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Abstract We consider resampling techniques in multiple linear regression where
the objective is to identify a subset of the full set of explanatory variables that best
captures the behaviour of the dependent variable, but using as few explanatory vari-
ables as possible. The total number of possible subsets or models grows exponen-
tially with the number of explanatory variables, so a full examination of all possible
models rapidly becomes intractable. The standard approach to this problem is to use
a sequential selection procedure which avoids having to examine all subsets. When
the number of explanatory variables is large there is a possible concern that good
models might be missed. It is also important to examine whether the selected “best”
model is the only good choice or whether other models might be equally satisfactory.
We show how bootstrap resampling can handle both concerns in a simple way. In
particular resampling enables a tractably small subset of good possible models to be
selected as well as providing a method for comparing these models systematically.
We describe the methodology and provide two numerical examples.

1 Introduction

This paper discusses the use of bootstrap (BS) resampling for tackling the well-
known, but awkward, problem of model selection in multiple regression, when the
number of possible explanatory variables is large. Our claim is that BS resampling
is a simple and effective approach for this problem with distinct advantages over
standard sequential methods that are often advocated and employed.

The ideas discussed in this paper were originally suggested for the exploratory
study of a complex system using discrete event simulation. The basic methods were
discussed by Cheng (2008) in that context. In this paper we discuss the method-
ology in more detail and more generally. In particular we consider the rationale
of the methodology more fully and how to use it with the Mallows C p criterion
which is often suggested for handling this problem (see Krzanowski 1998 or Wu

R. Cheng (B)
School of Mathematics, University of Southampton, Southampton, SO17 1BJ, UK
e-mail: r.c.h.cheng@soton.ac.uk

C. Alexopoulos et al. (eds.), Advancing the Frontiers of Simulation: A Festschrift in Honor
of George Samuel Fishman, International Series in Operations Research & Management
Science 133, DOI 10.1007/b110059 3, C© Springer Science+Business Media, LLC 2009

43



44 R. Cheng

and Hamada 2000, for example). The theoretical underpinning of bootstrapping in
multiple regression is well-established; we will collect together the key results to
underpin the methodology that we propose.

We suppose the dependent variable of interest is a (scalar) continuous random
variable denoted by Y and that Y is linearly dependent on P explanatory variables
X j , j = 1, 2, . . . , P . We are concerned with the model selection problem where
we are interested in identifying simpler models in which some of the explanatory
variables are omitted because they are actually unimportant. To avoid confusion we
shall, from now on, use the term “model” to indicate that we are selecting a subset
of explanatory variables, or factors, from the full set available, and use the term
“full model” to indicate when all P explanatory variables are included. There are a
total of 2P distinct subsets of the explanatory variables, so that this is the number of
models that we can choose from.

(Many authors exclude the null model y = ε and so take the total number of
distinct models to be 2P − 1 rather than 2P. However, though the null model is very
unlikely to be the best fit in applications, there seems no real reason for excluding it,
and its exclusion can lead to misinterpretation of results if it happens to be the most
appropriate model. We therefore do not exclude this possibility even if it is remote,
and so take the total number of possible models as 2P throughout this paper.)

Though the model selection problem is well known, the usually accepted meth-
ods of handling it are not always satisfactory. Wu and Hamada (2000) have dis-
cussed this problem at length. They considered the very well-known backward,
forward and stepwise explanatory variable selection methods and also Bayesian
strategies. The main problems with these methods are as follows.

The backward, forward and stepwise selection methods are all sequential, in
which explanatory variables are considered one at a time for possible inclusion, or
elimination. It is therefore possible, with non-orthogonally designed experiments,
simply because of the order in which explanatory variables are considered, to end
up with a selected model that does not include all those explanatory variables that
are important.

Use of a Bayesian approach avoids this difficulty, but a prior distribution for
explanatory variable coefficient values has to be chosen and there are also tech-
nical implementation issues, such as deciding on the length of “burn-in” period
and deciding when sufficient sampling has been carried out to ensure that adequate
convergence to the posterior distribution has taken place.

In this paper we consider the use of BS resampling methods to generate a large
number of data sets each with the same statistical distributional properties, at least
asymptotically, as the original data set. We can therefore deploy whatever method
we wish for selecting the model that best fits the original data sample (in some sense,
to be defined), and then gauge the adequacy of the selected model by studying how
consistently it is selected as the best fit in the BS samples, and how well it fits these
samples.

We shall use the C p statistic introduced by Mallows (1973, 1995) as the selection
criterion for choosing between different models, as it is readily calculated in terms
of ANOVA sums of squares and has a direct interpretation in terms of the prediction
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error, making it easy to understand and use. Several other criteria are asymptotically
equivalent (see Nishii 1984).

We also consider in this paper the problem of checking whether the selected
model is a sufficiently good fit. We are especially interested in the situation where
there are a large number of factors. There is the strong possibility that there will
be a number of models that are a satisfactory fit to the data. We need therefore
to have some means for gauging the adequacy of competing fitted models. Of the
existing methods that we have already mentioned, the Bayesian approach seems
most satisfactory in that a posterior distribution is obtained for the possible models,
so that it will be clear whether there is one single best model choice or whether
several competing models are equally or nearly as good. The Bayesian approach
is not entirely satisfactory in that it does not provide immediate information on
whether the models with the highest posterior probabilities are adequate or not.

In this paper we propose an alternative approach, based on bootstrapping, to
gauge the adequacy of selected models, as bootstrapping provides a natural way of
demonstrating when there is little to choose amongst several, possibly many, mod-
els. It is of interest to note that such methods are now beginning to be recognized as
very appropriate for model selection in simulation work. A good example is given
by Fishman (2006, Section 2.8).

In Section 2 we describe the linear statistical model that we will use and discuss
selection criteria for choosing between models. In Section 3 we discuss the Mallows
C p statistic and model selection. In Section 4 we discuss two ways of generating BS
samples. We also give two methods using BS resampling for identifying a small
but targeted number of promising models out of the full set of 2P possible models
for fitting to the original data. We also show how bootstrapping can also be used to
assess the quality of models that seem to be a good fit to the original sample. Two
numerical examples are given in Section 5, and a summary is provided in Section 6.

2 The Linear Model

We consider the (full) linear model

⎡
⎢⎢⎢⎣

Y1

Y2
...

Yn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 X12 X13 . . . X1P

1 X22 X23 . . . X2P
...

...
...

. . .
...

1 Xn2 Xn3 . . . Xn P

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

b1

b2
...

bP

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

ε1

ε2
...
εn

⎤
⎥⎥⎥⎦ , (1)

where Yi , i =1, 2, . . . , n are the observed output values obtained from n simulation
runs; Xi j are the explanatory variable values in each of the n runs; b j , j =1, 2, . . . , P
are the unknown coefficients corresponding to each of the P explanatory variables;
and εi , i = 1, 2, . . . , n are random errors. We have taken Xi1 = 1, i = 1, 2, . . . , n
so that b1 corresponds to a general mean. We thus treat the mean as a coefficient, so
that, as far as the model selection and fitting process is concerned, we do not treat it
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differently from the other coefficients. In what follows, when we refer to a “factor”
it is to be understood that this includes the general mean.

We shall assume that the εi , i = 1, 2, . . . , n are identically distributed with mean
zero and variance

Var(ε) = σ 2 . (2)

Such random errors are often assumed to be normally distributed, but we do not
assume that this is necessarily so in our formulation.

We shall, where convenient, write (1) in the alternative matrix form

Y = Xb+ ε . (3)

Equation (1) is the full model in which all explanatory variables are included. We
shall define a model as

m = { j1, j2, . . . , jp} (4)

containing just the factor indices

j1 < j2 < · · · < jp, p ≤ P ,

if (and only if)

b j1 �= 0, b j2 �= 0, . . . , b jp �= 0, and all other b j = 0 .

We shall write the observations corresponding to this model as

⎡
⎢⎢⎢⎣

Y1

Y2
...

Yn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

X1 j1 X1 j2 . . . X1 jP

X2 j1 X2 j2 . . . X2 jP

...
...

. . .
...

Xnj1 Xnj2 . . . XnjP

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

b j1
b j2
...

b jP

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

ε1

ε2
...
εn

⎤
⎥⎥⎥⎦ (5)

or in the matrix form

Y = X(m)b(m)+ ε. (6)

Where necessary we shall also write

p(m) = p (7)

for the number of nonzero coefficients in the model m. Also we will denote the full
model by M , so that p(M) = P .

When we fit the model m we shall use the least squares estimates (see Searle 1971,
for example)
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b̂(m) = [XT(m)X(m)
]−1

XT(m)Y (8)

for the unknown coefficient values, and

σ̂ 2(m) = [n − p(m)]−1
n∑

i=1

(
Yi − Ŷi

)2

= [n − p(m)]−1
[
Y− X(m)b̂(m)

]T[
Y− X(m)b̂(m)

]
(9)

for the unbiased estimate of the variance of the εi .

3 Methods for Selecting the Best Model

3.1 “Min C p” and “Unbiased Min p” Selection Methods

In this section we consider various issues involved in selecting which model we
think is the best. The first is the statistic to be used for measuring how well a
given model fits the sample. One of the most popular is the C p statistic proposed
by Mallows (1973) which is an estimate of the expected prediction error taking into
account the variance and bias of the fitted model. It is defined as

C p(m) = [n − p(m)]σ̂ 2(m)/σ̂ 2(M)+ 2p(m)− n . (10)

An alternative statistic is the Akaike Information Criterion (Akaike 1970), which
for the linear model reduces to AIC(m) = n log[σ̂ 2(m)] + 2p(m), up to a constant
depending on n but not on m. Asymptotically C p and AIC have the same distribution
(see Nishii 1984). However C p is perhaps more satisfactory for our purpose because
of its ease of interpretation. Mallows (1973) shows that if the model m (with p
factors) is satisfactory in the sense that it has no bias, then the expected value of C p

is close to p, that is:

C p ≈ p . (11)

However, if not all important factors are included, the expected value of C p will be
larger than p. A simple selection method is therefore the following.

“Min C p” Model Selection Method

(i) Consider each of the 2P possible models of (1) and for each model m calculate
C p(m).

(ii) Select as the best model that m for which C p(m) is minimum, with the expec-
tation that this model will be satisfactory if C p(m) ≤ p.

This provides a simple selection method if we are able to examine all possible
models.
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As mentioned previously, an exhaustive search of all possible models can be
avoided by using a sequential procedure, several of which are cited by Mallows
(1995). Mallows points out that if the “min C p” method is used in a sequential
procedure, and if m+ is a model containing one factor additional to those already in
a model m, then the extra factor would be worth including if

C p+1(m+)− C p(m) = 2− (S1/σ̂
2(M)) < 0 ,

where S1 is the 1-df sum of squares due to the additional factor. This criterion for
inclusion is therefore equivalent to carrying out a t-test, with the factor included if

t2 = S1/σ̂
2(M) > 2 . (12)

In the non-orthogonal case the final selected model is dependent on the order
in which factors are considered, but for an orthogonal design the sum of squares
S1 corresponding to each factor does not depend on the model fitted. Thus there is
no need for a sequential procedure in this latter case. The minimum C p is easily
obtained by fitting the full model and then applying the test (12) in “blanket” fash-
ion, i.e. simultaneously, to every factor sum of squares. The “min C p” model then
includes just those factors that satisfy (12).

The attraction of the orthogonal case is that the inclusion or exclusion of each
factor is decided just from fitting the full model. We shall consider use of the
same procedure in the non-orthogonal case, together with an adjustment to deal
with the problem of including too many unimportant factors. We still fit the full
model, and for each factor j calculate the so called t-value of its fitted coeffi-
cient b̂ j :

t j = b̂ j/s j , (13)

where s j =
√

d j σ̂ 2(M) is the estimated standard deviation of b̂ j , with d j the j th
entry in the main diagonal of the dispersion matrix, i.e.

d j =
[(

XTX
)−1]

j j . (14)

Our selected model is the one that includes only those factors j for which

|t j | > a , (15)

where a is a chosen critical level. If the true value of b j is b j = 0, then t j has
Student’s t-distribution with n − P degrees of freedom. If we therefore denote the
complementary distribution function for the absolute value |t j | by T̄n−P (·), then the
probability of success of the test (15) under the assumption that b j = 0, is

πa = Pr{|t j | > a} = T̄n−P (a) .
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A common alternative way of carrying out this test is to report the so-called
p-value of the estimate b̂ j , namely T̄n−P (|t j |), so that the factor j is retained if

T̄n−P (|t j |) < πa . (16)

It will be seen that (12) is the special case of (15) or (16) where a = √
2, with a

corresponding critical p-value in (16), when n − P is large, of πa = 0.1573. This
highlights a problem with using the “min C p” method for selecting a model when
the initial number of factors under consideration is large but where the (unknown)
true values of many coefficients are at or near zero, as the selection test (16) would
then include nearly 16% of such negligible coefficients in the model.

The effect of varying a can be seen more fully by considering the asymptotic
probability that a factor with coefficient of size b j = bs j is selected, when we allow
b to vary also. For simplicity we assume that n− P is large as then s j can be treated
essentially as being a known constant, so that b̂ j ∼ N

(
bs j , s2

j

)
. The probability we

would include the factor is then

Pr{Factor j is included in model} = 1− Pr{−as j < b̂ < as j }
= 1− Pr{−a − b < (b̂ − bs j )/s j < a − b}
= 1−Φ(a − b)+Φ(−a − b) , (17)

where Φ(·) is the standard normal distribution function. Figure 1 shows how this
probability varies as a function of b for different selected a. It will be seen that
somewhat larger values than a = √

2 in (12), such as a = √
6 or a = 3 might be

more appropriate in exploratory studies where we are only interested in identifying
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significantly large b and would prefer the probability of retaining a zero coefficient
to be much smaller than 16%.

The problem of unnecessarily including factors with zero coefficients is con-
trolled by choice of a suitably large a. We can underline this choice by using a
modified form of the “min C p” model selection method. From (11) we know it is
undesirable to select a model for which C p > p. This suggests the following model
selection procedure:

“Unbiased Min p” Model Selection Method

(i) Find the smallest p for which there are models m satisfying C p(m) ≤ p and let

p0 = min{p : C p(m) ≤ p} . (18)

(ii) Amongst all such models m, with p(m) = p0, find the one for which C p(m) is
minimum.

A simple way, at least in principle, of identifying this model is to plot C p ver-
sus p for all possible models and look at the lower envelope of this scatterplot
of points. For the orthogonal case where there are a large number of factors with
coefficient values uniformly distributed in the neighbourhood of zero with density
λ, Mallows (1995) has shown that the scatterplot has a lower boundary that is the
(convex) cubic polynomial in p

C p − P ≈ (P − p)3

12λ2
− 2(P − p) , (19)

and that this boundary intersects the line C p = p at P− p = 2
√

3λ. Figure 2 depicts
the scatterplot for the first example involving epoxide bonding that we will be dis-
cussing in Section 5, and this boundary and its intersection with the line C p = p are
clearly distinguishable.

Our selection method (18) will clearly select a model corresponding to a point
near this intersection. Specifically (18) requires finding the smallest p, p0, for which
there are points of the scatterplot below the line C p = p and then finding amongst
those models with p = p0, the one with minimum C p.

In the orthogonal case, models at, or near, this intersection point will tend to
include just those factors for which (15) is satisfied with a = √

3, which is equiv-
alent to using (16) to include just those factors whose estimated coefficients have
p-value less than πa = 0.083.

The condition (11) that C p ≈ p, obtains when the model contains no bias so that
the model is completely appropriate whilst having the smallest p possible. For this
reason we call (18) the “unbiased min p” method.

We delay discussion of how precisely to implement this method of model selec-
tion until we have discussed bootstrapping, as our proposed implementation will
involve bootstrapping intimately.
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3.2 Dimensionality Problem

As previously mentioned a critical issue that arises in model selection is the
dimensionality problem. Because the total number of possible models, 2P , grows
exponentially with P , inspection of all models is tractable only when P is small.
Thus even with just 20 explanatory variables there are already 1,048,576 models.
Our approach is to identify a set of promising models using bootstrap resampling.
The number of models in this set is easily controlled and so can be made much
smaller than 2P . But we shall show that it will almost certainly contain many
good candidate models. It is thus satisfactory to select a “best” model from this
subset.

We discuss bootstrapping in the next section.

4 Bootstrap Analysis

We shall use bootstrapping for two distinct purposes. Firstly, as already mentioned
in the previous section, it can be used for identifying a set of promising models.
However we shall also use bootstrapping to deal with the following second problem.

Once a model has been selected as being the best fit to a data set, we have the
problem of determining what might be termed the quality of the selected model. For
example, if we have used the “min C p” method to select the model, there may be
several models with values of C p(m) close to that of the best, so that we may not
be sure which model really is the best. This question would be answered if we had
many (independent but identically distributed) data samples and not just the one
original sample, as we could determine the best model for each sample and see if
the same model is best for all the samples. BS resampling enables such additional
data samples to be generated.

We first outline how BS samples are generated in the next subsection, before
going on to describe our two distinct uses of bootstrapping.

4.1 Bootstrap Samples

We describe first two ways of generating BS samples that asymptotically have the
same form as (1). The standard way is described, for example, by Davison and
Hinkley (1997). We take the modified residuals

ri = (Yi − Ŷi )/(1− hii )
1/2, i = 1, 2, . . . , n (20)

obtained from the fitting the full model M to the original data, where Ŷ = Xb̂ and
hii is the i th main diagonal entry in the “hat” matrix

H = X
(
XTX

)−1
XT .
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We then centre these so that their average is zero:

ei = ri − r̄ , i = 1, 2, . . . , n. (21)

A BS sample is then obtained by forming

Y ∗
i = Ŷi + e∗i , i = 1, 2, . . . , n , (22)

where the e∗i , i = 1, 2, . . . , n are a random sample obtained by sampling with
replacement from the ei , i = 1, 2, . . . , n.

A second way of resampling, parametric bootstrapping, is possible, if it can be
assumed that the random errors εi , i = 1, 2, . . . , n in (1) are normally distributed
and independent. The BS sample still takes the same form as (22) only now the e∗i ,
i = 1, 2, . . . , n are a random sample from the fitted normal distribution, i.e.

e∗i ∼ N
(
0, σ̂ 2

)
, i = 1, 2, . . . , n . (23)

In either case we write b̂∗ and σ̂ ∗2 for the estimates (8) and (9) obtained from
fitting the model (1) to the BS observations (22).

The justification for bootstrapping is provided by Freedman (1981, Theorem 2.2).
Assume that (1) and (2) hold and that X(n) is not random with

1

n
XT(n)X(n) → V which is positive definite (24)

as n →∞. Then

√
n
{
b̂∗(n)− b̂(n)

}
converges to N

(
0, σ 2V−1

)
(25)

and

σ̂ ∗(n) converges to a point mass at σ . (26)

The above result assumes that P is fixed as n → ∞. We shall tacitly assume this
in what follows. However a more refined treatment would allow P to become large
as n →∞. Shibata (1981) has discussed the selection of factors for this regression
problem. We shall not discuss this case explicitly here.

4.2 Bootstrap Generation of a Set of Promising Models

The “unbiased min p” method of selecting a best model does not require consid-
eration of all 2P models but only those near p0, as defined in (18). Our first use
of bootstrapping is therefore to generate a set of promising models. The number
of models in this set does not need to be anywhere near 2P , but it does need to
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be large enough to enable the lower boundary (19) to be clearly identified, at least
near its intersection with C p = p. Ideally it needs to contain all the models with
scatterplot points near this intersection point. With these considerations in mind,
our first proposed methods is:

“One Model per Sample” Generation of Promising Models by Bootstrapping

Step (1) Fit the full model to the original data and use this fitted full model to gen-
erate B BS samples each of the form (22).

Step (2) Set a critical t-value, a, (in view of our discussion in Section 3.1, we used
a = √

3) and construct one promising model for each BS sample as follows.

(i) Fit the full model, M , to the sample and calculate the t-value, t j , as
defined in (13), of each of the fitted coefficients, b̂ j , j = 1, 2, . . . , P .

(ii) Include in the promising model just those factors with t j satisfying

|t j | ≥ a ;

see (15) above. Not all the promising models obtained in the above pro-
cess will be distinct (in the sense of each model containing a subset of
factors that is different from those of all other selected models). Denote
the set of distinct models by S.

The above method produces at most B promising models, but can be far fewer,
if the same model is repeatedly obtained from different BS Samples. If it were felt
that the number of models needs to be increased, especially as we would want to
include most if not all models satisfying p = p0 and C p ≈ p, then the following
variant of the “One model per sample” adds models in a straightforward way.

“Many Models per Sample” Generation of Promising Models
by Bootstrapping

Step (1) Fit the full model to the original data and use this fitted full model to gen-
erate B BS samples, each of the form (22).

Step (2) For each BS sample:

(i) Fit the full model, M , to the sample and determine, as defined in (13),
the t-value, t j , of each of the fitted coefficients, b̂ j , j = 1, 2, . . . , P .

(ii) Order the coefficients by their |t j | values:

|t j1 | ≥ |t j2 | ≥ · · · ≥ |t jP |, (27)

so that b̂ j1 is the most significant.
(iii) Set a critical t-value, a (we used a = √

3 as before), and include all the
following models in the promising set S:
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m1 = { j1}
m2 = { j1, j2}

...
mk = { j1, j2, . . . , jk} ,

(28)

where the last factor jk satisfies

|t jk | ≥ a > |t jk+1 |. (29)

Thus the model mi is the one where the i most significant factors have been retained,
with a cutoff that only factors with t-level greater than a are allowed in a model.
So the last model, mk in (28) is the one that includes just those coefficients with
|t |-value a or greater, this being the sole model selected in Step (2) of the “One
model per sample” method.

4.3 Bootstrap Quality Assessment of Selected Best Model

Once a set of promising models has been obtained, we can use the “unbiased min
p” method to select the “best” model. That is we fit each promising model to the
original data set, calculating C p for each model; then we identify p0 as in (18), and
select as the best model the one with the smallest C p subject to p ≤ p0 (checking
that it satisfies the condition C p ≤ p).

We can now use bootstrapping to study the quality of the selected model. This is
most easily done by adding the following steps to either of the bootstrap methods
proposed in the previous section for generating a set of promising models.

Bootstrap Assessment of Selected Best Model:

Step (3) For each of the B BS samples, fit the set S of promising models, subject
to the restriction that only models where p ≤ p0 are considered (we shall
denote this restricted set of promising models by S0) and calculate the C p

value for each model, selecting as the best model for this sample, that which
minimizes C p.

Step (4) Display the models of S0, ranked in order of the frequency with which they
are selected as being the best model in the B BS samples, displaying these
frequencies as well.

Step (5) Display the empirical distribution functions of the C p values of a selected
number of those models in S0 most frequently selected as being the best.

Let α(m) be the probability that model m will be selected as the best model in the
sense of minimizing C p amongst all models with C p ≤ p0. Step (3) estimates these
probabilities by fitting all the models in the restricted set S0 of promising models to
each of the BS samples and then selecting the best model (for the given BS sample)
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from this set. Note that, out of the full set of 2p models, those that are not a good fit
will have very little probability of being included in the set S, because of the way
S is constructed. Hence they would not be considered for possible inclusion in S0.
Nevertheless every model has a positive probability of being included in S. Thus
asymptotically, as B →∞, the restricted set S0 of promising models considered in
Step (3) above must tend to the full set of all models with p ≤ p0. This holds for
either method of generating the set of promising models described in Section 4.2.
Thus, as B → ∞, Step (3) will converge to the exact situation where every model
satisfying p ≤ p0 is considered for possible selection as the best. Hence, for each
model m, α(m) can reasonably be estimated from the frequency with which m is
selected as being the best model in Step (3).

The version of Step (3) given above concentrates on models with p ≤ p0, where
p0 is calculated from the original sample, in order to check how well this value p0

performs. Different variants of Step (3) are possible. An alternative would be not
to impose the condition p ≤ p0 at all, but instead simply to apply the “unbiased
min p” selection procedure to each BS sample separately, using the full set S of
promising models with each BS sample.

In Step (4) we simply display those models that have been most frequently
selected as being the best fit.

The point of Step (5) is to assess the behaviour of the C p values of those models
that have been most frequently selected as being the best fit. For such a model to be
satisfactory one would expect the distribution of its C p value, over the BS samples,
to be concentrated mainly in the region where C p ≤ p.

5 Numerical Examples

We give two examples. Both involve readily accessible real data samples. The first is
a data set where the design matrix is orthogonal. As already remarked immediately
after (12), the obvious strategy in this case of applying a test such as (12) simulta-
neously to each estimated coefficient gives an unambiguous selection strategy and
cannot really be bettered. The analysis is thus straightforward in this case. How-
ever we include the example simply to demonstrate the way the resulting bootstrap
analysis works. The second was discussed by Cheng (2008). Here we discuss the
selection method more fully.

5.1 Epoxide Bond Example

The first example is data given by Williams (1968) and reproduced in Wu and
Hamada (2000, Table 8.6). This measured the adhesion of an epoxide bonding sys-
tem in an orthogonally designed experiment with, including a general mean, 25
factors, and 28 observations.

Our analysis is in two stages as set out in Sections 4.2 and 4.3.
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Fig. 2 C p versus p plot of 320 promising models found for the Epoxide Bond data using the “One
model per sample” BS method. The C p values are those obtained when the promising models are
fitted to the original sample

The first stage generates a set of promising models. We used the “One model per
sample” BS method of Section 4.2 with B =500, πa = 0.083, and with no limit
placed on the maximum number of factors that can be included in a fitted model.

Step (1) of the analysis produced an initial subset of 320 promising models. The
C p values of these models when they were fitted to the original data are plotted
against p in Fig. 2. Applying (18) gives p0 = 6.

In the second stage we could have just used the previously generated promis-
ing models, but removing those with p > p0. Instead we increased the number
of promising models by using the “Many models per sample” BS method with
B = 500, πa = 0.083 but with the maximum number of factors permitted in a
model limited to p0 = 6. This yielded a set, S0, of 488 promising models. Then,
as described in Section 4.3, the models of S0 were fitted to each BS sample, and
the model with the minimum C p was selected as being the best model for that BS
sample. This yielded 235 different best models. The plot of the C p values obtained
by fitting each of these models to the original data set is given in Fig. 3.
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Fig. 3 C p versus p for the 235 “best” models found by the Bootstrap Quality Assessment Method
described in Section 4.3. The C p values are those when the models are fitted to the original data
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The frequency with which each of the models of S0 was selected as being the best
varies with model. The 25 models selected most frequently are displayed in Table 1.
The model selected most frequently was

X0, X4, X14, X15, X16, X19 ,

where X0 is the mean. This model was selected as being the best model (i.e., with
the smallest C p) in 14 of the BS samples.

The model with the lowest C p value in Fig. 3 was

X0, X4, X15, X16, X19, X21,

which was the 4th best in terms of the number of times it was selected as best in the
BS samples. There is little to choose between the top few models. Taken together it
is fairly clear that factors X0, X15, X19 are the most important followed by X4, X16,
and X21.

5.2 Bank Data Example

The second example is taken from Makridakis et al. (1998, Table 6-8). The data
is monthly. The variable of interest, Y , is the first difference, D(EOM), between
the successive end of month (EOM) balances of a mutual savings bank. There are
three primary X -variables: X1 is a composite triple bond rate (AAA), X2 is a com-
posite (3-4) year US Government bond rate, X3 is D(3-4), the monthly change in
X2. There were in addition 11 monthly seasonal explanatory variables (D1–D11),
and three further variables, time t and its square and cube t2, t3, making 17 initial
explanatory variables. We do not reproduce the data here as the three key vari-
ables, (EOM), (AAA) and (3-4), for 60 months, are downloadable from the Web
site www-personal.buseco.monash.edu.au/˜hyndman/TSDL/.

In our analysis we followed Makridakis et al. (1998, Table 6-8) and express Y
in thousands of dollars and analysed only the first 53 months of data. We have also
added a general mean X0 as an additional factor so that we work with 18 explanatory
factors. There are thus 218 = 262,144 distinct models to select from; a somewhat
large number of models to comfortably work through.

Using a best subset analysis with an adjusted coefficient of determination, R̄2,
for selection criterion Makridakis et al. found the best model overall was

X0 X1 X2 X3 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 t3 (30)

and, using a stepwise regression, that the best model was

X0 X1 X2 X3 D2 D4 D6 D7 D8 D9 D10 D11 t3. (31)

www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
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However as the list in their Table 6-10 shows, there are many competing models
with similar values for R̄2.

We have carried out the same analysis as in the epoxide bond example. We used
the “One model per sample” method to generate a set of promising models, with
B = 500, a critical p-value of πa = 0.083, and with no limit to the number of
factors that could be included in the model fitted to each BS sample. This led to
the generation of a set of just 189 promising models at the end of Step (1). The C p

versus p plot of these models fitted to the original data is shown Fig. 4. From this
we took the “unbiased min p” as p0 = 13.

As in the epoxide bond example, to increase the number of promising models
with p ≤ p0 that we examine, we used the “Many models per sample” method to
generate a fresh set of promising models only with p restricted to being no greater
than p0 = 13, but still with πa = 0.083 and B = 500. This gave a set 598 promising
models. We then used the “Bootstrap Assessment of Selected Best Model” method
of Section 4.3 to fit all the promising models to each BS sample, selecting the “min
C p” model for each sample, as the “best” model for that sample. This yielded just
74 “best” models. The C p versus p plot of these models when fitted to the original
data is shown in Fig. 5. The top 25 models are listed in Table 2 with their original
C p values as well as the number of times they were selected as the best model in the
BS samples.

The most frequently selected model was

X1 X2 X3 D2 D4 D6 D7 D8 D9 D10 D11 t t2 .

This was selected as the best model in 75 of the 500 BS samples. This was also
the model with the smallest C p amongst all 74 “best” models when fitted to the
original data.

The stepwise regression model
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Fig. 4 C p versus p plot of 320 promising models found for the Bank data using the “One model
per sample” BS method. The C p values are those obtained when the promising models are fitted to
the original sample
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Fig. 5 C p versus p for the 74 “best” models found by the Bootstrap Quality Assessment Method
described in Section 4.3. in the Bank Data Example. The C p values are those when the models are
fitted to the original data

X0 X1 X2 X3 D2 D4 D6 D7 D8 D9 D10 D11 t3

was the third most frequently selected, being selected 35 times.
The results suggest that it is not very important whether the mean is fitted or

not. In fact, when the full model is fitted to the original sample, the p-value for the
mean is 0.66, showing that the general mean is not at all close to being statistically
significantly different from zero for the original data.

For all the 74 “best” models that were selected, the three main explanatory vari-
ables X1 (AAA), X2 (3-4), X3 D(3-4) were clearly important, as were the sea-
sonal variables D2, D4, D6, D7, D8 and of the others D9, D10 and D11 seemed
marginally less important. The remaining three D1, D3, D5 did not seem very
important.

It seemed worth including a time variable, but it is unclear if any one of them is
to be preferred given the rather random way that different time variables appear in
the different models; this is similar to variations listed in Table 6-10 of Makridakis
et al. (1998).

Though the details are a little different, in broad terms the BS results are very
similar to the results reported by Makridakis et al.

Finally it is interesting to see how the C p values of the top-performing models in
Table 2 varied across all 500 BS samples to which they were fitted. Figure 6 shows
the empirical distribution function of the sample of 500 C p values for the top 5
models. The result shows the inherent variability of the statistic for data of this type.

6 Conclusions

We have discussed how bootstrapping can be used to analyse the selection and fitting
of linear models in multiple regression. We have shown how bootstrapping can be
used for two purposes.
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Fig. 6 Empirical Distribution Functions of the C p value of the top 5 “best” models when fitted to
500 BS samples of the Bank Data

First it can be used to identify promising models out of the set of 2P possible
models. The “One model per sample” method yields just one model per BS sample,
so that the largest number of possible models is B, the number of BS samples gen-
erated, though because of duplication, the number of distinct models (i.e., whose
subsets of factors are different) is likely to be rather smaller. The “Many models
per sample” method produces a maximum of BP models, though again duplication
means the number of distinct models is usually significantly smaller.

The way that the set of promising models is constructed means that models with
a small C p value are likely to be identified, as is borne out in the two numerical
examples. Thus bootstrapping seems attractive in enabling promising models to be
tractably identified out of the full set of all possible models when the number of
factors is large.

The bootstrapping also allows an assessment to be made of how stable the models
estimated as being the best, or a good fit to the original data, actually are, in the sense
of seeing how often that model is selected as being the best when a large number of
promising models are fitted to a number of BS samples with the same form as the
original data. Such information is not available using a standard best subset analysis
or a stepwise regression analysis.

An Excel workbook implementing both bootstrap methods is available at
http://www.personal.soton.ac.uk/rchc/BestLinModel.htm.
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