidence interval is very skew. This is an indication that the tempting assumption that 
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 is normally distributed (because it is the the mean of a sample of size 50) is not in fact a good one. We shall return to this example later when we confirm more formally using a bootstrap GOF test that the bootstrap means  Ti*  are not normally distributed. 








□
Figure 4: EDF of Bootstrap Means 
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Though we have illustrated by bootstrapping just the sample mean, it should be emphasised that bootstrapping can be used for many other statistics like the median, standard deviation, or percentiles. Bootstrapping does however require the statistic T(Y) to be a suitably smooth function  of the Y. Most importantly bootstrapping will not work if T  depends on just a few unrepresentative Yi. Thus it cannot be directly used to investigate the distribution of a maximum, for example. A technical discussion is given in Shao and Tu(1995) and also in Davison and Hinkley (1997).

Bootstrap Example 2. Consider the GOF Problem 3. The MLEs 
[image: image50.wmf]α

ˆ

and 
[image: image51.wmf]β

ˆ

 in the Input Modelling Example are asymptotically normally distributed. The question is whether the sample size of 47 is large enough to assume normality. We can apply the bootstrapping process of Figure 3, here by sampling with replacement from the original sample of service times and simply treat the MLE, 
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 as being the statistic T of interest. Figure 5 is a scatter plot of 500 bootstrap MLEs 
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 showing the distinct curvature of the scatter. Had the MLE’s been jointly normally distributed the scatterplot would have been ellipsoidal. This clearly shows the limited accuracy of the assumption of asymptotic normality and the effectiveness of bootstrapping in demonstrating this. We shall confirm this finding later when we use a formal GOF test to show that the marginal distributions of the MLEs are significantly non-normal.

A point of interest that we shall not discuss is how uncertainty about the true values of 
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and 
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 should be incorporated into the analysis of the output of the simulation model. See Cheng and Holland (1997) for a discussion of this problem and the possible use of bootstrapping to resolve it.
□
Figure 5: Scatterplot of 500 bootstrap 
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, Input Modelling Example
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GOODNESS OF FIT
The Parametric Bootstrap
There is a second method of bootstrapping that is particularly useful in the GOF problem. Suppose we have fitted a parametric model to data. If the model is the correct one, then the fitted parametric model will be a close representation of the unknown true model. We can therefore generate bootstrap samples not by resampling from the original data, but by sampling from the fitted parametric model. This is called the parametric bootstrap.
The process is depicted in Figure 6. It will be seen that the method is identical in structure to the basic bootstrap of Figure 3. The only difference is that in the parametric version, samples are drawn from the fitted parametric distribution.
Figure 6: Parametric Bootstrap Process


[image: image60]
We shall see shortly how parametric bootstrapping can be used to validate an input model using a GOF test, after we have discussed the framework of GOF tests.
Goodness of Fit Statistics
The validity of a model can be tested using a goodness of fit test (GOF test). The best general GOF tests directly compare the EDF with the fitted CDF. Such tests are called EDF goodness of fit tests. Of these the Cramér - von Mises test and the Anderson - Darling test, defined below, are generally to be recommended (see D’Agostino and Stephens, 1986) The main reason why these tests are not as widely used as they should be is that, because of their sensitivity, their critical values are very dependent on the model being tested, and on whether the model has been fitted (with parameters having to be estimated in consequence). This means that different tables of test values are required for different models (see D’Agostino and Stephens, 1986). Resampling overcomes this difficulty.
First we describe the tests in more detail. 
An EDF test statistic tests if a sample has been drawn from the distribution with CDF F0(y), by looking at the difference between its EDF 
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Here ((y) is a weighting function. Special cases are the Cramér-von Mises test statistic:
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where ((y) = 1, and the Anderson-Darling test statistic:
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(7)

where ((y) = [F0(y)(1 – F0 (x))]-1 . The Anderson-Darling statistic (which is conventionally denoted by A2) is easily calculated using the equivalent formula
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where 
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 is the value of the fitted CDF at the ith ordered observation.
The basic idea in using a GOF test statistic is as follows. When the Y sample has really been drawn from F0(y) then the Fundamental Theorem of Section 2 guarantees that its EDF 
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 will be close in value to F0(y) across the range of possible y values. The test statistic T will then have what is called a null distribution of values that will be relatively small compared with values that it would take if 
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 were very different from F0(y). If the null distribution is known, G(∙) say, then we can assess an observed value of T against this distribution by calculating its so-called p – value, which is defined by the equation 
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If the sample is drawn from a distribution different from F0(y) then the value of T will be relatively large compared with values it takes under the null. In this case G(T) will be close to unity, making the p-value small. We would therefore infer that T has not been drawn from the supposed null distribution.
Figure 7 illustrates the process involved in calculating a GOF test statistic for a parametric model in the null case. Here the correct model 
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 and it will therefore converge to this distribution. We need to calculate the distribution of T for this case. A complication arises because the difference between 
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 because it has been fitted to the sample. This has to be allowed for in calculating the null distribution of the test statistic.
Figure 7: Process Underlying the Calculation of a GOF Test, T

 Null Case: Fitted model 
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It will be seen that the GOF test hinges on being able to calculate the null distribution G. This is a big issue and has meant that many potentially powerful test statistics, like the Cramér - von Mises, have not been fully utilized in practice because the null distribution is difficult to obtain.
We show next how resampling provides a simple and accurate way of resolving this problem.
Bootstrapping a GOF statistic
If the process depicted in Figure 7 is repeated many times to produce a sample of T values, then the EDF of these Ti’s will converge to the CDF of T. This is almost certainly too expensive or impractical to do. However we can get a close approximation by replacing the unknown 
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. Resampling from the fitted parametric distribution is simply the parametric bootstrap previously described. The process is depicted in Figure 8, where 
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Figure 8: Bootstrap Process to Calculation the Distribution of a GOF Test, T
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Numerical Examples
We illustrate the methodology of the previous section by applying it to GOF Examples 1, 2 and 3 using the Anderson-Darling GOF statistic A2. The calculations were easily implemented on a spreadsheet using VBA macros.
GOF Example 1 (Continued).  In the Input Modelling Example we fitted the gamma model to 47 toll booth service times. The MLEs of the parameters for the gamma model were 
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. We consider the goodness of fit of this model.
The fitted CDF and PDF’s are depicted in Figure 9. The critical value of the test statistic A2 at the 5% level was estimated as 0.76. This was calculated from 500 bootstrap resamples as depicted in Figure 9. The EDF of this sample of bootstrap values was used to calculate the critical value.
The value of T, calculated from the original data, was 0.498 with a p-value of .21 which is not close to significance. This indicates that the gamma model is quite adequate.

By way of comparison, the procedure, repeated  but fitting the normal model instead, gave the following results.

The maximum likelihood estimates of the parameters for the normal model are 
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, these being respectively the mean and standard deviation. The fitted CDF and PDF’s are depicted in Figure 10. 

The critical value of the test value at the 5% level was estimated as 0.75. The value of T was 1.109 with a p-value of 0.006, indicating that the normal model is not a good fit. 

Figure 9: Gamma Fit to Toll Booth Data
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Figure 10: Normal Fit to Toll Booth Data
[image: image97.emf]CDF and EDF

0

0.2

0.4

0.6

0.8

1

1.2

-5051015

CDF

EDF

  [image: image98.emf]PDF and HDF

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5051015

PDF

HDF


GOF Example 2 (Continued). In Bootstrap Example 1, a confidence interval for the unknown true mean of Non-Normal Data Set 1 was calculated from the bootstrap sample Ti* = 
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 i = 1,2, ..., 500, of the sample mean 
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. The skewness of the confidence interval indicated that it would not be satisfactory to have assumed that 
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 is normally distributed. We can easily check this by fitting the normal model to the bootstrap sample 
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 i = 1,2, ..., 500 and testing the goodness of fit of the model by the bootstrap procedure of Figure 8. In fact the 
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 sample is so skew we need to check the fit just 20 observations to demonstrate non-normality of the sample. The Anderson-Darling Statistic comparing the fitted normal distribution with the sample 
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 i = 1,2, ..., 20 was 1.51. This exceeded by some margin the 90% critical value of 0.615 obtained by bootstrapping the Anderson Darling test statistic. 
GOF Example 3 (Continued). In Bootstrap Example 2, Figure 5, the scatterplot of 
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 in the Input Modelling Example, indicated that the distribution of the MLEs should not be treated as being normal. Again we can easily confirm this by fitting the normal model to the bootstrap sample 
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) and testing the goodness of fit of the model by the bootstrap procedure of Figure 8. The Anderson-Darling Statistic comparing the fitted normal distribution with just a subsample 
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 i = 1,2, ..., 20 was 0.657. This just exceeds the 90% critical value of 0.615, showing that 
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COMPARING SAMPLES

We now consider the problem where we have two samples of observations Y and Z and we wish to know if they have been drawn from the same or different distributions.
To illustrate the ideas involved we consider how a two sample version of the Cramer – von Mises test statistic (6), discussed by Anderson (1962), can be used to compare the samples. A convenient computational form for this is
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where  nY and nZ are the sample sizes of Y and Z, and ri  and sj are the ranks of the ordered observations of each sample when the two samples are pooled. Anderson provides special tables that are needed for the critical values. These are calculated from the null distribution of U, for when Y and Z have been drawn from the same distribution. This null situation is depicted in Figure 11.
The procedure for producing a bootstrap version of U under the (null) assumption that the two samples are drawn from the same distribution is simple. We obtain bootstrap samples Y* and Z* from just one of the samples Y say. The bootstrap process is given in Figure 12. In the Figure 
[image: image114.wmf])

|

(

~

Y

y

F

 is the EDF constructed from Y. Alternatively the EDF 
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 of the two samples Y and Z when they are combined, could be used.
The test follows the standard test procedure. We calculate the p–value of the original comparator statistic T relative to the bootstrap EDF of the {Ti*}. The null hypothesis that the two samples Y and Z are drawn from the same distribution is then rejected if the p–value is too small.
Figure 11: Calculation of the Comparator Statistic U under the Null Hypothesis that both samples Y and Z are from the same distribution.
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Figure 12: Bootstrap Comparison of Two Samples under the Null Hypothesis
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Example Comparing Two Simulated Data Sets. We illustrate the preceding discussion by comparing the Non-normal Data Sets 1 and 2 to see if the expected waiting time distribution changes significantly when the service time distribution changes. Figure 13 gives the EDFs of the two samples, whilst Figure 14 shows the EDF of the bootstrap Ui* for 1000 bootstraps. The original U value of 0.535 has a p–value of 0.030 showing a significant difference between the two samples at the 5% level. In fact Cheng and Jones (2004) show that the U statistic can be decomposed into components:






[image: image119.wmf]R

C

C

C

U

+

+

+

=

3

2

1

,
where a large value of C1, C2 or C3 respectively indicates a difference between the means, variances and skewness of the two samples. The values in the example are 
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, indicating that the main difference is in the means with possibly a difference in skewness as well.
Figure 13: EDFs of the Non-normal Data Sets 1 and 2
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Figure 14: EDF of Ui* Comparing the two Non-normal Data Sets
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CONCLUSIONS
We have considered two problem types: (i) Comparison of a Data Sample with a Parametric Model and (ii) Comparison of two Data Samples and shown through examples how they frequently occur in the analysis of simulation input and output data. We have considered how statistical models can be used to represent the behaviour of such data and how use of bootstrap resampling from these models allows properties of such data to be studied.
We have shown that the first problem type is a goodness of fit problem. Two of the examples, GOF Examples 2 and 3, show the use of bootstrapping to test if a fitted normal distribution is adequate. The normal distribution is often assumed based on an appeal to the Central Limit Theorem or to asymptotic normality theory. Our examples serve the additional purpose of showing that often this assumption is not warranted, even when sample sizes appear reasonably large.

Our discussion demonstrates the key attraction of the resampling approach. It allows the distribution of a complicated statistic of the data to be easily obtained numerically. In particular we have discussed how GOF statistics can be used to (i) compare a proposed statistical input model with observed real input data and (ii) validate of a statistical metamodel against actual simulation output, and have pointed out that they are methodologically identical. The key benefit of using resampling for GOF testing is that critical values of good GOF test statistics are frequently not easy to calculate theoretically. This has precluded the widespread adoption of what would otherwise be powerful test statistics. But with resampling, critical values are easily obtained. In effect bootstrapping allows one to construct tables of critical values as and when required as part of the analysis.

The other problem discussed is the use of bootstrapping to compare two samples directly without having to fit a parametric model first. This problem occurs (i) when validating the output of a simulation model against observed real data or (ii) when comparing the simulation output of two rival systems. Again we point out that the problem is methodologically the same in either case and can be handled rather neatly by bootstrapping. Because the analysis is carried out directly on the data, the only significant assumption made is that individual observations are independent. This condition can be relaxed so that bootstrapping of timeseries involving correlated observations is still possible. See Freedman (1984) and Basawa et al. (1989) for a time domain approach and Norgaard (1992) for a frequency domain approach to bootstrapping timeseries.
Our conclusion is that resampling should be used on a regular basis in simulation experiments. The ease of implementation has been emphasised by Willemain (1994). We support our claim by providing spreadsheet versions of the input modelling problem which fit a gamma model and a normal model to a random sample and which then check the GOF by bootstrapping. These can be downloaded from http://www.maths.soton.ac.uk/staff/Cheng/Teaching/JoSBootstrap/. The Website also holds a downloadable DLL macro for carrying out the comparison of two or more random samples, as well as a spreadsheet for running the macro.
We have only considered situations where we are analysing just one random sample, or are comparing two samples. Resampling can be extended to the problem of model selection where there are a number, k say, of competing models Fi(∙) , i = 1, 2, ..., k and the problem is to decide which model best fits the data.
Even more generally, bootstrapping can be used in full experimental situations where the effect on the output of many factors is considered. Examples of such situations are given in the author’s web page: http://www.maths.soton.ac.uk/staff/Cheng/Teaching/GTPBootstrap/.
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