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Introduction to Volume II

Calculus is an old subject. Aspects of it go back to Archimedes, roughly
2500 years ago, and continue to be useful into the present day. The main
development of calculus as the subject we now know goes back to the days of
Newton and Leibniz, roughly 350 years ago. As such, it is unlikely that we
will have anything mathematically original to say about calculus. Beyond
that, there are hundreds, perhaps thousands, of books on different aspects of
calculus that have been written over the centuries. It is impossible to
encompass all of that thought about this single subject into a single book,
nor is it wise to try, lest we hurt ourselves trying to lift it.

These are lectures notes for MATH1056 Calculus Part II. They consist
largely of the material presented during the lectures, though we have taken
the liberty of fleshing them out in some places and of being more cursory
here than in the lectures in other places.

A standard approach taken by a mathematical textbook is to present a
collection of standard facts, definitions and techniques in a standard order,
moving from the simple to the less simple, and there is absolutely no
problem with this. It is the route taken by thousands of authors of
thousands of books. And in some sense, this is an inescapable approach,
particularly for a subject like calculus which has been an object of our
attention and study for several hundred years. We as mathematicians have
been refining our approach to calculus and the teaching of calculus for this
whole time. If that is the approach that you find most accessible, then there
are a plethora of available sources.

In what follows, we would like to try something a little bit different, because
we do not see the point of producing a set of notes that merely reproduces
the same standard approach that already exists in multiple other texts. So,
we take a different path. This is to start with a question and to explore what
tools exist to address this question, what tools we can develop to address this
question, what we already know that we can apply to the question.

The focus of these notes is multivariable calculus, by which we mean the
application of the ideas from the calculus of functions of one variable that
you have already seen to functions of several variables. Before we get
started, though, we need to establish the questions that will be the focus of
our journey, and to review the tools that we already have to hand.

The calculus of a function of one variable has two main pieces, the
differential calculus and the integral calculus, differentiation and integration.
There is a single basic idea that underlies both of these pieces, namely the
notion of the limit, and these two pieces are linked through the Fundamental
Theorem of Calculus. So, to what extent can we extend these ideas of
differentiation and integration to functions of several variables, is there an
analogue of the Fundamental Theorem of Calculus, and is there something
new, that we do not see when considering functions of a single variable, that
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arises from the fact that we are working with several variables. We will only
scratch the surface. There are many directions in which one can take these
basic idea, through to, including and beyond the use that Einstein made of
differential geometry in the formulation of the theory of relativity.

One of the first things we will do is to consider the extension of familiar ideas
from differential calculus (that is, calculus involving derivatives) to functions
of more than one variable. These familiar ideas include the definition of the
derivative as well as the ways we use the derivative, such as maximising and
minimising functions to solve problems. We will next extend some of these
ideas to functions of a complex variable and discuss the differences between
differentiation for real- and complex-valued functions.

We will then move to integration of functions of more than one variable.
This will include developing different coordinate systems for Euclidean space
and relating them to one another, and the calculation of areas and volumes
of simple shapes.

These notes should be read in conjunction with the weekly tutorial sheets
and solutions, as the problems in the weekly sheets provide additional
examples of many of the things covered in the notes.
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Notation and Terminology

The following is a summary of commonly used symbols and
terminology.

Quantifiers

∀ – for all

∃ – there exists

Terminology

Theorem (or Proposition) – a proven mathematical statement

this is usually of the form if such and such then so and so

the Hypothesis is such and such

the Conclusion is so and so

Lemma – a little theorem.

Corollary – a mathematical statement which follows from a previous
theorem.

Sets

N – natural numbers {1, 2, 3, . . . }

Z – integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }

Q – rational numbers e.g. 1, 1
2 ,−

1
3 etc.

R – real numbers
(rational numbers and irrational numbers e.g.

π = 3.14159 . . . ,
√

2 = 1.41421 . . . )

C – complex numbers a+ ib where a, b are real and i =
√
−1

∅ – the empty set {}

∈ – is a member of (is in e.g. −1 ∈ Z,
√

2 ∈ R)

/∈ – is not a member of (is in e.g. −1 /∈ N,
√

2 /∈ Q)

∪ – union (things that are in either or both of the sets)

∩ – intersection (things that are in both sets)

⊆ – is a subset of subset (is contained in, meaning one set is inside
another)

 – is a subset of proper subset (is strictly contained in, meaning the sets
are not equal)
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Greek letters

In this module and throughout mathematics you will encounter numerous
Greek letters. Here is a table so that you know what they all are and how
they are called.

A B Γ ∆ E Z

α β γ δ ε ζ

Alpha Beta Gamma Delta Epsilon Zeta

H Θ I K Λ M

η θ ι κ λ µ

Eta Theta Iota Kappa Lambda Mu

N Ξ O Π P Σ

ν ξ o π ρ σ

Nu Xi Omicron Pi Rho Sigma

T Y Φ X Ψ Ω

τ υ φ or ϕ χ ψ ω

Tau Upsilon Phi Chi Psi Omega



Chapter 1. Differential calculus for functions of several variables

The purpose of this chapter is to present the basics of the differential
calculus for functions of several variables. To plant ourselves on firm ground,
we start with a review of the basics from the differential calculus of functions
of one variable, including the core fundamental idea that drives everything,
namely the δ-ε definition of the limit. We will then consider different
variations of the definition of the derivative of a function of more than one
variable and explore their properties. As a focus of our activity in this
chapter, we consider the question, given a function of several variables, how
do we recognise, find, and classify its maxima and minima.

As model questions driving the material in this chapter, let us consider the
following seemingly similar questions:

(1) Determine the maximum and minimum values of
f(x, y, z) = x2 + y2 + z2 − 3 on the plane x+ 2y + 3z = 1.

(2) Determine the maximum and minimum values of g(x, y, z) = x+ 2y + 3z
on the sphere x2 + y2 + z2 = 3.

Even though these two questions are phrased similarly, in that both ask for
the maxima and minima of a function subject to a constraint, they are in
fact very different question, requiring different methods to attack. Part of
what we do in this chapter is to highlight the ways in which these two
questions are similar and the ways in which they are different.

1.1. Functions of several variables

In this section, we consider functions, which are the basic objects on which
we will focus our attention for most of this book. Formally, a function
f : X → Y between two sets X and Y is the assignment of one and only one
member of Y , which we call f(x), to each element x ∈ X. There is a
standard collection of adjectives that we can associate to a function
describing its basic attributes and its basic properties.

In the case that f associates different elements of X to different elements of
Y , that is, f(x1) 6= f(x2) for x1, x2 ∈ X with x1 6= x2, then f is said to be
injective or one-to-one. In the case that f associates an element of X to
every element of Y , so that for each y ∈ Y , there is x ∈ X with f(x) = y,
then f is said to be surjective or onto. A function that is both injective and
surjective is called bijective.

The most general sort of function we will deal with is a function between the
finite dimensional Euclidean spaces Rn and Rm for n, m ≥ 1.

1



2 Differential calculus for functions of several variables

Definition 1.1.1. A function F : D → Rm from a subset D of Rn to Rm is
an assignment of a unique point f(x1, . . . , xn) ∈ Rm for each point
(x1, . . . , xn) ∈ D. The set D is called the domain of F and the set of all
points F (x1, . . . , xn) obtained from the domain is called the range of F .

Remark 1.1.2. Where there is no confusion, we will often write
F : Rn → Rm instead of F : D → Rm with the understanding that the
function may not be defined on all of Rn but rather on its subset D, the
domain.

A function F : Rn → Rm can be viewed as an ordered m-tuple of functions
from Rn to R, which we write as

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

where each fi : Rn → R for 1 ≤ i ≤ m is itself a function from Rn to
R.

Example 1.1.3. Suppose f(x, y) =
√

4− x2 − y2. The domain D is the
disk of radius 2 centred at the origin:

D = {(x, y) | x2 + y2 ≤ 4}.

Example 1.1.4. Suppose F (t) = (t cos(t), t sin(t)). The domain is all real
numbers and F : R→ R2 is a spiral curve (see Figure 1).

Figure 1. spiral curve for t ≥ 0

Functions of a single variable have one of two basic flavours. A function is an
explicit function if we have or are given an explicit description of f(x) as a
formula in terms of x, for instance a formula like

f(x) = x2 or f(x) = exp(sin(x+ (x3 + 1) cos(2x+ 76))) + ln(x2 + 2),



Functions of several variables 3

or more generally if we have some other explicit description of how to
calculate the value of f(x) given a value of the input x.

An example of this later sort might be the greatest integer function, where
we set bxc to be the largest integer that is less than or equal to x. We have
an explicit description for bxc given x but no formula.

A function is an implicit function if we have a description of the relationship
between two (or more) variables, such as x and y, but without the
relationship being sufficiently simple to allow for us to solve for y explicitly
in terms of x. A classical example comes from the equation of a circle in the
plane with centre the origin and radius 1, namely x2 + y2 = 1. Here, we
cannot solve for y as a function of x in a way that is valid for all appropriate
values of x; specifically, if we solve for y, we get y = ±

√
x2 − 1, and so for

each −1 < x < 1, there are two possible values of y and this violates the
definition of function as discussed (albeit briefly) above.

The same loose split of functions between implicit functions and explicit
functions holds for functions of more than one variable just as it does for
functions of one variable.

An example of an explicit function of two variables is
f(x, y) = x2 − y2 + xy cos(x+ y).

1.1.1. Graphs. Recall that the graph of a function in one variable given by
the equation y = f(x) is a set of points (x, f(x)) in the xy-plane R2. More
generally, the graph of function in n-variables given by the equation
w = f(x1, . . . , xn) is the set of points (x1, . . . , xn, f(x1, . . . , xn)) in Rn+1

where (x1, . . . , xn) is in the domain of f .

Example 1.1.5. Consider the function f(x, y) = 1− x− y where 0 ≤ x ≤ 1,
0 ≤ y ≤ 1. Its graph is is the set of points

{(x, y, 1−x−y) | x ∈ R, y ∈ R} = {(x, y, z) | x+y+z = 1, x ∈ R, y ∈ R, z ∈ R}.

This is plane in R3 intersecting the points (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Example 1.1.6. Consider the function f(x, y) =
√

4− x2 − y2. We saw
that its domain is

D = {(x, y) | x2 + y2 ≤ 4}.

Now the the graph of this function is the set of points

{(x, y,
√

4− x2 − y2 | x ∈ R, y ∈ R}

= {(x, y, z) | x2 + y2 + z2 = 4, x ∈ R, y ∈ R, z ≥ 0}.

This is the upper hemisphere of the sphere centred at the origin of radius 2
(see Figure 2).
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Figure 2. upper hemisphere

1.1.2. Contours. For a function f(x) of one variable, there is a relatively
straightforward process for sketching the graph of y = f(x), gathering the
information from the axis intercepts and any vertical or horizontal
asymptotes, the first derivative test and the second derivative test. Doing
something similar for functions of two or more variables is significantly more
complicated.

One relatively efficient way of getting an idea of how the graph of a function
f(x, y) of two variables looks in R3 is to consider the contours or level sets of
the graph of z = f(x, y). By a contour or level set, we mean that for each
c ∈ R, we take the set

Lc = Lc(f) = {(x, y) ∈ R2 | f(x, y) = c}.

In words, the level set of height c is the set of points in the domain at which
the function takes the value c. One immediate consequence of this is that
level sets of different heights are necessarily disjoint: by the definition of
function, there cannot exist a point at which the function takes on two
different values.

Some caution is required in reconstructing the function from its level sets as
it is seen in the next example.

Example 1.1.7. Determine the level sets of the functions

f(x, y) =
√
x2 + y2 and g(x, y) = x2 + y2. The level set of the function

f(x, y) =
√
x2 + y2 of height c ∈ R is

- for c < 0, the empty set Lc = for c < 0, as there are no (real) solutions to√
x2 + y2 = c;

- for c = 0, the set L0 = {(0, 0)} containing only the origin;



Functions of several variables 5

- for c > 0, the circle Lc = {(x, y) ∈ R2 | x2 + y2 = c2} of radius c centered at
(0, 0).

The level set of the function g(x, y) = x2 + y2 of height c ∈ R is

- for c < 0, the empty set Lc = for c < 0, as there are no (real) solutions to
x2 + y2 = c;

- for c = 0, the set L0 = {(0, 0)} containing only the origin;

- for c > 0, the circle Lc = {(x, y) ∈ R2 | x2 + y2 = c2} of radius
√
c centered

at (0, 0).

Figure 3. con-
tours for f(x, y) =√
x2 + y2

Figure 4. contours
for g(x, y) = x2 + y2

Note that while the sets of level curves for these two functions
f(x, y) =

√
x2 + y2 (see Figure 3) and g(x, y) = x2 + y2 (see Figure 4) are

the same sets of circles, the curves are labeled differently. This labelling
corresponds to the altitudes given to the contour lines on topographical
maps. The graphs of the two functions with the corresponding level curves
are shown below.

Figure 5. graph of

f(x, y) =
√
x2 + y2

Figure 6. graph of
g(x, y) = x2 + y2

Example 1.1.8. Consider the function f(x, y) = x2 − y2 + xy cos(x+ y) for
x ≥ 0, y ≥ 0.
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The level set of height c ∈ R is the set

Lc = {(x, y) ∈ R2 | x2 − y2 + xy cos(x+ y) = c}.

The graph of f(x, y) is too complicated to plot by hand. So, we use Maple
Graphics (see Figure 7).

Figure 7. graph of f(x, y) = x2 − y2 + xy cos(x+ y)

Most of what we will cover in the rest of this chapter will help us better
understand the behaviour of a multivariable function and to plot its
graph.

1.2. Limits in R2 and continuity

The notion of a limit of a function of two (or more) variables is similar to
that of a function of one variable. The limit describes the behaviour of the
function as the input (x, y), which in this case is a point in R2, approaches a
fixed point (a, b) in R2. But what does it mean for (x, y) to approach a fixed
point in R2?

For functions of one variable we could make sense of what it meant for x to
approach a point a ∈ R, by understanding that the difference in absolute
value |x− a|, which is the distance between x and a on the real line, got
smaller and smaller. This led us to δ-ε-definition of the limit.

For functions of two variables, when the point (x, y) approaches (a, b), it
means that the distance between these two points, which is√

(x− a)2 + (y − b)2,

decreases. This leads us to the following formulation.
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Definition 1.2.1. Given a function f : R2 → R. We say
lim

(x,y)→(a,b)
f(x, y) = L, whenever

(i) every neighbourhood of the point (a, b) contains a point of the
domain of f different from (a, b), and

(ii) for every ε > 0, there exists δ > 0 such that if (x, y) is in the domain
and satisfies

0 <
√

(x− a)2 + (y − b)2 < δ,

then |f(x, y)− L| < ε.

By a neighbourhood of a point (a, b) we mean an open disc centred at a point
(a, b) of radius r, that is

Dr(a, b) = {(x, y) ∈ R2 |
√

(x− a)2 + (y − b)2 < r}.

The condition (i) is included because we do not want to consider limits for
isolated points of the domain as in that case there is no “limiting process”.
The condition (ii) implies that as the distance between (x, y) and (a, b) tends
to zero, the distance between f(x, y) and L also tends to zero.

Example 1.2.2. Let us find

lim
(x,y)→(0,0)

(x2 + y2 + 7).

Note that as (x, y) tend to (0, 0), the function approaches the value 7. So, we
shall try to prove that this is the limit.

The domain is the xy-plane. We need to show that for any ε > 0, there

exists δ > 0 such that if 0 <
√
x2 + y2 < δ, then

|x2 + y2 + 7− 7| < ε.

Setting δ =
√
ε gives the desired inequality.

Example 1.2.3. Show that

lim
(x,y)→(0,0)

xy√
x2 + y2

= 0.

Note that the domain is the whole xy-plane without the origin. So, condition
(i) is trivially satisfied.

Now, we need to show that for ε > 0, there exists δ > 0 such that if

0 <
√
x2 + y2 < δ, then ∣∣∣∣∣ xy√

x2 + y2

∣∣∣∣∣ < ε.

Since
± xy
x2 + y2

≤ 1

2
,
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we obtain ∣∣∣∣∣xy
√
x2 + y2

x2 + y2

∣∣∣∣∣ ≤ 1

2

√
x2 + y2 <

δ

2
.

Therefore, if choose δ = 2ε, then the condition (ii) would be satisfied.

Example 1.2.4. Show that the limit

lim
(x,y)→(0,0)

xy

x2 + y2

does not exist.

Again the domain of the function is the whole xy-plane without the origin.
So, we need to show that the condition (ii) of the definition does not hold.

Suppose to the contrary that the limit did exist. Let us say it equals to
L ∈ R. Since the function tends to L as (x, y) approaches (0, 0) it should still
tend to L no matter how the (x, y) approaches (0, 0), i.e. as long as the
distance between these points tends to zero. So, we can state that if (x, y)
approaches (0, 0) along the y-axes, then

L = lim
x=0,(x,y)→(0,0)

xy

x2 + y2
= 0,

if it approaches along the x-axes, then

L = lim
y=0,(x,y)→(0,0)

xy

x2 + y2
= 0.

But if it approaches along the line y = ±x, then

L = lim
y=±x,(x,y)→(0,0)

xy

x2 + y2
= ±1

2
.

This leads to a contradiction. Therefore, the limit does not exist.

Next, we give some properties of the limit.

Lemma 1.2.5. Let f : R2 → R and g : R2 → R. Suppose

lim
(x,y)→(a,b)

f(x, y) = L and lim
(x,y)→(a,b)

g(x, y) = M.

Then

(i) lim
(x,y)→(a,b)

(f(x, y)± g(x, y)) = L±M ,

(ii) lim
(x,y)→(a,b)

(f(x, y)g(x, y)) = LM ,

(iii) lim
(x,y)→(a,b)

(f(x, y)/g(x, y)) = L/M , as long as M 6= 0.

(iv) Given a function h : R→ R that is continuous at L ∈ R, then
lim

(x,y)→(a,b)
h(f(x, y)) = h(L).
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Example 1.2.6. Find the limit of f(x, y) = x3 + x2y6 + 5 as (x, y)
approaches (1, 0).

The domain contains all points of the xy-plane. Applying the assertions (i)
and (ii) of Lemma 1.2.5, we have that the limit is 13 + 12 · 0 + 06 + 5 = 6.

Note that we could also only use part (iv) of Lemma 1.2.5 as the function
h(x) = x3 is continuos at x = 1 and the function s(y) = y6 is continuous at
y = 0.

Example 1.2.7. Find the limit of f(x, y) =
x3 + x2y6 + 5

x4 + 3xy − y2 +
√
x− y

as

(x, y) approaches (1, 0).

First observe that the point (1, 0) is in the domain of the function. Also
observe that it is not an isolated point of the domain as we can in every
open disc centred at (1, 0) always find points of the form (x, 0) 6= (1, 0) that
are in the domain. So, it makes sense to talk about the limit of the function
at this point.

Since the function given by h(t) =
√
t is continuous at t = 1, it follows from

the assertions (i), (ii) and (iv) of Lemma 1.2.5, that

lim
(x,y)→(1,0)

√
x− y =

√
1− 0 = 1.

Then

lim
(x,y)→(1,0)

x4 + 3xy − y2 +
√
x− y = 1 + 1 = 2

and

lim
(x,y)→(1,0)

x3 + x2y6 + 5

x4 + 3xy − y2 +
√
x− y

=
6

2
= 3

by the assertion (iii).

Remember that continuity of a function of one variable was defined using
limits. To define what it means for a function of two or more variables to be
continuous at a point, we again rely on the notion of the limit.

Definition 1.2.8. The function f : R2 → R is said to be continuous at
(a, b) ∈ R2 if

lim
(x,y)→(a,b)

f(x, y) = f(a, b).

If f is continuous at every point of a subset D of R2, then f is said to be
continuous on D. If D is the whole domain, then f is simply said to be
continuous.

It follows that sums and products of continuous functions are again
continuous. That is, there are analogous statements to parts (i) and (ii) of
Lemma 1.2.5 for continuity at a point. For quotients one needs to proceed
with a bit of care as in part (iii) of Lemma 1.2.5.
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Example 1.2.9. Determine in which of the previous examples the function
in the limit is continuous at the limit point.

In Example 1.2.7, the function

f(x, y) =
x3 + x2y6 + 5

x4 + 3xy − y2 +
√
x− y

is continuous at (1, 0) since lim
(x,y)→(1,0)

f(x, y) = 3 = f(1, 0).

Similarly, in all of the other examples where the limit exists except Example
1.2.3 the functions in the limit are continuous at given points.

In Example 1.2.3 though, we have

f(x, y) =
xy√
x2 + y2

,

and lim
(x,y)→(0,0)

f(x, y) = 0, yet (0, 0) is not in the domain. So, this function is

not continuous at (0, 0).

Next, we give definitions of the limit and continuity more generally for
functions F : Rn → Rm for n ≥ 1 and m ≥ 1. The definitions are completely
analogous to the case where we have function of two variables
f : R2 → R.

To shorten the notation, we will denote points in the n-dimensional
Euclidean space Rn by bold letters, e.g. x = (x1, . . . , xn) ∈ Rn. Given any
points x and y in Rn, we will define the distance between these points to be
the norm of the vector difference x− y ∈ Rn, that is

||x− y|| =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

By a neighbourhood of a point a in Rn we mean an open n-ball centred at a
point a of radius r, that is

Br(a) = {x ∈ Rn | ||x− a|| < r}.

Definition 1.2.10. Given a function F : Rn → Rm, a point a ∈ Rn and
L ∈ Rm. We say lim

x→a
F (x) = L, whenever

(i) every neighbourhood of the point a contains a point of the domain of
F different from (a, b), and

(ii) for every ε > 0, there exists δ > 0 such that if x is in the domain and
satisfies 0 < ||x− a|| < δ, then ||F (x)− L|| < ε.

Using this we can make the definition of continuity.

Definition 1.2.11. The function F : Rn → Rm is said to be continuous at
a ∈ Rn if

lim
x→a

F (x) = F (a).
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If f is continuous at every point of the domain, then F is said to be
continuous.

We end this section with a useful lemma which is a generalisation of the
analogous result about compositions of functions of one variables.

Lemma 1.2.12. Let F : Rn → Rm be continuous at a ∈ Rn and let
G : Rm → Rk be continuous at F (a) ∈ Rm. Then the composition G ◦ F is
continuous at a.

Proof. By continuity of G at F (a), we have that for any ε > 0, there exists
σ > 0 such that if ||y − F (a)|| < σ, then ||G(y)−G(F (a))|| < ε.

Also, by continuity of F at a, we have that for σ > 0, there exists δ > 0 such
that if ||x− a|| < δ, then ||y − F (a)|| < σ.

Combining the two statements, we obtain that whenever ||x− a|| < δ, then
||G(y)−G(F (a))|| < ε. This finishes the proof.

�

1.3. Partial derivatives

We wish to generalise the basic notion of the derivative to a wider class of
functions. We start with the real-valued functions of several variables
f : R2 → R, or more generally f : Rn → R for some n ≥ 2. One thing that
we will see is that for functions of several variables, the derivative is a
collection of functions. So, our initial goal is to explore how to define and
calculate the derivative for a function of several variables, and how to
organise these functions that make up the derivative and extract information
from them.

Let z = f(x, y) be a function of two variables. We proceed naively and
attempt to directly generalise to functions of several variables the definition
of the derivative of a function of a single variable. There are several ways in
which we could attempt to mimic the definition of the derivative for a
function of one variable. All of these ways involve the taking of limits.

One is a direct generalisation: namely, given a point (x0, y0), we could
set

f ′(x0, y0) = lim
(x,y)→(x0,y0)

f(x, y)− f(x0, y0)

||(x, y)− (x0, y0)||
.

(In the denominator, we need to take the norm of (x, y)− (x0, y0), as we
cannot divide by a vector.) However, this definition is difficult to work with
as it stands. We will come back to it later.

Hence, we take for the time being a different tack and work with one variable
at a time. The derivatives that we construct in this way we refer to as partial
derivatives. The basic limit definition for the partial derivatives of f(x, y)
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with respect to the independent variables x and y is a straightforward
generalisation of the limit definition for a function of a single variable.

Definition 1.3.1. Let f : R2 → R be a function. Define the partial
derivative with respect to x as

∂f

∂x
(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h

provided this limit exists. In words, the partial derivative ∂f
∂x (x, y) of f(x, y)

with respect to x is the function that we calculate by holding all other
(independent) variables constant and differentiating the resulting function as
normal with respect to x.

Similarly, define the partial derivative with respect to y as

∂f

∂y
(x, y) = lim

h→0

f(x, y + h)− f(x, y)

h

provided this limit exists. In words, the partial derivative ∂f
∂y (x, y) of f(x, y)

with respect to y is the function that we calculate by holding all other
(independent) variables constant and differentiating as normal with respect
to y.

In particular, both ∂f
∂x (x, y) and ∂f

∂y (x, y) are in this case themselves

functions from R2 to R, just as f(x, y).

Example 1.3.2. Find the partial derivatives of the function f(x, y) = x2y
at (2, 3).

Following the definition, we have

∂f

∂x
(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h

= lim
h→0

(x+ h)2y − x2y

h
= lim
h→0

(2xy + hy) = 2xy

Similarly,

∂f

∂y
(x, y) = lim

h→0

f(x, y + h)− f(x, y)

h

= lim
h→0

x2(y + h)− x2y

h

= lim
h→0

x2 = x2.

Substituting (x, y) = (2, 3), we get ∂f
∂x (2, 3) = 12 and ∂f

∂y (2, 3) = 4.

We have the following useful lemma.
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Lemma 1.3.3. Let u(x, y) be a function of the variables x and y, and
assume that

∂u

∂x
(x, y) =

∂u

∂y
(x, y) = 0

for all (x, y) ∈ R2. Then, u(x, y) is constant on R2.

Proof. We start from the assumption that ∂u
∂x (x, y) = 0 for all (x, y) ∈ R2.

Integrating with respect to x, we see that u(x, y) = ψ(y), since the constant
of integration with respect to x must depend only on y.

Using now the assumption that ∂u
∂y (x, y) = ψ′(y) = 0, we see that ψ(y) must

be constant, and hence that u(x, y) must be constant. �

We can define partial derivatives of more general functions in a similar
way.

Definition 1.3.4. For a function f : Rn → R given by f(x1, . . . , xn), we
have n first order partial derivatives, one with respect to each variable
x1, . . . , xn, is given by

∂f

∂xj
(x1, . . . , xn) = lim

h→0

f(x1, . . . , xj−1, xj + h, xj+1, . . . , xn)− f(x1, . . . , xn)

h
.

provided the limit exists.

As we will see, we do not normally use the definition to evaluate the partial
derivatives of particular functions, any more than we use the definition for a
function of one variable to calculate the derivative of that function. Rather,
we use the definition to determine the derivatives of some basic functions
and to prove properties of the derivative, and then we leverage these few
calculations and these rules to differentiate a wide variety of functions.

The standard rules of differentiation, such as the product rule, the quotient
rule, and the chain rule, continue to hold for functions of several variables.
We first state them for functions of two variables.

Lemma 1.3.5. Let f(x, y) and g(x, y) be functions of two variables.

(i) Suppose ∂f
∂x (x, y) exists. Then for a constant c ∈ R,

∂

∂x
(cf(x, y)) = c

(
∂

∂x
f(x, y)

)
= c

∂f

∂x
(x, y),

and similarly for the partial derivative with respect to y.

(ii) Suppose ∂f
∂x (x, y) and ∂g

∂x (x, y) exist. Then

∂

∂x
(f(x, y) + g(x, y)) =

∂f

∂x
(x, y) +

∂g

∂x
(x, y),

and similarly for the partial derivative with respect to y.
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(iii) Suppose ∂f
∂x (x, y) and ∂g

∂x (x, y) exist. For two functions f(x, y) and
g(x, y), we have the product rule:

∂

∂x
(f(x, y)g(x, y)) =

(
∂f

∂x
(x, y)

)
g(x, y) + f(x, y)

(
∂g

∂x
(x, y)

)
,

and similarly for the partial derivative with respect to y.

(iv) Suppose ∂f
∂x (x, y) and ∂g

∂x (x, y) exist. For two functions f(x, y) and
g(x, y), we have the quotient rule:

∂

∂x

(
f(x, y)

g(x, y)

)
=

(
∂f
∂x (x, y)

)
g(x, y)− f(x, y)

(
∂g
∂x (x, y)

)
(g(x, y))2

,

and similarly for the partial derivative with respect to y.

Proof. We only prove part (i) to show that the proofs are analogous to those
when the function has only one variable.

∂

∂x
(cf(x, y)) = lim

h→0

cf(x+ h, y)− cf(x, y)

h

= c

(
lim
h→0

f(x+ h, y)− f(x, y)

h

)
= c

(
∂f

∂x
(x, y)

)
.

�

More generally, for two functions f(x1, . . . , xn) and g(x1, . . . , xn) of n
variables, the basic rules of differentiation are as you would expect. Again,
we assume that relevant partial derivatives of the two functions exist when
stating a formula involving them.

Lemma 1.3.6. Let f(x1, . . . , xn) and g(x1, . . . , xn) be functions of
n-variables. Then

(i) For a constant c ∈ R and for each 1 ≤ j ≤ n,

∂

∂xj
(cf(x1, . . . , xn)) = c

∂f

∂xj
(x1, . . . , xn);

(ii) The derivative of a sum is the sum of the derivatives, namely

∂

∂xj
(f(x1, . . . , xn) + g(x1, . . . , xn)) =

∂f

∂xj
(x1, . . . , xn) +

∂g

∂xj
(x1, . . . , xn)

for each 1 ≤ j ≤ n;

(iii) We have the product rule:

∂

∂xj
(f(x1, . . . , xn)g(x1, . . . , xn))

=

(
∂f

∂xj
(x1, . . . , xn)

)
g(x1, . . . , xn) + f(x1, . . . , xn)

(
∂g

∂xj
(x1, . . . , xn)

)
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for each 1 ≤ j ≤ n;

(iv) We have the quotient rule:

∂

∂xj

(
f(x1, . . . , xn)

g(x1, . . . , xn)

)

=

(
∂f
∂xj

(x1, . . . , xn)
)
g(x1, . . . , xn)− f(x1, . . . , xn)

(
∂g
∂xj

(x1, . . . , xn)
)

(g(x1, . . . , xn))2

for each 1 ≤ j ≤ n.

Example 1.3.7. Find all the partial derivatives of the function

f(x, y, z) = 5x3y2z − y2z2 + 3x− 4

at (−1, 0, 2).

Recall that when we differentiate with respect to x, we treat all other
variables as constants and then differentiate normally. So, to calculate ∂f

∂x ,
we treat y and z as constants and see that

∂f

∂x
(x, y, z) = 5

∂

∂x
(x3y2z)− ∂

∂x
(y2z2) + 3

∂

∂x
(x)− ∂

∂x
(4)

= 15x2y2z + 3.

Similarly, to calculate ∂f
∂y , we treat x and z as constants and see that

∂f

∂y
(x, y, z) = 5

∂

∂y
(x3y2z)− ∂

∂y
(y2z2) + 3

∂

∂y
(x)− ∂

∂y
(4)

= 10x3yz − 2yz2.

Similarly, to calculate ∂f
∂y , we treat x and y as constants and see that

∂f

∂z
(x, y, z) = 5

∂

∂z
(x3y2z)− ∂

∂z
(y2z2) + 3

∂

∂z
(x)− ∂

∂z
(4)

= 5x3y2 − 2y2z.

Then ∂f
∂x (−1, 0, 2) = 3, ∂f∂y (−1, 0, 2) = 0, and ∂f

∂z (−1, 0, 2) = 0.

Example 1.3.8. Find the partial derivatives of

f(x, y) = cos(x) sin(y) + y exp(x).

∂f
∂x (x, y) =

(
d

dx cos(x)
)

sin(y) + y
(

d
dx exp(x)

)
= − sin(x) sin(y) + y exp(x).

∂f
∂y (x, y) = cos(x)

(
d
dy sin(y)

)
+
(

d
dyy
)

exp(x) = cos(x) cos(y) + exp(x).
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1.4. The Chain Rule

The chain rule is in many ways the most interesting of our basic rules for
differentiation, in that it has a number of different forms for functions of
more than one variable. Recall that in words, the chain rule says that we first
differentiate the outside function and evaluate this derivative at the inside
function, and then multiply by the derivative of the inside function.

We are trying to capture how much the composition is changing, and this
involves following the change of both functions in the composition. Our
normal paradigm will involve differentiating with respect to each of the
intermediate variables, and so the number of terms is determined by the
number of intermediate variables.

We start with a simple version. Consider the composition

R2
(x,y)

f→ R(t)
g→ R.

Here, we use the notation R2
(x,y) to mean that we are using variables x and y

on R2. In this composition, g(t) is a function of a single variable, and so
there is only one possible notion for the derivative of g(t), namely its usual
derivative g′(t).

On the other hand, f(x, y) is a function of two variables, and so it has two

partial derivatives, namely ∂f
∂x (x, y) and ∂f

∂y (x, y). Here, x and y are the

independent variables and t is the intermediate variable. Since there is only
one intermediate variable, we expect that the chain rule in this case will
involve only a single term, and in fact we see that

∂

∂x
g(f(x, y)) = g′(f(x, y))

∂f

∂x
(x, y).

To use a different notation, we can say that w = w(t) is a function of the
single variable t, and t = t(x, y) is a function of the two variables x and y.
Again, t is the intermediate variable and x and y are the independent
variables, and so the composition is w = w(t) = w(t(x, y)). The chain rule in
this case says that

(1)
∂w

∂x
=

dw

dt

∂t

∂x
=

dw

dt
(t(x, y))

∂t

∂x
(x, y),

where in the last term we are merely making explicit the variables on which
each of the functions is evaluated. Similarly,

(2)
∂w

∂y
=

dw

dt

∂t

∂y
=

dw

dt
(t(x, y))

∂t

∂y
(x, y).

Example 1.4.1. Consider the composition of w = w(t) = exp(t2 + 1) and
t = t(x, y) = x2y + sin(xy). Use the chain rule to evaluate ∂w

∂x (x, y) and
∂w
∂y (x, y).
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Expanding out, we see that the composition is

w = w(x, y) = exp((x2y + sin(xy))2 + 1).

Using the chain rule, the partial derivatives of the composition
w = w(t) = w(t(x, y)) are

∂w

∂x
=

dw

dt
(t(x, y))

∂t

∂x
(x, y)

= 2t exp(t2 + 1)(2xy + y cos(xy))

= 2(x2y + sin(xy))(2xy + y cos(xy)) exp((x2y + sin(xy))2 + 1)

and
∂w

∂y
=

dw

dt
(t(x, y))

∂t

∂y
(x, y)

= 2t exp(t2 + 1)(x2 + x cos(xy))

= 2(x2y + sin(xy))(x2 + x cos(xy)) exp((x2y + sin(xy))2 + 1).

In this case, we can check that our answer by substituting the expression for
t = t(x, y) into the expression for w = w(t) and differentiating directly. We
will see below an example where we are not able to do this direct calculation.

Next, consider the composition R(t) → R2
(x,y) → R. In this case, we can say

that w = w(x, y) is a function of two variables, while x = x(t) and y = y(t)
are themselves both functions of t. Here, x and y are the intermediate
variables and t is the independent variable. In this case, the composition
w = w(x(t), y(t)) is a function of the single variable t.

dw

dt
= lim

h→0

w(t+ h)− w(t)

h

= lim
h→0

w(x(t+ h), y(t+ h))− w(x(t), y(t))

h

= lim
h→0

w(x(t+ h), y(t+ h))− w(x(t), y(t+ h))

h

+ lim
h→0

w(x(t), y(t+ h))− w(x(t), y(t))

h

=
∂w

∂x
(x(t), y(t))

dx

dt
(t) +

∂w

∂y
(x(t), y(t))

dy

dt
(t).

We do not explain the last equality in detail here but merely point out that
it is similar to the proof of the singe-variable Chain Rule.

So, the Chain Rule says that

(3)
dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
.

In both this case and the case before, notice the difference in notation. For
differentiation with respect to t for the functions of a single variable, we use
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the roman d
dt , while for differentiation with respect to x and y for the

functions of more than one variable, we use the round ∂
∂x and ∂

∂y .

Example 1.4.2. As an example, consider the composition of the function
w = w(x, y) = x2y + sin(xy) with x = x(t) = exp(t2 + 1) and
y = y(t) = t3 + t. Use the chain rule to evaluate dw

dt (t).

Using the chain rule, the derivative of the composition
w = w(t) = w(x(t), y(t)) is

dw

dt
=

∂w

∂x
(x(t), y(t))

dx

dt
(t) +

∂w

∂y
(x(t), y(t))

dy

dt
(t)

= (2xy + y cos(xy))2t exp(t2 + 1) + (x2 + x cos(xy))(3t2 + 1)

= 2t exp(t2 + 1)[(t3 + t)(2 exp(t2 + 1) + cos((t3 + t) exp(t2 + 1))]

+(3t2 + 1) exp(t2 + 1)[exp(t2 + 1) + cos((t3 + t) exp(t2 + 1))].

In this case, as above, we can check our answer by substituting the
expressions for x = x(t) and y = y(t) into w = w(x, y) to realise w = w(t)
directly as a function of t and differentiating without using the chain rule.

Consider now the composition R2
(s,t) → R2

(x,y) → R. In this case, we have

that w = w(x, y) is a function of x and y, and both x = x(s, t) and
y = y(s, t) are functions of s and t. Here, x and y are again the intermediate
variables, while s and t are the independent variables. The composition
w = w(x(s, t), y(s, t)) is then a function of s and t. The Chain Rule in this
case says that

(4)
∂w

∂s
=
∂w

∂x

∂x

∂s
+
∂w

∂y

∂y

∂s
and

∂w

∂t
=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
.

In its most general form, consider the situation of a function
w = w(x1, . . . , xn), where each xj = xj(t1, . . . , tp) is itself a function of

(t1, . . . , tp). We can also write this as a composition Rp f→ Rn w→ R, where
the variables on Rp are (t1, . . . , tp) and the variables on Rn are (x1, . . . , xn).
In this set up, the (t1, . . . , tp) are the independent variables and the
(x1, . . . , xn) are the intermediate variables.

We follow the same paradigm as above, by differentiating the
composition

w = w(x1, . . . , xn) = w(x1(t1, . . . , tp), . . . , xn(t1, . . . , tp))

with respect to one of the independent variables (t1, . . . , tp), where the
corresponding expression has one term for each of the intermediate variables
(x1, . . . , xn). So, for each 1 ≤ k ≤ p, we see that

(5)
∂w

∂tk
=

n∑
j=1

∂w

∂xj

∂xj
∂tk

,
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or if we were to add the arguments for each of the functions,

∂w

∂tk
(x1(t1, . . . , tp), . . . , xn(t1, . . . , tp)) =

=

n∑
j=1

∂w

∂xj
(x1(t1, . . . , tp), . . . , xn(t1, . . . , tp))

∂xj
∂tk

(t1, . . . , tp).

Example 1.4.3. Suppose that the function u = u(x, t) satisfies the
differential equation

∂u

∂t
(x, t) + u

∂u

∂x
(x, t) = 0

and that x = x(t) as a function of t satisfies

dx

dt
(t) = u(x, t).

Prove that u(x(t), t) is constant as a function of t.

Since we wish to prove that u(x(t), t) is constant as a function of t, let us
start by calculating d

dtu(x(t), t). Using the Chain Rule, we see that

d

dt
u(x(t), t) =

∂u

∂x
(x(t), t)

dx

dt
(t) +

∂u

∂t
(x, t)

=
∂u

∂x
(x(t), t)u(x, t) +

∂u

∂t
(x, t)

=
∂u

∂x
(x(t), t)u(x, t)− u∂u

∂x
(x, t) = 0.

Therefore, u(x(t), t) is constant as a function of t.

Example 1.4.4. Suppose that z = z(u, v, r) is a function of the variables u,
v and r; that u = u(x, y, r) is a function of x, y and r; that v = v(x, y, r) is a
function of x, y and r, and that r = r(x, y) is a function of x and y. Find ∂z

∂x .

As with all examples of using the chain rule for functions of several variables,
we first need to determine which are the independent variables (which are
the variables that do not depend on any other variables) and which variables
are the intermediate variables (which can depend either on the independent
variables or on other intermediate variables).

In this example, the independent variables are x and y, as we do not express
any of these variables as functions of other variables. Note that the actual
names of the independent variables will vary from one example to another;
therefore, we need to make this determination of independent versus
intermediate variable separately for each exercise or example we consider.
The variables u, v and r are the intermediate variables, as each are functions
of other variables. Note that both u and v are in fact functions of the
independent variables x and y and the intermediate variable r, which is in
turn a function of x and y.
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So we can write z as a function of the variables x and y only:

z = z
(
u(x, y, r(x, y)), v(x, y, r(x, y)), r(x, y)

)
.

Letting u = u(x, y, r(x, y)) and v = v(x, y, r(x, y)), we can apply the Chain
Rule to obtain an expression for ∂z

∂x as a sum of three terms, one coming
from each of the intermediate variables u, v, and r as follows:

∂z

∂x
=
∂z

∂u

∂u

∂x
+
∂z

∂v

∂v

∂x
+
∂z

∂r

∂r

∂x
.

Since x, y and r are intermediate variables that sit between u and x, and
between v and x, we can break down the terms ∂u

∂x and ∂v
∂x further.

Namely,
∂u

∂x
=
∂u

∂x

∂x

∂x
+
∂u

∂y

∂y

∂x
+
∂u

∂r

∂r

∂x
=
∂u

∂x
+
∂u

∂r

∂r

∂x

and similarly

∂v

∂x
=
∂v

∂x

∂x

∂x
+
∂v

∂y

∂y

∂x
+
∂v

∂r

∂r

∂x
=
∂v

∂x
+
∂v

∂r

∂r

∂x
.

Also, note that
∂z

∂u
=
∂z

∂u
and

∂z

∂v
=
∂z

∂v

evaluated at the point
(
u(x, y, r(x, y)), v(x, y, r(x, y)), r(x, y)

)
.

Bringing everything together, we see that

∂z

∂x
=

∂z

∂u

∂u

∂x
+
∂z

∂v

∂v

∂x
+
∂z

∂r

∂r

∂x

=
∂z

∂u

(
∂u

∂x
+
∂u

∂r

∂r

∂x

)
+
∂z

∂v

(
∂v

∂x
+
∂v

∂r

∂r

∂x

)
+
∂z

∂r

∂r

∂x

=
∂z

∂u

∂u

∂x
+
∂z

∂u

∂u

∂r

∂r

∂x
+
∂z

∂v

∂v

∂x
+
∂z

∂v

∂v

∂r

∂r

∂x
+
∂z

∂r

∂r

∂x
.

1.5. The gradient and the Jacobian matrix

Now that we are equipped with the notion of the partial derivative of a
function of several variables with respect to one of its variables, we can
define a notion of a single derivative for a function f : Rn → R for any n ≥ 2,
and indeed for a function

F = (f1, . . . , fm) : Rn → Rm

for n ≥ 2 and m ≥ 1, where this single derivative is comprised of the partial
derivatives of the component functions fi, 1 ≤ i ≤ m. We start with the
former.

For this we need the notion of a gradient of a function which combines the
terms of the partial derivatives into a single expression.
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Definition 1.5.1. Let f : R2 → R be a function. Assume that both partial
derivatives exist at a point (x, y) ∈ R2. We define the gradient of f(x, y) to
be the vector of partial derivatives

∇f(x, y) =

(
∂f

∂x
(x, y),

∂f

∂y
(x, y)

)
.

One thing to note is that, while f : R2 → R, its gradient ∇f(x, y) is a
function ∇f : R2 → R2, since the value of the gradient ∇f(a, b) at the point
(a, b) ∈ R2 is itself a vector, namely

∇f(a, b) =

(
∂f

∂x
(a, b),

∂f

∂y
(a, b)

)
,

which we can again view as a point in R2.

More generally, we can define the gradient of a function f(x1, . . . , xn) of n
variables to again be the vector of partial derivatives

∇f(x1, . . . , xn) =

(
∂f

∂x1
(x1, . . . , xn), . . . ,

∂f

∂xn
(x1, . . . , xn)

)
.

Example 1.5.2. Find the gradients of the functions f(x, y) = x+ y − 1,
g(x, y) = ex + xey, and h(x, y, z) = x2 + y2 + z2 + 3.

∇f(x, y) =
(
∂f
∂x (x, y), ∂f∂y (x, y)

)
= (1, 1),

∇g(x, y) = (ex + ey, xey),

∇h(x, y, z) = (2x, 2y, 2z).

Up to this point, we have considered real-valued functions on Rn, which are
just functions of the form f : Rn → R for n ≥ 1. Next, we expand our view
to functions of the form F : Rn → Rp, where n ≥ 1 and p ≥ 1.

The first thing to note is that a function F : Rn → Rp is composed of p
functions fj : Rn → R for j = 1 · · · , p, namely

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fp(x1, . . . , xn)).

As when we introduced the gradient, we wish to have a single object that
contains all of the partial derivatives of the component functions
f1(x1, . . . , xn), . . . , fp(x1, . . . , xn) of F (x1, . . . , xn) with respect to x1, . . . , xn
that can play the role of the derivative of F (x1, . . . , xn). To that end, we
introduce the Jacobian matrix JF = JF (x1, . . . , xn) of F (x1, . . . , xn).

Definition 1.5.3. Let F : Rn → Rp be a function where n ≥ 1 and p ≥ 1.
Assume ∂fi

∂xj
exists for all 1 ≤ i ≤ p and 1 ≤ j ≤ n at a point

(x1, . . . , xn) ∈ D. The Jacobian matrix at (x1, . . . , xn) is the p× n matrix of
first order partial derivatives of the component functions of F (x1, . . . , xn).
Specifically, for

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fp(x1, . . . , xn)),
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we set

JF (x1, . . . , xn) =

(
∂fi
∂xj

)
=


∂f1
∂x1

(x1, . . . , xn) · · · ∂f1
∂xn

(x1, . . . , xn)

· ·
· ·
· ·

∂fp
∂x1

(x1, . . . , xn) · · · ∂fp
∂xn

(x1, . . . , xn)

 .

Note that the rows of JF are merely the gradients of the component
functions f1, . . . , fn of F .

Remark 1.5.4. There is one important distinction between the gradient
and the Jacobian matrix to note. For a function f : Rn → R, the gradient
∇f(x1, . . . , xn) of f and the Jacobian matrix Jf (x1, . . . , xn) of f are the
same, as both are just the row vector of the partial derivatives of f .
However, for a function F : Rn → Rm for m ≥ 2, the gradient is undefined,
and all we have is the Jacobian matrix.

Example 1.5.5. Find the Jacobian matrix of the function

F (x, y, z) = (x+ y − 1, ex + xey, x2 + y2 + z2 + 3).

JF (x, y, z) =

=



∂
∂x (x+ y − 1) ∂

∂y (x+ y − 1) ∂
∂z (x+ y − 1)

∂
∂x (ex + xey) ∂

∂y (ex + xey) ∂
∂z (ex + xey)

∂
∂x (x2 + y2 + z2 + 3) ∂

∂y (x2 + y2 + z2 + 3) ∂
∂z (x2 + y2 + z2 + 3)


=

 1 1 0
ex + ey xey 0

2x 2y 2z

 .

1.6. The Chain Rule via the Jacobian matrix

One reason for introducing the gradient and the Jacobian is that they allow
us to greatly simplify our presentation of the Chain Rule. Let us consider
again the examples we went through in the previous section.

First consider the composition

R2
(x,y)

f→ R(t)
g→ R.

In this composition, g(t) is a function of a single variable, and so there is
only one possible notion for the derivative of g(t), namely its usual derivative
g′(t). On the other hand, f(x, y) is a function of two variables, and so it has

two partial derivatives, namely ∂f
∂x (x, y) and ∂f

∂y (x, y). The derivative of the

composition is then
∇(g ◦ f)(x, y) =



The Chain Rule via the Jacobian matrix 23

=
(
g′(f(x, y)) ∂f

∂x (x, y) g′(f(x, y)) ∂f
∂y (x, y)

)
= g′(f(x, y))

(
∂f
∂x (x, y) ∂f

∂y (x, y)
)
.

Now, we can write the chain rule using the gradient and the Jacobian:

(6) ∇(g ◦ f)(x, y) = g′(f(x, y)) ∇f(x, y).

Next, consider the composition R(t)
f→ R2

(x,y)

w→ R. In this case, we can say

that w(x, y) is a function of two variables, while f(t) = (x(t), y(t)). In this
case, the composition w(f(t)) = w(x(t), y(t) is a function of the single
variable t, so the Chain Rule in this case says that

d

dt
w(f(t)) =

∂w

∂x
(x(t), y(t))

dx

dt
(t) +

∂w

∂y
(x(t), y(t))

dy

dt
(t)

=

(
∂w

∂x
(f(t))

∂w

∂y
(f(t))

)  x′(t)

y′(t)


= ∇w(f(t)) · Jf (t)

Again, we can write the chain rule using the Jacobian:

(7)
d

dt
(w ◦ f)(t) = ∇w(f(t)) · Jf (t).

Consider now the composition R2
(s,t)

f→ R2
(x,y)

w→ R. In this case, we have

that w(x, y) is a function of x and y, and g(s, t) = (x(s, t), y(s, t)) is a
function of s and t. We have that(

∂(w◦f)
∂s (s, t) ∂(w◦f)

∂t (s, t)
)

=

=

 ∂w
∂x (f(s, t)) ∂x

∂s (s, t) + ∂w
∂y (f(s, t)) ∂y

∂s (s, t)

∂w
∂x (f(s, t)) ∂x

∂t (s, t) + ∂w
∂y (f(s, t)) ∂y

∂t (s, t)



=
(

∂w
∂x (f(s, t)) ∂w

∂y (f(s, t))
)  ∂x

∂s (s, t) ∂x
∂t (s, t)

∂y
∂s (s, t) ∂y

∂t (s, t)


= ∇w(f(s, t)) · Jf (s, t).

Hence, we write the Chain Rule in this case:

(8) ∇(w ◦ f)(s, t) = ∇w(f(s, t)) · Jf (s, t).

Next, we state the most general form of the Chain Rule.
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Theorem 1.6.1 (The Chain Rule). Let F : Rm → Rn be differentiable at a
point a ∈ Rm and G : Rn → Rp be differentiable at the point b = F (a). Then
G ◦ F : Rm → Rp is differentiable at a and

JG◦F (a) = JG(b) · JF (a).

We differ the definition of differentiability of a function F : Rm → Rn until
Section 1.8. For now, let us see how this general form of the Chain Rule
implies all the other special cases.

Example 1.6.2. For example, when m = n = p = 1, then we have that
F : R→ R is differentiable at a ∈ R and G : R→ R is differentiable at
b = F (a). By Theorem 1.6.1, we conclude that the composition (G ◦ F )(x) is
differentiable at a and one has

∂

∂x
(G ◦ F )(a) = JG◦F (a) = JG(F (a)) · JF (a) = G′(F (a))

∂F

∂x
(a).

which is the Chain Rule for composition of one variable function we are
familiar with.

When m = n = 2 and p = 1, then F : R2
(s,t) → R2

(x,y) is differentiable at

(a1, a2) ∈ R2 and G : R2
(x,y) → R is differentiable at F (a1, a2). Using

Theorem 1.6.1, it follows that the composition function G ◦ F : R2 → R is
differentiable at (a1, a2) and at this point we have(

∂
∂s (G ◦ F ) ∂

∂t (G ◦ F )
)

= JG◦F
1.6.1
= JG · JF

=

(
∂G

∂x

∂G

∂y

) 
∂x

∂s

∂x

∂t

∂y

∂s

∂y

∂t



=

(
∂G

∂x

∂x

∂s
+
∂G

∂y

∂y

∂s

∂G

∂x

∂x

∂t
+
∂G

∂y

∂y

∂t

)

Therefore,

∂

∂s
(G ◦ F ) =

∂G

∂x

∂x

∂s
+
∂G

∂y

∂y

∂s
and

∂

∂t
(G ◦ F ) =

∂G

∂x

∂x

∂t
+
∂G

∂y

∂y

∂t

as in the equation (4).

1.7. Equations of normal vectors and tangent planes

Recall that in order to define a plane in R3, we need two pieces of
information. The first is a point P ∈ R3 on the plane and the second is a
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normal vector n to the plane. The equation of the plane passing through P
and normal to n is then given by

((x, y, z)− P ) · n = 0.

So, let f(x, y) be a function of two variables. Given a point (a, b) (in the
domain of f(x, y)), the corresponding point on the graph of f(x, y) is
(a, b, f(a, b)). Figure 8 shows the normal vector and the tangent plane to the
graph of the function f(x, y) at the point P = (a, b, f(a, b)).

Figure 8. normal vector and tangent plane at P

Consider what happens when we fix one of the variables and let the other
one vary. For instance, consider the behaviour of the curve on the graph of
the function w = f(x, y) defined by holding y = b constant and letting x vary
through values near a. We then get the curve (x, b, f(x, b)), and the tangent
vector to this curve at the point (a, b, f(a, b)) is given by the vector

(1, 0, ∂f∂x (a, b)).

Similarly, we can fix x = a and let y vary near b to get the curve
(a, y, f(a, y)), and the tangent vector to this curve at the point (a, b, f(a, b))

is given by the vector (0, 1, ∂f∂y (a, b)).

Definition 1.7.1. Let n(a, b) be the vector to the graph of f(x, y) at a
point (a, b, f(a, b)) that is the cross product of the above two vectors, namely

n(a, b) =

(
1, 0,

∂f

∂x
(a, b)

)
×
(

0, 1,
∂f

∂y
(a, b)

)
=

(
−∂f
∂x

(a, b),−∂f
∂y

(a, b), 1

)
.

The normal line to the graph of f(x, y) at (a, b, f(a, b)) is the unique line
passing through this point that is parallel to n(a, b). We say that a nonzero
vector v at (a, b, f(a, b)) is a normal vector to the graph of f(x, y) at
(a, b, f(a, b)) if it is parallel to the normal line. That is, there is a nonzero
λ ∈ R such that v = λn(a, b). In particular, n(a, b) is a normal vector.
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The equation of the tangent plane to the graph of f(x, y) at the point
(a, b, f(a, b)) is then given by

0 = ((x, y, z)− (a, b, f(a, b))) · n(a, b)

= ((x, y, z)− (a, b, f(a, b))) ·
(
−∂f
∂x

(a, b),−∂f
∂y

(a, b), 1

)
= (x− a, y − b, z − f(a, b)) ·

(
−∂f
∂x

(a, b),−∂f
∂y

(a, b), 1

)
= −∂f

∂x
(a, b)(x− a)− ∂f

∂y
(a, b)(y − b) + z − f(a, b).

Definition 1.7.2. The tangent plane to the graph of the function
w = f(x, y) at the point (a, b) ∈ R2 is given by the equation

z =
∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b) + f(a, b).

Example 1.7.3. Find a normal vector and the equation of the tangent
plane to the graph of f(x, y) = x2 exp(xy) at the point (1, π, f(1, π)).

We start by calculating the gradient of f(x, y):

∇f(x, y) =

(
∂f

∂x
(x, y),

∂f

∂y
(x, y)

)
= (2x exp(xy) + x2y exp(xy), x3 exp(xy)).

Hence, a normal vector at the point (x, y, f(x, y)) on the graph of f(x, y)
is

n(x, y) =

(
−∂f
∂x

(x, y),−∂f
∂y

(x, y), 1

)
= (−(2x+x2y) exp(xy),−x3 exp(xy), 1),

and so a normal vector to the graph of f(x, y) at the point
(1, π, f(1, π)) = (1, π, exp(π)) is

n(1, π) = (−(2 + π) exp(π),− exp(π), 1).

Hence, the equation of the tangent plane to the graph of
f(x, y) = x2 exp(xy) at the point (1, π, f(1, π)) = (1, π, exp(π)) is

0 = ((x, y, z)− (1, π, exp(π))) · n(1, π)

= ((x, y, z)− (1, π, exp(π))) · (−(2 + π) exp(π),− exp(π), 1)

= −(x− 1)(2 + π) exp(π)− (y − π) exp(π) + z − exp(π)

= −(2 + π) exp(π)x− exp(π)y + z − (1 + 2π) exp(π).

Example 1.7.4. Show that every tangent plane to the cone z2 = x2 + y2

(see Figure 9) passes through the origin 0 = (0, 0, 0).

We start by expressing the cone z2 = x2 + y2 as the union of the graphs of
two functions. Namely, we can express the cone as the union of the graph of

f(x, y) =
√
x2 + y2 (part of the cone above the xy-plane) and the graph of

g(x, y) = −
√
x2 + y2 (part of the cone below the xy-plane), where both

function f(x, y) and g(x, y) are defined on the whole plane R2 and where the
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Figure 9. the cone given by the equation z2 = x2 + y2

two graphs intersect at the single point which is the origin (0, 0, 0) in
R3.

We start with f(x, y). At a point (a, b) in R2, the equation for the normal
vector nf (a, b) to the graph of f(x, y) at the point (a, b, f(a, b)) is

nf (a, b) =

(
−∂f
∂x

(a, b),−∂f
∂y

(a, b), 1

)
=

(
− a√

a2 + b2
,− b√

a2 + b2
, 1

)
.

We note that the normal vector is not defined at the origin 0 = (0, 0).
Hence, the equation of the tangent vector to the graph of f(x, y) at
(a, b, f(a, b)) is

((x, y, z)− (a, b, f(a, b))) · nf (a, b) =

= ((x, y, z)− (a, b, f(a, b))) ·
(
− a√

a2 + b2
,− b√

a2 + b2
, 1

)
= 0.

This becomes the equation

0 = − a(x− a)√
a2 + b2

− b(y − b)√
a2 + b2

+ z −
√
a2 + b2.

In order to determine whether the origin (0, 0, 0) in R3, we plug in the values
(x, y, z) = (0, 0, 0) and see whether the equation remains true.

Setting (x, y, z) = (0, 0, 0), we get the equation

0 = − a(−a)√
a2 + b2

− b(−b)√
a2 + b2

+−
√
a2 + b2 =

a2 + b2√
a2 + b2

−
√
a2 + b2,

which is a true identity (meaning it is always true).

Though we do not go through the details, the discussion of

g(x, y) = −
√
x2 + y2 works in exactly the same way.

Example 1.7.5. Find every point on the surface of the ellipsoid given by
the equation x2 + 4y2 + 9z2 = 16 at which the normal line at the point
passes through the centre (0, 0, 0) of the ellipsoid.
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We start by working on the upper half of the ellipsoid, which is the graph of
the function

f(x, y) =
1

3

√
16− x2 − 4y2

(which is obtained by solving the equation for the ellipsoid for z and then
imposing the constraint that z > 0).

Hence, at a point (a, b, f(a, b)) on the ellipsoid, the equation of a normal
vector is

n(a, b) =

=

(
−∂f
∂x

(a, b),−∂f
∂y

(a, b), 1

)
=

(
a

3
√

16− a2 − 4b2
,

4b

3
√

16− a2 − 4b2
, 1

)
.

The normal line through (a, b, f(a, b)) is given parametrically by the
equation

(a, b, f(a, b)) + tn(a, b) =

=

(
a, b,

1

3

√
16− a2 − 4b2

)
+ t

(
a

3
√

16− a2 − 4b2
,

4b

3
√

16− a2 − 4b2
, 1

)
.

In order for this line to pass through the origin, we need to find a value of t
so that (a, b, f(a, b)) + tn(a, b) = (0, 0, 0). If we consider the third coordinate,
this tells us that

t = −1

3

√
16− a2 − 4b2.

For this value of t, we then have that

−1

3

√
16− a2 − 4b2

(
a

3
√

16− a2 − 4b2
,

4b

3
√

16− a2 − 4b2
, 1

)
=

=

(
−a

9
,−4b

9
,−1

3

√
16− a2 − 4b2

)
,

and so for this value of t, we have that

(a, b, f(a, b)) + tn(a, b) =

(
a− a

9
, b− 4b

9
, 0

)
=

(
8a

9
,

5b

9
, 0

)
.

The only point values of a and b for which this can be (0, 0, 0) are a = 0 and
b = 0, which gives the point (a, b, f(a, b)) = (0, 0, 4

3 ) on the ellipsoid, which is
the topmost point.

We can run the same argument for the lower half of the ellipsoid given
by

g(x, y) = −1

3

√
16− x2 − 4y2

to get that the only point on the lower half of the ellipsoid through which
the normal line passes through the origin is (0, 0,− 4

3 ), the bottommost
point.

Similarly, we can run the same argument on the front and back halves of the
ellipsoid, so viewing x as a function of y and z, to get front-most and
back-most points (4, 0, 0) and (−4, 0, 0), and on the left and right halves of
the ellipsoid, so viewing y as a function of x and z, to get the leftmost and
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rightmost points (0, 2, 0) and (0,−2, 0). So there are in all 6 points on the
ellipsoid through which the normal line passes through the origin, and these
are the points at which the ellipsoid intersects the three coordinate
axes.

The reason that we solve the equation of the ellipsoid for x, y, and z
respectively and then consider the resulting 2 equations in each case is the
following.

Each of theses 6 equations describes the ellipsoid in a particular region.
Hence, in each case, when we find the points on the ellipsoid such that the
normal line passes through (0, 0, 0), they are only the points on one of the 6
regions of the ellipsoid. For example, when we consider

f(x, y) =
1

3

√
16− x2 − 4y2

and its partial derivatives, the region on which they are all defined is when
z > 0. This is the portion of the ellipsoid which is above and not intersecting
the xy-plane. So, in order to find all the points, we need to consider regions
that cover the whole ellipsoid. Solving for x, y, and z respectively and then
considering the resulting 2 equations in each case does exactly this as the 6
regions cover the whole ellipsoid.

Example 1.7.6. Find the distance from the origin O = (0, 0, 0) to the
ellipsoid given by the equation x2 + 4y2 + 9z2 = 16.

Note that the distance between the origin and the ellipsoid is the length of
the shortest line segment connecting a point on the ellipsoid to the origin.

Let P be such a point on the ellipsoid. Then the vector
−−→
OP must be normal

to the surface and hence on the normal line passing through the origin. By
Example 1.7.5, we conclude that P ∈ {(±4, 0, 0), (0,±2, 0), (0, 0,± 4

3 )}.
Calculating the distance between each point and the origin, we see that the
minimum is 4

3 . Thus, the minimum distance from the origin O = (0, 0, 0) to

the ellipsoid is 4
3 which is attained at points (0, 0,± 4

3 )} of the surface.

1.8. Differentiability

We go back to the definition of the derivative for a function f(x) of one
variable at a point x = a, to whit

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

Since f ′(a) is a constant, we can carry it over to the right hand side and use
basic properties of limits to see that we can rewrite this equation as

(9) lim
h→0

f(a+ h)− f(a)− f ′(a)h

h
= 0.
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We can then say that the function f : R→ R is differentiable at a point
x = a if there exists f ′(a) ∈ R so that

lim
h→0

f(a+ h)− f(a)− f ′(a)h

h
= 0.

We also know that the derivative f ′(a) has a geometric interpretation as the
slope of the line tangent to the graph of the function at the point
(a, f(a)) ∈ R2. So, the function is differentiable when such a tangent line
exists and hence its slope is well-defined.

If we now consider a function of two variables f : R2 → R instead, then the
tangent line is replaced by the tangent plane at a given point (a, b, f(a, b)).
So, the function would be differentiable at (a, b) when such a tangent plane
exists. The tangent plane does not have a single slope but rather many
slopes coming from different directions. We then compute the slopes in the x
and y directions, that is, when we fix y = b and x = a respectively and
consider the slopes of the lines (x, b, f(x, b)) and (a, y, f(a, y)) in the tangent
plane. These slopes are precisely the partial derivatives of f(x, y) at (a, b).
So, for a function f(x, y) to be differentiable at (a, b), the gradient ∇f(a, b)
needs to exist.

One should expect the converse not to be true as we only choose two specific
lines on the tangent plane in order to describe the gradient vector. But as we
shall see, this is almost true.

1.8.1. Differentiability in the case of two variable functions. Now, let
us make the precise definition of differentiability.

Definition 1.8.1. A function f : R2 → R is differentiable at a point
(a, b) ∈ R2 if there is a vector v = (v1, v2) ∈ R2 so that

(10) lim
(h,k)→(0,0)

f(a+ h, b+ k)− f(a, b)− v · (h, k)√
h2 + k2

= 0.

Theorem 1.8.2. If the function f : R2 → R is differentiable at a point
(a, b) ∈ R2, then it is continuous at (a, b). Moreover, the vector v defined by
(10) is unique and is equal to ∇f(a, b).

Proof. To see the first assertion note that lim
(h,k)→(0,0)

√
h2 + k2 = 0. This

together with (10) gives us

lim
(h,k)→(0,0)

√
h2 + k2 · lim

(h,k)→(0,0)

f(a+ h, b+ k)− f(a, b)− v · (h, k)√
h2 + k2

= 0,

lim
(h,k)→(0,0)

f(a+ h, b+ k)− f(a, b)− v · (h, k) = 0,

lim
(h,k)→(0,0)

f(a+ h, b+ k)− f(a, b) = 0,
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lim
(h,k)→(0,0)

f(a+ h, b+ k) = f(a, b).

To see the second assertion, note that we get the same limit if we let k = 0
in (10). So,

lim
(h,0)→(0,0)

f(a+ h, b)− f(a, b)− (v1, v2) · (h, 0)

|h|
= 0.

But this implies that

lim
h→0

∣∣∣∣f(a+ h, b)− f(a, b)− (v1, v2) · (h, 0)

h

∣∣∣∣ = 0,

which in turn implies

lim
h→0

f(a+ h, b)− f(a, b)− (v1, v2) · (h, 0)

h
= 0,

lim
h→0

f(a+ h, b)− f(a, b)

h
− v1 = 0,

v1 = lim
h→0

f(a+ h, b)− f(a, b)

h
=
∂f

∂x
(a, b).

Similarly, by letting h = 0, we get

v2 = lim
k→0

f(a, b+ k)− f(a, b)

h
=
∂f

∂y
(a, b).

Note that the vector v = (v1, v2) is thus the gradient of f(x, y) at (a, b). �

We have just shown that if a function f : R2 → R is differentiable at a point

(a, b) ∈ R2, then it is continuous at (a, b) and its partial derivatives
∂f

∂x
and

∂f

∂y
exist at that point. There is a useful criteria that almost states the

converse, guaranteeing that a function is differentiable at a given point. We
will not prove this theorem here, but we will rather use it in the subsequent
examples.

Theorem 1.8.3. If both partial derivatives
∂f

∂x
and

∂f

∂y
of a function

f : R2 → R exist and are continuous on a neighbourhood of a point (a, b)
then f is differentiable at (a, b).

Example 1.8.4. Show that the function

f(x, y) = x2 + y2 + xy exp (x2 + y2)

is differentiable.
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First, we compute the partial derivatives.

∂f

∂x
(x, y) = 2x+ y exp (x2 + y2) + 2x2y exp (x2 + y2),

∂f

∂y
(x, y) = 2y + x exp (x2 + y2) + 2xy2 exp (x2 + y2).

As these functions are obtained from continuous functions via products,
sums and compositions they are also continuous. So, by Theorem 1.8.3,
f(x, y) is differentiable.

1.8.2. Derivative as a linear transformation (section is not
assessed). At this point, we shift our point of view. For a function
f : R→ R of one variable differentiable at x = a, we have that the map
h 7→ f ′(a)h is a linear map from R to R. Think of it as the line passing
through the origin and parallel to the tangent line of f(x) at x = a. This
together with the equation (9) leads us to the definition of the derivative of
F : Rn → Rp.

Definition 1.8.5. Given a function F : Rn → Rp, the derivative of
F (x1, . . . , xn) at a = (a1, . . . , xn) is a linear map (or linear transformation)
AF : Rn → Rp satisfying

lim
h→0

F (a + h)− F (a)−AF (h)

||h||
= 0.

We say that F is differentiable at a if its derivative exists at this point. If F
is differentiable at every point of the domain we simply say that it is
differentiable.

The reason we need to use ||h|| in the denominator is that we cannot divide
by vectors as we can by numbers.

As in the case when n = 2 and p = 1, it follows from the definition that if a
function F : Rn → Rp is differentiable at a point a ∈ Rn, then F is

continuous at a and all partial derivatives
∂fi
∂xj

exist at a. Again there is a

useful criteria that almost states the converse, guaranteeing that a function
is differentiable at a given point.

Theorem 1.8.6. If all partial derivatives
∂fi
∂xj

of a function

F = (f1, . . . , fn) : Rn → Rp exist and are continuous on a neighbourhood of a
point a ∈ Rn then f is differentiable at a.

Next, we show the matrix corresponding to the “mysterious” linear
transformation AF appearing in the definition of the differentiability is
nothing other than the Jacobian matrix.

Theorem 1.8.7. If a function F = (f1, . . . , fp) : Rn → Rp is differentiable
at a ∈ Rn, then AF = JF (a).
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Proof. By definition, we have

lim
h→0

F (a + h)− F (a)−AF (h)

||h||
= 0.

We can let h = (h1, . . . , hn) and F = (f1, . . . , fp). Let (AF )i be the i-th row
and let (AF )ij be the ij-the entry of the matrix corresponding to the linear
transformation AF for 1 ≤ i ≤ p. The above limit implies that for i-th
component function fi of F one has

lim
h→0

fi(a + h)− fi(a)− (AF )i · h
||h||

= 0.

Let h = (0, . . . , 0, hj , 0, . . . , 0) where all but the j-th entry are zero for
1 ≤ j ≤ n. This implies that

lim
hj→0

fi(a + h)− fi(a)− (AF )ij · hj
hj

= 0.

Then we get

(AF )ij = lim
hj→0

fi(a + h)− fi(a)

hj
=
∂fi
∂xj

(a)

for 1 ≤ i ≤ p and 1 ≤ j ≤ n. Therefore, AF = JF (a). �

As an immediate application we obtain the following.

Corollary 1.8.8. Given a function F : Rn → Rp, if the derivative of
F (x1, . . . , xn) exists at a = (a1, . . . , xn), then it is unique.

Example 1.8.9. Let A : Rn → Rp. With this definition of derivative, show
that A is its own derivative; that is, show that A = AA for all a ∈ Rn.

We only need to show that AA satisfies the definition given above, namely
that

lim
h→0

A(a + h)−A(a)−A(h)

||h||
= 0.

Since A is a linear map, we have that A(a + h) = A(a) +A(h), and so the
numerator in the limit is always 0, and we are done.

1.9. Directional derivative

For a function of two or more variables, we have already seen that its partial
derivatives describe the rate of change of the function in either x or y
directions depending which partial derivative we consider. In this section we
discuss how one can measure the rate of change of such a function in any
given direction.

Definition 1.9.1. Let f : R2 → R and u be a unit vector in R2. The
directional derivative (or rate of change) of f in the direction u at the point
(a, b) ∈ R2 is defined to be

Du(f)(a, b) = lim
h→0

f((a, b) + hu)− f(a, b)

h
.
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provided this limit exists.

By working through the definition of the derivative, we can see that there is
an alternative formula for the directional derivative.

Theorem 1.9.2. Suppose f : R2 → R is differentiable at (a, b) ∈ R2 and u
is a unit vector. Then the directional derivative of f in the direction u at
(a, b) is given by

Du(f)(a, b) = ∇f(a, b) · u.

Proof. We can write u = (α, β) ∈ R2 where α2 + β2 = 1, because u is a unit
vector. Since f : R2 → R is differentiable at (a, b), by (10) and Theorem
1.8.2, we have

lim
h→0

f(a+ hα, b+ hβ)− f(a, b)−∇f(a, b) · (hα, hβ)√
(hα)2 + (hβ)2

= 0

Since α2 + β2 = 1, it follows that

lim
h→0

f(a+ hα, b+ hβ)− f(a, b)−∇f(a, b) · (hα, hβ)

h
= 0.

This gives us

lim
h→0

f(a+ hα, b+ hβ)− f(a, b)

h
= ∇f(a, b) · (α, β).

But the left-hand side of the above identity is exactly the directional
derivative and thus

Du(f)(a, b) = ∇f(a, b) · u
as desired. �

Remark 1.9.3. To see that it is important that u be a unit vector, let w be
any non-zero vector in R2 and let u be the unit vector in the direction of w,
namely u = 1

|w|w. If we compare ∇f(a, b) · u with ∇f(a, b) ·w, we see that

∇f(a, b) · u = ∇f(a, b) ·
(

1

|w|
w

)
=

1

|w|
∇f(a, b) ·w,

which differs from ∇f(a, b) ·w by a multiplicative constant. In particular, if
we do not impose a restriction on the vector u, such as requiring that u be a
unit vector, then the directional derivative is not well-defined.

The geometric meaning of the gradient comes from the definition of the
directional derivative. We use the property of dot products that

a · b = |a| |b| cos(θ)

where θ is the angle between a and b. Letting θ be the angle between
∇f(a, b) and u, we see that

Du(f)(a, b) = ∇f(a, b) · u = |∇f(a, b)| |u| cos(θ) = |∇f(a, b)| cos(θ),

since u is a unit vector.
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We see that since ∇f(a, b) is constant, to maximise Du(f)(a, b), we only
need to maximise cos(θ). Therefore, we obtain the following geometric
properties of the gradient.

(i) The function f increase the most rapidly at (a, b) when θ = 0, which
is when u is pointing in the same direction as ∇f(a, b).

(ii) The function f decrease the most rapidly at (a, b) when θ = π, which
is when u is pointing in the opposite direction as ∇f(a, b).

(iii) The rate of change of the function f is zero (a, b) when θ = π
2 , which

is when u is perpendicular to the direction of ∇f(a, b).

For a given function f(x, y), the sorts of calculations we do with the
directional derivative involve solving the equation Du(f)(a, b) = c when two
of the parameters u, (a, b) and c are specified.

Example 1.9.4. For the function f(x, y) = x2 + y2(1− x)3 at the point
(0, 1) and the direction u = ( 1√

5
, 2√

5
), determine Du(f).

Calculating, we see that

∇f(x, y) = (2x− 3y2(1− x)2, 2y(1− x)3),

so that
∇f(0, 1) = (−3, 2),

and hence

D( 1√
5
, 2√

5
)(f)(0, 1) = ∇f(0, 1) ·

(
1√
5
,

2√
5

)
= (−3, 2) ·

(
1√
5
,

2√
5

)
=

1√
5
.

Example 1.9.5. For the function f(x, y) = x2 + y2(1− x)3 at the point
(0, 1), find all directions u in which Du(f)(0, 1) = 1.

Since we must restrict to consider only unit vectors u, we set u = (α, β)
where α2 + β2 = 1. Using the calculations from Example 1.9.4, we have that
∇f(0, 1) = (−3, 2), and so we have the equation

1 = Duf(0, 1) = ∇f(0, 1) · u = (−3, 2) · (α, β).

Therefore, we have two equations in α and β, namely α2 + β2 = 1 and
−3α+ 2β = 1. We have two equations in two unknowns, though not both
linear equations, and so we expect generically for there to be finitely many
solutions. Solving −3α+ 2β = 1 for β and substituting into the other
equation, we see that

1 = α2 +

(
1

2
+

3

2
α

)2

,

which simplifies to 13α2 + 6α− 3 = 0. By the quadratic formula, we have
two possible α, namely

α =
−6±

√
36− 4(13)(−3)

26
,

and for each α, we have a corresponding β. Hence, there are two
directions.
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Example 1.9.6. For the function f(x, y) = x2 + y2(1− x)3, find all points
(a, b) at which there exists a direction u in which Du(f)(a, b) = 1.

We start by setting up the equation Du(f)(a, b) = 1. For this, we need to
know ∇f(a, b). For f(x, y) = x2 + y2(1− x)3, we have that

∇f(x, y) = (2x− 3y2(1− x)2, 2y(1− x)3),

and so for an arbitrary point (a, b), we have that

∇f(a, b) = (2a− 3b2(1− a)3, 2b(1− a)3).

Let u = (α, β) be a unit vector, so that α2 + β2 = 1.

The equation Du(f)(a, b) = 1 becomes the equation ∇f(a, b) · u = 1, and so
we are left with the equation

(2a− 3b2(1− a)3, 2b(1− a)3) · (α, β) = 1,

together with the condition α2 + β2 = 1. Note that there are no conditions
on a and b. This gives us a system of two (non-linear) equations in 4
variables, and so we generically expect that we will have infinitely many
solutions.

The main geometric significance of the directional derivative comes in fact
from its relationship to the level curves of a function of two variables.

Theorem 1.9.7. Let f : R2 → R be differentiable at (a, b) ∈ R2. Set
c = f(a, b) and note that by construction, the level curve Lc of f(x, y) passes
through (a, b). At (a, b), we have that Lc is perpendicular to ∇f(a, b).

Proof. To show this, we start by parametrising Lc by a pair of functions
(x(t), y(t)) = `(t), where `(t) is defined on (−ε, ε) for some ε > 0 and where
`(0) = (x(0), y(0)) = (a, b). The fact that we can do this parametrisation is a
fact that we have not proven in class, but is a rabbit that we are pulling out
of a hat, for the moment. Now we calculate.

We know that since `(t) is parametrising the level curve Lc of f(x, y), the
composition

f(`(t)) = f(x(t), y(t)) = c

is constant; this is just the definition of level curve. Using the chain rule,

0 =
d

dt
f(`(t)) =

∂f

∂x
(x(t), y(t))x′(t) +

∂f

∂y
(x(t), y(t))y′(t) = ∇f(`(t)) · `′(t),

and so at t = 0 we see that

0 = ∇f(`(0)) · `′(0) = ∇f(a, b) · (x′(0), y′(0)).

Since (x′(0), y′(0)) is just the tangent vector to the level curve Lc at (a, b),
we are done. �
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1.10. Higher order derivatives

When calculating partial derivatives of two or higher order, we iteratively
use the rules for partial differentiation of a single order. Given a function
w = f(x, y), we have four possible order two partial derivatives.

∂2w

∂x2
=

∂

∂x

∂w

∂x
,

∂2w

∂y2
=

∂

∂y

∂w

∂y
,

∂2w

∂x∂y
=

∂

∂x

∂w

∂y
,

∂2w

∂y∂x
=

∂

∂y

∂w

∂x
.

The last two are called mixed partials.

Example 1.10.1. Find all the second order partial derivatives of the
function f(x, y) = −x3y5.

First, we compute the first order partials:

∂f

∂x
= −3x2y5 and

∂f

∂x
= −5x3y4.

For the second order partials we get

∂2f

∂x2
=

∂

∂x

∂f

∂x
=

∂

∂x
(−3x2y5) = −6xy5.

∂2f

∂y2
=

∂

∂y

∂f

∂y
=

∂

∂y
(−5x3y4) = −20x3y3.

∂2f

∂x∂y
=

∂

∂x

∂f

∂y
=

∂

∂x
(−5x3y4) = −15x2y4.

∂2f

∂y∂x
=

∂

∂y

∂f

∂x
=

∂

∂y
(−3x2y5) = −15x2y4.

Example 1.10.2. Given w = f(x, y) = x cos(z) + sin(xy), calculate
∂3w

∂z∂x2
,

∂3w

∂x∂z∂x
, and

∂3w

∂x2∂z
.

∂3w

∂z∂x2
=

∂2w

∂z∂x
(cos(z) + y cos(xy)) =

∂w

∂z
(−y2 sin(x)) = 0,

∂3w

∂x∂z∂x
=

∂2w

∂x∂z
(cos(z) + y cos(xy)) =

∂w

∂x
(− sin(z)) = 0,

∂3w

∂x2∂z
=
∂2w

∂x2
(−x sin(z)) =

∂w

∂x
(− sin(z)) = 0.
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Observe that in the above example, the mixed partial derivatives involved
the same variables but in different order. We have the following useful
theorem on the order of partials differentiation.

Theorem 1.10.3. Let f : Rn → R be a function. Suppose for some positive
integer k, there exists a neighbourhood U of a point P ∈ Rn such that f and
all its partial derivatives of order less than k are continuous on U . Then any
two mixed partial derivatives of order k involving the same variables but in
different sequential orders are equal at P , provided those partial derivatives
are continuous at P .

The chain rule for second and higher order partial derivatives is complicated
mainly because of the number of terms that we need to track. We will
conduct this discussion in the special case of a function w = w(x, y), where
both x = x(s, t) and y = y(s, t) are functions of s and t. Again here, the
independent variables are s and t, and the intermediate variables are x and
y.

We begin with the chain rule for first order partial derivatives in this case,
namely

∂w

∂s
=
∂w

∂x

∂x

∂s
+
∂w

∂y

∂y

∂s

and

∂w

∂t
=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
.

which is as always a sum in which we have one term for each intermediate
variable.

A point worth stressing here, because we will make much use of it, is that as
we have set things up, for any function Θ = Θ(x, y) we have that

∂Θ

∂s
=
∂Θ

∂x

∂x

∂s
+
∂Θ

∂y

∂y

∂s
and

∂Θ

∂t
=
∂Θ

∂x

∂x

∂t
+
∂Θ

∂y

∂y

∂t
.(11)

Note that this makes sense, as x = x(s, t) and y = y(s, t) are functions of s
and t, and so Θ(x, y) is secretly also a function of s and t.
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In order to calculate second order derivatives, we just calculate, using the
product rule and the above. So:

∂2w

∂s2
=

∂

∂s

(
∂w

∂x

∂x

∂s
+
∂w

∂y

∂y

∂s

)
=

∂

∂s

(
∂w

∂x

∂x

∂s

)
+

∂

∂s

(
∂w

∂y

∂y

∂s

)
=

(
∂

∂s

∂w

∂x

)
∂x

∂s
+
∂w

∂x

∂2x

∂s2
+

(
∂

∂s

∂w

∂y

)
∂y

∂s
+
∂w

∂y

∂2y

∂s2

=

(
∂2w

∂x2

∂x

∂s
+

∂2w

∂y ∂x

∂y

∂s

)
∂x

∂s

+
∂w

∂x

∂2x

∂s2
+

(
∂2w

∂x ∂y

∂x

∂s
+
∂2w

∂y2

∂y

∂s

)
∂y

∂s
+
∂w

∂y

∂2y

∂s2

=
∂2w

∂x2

(
∂x

∂s

)2

+
∂2w

∂y ∂x

∂x

∂s

∂y

∂s

+
∂w

∂x

∂2x

∂s2
+

∂2w

∂x ∂y

∂x

∂s

∂y

∂s
+
∂2w

∂y2

(
∂y

∂s

)2

+
∂w

∂y

∂2y

∂s2
.

Here, we use that the derivative of a sum is the sum of the derivatives to
move from the first line to the second and use the product rule to show
that

∂

∂s

(
∂w

∂x

∂x

∂s

)
=

(
∂

∂s

∂w

∂x

)
∂x

∂s
+
∂w

∂x

∂2x

∂s2

and
∂

∂s

(
∂w

∂y

∂y

∂s

)
=

(
∂

∂s

∂w

∂y

)
∂y

∂s
+
∂w

∂y

∂2y

∂s2

to move from the second line to the third line. We use the chain rule
(Equation (11) with Θ = ∂w

∂x and Θ = ∂w
∂y , respectively) to show that

∂

∂s

∂w

∂x
=

(
∂

∂x

∂w

∂x

)
∂x

∂s
+

(
∂

∂y

∂w

∂x

)
∂y

∂s
=
∂2w

∂x2

∂x

∂s
+

∂2w

∂y ∂x

∂y

∂s

and

∂

∂s

∂w

∂y
=

(
∂

∂x

∂w

∂y

)
∂x

∂s
+

(
∂

∂y

∂w

∂y

)
∂y

∂s
=

∂2w

∂x ∂y

∂x

∂s
+
∂2w

∂y2

∂y

∂s

to move from the third line to the fourth line. We can similarly show
that

∂2w

∂s ∂t
=
∂2w

∂x2

∂x

∂t

∂x

∂s
+

∂2w

∂y∂x

∂y

∂t

∂x

∂s
+

∂2w

∂x∂y

∂x

∂t

∂y

∂s

+
∂2w

∂y2

∂y

∂t

∂y

∂s
+
∂w

∂x

∂2x

∂t∂s
+
∂w

∂y

∂2y

∂t∂s
=

∂2w

∂t ∂s
,

and
∂2w

∂t2
=
∂2w

∂x2

(
∂x

∂t

)2

+
∂2w

∂y ∂x

∂x

∂t

∂y

∂t
+
∂w

∂x

∂2x

∂t2
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+
∂2w

∂x ∂y

∂x

∂t

∂y

∂t
+
∂2w

∂y2

(
∂y

∂t

)2

+
∂w

∂y

∂2y

∂t2
.

It is important here to remark that these are not formulae to memorise.
Rather, they are guides to the methods. Let us use them to do two
examples.

Example 1.10.4. Consider the function w = w(x, y) = sin(x2y), where
x = x(s, t) = st2 and y = y(s, t) = s2 + 1

t . Without substituting in the

expressions for x(s, t) and y(s, t), use the Chain Rule to calculate ∂2w
∂s2 . We

start with the first order partial derivatives, namely

∂w

∂s
=

∂

∂s
(sin(x2y))

= cos(x2y)
∂

∂s
(x2y)

= cos(x2y)

(
2xy

∂x

∂s
+ x2 ∂y

∂s

)

and

∂w

∂t
=

∂

∂t
(sin(x2y))

= cos(x2y)
∂

∂t
(x2y)

= cos(x2y)

(
2xy

∂x

∂t
+ x2 ∂y

∂t

)
.

The requested second order partial derivative is then

∂2w

∂s2
=

∂

∂s

(
∂w

∂s

)
=

∂

∂s

(
cos(x2y)

(
2xy

∂x

∂s
+ x2

∂y

∂s

))
=

∂

∂s

(
2xy cos(x2y)

∂x

∂s

)
+

∂

∂s

(
x2 cos(x2y)

∂y

∂s

)
=

(
2

(
∂

∂s
x

)
y cos(x2y) + 2x

(
∂

∂s
y

)
cos(x2y) + 2xy

(
∂

∂s
cos(x2y)

))
∂x

∂s

+2xy cos(x2y)
∂2x

∂s2
+

((
∂

∂s
x2
)
cos(x2y) + x2

(
∂

∂s
cos(x2y)

))
∂y

∂s

+x2 cos(x2y)
∂2y

∂s2
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=

(
2
∂x

∂s
y cos(x2y) + 2x

∂y

∂s
cos(x2y)− 2xy sin(x2y)

(
2x
∂x

∂s
y + x2

∂y

∂s

))
∂x

∂s

+2xy cos(x2y)
∂2x

∂s2
+

(
2x
∂x

∂s
cos(x2y)− x2 sin(x2y)

(
2x
∂x

∂s
y + x2

∂y

∂s

))
∂y

∂s

+x2 cos(x2y)
∂2y

∂s2

= 2

(
∂x

∂s

)2

y cos(x2y) + 2x
∂x

∂s

∂y

∂s
cos(x2y)

−2xy sin(x2y)

(
2x

(
∂x

∂s

)2

y + x2
∂x

∂s

∂y

∂s

)
+ 2xy cos(x2y)

∂2x

∂s2

+2x
∂x

∂s

∂y

∂s
cos(x2y)− x2 sin(x2y)

(
2x
∂x

∂s

∂y

∂s
y + x2

(
∂y

∂s

)2
)

+ x2 cos(x2y)
∂2y

∂s2

= 2t4
(
s2 +

1

t

)
cos

(
s2t4

(
s2 +

1

t

))
+ 4s2t4 cos

(
s2t4

(
s2 +

1

t

))
+2st2

(
s2 − 1

t

)
sin

(
s2t4

(
s2 +

1

t

))(
2st6

(
s2 +

1

t

)
+ 2s3t6

)
+4s2t4 cos

(
s2t4

(
s2 +

1

t

))
−s2t4 sin

(
s2t4

(
s2 +

1

t

))(
4s2t4

(
s2 +

1

t

)
+ 4s4t4

)
+2s2t4 cos

(
s2t4

(
s2 +

1

t

))

Example 1.10.5. Consider an arbitrary function w = w(x, y), where
x = x(r, θ) = r cos(θ) and y = y(r, θ) = r sin(θ). Show that

∂2w

∂x2
+
∂2w

∂y2
=
∂2w

∂r2
+

1

r2

∂2w

∂θ2
+

1

r

∂w

∂r
.

As always, we start by differentiating with respect to the independent
variables, which in this case are r and θ. Calculating, we see that

∂w

∂r
=
∂w

∂x

∂x

∂r
+
∂w

∂y

∂y

∂r
= cos(θ)

∂w

∂x
+ sin(θ)

∂w

∂y

and

∂w

∂θ
=
∂w

∂x

∂x

∂θ
+
∂w

∂y

∂y

∂θ
= (−r sin(θ))

∂w

∂x
+ (r cos(θ))

∂w

∂y
.

We now need to find the two second order partial derivatives ∂2w
∂r2 and ∂2w

∂θ2 ;

we do not need to find the mixed partial derivatives ∂2w
∂r ∂θ and ∂2w

∂θ ∂r , as they
are not part of what we are asked to show.
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So, we calculate:

∂2w

∂r2
=

∂

∂r

∂w

∂r

=
∂

∂r

(
cos(θ)

∂w

∂x
+ sin(θ)

∂w

∂y

)
= cos(θ)

(
∂

∂r

∂w

∂x

)
+ sin(θ)

(
∂

∂r

∂w

∂y

)
= cos(θ)

((
∂

∂x

∂w

∂x

)
∂x

∂r
+

(
∂

∂y

∂w

∂x

)
∂y

∂r

)
+ sin(θ)

((
∂

∂x

∂w

∂y

)
∂x

∂r
+

(
∂

∂y

∂w

∂y

)
∂y

∂r

)
= cos(θ)

(
∂2w

∂x2
cos(θ) +

∂2w

∂y ∂x
sin(θ)

)
+ sin(θ)

(
∂2w

∂x ∂y
cos(θ) +

∂2w

∂y2
sin(θ)

)
= cos2(θ)

∂2w

∂x2
+ sin(θ) cos(θ)

(
∂2w

∂y ∂x
+

∂2w

∂x ∂y

)
+ sin2(θ)

∂2w

∂y2

and

∂2w

∂θ2
=

∂

∂θ

∂w

∂θ

=
∂

∂θ

(
(−r sin(θ))

∂w

∂x
+ (r cos(θ))

∂w

∂y

)
= (−r cos(θ))

∂w

∂x
− r sin(θ)

(
∂

∂θ

∂w

∂x

)
− r sin(θ)

∂w

∂y
+ r cos(θ)

(
∂

∂θ

∂w

∂y

)
= (−r cos(θ))

∂w

∂x
− r sin(θ)

((
∂

∂x

∂w

∂x

)
∂x

∂θ
+

(
∂

∂y

∂w

∂x

)
∂y

∂θ

)
−r sin(θ)

∂w

∂y
+ r cos(θ)

((
∂

∂x

∂w

∂y

)
∂x

∂θ
+

(
∂

∂y

∂w

∂y

)
∂y

∂θ

)
= (−r cos(θ))

∂w

∂x
− r sin(θ)

(
∂2w

∂x2
(−r sin(θ)) +

∂2w

∂y ∂x
(r cos(θ))

)
−r sin(θ)

∂w

∂y
+ r cos(θ)

(
∂2w

∂x ∂y
(−r sin(θ)) +

∂2w

∂y2
(r cos(θ))

)
= (−r cos(θ))

∂w

∂x
− r sin(θ)

∂w

∂y
+ r2 sin2(θ)

∂2w

∂x2

−r2 cos(θ) sin(θ)

(
∂2w

∂y ∂x

∂2w

∂x ∂y

)
+ r2 cos2(θ)

∂2w

∂y2
.
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Combining these, we see that

∂2w

∂r2
+

1

r2

∂2w

∂θ2
+

1

r

∂w

∂r

= cos2(θ)
∂2w

∂x2
+ sin(θ) cos(θ)

(
∂2w

∂y ∂x
+

∂2w

∂x ∂y

)
+ sin2(θ)

∂2w

∂y2

+
1

r

(
cos(θ)

∂w

∂x
+ sin(θ)

∂w

∂y

)
+

1

r2

(
(−r cos(θ))

∂w

∂x
− r sin(θ)

∂w

∂y
+ r2 sin2(θ)

∂2w

∂x2

− r2 cos(θ) sin(θ)

(
∂2w

∂y ∂x
+

∂2w

∂x ∂y

))
+

1

r2

(
r2 cos2(θ)

∂2w

∂y2

)
= (cos2(θ) + sin2(θ))

∂2w

∂x2
+ (cos2(θ) + sin2(θ))

∂2w

∂y2

=
∂2w

∂x2
+
∂2w

∂y2
,

as desired.

1.11. Review of maximisation and minimisation of a function of
one variable

There are two basic cases where we attempt to find the maxima and minima
of a function of a single variable. They have the same starting point and the
same first steps, but they finish differently.

Let f be a function defined on a subset S ⊆ R of the real line. We do not
care about the specific structure of the set S; it might be an open interval, a
closed interval, half-open interval, a ray, the whole real line, or a very
complicated subset of the real line. Regardless of the structure of S, we can
define what it means for f to achieve its maximum on S.

Definition 1.11.1. Let S ⊆ R be a set of real numbers and let f : S → R
be a function. Say that f achieves its maximum at x0 ∈ S if f(x) ≤ f(x0) for
all x ∈ S.

We have the analogous definition of minimum.

Definition 1.11.2. Let S ⊆ R be a set of real numbers and let f : S → R
be a function. Say that f achieves its minimum at x0 ∈ S if f(x) ≥ f(x0) for
all x ∈ S.

For a general function f on a general subset S ⊆ R, we can normally say
nothing about the existence of points of S at which f achieves its maximum
or minimum, much less provide any method for finding such points, even
should they exist. In order to be able to give a sensible answer to this
question, we need to impose a bit more structure on f and S.
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The easiest case, though not a particularly interesting one, is the case that S
contains a single point S = {s}, in which case there is not much to do. That
is, f achieves both its maximum and its minimum at s, since the only value
that f takes on any point of S is f(s).

For a function f(x) on the real line R, the basic process is that we first find
the critical points, which are the places at which f ′(x) = 0, and then
examine the behaviour of f(x) as x→ ±∞ to then see whether the critical
points are global maxima or minima. We could also use the second
derivative test before determining the behaviour of f(x) at infinity, to
determine whether the critical points are local maxima and minima, but
whether we do this may depend on the complexity of the problem.

For a function f(x) on a closed interval [a, b], the process is slightly different.
We first find the critical points in the open interval (a, b), find the value of
f(x) at each of these critical points, and then compare these values to the
values of f(x) at the endpoints a and b of [a, b]. In this case, since we will be
comparing the values of f(x) at a finite set of points, we do not need to
invoke the second derivative test, though as before we could if we so
desired.

There are some general statement we can make about maximisation and
minimisation regardless of the dimension in which we are working.

Theorem 1.11.3. Let f : [a, b]→ R be a function that is continuous on the
closed interval [a, b]. There then exists a number cmax in [a, b] at which f
achieves its maximum value, so that f(x) ≤ f(cmax) for all a ≤ x ≤ b.

It follows that the function f : D ⊆ R→ R has an extreme (i.e. absolute or
local minimum or maximum) value at a ∈ D only if either

(i) a is a critical point of f , that is, when f ′(a) = 0, or

(ii) a is a singular point of f , that is, when f ′(a) does not exist, or

(iii) a is a boundary point of D.

For example, when D = [a, b] then the boundary consists of the points a and
b.

1.12. Extreme Values

The analysis of the optimisation of functions of one variable leads us to the
following characterisation of the types of extreme values for a given
function.

Theorem 1.12.1. A function f : D ⊆ Rn → R has an absolute or local
minimum or maximum value at a ∈ D only if either

(i) a is a critical point of f , that is, when ∇f(a) = 0, or

(ii) a is a singular point of f , that is, when ∇f(a) does not exist, or
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(iii) a is a boundary point of the domain D.

Given a subset D ⊆ Rn, a point a ∈ D is called an interior point of D, if
there exists r > 0 such that the open n-ball of radius r centred at a:

Br(a) = {x ∈ Rn | ||x− a|| < r}.

is contained in D. A point of D that is not an interior point is a boundary
point of D.

Proof of Theorem 1.12.1. Suppose a is an interior point of the set D. If it is
not a singular point, then ∇f(a) exists. If a is also not a critical point, then
∇f(a) 6= 0, therefore the function f has positive direction derivative in the
direction of ∇f(a) so it increases in this direction and f has a negative
directional derivative in the direction of −∇f(a) so it decreases in that
direction (see Section 1.9). We, conclude that f has neither a maximum nor
a minimum value at a in this case. This shows that any point at which an
extreme value occurs must be either a boundary point of D, a singular point
of f or a critical point of f . �

Let us continue by considering a particularly straightforward class of
max-min problems. We do not give a formal definition, but we will do a
couple of examples and then extrapolate some of their common features. We
begin with an observation. In the same way that the tangent line to the
graph of a function y = f(x) of one variable is horizontal at (local) maxima
and minima of f(x), we have that the tangent plane to the graph of a
function z = f(x, y) of two variables is horizontal at the (local) maxima and
minima of f(x, y). This is not to say that all points at which the tangent
plane is horizontal are (local) maxima or minima, but in order to find (local)
maxima and minima, the approach we start with is to find all points where
the tangent plane is horizontal, which are the critical points of f(x, y), and
then do a bit of argument and apply some thought to see whether these
points are indeed local or global maxima or minima.

Consider the following example.

Example 1.12.2. Find the points on the surface xyz = 1 that lie closest to
the origin (0, 0, 0) in R3.

We first note that we are not working with the graph of a function. Since the
only information we have been given is that we are considering the points
(x, y, z) ∈ R3 satisfying xyz = 1, we need to consider all such points. This
surface has 4 pieces, one corresponding to each quadrant of the xy-plane.
Since xyz = 1, we cannot have that any of x, y, and z are 0. Moreover, for
any pair (x, y) of non-zero values, there is a unique value of z satisfying
xyz = 1, obtained by setting z = 1

xy . So, one way to view this surface is as a

collection of 4 graphs, one over each component (piece) of the xy-plane with
the x- and y-axes removed.
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For any point (x, y, z) in R3, the distance to the origin is given by

D(x, y, z) =
√
x2 + y2 + z2. So, one way of phrasing the question is that we

are asked to find the points in R3 that minimize D(x, y, z), subject to the
condition that they satisfy the constraint xyz = 1.

In this case, the constraint is sufficiently simple that we can solve for one of
the variables in terms of the others. It doesn’t matter which we solve for,
but in this case let’s solve for z = 1

xy . We can plug this into the function

being minimised, so that we are trying to minimize now the function

D(x, y) =

√
x2 + y2 +

1

x2y2
.

We need to know the possible values of x and y that we need to consider.
Since xyz = 1, we know that all of x, y, and z are nonzero, and that this is
the only constraint (since given nonzero values of x and y, we can always
find a value of z satisfying xyz = 1).

So, charging boldly forth, we differentiate and find the points at which the
gradient is 0; these are the only points at which the function can have a
maximum or minimum, since it is only at points where the gradient is the 0
vector that we can have a horizontal tangent plane to the graph of the
function.

For this function, the gradient is

∇D(x, y) =

 x− 1
x3y2√

x2 + y2 + 1
x2y2

,
y − 1

x2y3√
x2 + y2 + 1

x2y2

 ,

and so the points at which ∇D(x, y) = (0, 0) satisfy the two equations

x− 1

x3y2
= 0 and y − 1

x2y3
= 0.

Doing some algebraic massage, the first equation becomes x4y2 = 1 and the
second x2y4 = 1. Substituting x2 = 1

y4 into the first equation, we see that

y6 = 1, and so y = ±1. Hence, x = ±1 as well, and so D(x, y) has four
critical points, at (1, 1), (1,−1), (−1, 1), and (−1,−1).

Although we have found the critical points, we do not yet know whether
they are maxima or minima of the function D(x, y). For this, we need a bit
of argument. First, we calculate to see that

D(1, 1) = D(1,−1) = D(−1, 1) = D(−1,−1) =
√

3.

This is still not enough information, though, to determine whether these
points are maxima, minima, or neither.

We need to consider the behaviour of D(x, y) as the point (x, y) approaches
the edges of the domain of definition. Since in this case the domain of
definition is the whole of R2, minus the coordinate axes, the edges of the
domain of definition are the coordinate axes and the far edge at infinity that
we experience by moving away from the origin. In a bit more mathematical
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language, we need to consider the behaviour of D(x, y) as either x→ ±∞,
y → ±∞, x→ 0 or y → 0 (or some combination of these possibilities; for
instance, we could have that x→∞ and y → 0 if we were to approach the
x-axis asymptotically).

Recall that

D(x, y) =

√
x2 + y2 +

1

x2y2
,

and note that each of x2, y2 and 1
x2y2 is non-negative. In other words, we do

not need to worry about any cancellation of a positive term by a negative
term, which is relevant because x or y can be negative. So, we can consider
the possibilities one at a time:

As x→ ±∞, we see that x2 →∞. We do not know anything about the
behaviour of either y2 or 1

x2y2 , because we have no information about the

behaviour of y, but this does not matter. As x2 →∞, we see that

x2 + y2 +
1

x2y2
→∞,

and so D(x, y)→∞, regardless of the behaviour of y. Similarly, as y → ±∞,
we see that y2 →∞. Again, we do not know anything about the behaviour
of either x2 or 1

x2y2 , because we have no information about the behaviour of

x, but this does not matter. As y2 →∞, we see that

x2 + y2 +
1

x2y2
→∞,

and so D(x, y)→∞, regardless of the behaviour of x.

As x→ 0, we approach the y-axis. Here, one of two things happens. As
x→ 0, either y stays bounded (that is, there is some B > 0 so that |y| ≤ B)
or not. If y stays bounded, then 1

x2y2 →∞ as x→ 0, as the whole of the

denominator is going to 0. If y does not stay bounded, then we can find
values of y that are arbitrarily large, and so y2 is unbounded. In either case,
we have that the whole of D(x, y) is unbounded. A similar argument shows
that as y → 0, we get that D(x, y) is unbounded, regardless of the behaviour
of x.

Since D(x, y) is unbounded as (x, y) approaches the boundary of its domain
of definition, we can see that the critical points must be global minima, and
so the distance of points satisfying xyz = 1 from the origin is minimised at
these four points.

Example 1.12.3. Determine the dimensions of an open rectangular box of
maximal and of minimal surface area, with a fixed volume of 100.

By an open box, we mean a box with no top. By an rectangular box, we
mean a box whose sides meet pairwise at right angles, like a shoe box. Label
the lengths of the edges of the box as x, y and z, with the edges sitting on
the coordinate axes in R3. The volume constraint then gives us the
relationship xyz = 100.
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The area of the box is the sum of the areas of the five sides, and so the area
is given by the equation

A(x, y, z) = xy + 2xz + 2yz.

We start by considering a box of maximal surface area. Our intuition tells us
that we can find a box with large area by choosing a base (given by x and y)
of very large area, and then choosing the appropriate height (given by z) so
that the volume constraint xyz = 100 is satisfied. In this case, we can
simplify our analysis by considering boxes with square bases, so that x = y.
The formula for the area then simplifies to

A(x) = x2 + 2x · 100

x2
+ 2x · 100

x2
= x2 +

400

x
.

Letting x→∞ (or letting x→ 0+) gives us boxes with bases of large area,
and hence large areas, and with volume fixed at 100.

We now consider the question of minimising the area. We know that for each
x > 0 and y > 0, we get a box, by using the volume constraint z = 100

xy . The

formula for the area of the box then becomes

A(x, y) = xy + 2x · 100

xy
+ 2y · 100

xy
= xy +

200

x
+

200

y
.

We can find the possible minima by setting the derivative, in this case the
gradient, equal to (0, 0) and solving.

The gradient is

∇A(x, y) =

(
∂A

∂x
(x, y),

∂A

∂y
(x, y)

)
=

(
y − 200

x2
, x− 200

y2

)
= (0, 0).

Simultaneously solving the two equations y = 200
x2 and x = 200

y2 yields that

x = y = 3
√

200. At this point, the function takes the value
A( 3
√

200, 3
√

200) = 3 3
√

400.

This is indeed a minimum value for the surface area since the function

A(x) = x2 +
400

x
.

tends to infinity as x→∞.

In general with maximisation or minimisation problems, we have the function
we are attempting to maximise or minimise (in the example above, this is
the distance to the origin) and we have some constraints on the set of points
where we are attempting the maximisation or minimisation (in the example
above, the points satisfy the constraint xyz = 1). The straightforward
approach we took above tends to work when we can solve the constraint for
one of the variables and substitute this into the function being optimised.
So, consider the two questions we had as model questions in Section 1:

(1) Determine the maximum and minimum values of
f(x, y, z) = x2 + y2 + z2 − 3 on the plane x+ 2y + 3z = 1.
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(2) Determine the maximum and minimum values of g(x, y, z) = x+ 2y + 3z
on the sphere x2 + y2 + z2 = 3.

For the first of these, we can solve the constraint for one of the variables, say
x = 1− 2y − 3z, substitute it into the function being optimised to get

f(y, z) =

= f(1−2y−3z, y, z) = (1−2y−3z)2+y2+z2−3 = −2+5y2+10z2−4y−6z+12yz.

This function is defined for all values of y and z, and so we can attempt to
maximise and minimize it over all of R2. Proceeding as above, we start by
finding the points where ∇f(y, z) = (0, 0). Since

∇f(y, z) = (10y − 4 + 12z, 20z − 6 + 12y),

this becomes a question of solving the linear system

(10y − 4 + 12z, 20z − 6 + 12y) = (0, 0)

of two equations in two unknowns, which has the unique solution
(y, z) = ( 2

14 ,
3
14 ). Since f(y, z) clearly can be as large as we want, being the

sum of three squares minus a small constant, we see that the unique critical
point ( 2

14 ,
3
14 ) is in fact a global minimum.

However, for the other question, we cannot solve the constraint directly for
one of the variables in terms of the others. Before developing the means for
solving this sort of question, we will spend a bit of time developing some
more tools.

1.13. Compactness

We go back to the basic result that underlies the whole process we have laid
out for maximising and minimising functions of a single variable on a closed
interval.

Theorem 1.13.1. Let f : [a, b]→ R be a continuous function on the closed
interval [a, b]. There exists a point c ∈ [a, b] so that f(x) achieves its
maximum at c, so that f(c) ≥ f(x) for all a ≤ x ≤ b.

We can see that f(x) achieves its minimum on [a, b] by applying Theorem
1.13.1 to the negative −f(x) of f(x). We do not give a proof of Theorem
1.13.1 here, but we do ask the question:

What is the property of a region in higher dimensional Euclidean space Rn
for some n ≥ 2, that allows us to make a true statement similar to Theorem
1.13.1?

This property is compactness. In order to understand this property, we first
need a few definitions.
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A set S ⊂ Rn is bounded if there exists a constant r > 0 and a point a ∈ Rn
so that S is contained in the open n-ball of radius r centred at a, that is,
S ⊆ Br(a) where we recall that

Br(a) = {x ∈ Rn | ||x− a|| < r}.

A set U ⊆ Rn is open if for every u ∈ U , there is ε > 0 (depending on u) so
that Bε(u) ⊆ U .

For a set X ⊂ Rn, its complement Xc is the set Xc = {x ∈ Rn | x 6∈ X}
consisting of all of the points in Rn that do not lie in X.

In order to define the complement of a set, we must know the set in which
we are taking the complement, as the act of taking the complement of a set
makes no sense in a vacuum. Unless we say so explicitly, we will as a matter
of course assume that we are taking complements in the appropriate
Rn.

The reason we define the notion of openness and the act of taking the
complement is so that we can define what it means for a set to be closed. A
subset X ⊆ Rn for some n ≥ 1 is closed if its complement is open.

We note that in the definition of open, the constant ε may and almost
always does depend on the point u. As an example, consider the open unit
ball U = B1(0) of radius 1 and centre the origin 0. For any u ∈ U , we see
that if we set ε = 1− |u|, we have that Uε(u) ⊂ U . However, there is no
constant ε independent of u that satisfies this definition, as the value of ε
must get smaller as u gets closer to the boundary of the ball U .

This definition is extremely flexible. In particular, this definition gives us
both that all of Rn is closed, as its complement the empty set ∅ is
(vacuously) open, and that the empty set ∅ is closed, as its complement Rn
is open.

One standard example of a closed set is the inverse image
f−1(c) = {x ∈ Rn | f(x) = c} for a continuous function f : Rn → R. We
leave this argument as an exercise.

We note that the two notions of closed and bounded are distinct, and neither
implies the other. There are closed subsets of Rn that are not bounded and
there are bounded subsets of Rn that are not closed. We combine these two
notions to get the desired notion of compactness.

Definition 1.13.2. A subset X ⊂ Rn for some n ≥ 1 is compact if it is both
closed and bounded.

A standard example of a compact set is the sphere Sr(a) in Rn centred at
a0 ∈ Rn with radius r > 0, which is the set

Sr(a) = {x ∈ Rn | ||x− a|| = r}.
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The fact that Sr(a) is bounded is explicit in its definition, since
Sr(a) ⊂ B2r(a). The fact that Sr(a) is closed comes from the fact that
Sr(a) = f−1(r) for the function f : Rn → R given by f(x) = ||x− a||.

We are now able to give a more general version of Theorem 1.13.1.

Theorem 1.13.3. Let X be a compact subset of Rn for n ≥ 1 and let
f : X → R be a continuous function. Then, f(x) achieves its maximum value
on X; that is, there exists a point x0 ∈ X so that f(x0) ≥ f(x) for all
x ∈ X.

Remark 1.13.4. As with Theorem 1.13.1, we can obtain the minimum
value theorem on general compact sets by applying Theorem 1.13.3 to the
function −f(x). A consequence of this is that for a compact set X ⊂ Rn and
a continuous function f : X → R, we must have that f(x) has a maximum at
some point a ∈ Rn and a minimum at some point b ∈ Rn.

Example 1.13.5. Find the extreme values of the function
f(x, y) = xy exp(x− y) on the triangular region

T = {(x, y, z) | − 3 ≤ x ≤ 0, 0 ≤ y ≤ 3, y ≤ x+ 3}.

Figure 10. region T

Let us first find the critical points:

(0, 0) = ∇f(x, y) = ((y + xy) exp(x− y), (x− xy) exp(x− y))

which shows that y + xy = 0 and x− xy = 0. This implies that either
x = −1, y = 1 or x = 0, y = 0. At the point (0, 0) the function takes the
value f(0, 0) = 0 and at (−1, 1) it is f(−1, 1) = −e−2

Next, we look on the boundary of T which consists of three line segments.
Note that when either x = 0 or y = 0, then f(x, y) = 0 which is not the
minimum value since we already know that function attains −e−2, but it
could still be the maximum value of the function on this region. To check
this we need to look at the third boundary line segment which is given by
y = x+ 3 so that −3 < x < 0. On this segment the we can express the
function in terms of the variable x only:

g(x) = f(x, x+ 3) = x(x+ 3)e−3.
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The critical points of this function are given by:

0 = g′(x) = (2x+ 3)e−3.

So, x = − 3
2 and g(− 3

2 ) = f(− 3
2 ,

3
2 ) = − 9

4e
−3.

Since 0 > − 9
4e
−3 > −e−2, the function f(x, y) has neither a minimum nor a

maximum value at (− 3
2 ,

3
2 ).

Therefore, the function f(x, y) attaints it maximum value of 0 on the
boundary lines x = 0 or y = 0 of T and its minimum value of −e−2 at the
interior point (−1, 1) of T .

1.14. Lagrange multipliers

Lagrange multipliers are a piece of mathematical machinery that provide us
with a means of handling maximisation and minimisation questions that are
more complicated than those that can be handled using the methods of
Section 1.12. That is, we need a way of handling constraints that are
sufficiently complicated that we cannot simply solve for one of the variables
explicitly in terms of the others or parametrically by parametrising the given
variables.

We begin with a simple case, that of maximising and minimising a function
f(x, y) subject to a single constraint g(x, y) = 0. That is, we wish to find the
maximum and minimum values of the function f(x, y) over all the points
(x, y) satisfying the constraint g(x, y) = 0.

The basic idea behind Lagrange multipliers in this case is contained in the
following result.

Theorem 1.14.1. Suppose that f(x, y) and g(x, y) have continuous first
order partial derivatives on a neighbourhood of a point (a, b). If the
maximum or minimum of f(x, y) subject to the constraint that g(x, y) = 0
occurs at (a, b) where ∇g(a, b) 6= (0, 0), then there is some constant λ ∈ R so
that ∇f(a, b) = λ∇g(a, b).

Proof. The assumptions on partial derivatives guarantee that the curve C in
R2 defined by the equation g(x, y) = 0 has a tangent line at the point (a, b).
Suppose by a way of contradiction that ∇f(a, b) is not parallel to ∇g(a, b).
Hence, it has a nonzero vector projection v on the tangent line to the curve
C (see Figure 11). This means that f has a positive directional derivative in
the direction of the vector v: Dv(f) > 0 and f has a negative directional
derivative in the direction of the vector −v: D−v(f) < 0. So, f increases as
we move away from the point (a, b) along the curve C in the direction of v
and it decreases as we move in the opposite direction along C. Thus the
function f cannot have a maximum or a minimum value at (a, b). This is a
contradiction. Therefore, we conclude that ∇f(a, b) is parallel to
∇g(a, b). �
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Figure 11. shows that the point P = (a, b) is neither a
maximum nor a minimum point on the curve C since ∇f(a, b)
is not parallel to ∇g(a, b).

Now, we can give a general procedure for finding a maximum or a minimum
for a function f(x, y) subject to the simple constraint g(x, y) = 0 using
Lagrange multipliers, which follows a basic pattern:

Step 1. We find the points (a, b), if any, at which g(a, b) = 0 and
∇g(a, b) = (0, 0). These points, which we may as well call exceptional
points, are the points at which Theorem 1.14.1 does not apply;

Step 2. We introduce a new variable λ and form the function
L(x, y, λ) = f(x, y)− λg(x, y);

Step 3. We find the critical points of L(x, y, λ). Note that the equation
∇L(x, y, λ) = (0, 0, 0) contains both the equation
∇f(x, y) = λ∇g(x, y) in its first two variables and the constraint
equation g(x, y) = 0 in the third variable;

Step 4. We evaluate f(x, y) at the first two coordinates of each of the critical
points of L(x, y, λ) found in Step 3. and at each of the exceptional
points found in Step 1., and we then eyeball to see where the
maximum and minimum values occur.

Note that we follow here the same basic plan as before, when we were finding
the maxima and minima of a continuous function on a closed interval. We
find the critical points of f(x, y) in the interior and we then consider the
behaviour of f(x, y) on the boundary. Here, though, we have that the
behaviour of f(x, y) on the boundary is where all of the interesting
behaviour occurs. As in the case of finding unconstrained maxima and
minima, we will also sometimes find points where f(x, y) subject to the
constraint g(x, y) = 0 does not have a maximum or minimum.

To illustrate this, consider the following example.
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Example 1.14.2. Find the maximum and minimum values of f(x, y) = 4xy
on the circle x2 + y2 = 1.

We need to first rephrase the question in terms of a function being optimised
and a function giving the constraint. In this example, the function being
optimised is f(x, y) = 4xy, and the constraint is g(x, y) = x2 + y2 − 1 = 0. It
is important that we always phrase the constraint as g(x, y) = 0 for some
function g(x, y).

We now look for any exceptional points. The critical points of the gradient
∇g(x, y) are the solutions to ∇g(x, y) = (2x, 2y) = (0, 0), of which there is
only one, namely (a, b) = (0, 0). Since g(0, 0) = −1 6= 0, there are no
exceptional points.

So, we form

L(x, y, λ) = f(x, y)− λg(x, y) = 4xy − λ(x2 + y2 − 1)

and we find the critical points of L(x, y, λ). Calculating, we see that

∇L(x, y, λ) = (4y − 2λx, 4x− 2λy, 1− x2 − y2),

and so setting ∇L(x, y, λ) = (0, 0, 0) yields 3 equations in the unknowns x, y
and λ, namely

(1) 4y = 2λx;

(2) 4x = 2λy;

(3) x2 + y2 = 1 (which is just the condition on the constraint that
g(x, y) = 0).

Note that equations (1) and (2) combined yield that x = 0 if and only if
y = 0, and equation (3) yields that we cannot have x = y = 0 because 0 6= 1.
Hence, we see that both x 6= 0 and y 6= 0. We can therefore solve both of
equations (1) and (2) for λ to get that

2y

x
= λ =

2x

y
.

(We need to check that x 6= 0 before we can divide by x, as otherwise we
have to consider the case that x = 0 as a separate case. The same comment
holds for y. Do remember that we can only divide by non-zero quantities,
and we can never divide by 0.)

Cross-multiplying and dividing by 2, this yields that x2 = y2. Plugging this
into equation 3. yields that 2x2 = 1 and so x = ± 1√

2
. Hence, we also have

that y = ± 1√
2
. Hence, we have 4 points at which to evaluate the value of

f(x, y) = 4xy, namely:

- At
(

1√
2
, 1√

2

)
, where f

(
1√
2
, 1√

2

)
= 2;

- At
(
− 1√

2
, 1√

2

)
, where f

(
− 1√

2
, 1√

2

)
= −2;
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- At
(

1√
2
,− 1√

2

)
, where f

(
1√
2
,− 1√

2

)
= −2;

- At
(
− 1√

2
,− 1√

2

)
, where f

(
− 1√

2
,− 1√

2

)
= 2.

Hence, we see that f(x, y) = 4xy subject to the constraint that x2 + y2 = 1

takes its maximum value of 2 at two points, namely
(

1√
2
, 1√

2

)
and(

− 1√
2
,− 1√

2

)
, and that f(x, y) = 4xy subject to the constraint that

x2 + y2 = 1 takes its minimum value of −2 at two points, namely(
− 1√

2
, 1√

2

)
and

(
1√
2
,− 1√

2

)
.

Note that while we could easily have found the values of λ corresponding to
these 4 points, and hence found the critical points of L(x, y, λ), we normally
do not need to determine the critical points of L(x, y, λ). We are really
concerned with the extreme points of f(x, y) subject to the constraint that
g(x, y) = 0, and we introduce the additional variable λ and the auxiliary
function L(x, y, λ) in order to make the process of finding these extreme
points a bit smoother.

Example 1.14.3. Let us go back to one of the questions given at the
beginning of this chapter and in Section 1.12, namely determining the
maximum and minimum values of f(x, y, z) = x+ 2y + 3z on the sphere
x2 + y2 + z2 = 3.

We proceed in exactly the same way as above, regardless of the number of
variables we are dealing with. We have the one constraint

g(x, y, z) = x2 + y2 + z2 − 3 = 0.

We first look for any exceptional points. The only point at which

∇g(x, y, z) = (2x, 2y, 2z) = (0, 0, 0)

is (a, b, c) = (0, 0, 0), and g(0, 0, 0) = −3 6= 0.

Namely, we introduce one new variable λ, as we have the one constraint
g(x, y, z) = 0. We then form the function

L(x, y, z, λ) = f(x, y, z)− λg(x, y, z) = x+ 2y + 3z − λ(x2 + y2 + z2 − 3),

and we find the critical points of L(x, y, z, λ). The gradient of L(x, y, z, λ)
is

∇L(x, y, z, λ) = (1− 2λx, 2− 2λy, 3− 2λz, 3− x2 − y2 − z2).

Setting ∇L(x, y, z, λ) = (0, 0, 0, 0) yields 4 equations in the 4 unknowns x, y,
z, and λ, namely

(1) 1− 2λx = 0;

(2) 2− 2λy = 0;

(3) 3− 2λz = 0;

(4) x2 + y2 + z2 = 3.
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First, note that equations (1), (2), and (3) imply that x 6= 0, y 6= 0, and
z 6= 0, respectively. Solving equations (1), (2) and (3) for λ yields that

λ =
1

2x
=

1

y
=

3

2z
,

and so 2x = y = 2
3z. Since y = 2x and z = 3x, equation (4) yields that

14x2 = 3, and so x = ±
√

3
14 . Hence, we get two points, namely(√

3
14 , 2

√
3
14 , 3

√
3
14

)
and

(
−
√

3
14 ,−2

√
3
14 ,−3

√
3
14

)
.

Since

f
(√

3
14 , 2

√
3
14 , 3

√
3
14

)
=
√

42, f
(
−
√

3
14 ,−2

√
3
14 ,−3

√
3
14

)
= −
√

42,

we see that, subject to the constraint that

g(x, y, z) = x2 + y2 + z2 − 3,

the function f(x, y, z) = x+ 2y + 3z achieves its maximum value of
√

42 at

the point
(√

3
14 , 2

√
3
14 , 3

√
3
14

)
and achieves its minimum value of −

√
42 at

the point
(
−
√

3
14 ,−2

√
3
14 ,−3

√
3
14

)
.

We can reframe the machinery of Lagrange multipliers in great generality,
for functions of n variables for any n ≥ 2 and for any (finite) number of
constraints. The formal formulation is very similar to that given for
functions of two variables with a single constraint.

Theorem 1.14.4. Suppose that f(x1, . . . , xn),
g1(x1, . . . , xn), . . . , gm(x1, . . . , xn) have continuous first order partial
derivatives on a neighbourhood of a point a = (a1, . . . , an). If the maximum
or minimum of f(x1, . . . , xn) subject to the constraints that
g1(x1, . . . , xn) = · · · gm(x1, . . . , xn) = 0 occurs at a, where
∇g1(a), . . . ,∇gm(a) are linearly independent, then there are constants
λ1, . . . , λm ∈ R so that

∇f(a) =

m∑
j=1

λj∇gj(a).

Example 1.14.5. Find the maximum and minimum values of f(x, y, z) = z
subject to the constraints x2 + y2 = 1 and 2x+ 2y + z = 5.

A Lagrange multipliers question with two constraints g(x, y, z) = 0 and
h(x, y, z) = 0 is set up and solved in a manner very similar to the case of one
constraint. Namely, we introduce two new variables, one for each constraint.
In this case, the constraints are

g(x, y, z) = x2 + y2 − 1 = 0 and h(x, y, z) = 2x+ 2y + z − 5 = 0.
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The first step is to look for any exceptional points. With two constraints, this
is a bit more involved than for one variable. We need to see whether there
are points (x, y, z) at which ∇g(x, y, z) and ∇h(x, y, z) are parallel.

For g(x, y, z), we have that ∇g(x, y, z) = (2x, 2y, 0) and for h(x, y, z), we
have that ∇h(x, y, z) = (2, 2, 1). The only way these two gradient vectors
would be parallel if x = y = 0. But this set of points does not satisfy the
first constraint equation. Hence, we conclude that there are no exceptional
points.

We then form the function

L(x, y, z, λ, µ) =

= f(x, y, z)−λg(x, y, z)−µh(x, y, z) = z−λ(x2 +y2−1)−µ(2x+ 2y+z−5),

and our task is to find the critical points of L(x, y, z, λ, µ). The gradient of
L(x, y, z, λ, µ) is

∇L(x, y, z, λ, µ) = (−2λx− 2µ,−2λy− 2µ, 1−µ, 1−x2− y2, 5− 2x− 2y− z).
Setting ∇L(x, y, z, λ, µ) = (0, 0, 0, 0, 0) yields 5 equations in the 5 unknowns
x, y, z, λ, and µ, namely

(1) −2λx− 2µ = 0;

(2) −2λy − 2µ = 0;

(3) 1− µ = 0;

(4) x2 + y2 = 1;

(5) 2x+ 2y + z = 5.

Equation (3) yields that µ = 1. Equations (1) and (2) immediately imply
that λ 6= 0, x 6= 0 and y 6= 0, since −2λx = 2 = −2λy. Solving this equation
for λ, we see that λ = − 1

x = − 1
y , and so x = y. Equation (4) then

immediately implies that 2x2 = 1, and so x = ± 1√
2
.

For the two choices of sign for x, equation (5) then yields the corresponding
value of z = 5− 2x− 2y, and so the two points we need to consider are(

1√
2
, 1√

2
, 5− 4√

2

)
and

(
− 1√

2
,− 1√

2
, 5 + 4√

2

)
. Since

f

(
1√
2
,

1√
2
, 5− 4√

2

)
= 5− 4√

2
and f

(
− 1√

2
,− 1√

2
, 5 +

4√
2

)
= 5+

4√
2
,

we see that, subject to the constraints that x2 + y2 = 1 and 2x+ 2y + z = 5,
the function f(x, y, z) = z achieves its maximum value of 5 + 4√

2
at(

− 1√
2
,− 1√

2
, 5 + 4√

2

)
and achieves its minimum value of 5− 4√

2
at(

1√
2
, 1√

2
, 5− 4√

2

)
.

Note that geometrically, this answer makes sense. The function f(x, y, z) = z
on R3 is measuring the vertical height of the point (x, y, z). The constraint
x2 + y2 = 1 restricts our attention to points on the cylinder, while the
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constraint 2x+ 2y + z = 5 restricts our attention to points on this plane.
The plane intersects the cylinder at an angle, and so we expect one
maximum and one minimum.

The main complication of this most general version is that the algebraic
massage involved in finding the solutions to the system of equations
∇L(x1, . . . , xn, λ1, . . . , λm) = (0, . . . , 0) might prove to be prohibitively
difficult or impossible to carry out by hand, and we might need to resort to
technological means (such as Maple) to find a numerical solution.

One interesting application of the method of Lagrange multipliers is to verify
inequalities.

Example 1.14.6. Show that the arithmetic mean of n positive real
numbers is always greater than or equal to the geometric mean of the
numbers, with equality if and only if all the numbers are equal.

In coordinates (x1, . . . , xn) on Rn, the geometric mean is

GM(x1, . . . , xn) = n
√
x1 · · · · · xn,

while the arithmetic mean is the average

AM(x1, . . . , xn) =
1

n
(x1 + · · ·+ xn)

of the n numbers. We wish to show that GM(x1, . . . , xn) ≤ AM(x1, . . . , xn),
with equality if and only if x1 = · · · = xn = a. We need first to decide which
function is the function we wish to maximise or minimise and which function
gives the constraint.

Let us start by maximising the geometric mean GM(x1, . . . , xn) and letting
the arithmetic mean provide the constraint. That is, we fix some positive
number a and let the constraint be

g(x1, . . . , xn) = AM(x1, . . . , xn)− a =
1

n
(x1 + · · ·+ xn)− a = 0.

As always, we start by forming the auxiliary function

L(x1, . . . , xn, λ) = GM(x1, . . . , xn)− λg(x1, . . . , xn) =

= n
√
x1 · · · · · xn − λ

(
1

n
(x1 + · · ·+ xn)− a

)
.

The gradient of L(x1, . . . , xn, λ) is

∇L(x1, . . . , xn, λ) =

=

(
x2 · · · · · xn

n n
√

(x1 · · · · · xn)n−1
− λ

n
, . . . ,

x1 · · · · · xn−1

n n
√

(x1 · · · · · xn)n−1
− λ

n
, a− 1

n
(x1 + · · ·+ xn)

)
.

Setting ∇L(x1, . . . , xn, λ) = (0, . . . , 0) yields the system of equations



Shapes of maxima and minima, the Hessian, and the second derivative test 59

involving the equation

x2 · · · · · xn
n n
√

(x1 · · · · · xn)n−1
− λ

n
= 0;

together with the n− 2 equations

x1 · · · · · xj−1 · xj+1 · · · · · xn
n n
√

(x1 · · · · · xn)n−1
− λ

n
= 0

for 2 ≤ j ≤ n− 1; together with the equation

x1 · · · · · xn−1

n n
√

(x1 · · · · · xn)n−1
− λ

n
= 0;

and the equation

a− 1

n
(x1 + · · ·+ xn) = 0.

A bit of algebraic manipulation applied to the first n equations, including
moving the λ

n term to the other side and taking the nth power of both sides,
yields that

x1 · · · · · xn = λnxn1 = · · · = λnxnn.

Since we have assumed that each xj > 0, this then yields that x1 = · · · = xn.
Plugging this into the last equation yields that x1 = · · · = xn = a. Hence,
the unique extreme point for the geometric mean GM(x1, . . . , xn) occurs at
(x1, . . . , xn) = (a, . . . , a), where the geometric mean takes the value
GM(a, . . . , a) = a = AM(a, . . . , a).

To see that this is indeed a maximum point for the geometric mean (rather
than a minimum point), we can take a different point with the same
arithmetic mean a, such as (a+ ε, a− ε, a, · · · , a) for some 0 < ε < a, and
evaluate the geometric mean at this point. Calculating, we see that

GM(a+ ε, a− ε, a, · · · , a) =

= n
√

(a+ ε)(a− ε)an−2 =
n
√
an − ε2an−2 < n

√
an = GM(a, . . . , a).

1.15. Shapes of maxima and minima, the Hessian, and the second
derivative test

As with a function of one variable, we can determine local maxima and
minima of a function of more than one variable.

To review, let f : R→ R be a differentiable function of one variable. We are
assuming here that the domain of f is all of R, but this is for notational
convenience and is not essential to the argument we are about to give. To
find the local maxima and minima of f(x), we first find all of the critical
points of f(x), which are the points at which its derivative f ′(x) satisfies
f ′(x) = 0. At each critical point, we then apply the second derivative
test.
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Theorem 1.15.1. Let f(x) be a function of one variable and let a be a
critical point. Assume that f(x) has continuous second order derivative on
the open interval (a− ε, a+ ε) for some ε > 0. Then,

(i) If f ′′(a) > 0, then f(x) has a local minimum at a;

(ii) If f ′′(a) < 0, then f(x) has a local maximum at a;

(iii) If f ′′(a) = 0, then we have no information.

For functions of more than one variable, we have a similar test. Before we
can state the second derivative test for a function of two variables, we need
to have an appropriate notion of what to use in place of the second
derivative. To that end, we define the Hessian matrix (or Hessian) of a
function f(x, y). The Hessian is the matrix of second order partial
derivatives. Specifically, for a function f(x, y) of two variables, the Hessian
H(f)(x, y) is the 2× 2 square matrix

H(f)(x, y) =


∂2f
∂x2 (x, y) ∂2f

∂x∂y (x, y)

∂2f
∂y∂x (x, y) ∂2f

∂y2 (x, y)

 .

The second derivative test is stated in terms of the Hessian as follows.

Theorem 1.15.2. Let f(x, y) be a function of two variables and let (a, b) be
a critical point. Assume that f(x, y) has continuous second order partial
derivatives on a neighbourhood of (a, b). Set ∆ = detH(f)(a, b).

(i) If ∆ > 0 and ∂2f
∂x2 (a, b) > 0, then f(x, y) has a local minimum at

(a, b).

(ii) If ∆ > 0 and ∂2f
∂x2 (a, b) < 0, then f(x, y) has a local maximum at

(a, b).

(iii) If ∆ < 0, then f(x, y) has neither a local maximum nor a local
minimum at (a, b).

(iv) If ∆ = 0, then we have no information.

Remark 1.15.3. It seems that there is a missing case, in that we have not

considered what happens if ∆ > 0 and ∂2f
∂x2 (a, b) = 0. The reason is, this case

never occurs. The hypothesis about the continuity of the second order
partial derivatives is sufficient to imply that the mixed second order partial

derivatives are equal at (a, b); that is, ∂2f
∂x∂y (a, b) = ∂2f

∂y∂x (a, b). Since

∆ =
∂2f

∂x2
(a, b)

∂2f

∂y2
(a, b)−

(
∂2f

∂x∂y
(a, b)

)2

,

we see that if ∂2f
∂x2 (a, b) = 0, then ∆ ≤ 0.

The proof of the above theorem is beyond the scope of these course. We give
some examples instead.
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Example 1.15.4. Consider f(x, y) = x2 + y2. In this case, the Hessian is
the constant matrix

H(f)(x, y) =

(
2 0
0 2

)
.

At the single critical point (0, 0) of f(x, y), we see that

∆ = detH(f)(0, 0) = 4 > 0 and ∂2f
∂x2 (0, 0) = 2 > 0, and so the second

derivative test gives that f(x, y) = x2 + y2 has a local minimum at (0, 0).

Example 1.15.5. Consider now f(x, y) = −x2 − y2. In this case, the
Hessian is the constant matrix

H(f)(x, y) =

(
−2 0

0 −2

)
.

At the single critical point (0, 0) of f(x, y), we see that

∆ = detH(f)(0, 0) = 4 > 0 and ∂2f
∂x2 (0, 0) = −2 < 0, and so the second

derivative test gives that f(x, y) = −x2 − y2 has a local maximum at (0, 0).

Example 1.15.6. Consider now f(x, y) = x2 − y2. In this case, the Hessian
is the constant matrix

H(f)(x, y) =

(
2 0
0 −2

)
.

At the single critical point (0, 0) of f(x, y), we see that
∆ = detH(f)(0, 0) = −4 < 0, and so the second derivative test gives that
f(x, y) = x2 − y2 has neither a local maximum nor a local minimum at
(0, 0). We call a critical point satisfying this conclusion of the second
derivative test a saddle point. The reason for the name is easily seen by
considering the graph of f(x, y) = x2 − y2 near (0, 0).

To see why ∆ = 0 yields no information, consider the following
functions:

• h(x, y) = x4 + y4. Like the paraboloid f(x, y) = x2 + y2, h(x, y) has
a local minimum at its single critical point (0, 0), but its Hessian
matrix at (0, 0) is the 0 matrix;

• h(x, y) = −x4 − y4. Like the inverted paraboloid f(x, y) = −x2 − y2,
h(x, y) has a local maximum at its single critical point (0, 0), but its
Hessian matrix at (0, 0) is the 0 matrix;

• h(x, y) = x4 − y4. Like the saddle f(x, y) = x2 − y2, h(x, y) has
neither local maximum nor a local minimum at its single critical
point (0, 0), but its Hessian matrix at (0, 0) is the 0 matrix.

We see that three different phenomena all occur at critical points where the
determinant of the Hessian matrix is 0.

Example 1.15.7. Find and classify the critical points of the function
h(x, y) = x2 − y2 − 2 exp(−x2 − y2).
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As always for this sort of question, we begin by calculating the gradient of
h(x, y) and solving ∇h(x, y) = (0, 0):

∇h(x, y) = (2x+ 4x exp(−x2 − y2),−2y + 4y exp(−x2 − y2)) = (0, 0),

which has three solutions. One solution is easy to see, namely (x, y) = (0, 0).
In fact, since the first coordinate of ∇h(x, y) is

2x+ 4x exp(−x2 − y2) = 2x(1 + 2 exp(−x2 − y2))

and since exp(−x2 − y2) > 0 for all points (x, y) ∈ R2, we see that the only
solution to

2x(1 + 2 exp(−x2 − y2)) = 0

is x = 0, and so the x-coordinate of every critical point is 0.

Setting x = 0, we see that the second coordinate of ∇h(x, y) is

−2y + 4y exp(−y2)) = −2y(1− 2 exp(−y2)).

Setting −2y(1− 2 exp(−y2)) = 0, we see there are 3 solutions, namely y = 0
(which we had already found), and the two solutions to 1− 2 exp(−y2) = 0,

namely y = ±
√

ln(2).

So, we have 3 critical points in all: (0, 0), (0,
√

ln(2)), and (0,−
√

ln(2)). Let
us see what the second derivative has to see about their respective
classifications.

We start by calculating the Hessian matrix H(h)(x, y):

H(h)(x, y) =(
2 + 4 exp(−x2 − y2)− 8x2 exp(−x2 − y2) −8xy exp(−x2 − y2)

−8xy exp(−x2 − y2) −2 + 4 exp(−x2 − y2)− 8y2 exp(−x2 − y2)

)
Evaluating the determinant of H(h)(x, y) are each of the critical points, we
see that:

• At (0, 0), we see that

det(H(h)(0, 0)) = det

(
6 0
0 2

)
= 12 > 0

and that ∂2h
∂x2 (0, 0) = 6 > 0, and so h(x, y) has a local minimum at

(0, 0);

• At (0,
√

ln(2)), we see that

det(H(h)(0,
√

ln(2))) = det

(
4 0
0 −4(ln(2))2

)
= −16(ln(2))2 < 0

and so h(x, y) has a saddle point at (0, ln(2));

• At (0,−
√

ln(2)), we see that

det(H(h)(0,−
√

ln(2))) = det

(
4 0
0 −4(ln(2))2

)
= −16(ln(2))2 < 0

and so h(x, y) has a saddle point at (0,− ln(2)).
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This is an interesting example as the function has a single local minimum at
(0, 0), no global or local maxima, and no global minimum (as can be seen by
setting x = 0 and letting y →∞).

1.16. When the second derivative test fails . . .

In this section we combine different techniques we have discussed thus far to
determine the extreme values of a given function with possible
constraints.

Example 1.16.1. Consider the function f(x, y) = 6xy2 − 2x3 − 3y4. Find
and classify the critical points of f(x, y).

The gradient is

∇f(x, y) = (6y2 − 6x2, 12xy − 12y3)

and so f(x, y) has three critical points, at (0, 0), (1, 1) and (1,−1). The
Hessian matrix of f(x, y) is

H(f)(x, y) =


∂2f
∂x2 (x, y) ∂2f

∂x∂y (x, y)

∂2f
∂y∂x (x, y) ∂2f

∂y2 (x, y)

 =

 −12x 12y

12y 12x− 36y2

 .

At (1, 1), we see that ∆ = det(H(f)(1, 1)) = 144 > 0 and
∂2f
∂x2 (1, 1) = −12 < 0 and so by the second derivative test, (1, 1) is a local
maximum.

Similarly, at (1,−1), we see that ∆ = det(H(f)(1,−1)) = 144 > 0 and
∂2f
∂x2 (1,−1) = −12 < 0 and so by the second derivative test, (1,−1) is a local
maximum as well.

However, at (0, 0), we see that ∆ = 0, and so the second derivative test gives
us no information. So, what other means do we have to determine whether
f(x, y) has a local maximum or local minimum at (0, 0)?

One way to proceed is to consider what happens on the graph of f(x, y)
above lines in the (x, y)-plane.

We note here that this method does not give enough information to
determine whether a critical point (or even a non-critical point) is a local
maximum or local minimum, but it may provide enough information to show
that a point is neither a local maximum nor a local minimum.

So, consider the line y = x, and let us see what the graph of

f(x, y) = 6xy2 − 2x3 − 3y4

looks like above this line. Along the line, the function becomes

g(x) = f(x, x) = 6x3 − 2x3 − 3x4 = 4x3 − 3x4.
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Considering the behaviour of f(x, y) along any line allows us to reduce
questions about its behaviour to a one-dimensional question. Note that the
derivative of g(x) is

g′(x) = 12x2 − 12x3 = 12x2(1− x).

For any x satisfying |x| < 1, for instance, we see that g′(x) ≥ 0, and so g(x)
is increasing on (−1, 1). In particular, there are values of x arbitrarily close
to 0 for which g(x) < 0 and values of x arbitrarily close to 0 so that
g(x) > 0, and so x = 0 is neither a local maximum nor a local minimum for
g(x). Going back to f(x, y), we see that along the line y = x, we can find
points (a, b) arbitrarily close to (0, 0) at which f(a, b) > 0 and points (a, b)
arbitrarily close to (0, 0) at which f(a, b) < 0. Hence, even though we get no
information from the second derivative test, we can see that (0, 0) is neither
a local maximum nor a local minimum for

f(x, y) = 6xy2 − 2x3 − 3y4.

We note that this method of considering all lines through a critical point is
very much an ad hoc method, and it is a method that cannot be used to
determine whether a point is a local maximum or local minimum. Rather,
this method is sometimes useful for determining that a critical point at
which the second derivative test gives no information is neither a local
maximum nor a local minimum. To see that understanding the behaviour of
a function at all lines through a critical point is not enough information,
consider the following example.

Example 1.16.2. Consider the function f(x, y) = (y − x2)(y − 3x2).

Show that the origin is a critical point of f(x, y) and that the restriction of
f(x, y) to every line through the origin has a local minimum at the origin.
(That is, show that g(x) = f(x, ax) has a local minimum at the origin for all
a ∈ R and that h(y) = f(0, y) also has a local minimum at the origin.)

Show that the second derivative test gives no information about the
classification of this critical point. By considering what happens to f(x, y)
on the parabola y = 2x2, show that f(x, y) does not have a local minimum
at the origin.

To see that the origin is a critical point of f(x, y), we calculate its gradient.
Since

f(x, y) = (y − x2)(y − 3x2) = y2 − 4x2y + 3x4,

we see that

∇f(x, y) = (−8xy + 12x3, 2y − 4x2).

To see that the origin is a critical point of f(x, y), we notice that
∇f(0, 0) = (0, 0), as desired.
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Consider now the restriction of f(x, y) to the y-axis. This yields the function
h(y) = f(0, y) = y2 of the single variable y, which we know has a local
minimum (in fact a global minimum) at y = 0.

We now fix a ∈ R and consider the function ga(x) = f(x, ax) of the single
variable x. Calculating, we see that

ga(x) = a2x2 − 4ax3 + 3x4.

To see that ga(x) has a local minimum at x = 0, we consider 2 cases. If
a = 0, then g0(x) = 3x4, which has a local minimum at the origin as it is
positive away from the origin. In fact, for a = 0, we see that g0(x) in fact has
a global minimum at x = 0.

If a 6= 0, we notice that

g′a(x) = 2a2x− 12ax2 + 12x3

and so g′a(0) = 0, and that

g′′a(x) = 2a2 − 24ax+ 36x2

and so g′′a(0) = 2a2 > 0. The second derivative test for functions of a single
variable then implies that ga(x) has a local minimum at x = 0. Hence, if we
restrict our attention to any line through (0, 0), we can see that f(x, y) is
positive on this line near (0, 0) except at (0, 0), where it takes the value
0.

We now apply the second derivative test to f(x, y). The Hessian of f(x, y)
is

Hf(x, y) =


∂2f
∂x2

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y2

 =

 −8y + 36x2 −8x

−8x 2

 ,

and so ∆ = det(H(f)(0, 0)) = 0. Hence, the second derivative test gives us
no information about the behaviour of f(x, y) at (0, 0).

If we consider the behaviour of f(x, y) along the parabola y = 2x2, we see
that f(x, y) = (2x2 − x2)(2x2 − 3x2) = −x4. In particular, we see that if we
restrict our attention to this parabola, we see that f(x, y) is negative near
the origin. Hence, there are points arbitrarily close to (0, 0) at which f(x, y)
is positive, and points arbitrarily close to (0, 0) at which f(x, y) is negative,
and so (0, 0) is neither a local maximum nor a local minimum of
f(x, y).

Example 1.16.3. Find the extrema of f(x, y) = 6xy2 − 2x3 − 3y4 on the
region

B = {(x, y) ∈ R2 | x2 + y2 ≤ 5}.
In this example we cannot apply Lagrange multipliers directly, as the

constraint is not of the right form. When applying Lagrange multipliers, the
constraint has to be of the form g(x, y) = 0, and in particular the constraint
does not involve an inequality. Instead, we break the question into two
pieces which we solve separately and then bring them together at the end.
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This is analogous to how we solve extremisation questions for a function of
one variable on a closed interval.

We start by finding the critical points of f(x, y) inside the region B, so in
the region (x, y) ∈ R2 | x2 + y2 < 5}. The gradient of f(x, y) is

∇f(x, y) = (6y2 − 6x2, 12xy − 12y3).

Setting ∇f(x, y) = (0, 0) yields the two equations

6y2 − 6x2 = 0 and 12xy − 12y3 = 0.

The first equation yields that x2 = y2, so that y = ±x. The second equation
factors to

12xy − 12y3 = 12y(x− y2) = 0,

so that either y = 0 or x = y2. If y = 0, then x = 0. If x = y2, then we see
that x = (±x)2 = x2, so that x = 0 or x = 1. For x = 1, we see that there
are two possible values of y, namely y = ±1. Combining all of these, we see
that there are three critical points, namely

• (0, 0), at which f(0, 0) = 0;

• (1, 1), at which f(1, 1) = 1; and

• (1,−1), at which f(1,−1) = 1.

We now apply Lagrange multipliers to determine the behaviour of f(x, y) on
the boundary of B, which is given by the constraint g(x, y) = x2 + y2− 5 = 0.
We now dump this question into our Lagrange multipliers machine. Set

L(x, y, λ) = f(x, y)− λg(x, y) = 6xy2 − 2x3 − 3y4 − λ(x2 + y2 − 5),

so that

∇L(x, y, λ) = (6y2 − 6x2 − 2λx, 12xy − 12y3 − 2λy, 5− x2 − y2) = (0, 0, 0).

This yields three equations:

(1) 6y2 − 6x2 − 2λx = 0;

(2) 12xy − 12y3 − 2λy = 0:

(3) x2 + y2 = 5.

We can solve equations (1) and (2) for λ, so that either

λ =
6y2 − 6x2

2x
=

3y2

x
− 3x or x = 0,

and either

λ =
12xy − 12y3

2y
= 6x− 6y2 or y = 0.

If x = 0, then equation (3) yields that y = ±
√

5 but equation 1. yields that
y = 0, and so there are no solutions with x = 0. If y = 0, we get no
information from equation (1) (because of the presence of λ) or equation (2),

and equation (3) yields that x = ±
√

5. This discussion yields two possible
solutions, namely
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• (
√

5, 0), at which f(
√

5, 0) = −10
√

5; and

• (−
√

5, 0), at which f(
√

5, 0) = 10
√

5.

Assuming that both x 6= 0 and y 6= 0, we can set the two expressions for λ
equal to one another and solve. So, we have that

3y2

x
− 3x = λ = 6x− 6y2.

Multiplying through by x, using equation 3., we see that x satisfies the cubic
equation

2x3 + 4x2 − 10x− 5 = 0.

This cubic has three real roots:

x1 = −3.289085012, x2 = −.4396737325, x3 = 1.728758744.

Note that x1 does not satisfy equation (3), and so we can discount it. For
each of x2 and x3, we get two possible solutions from equation (3), namely

y2 = 5− x2
2 yields y+

2 = 2.192415793 and y−2 = −2.192415793,

while

y2 = 5− x2
3 yields y+

3 = 1.4182359483 and y−3 = −1.418235948.

This gives us four points, namely

• (x2, y
+
2 ) = (−.4396737325, 2.192415793), at which

f(−.4396737325, 2.192415793) = −81.82297485;

• (x2, y
−
2 ) = (−.4396737325,−2.192415793), at which

f(−.4396737325, 2.192415793) = −81.82297485;

• (x3, y
+
3 ) = (1.728758744, 1.4182359483), at which

f(1.728758744, 1.4182359483) = −1.60698660;

• (x3, y
−
3 ) = (1.728758744,−1.4182359483), at which

f(1.728758744, 1.4182359483) = −1.60698660.

(We should check that at each of these four points, the two values of λ,

namely λ = 3y2

x − 3x and λ = 6x− 6y2, are in fact equal, as we are solving
for the critical points of L(x, y, λ). Checking, we see that this is in fact the
case, and so none of these four points need to be disqualified.)

Bringing all of this together, we see that for the function
f(x, y) = 6xy2 − 2x3 − 3y4 on the region

B = {(x, y) ∈ R2 | x2 + y2 ≤ 5},
the maximum occurs at the boundary point (−

√
5, 0), at which

f(
√

5, 0) = 10
√

5, while the minimum occurs at the boundary point
(x2,±y+

2 ) = (−.4396737325,±2.192415793), at which
f(−.4396737325,±2.192415793) = −81.82297485.





Chapter 2. Differentiable calculus of functions of complex variable

2.1. Introduction to complex numbers

Complex numbers historically arise from the attempt to resolve the
conundrum that some quadratic equations, such as x2 − 1 = 0, have two real
solutions, while other equations, such as x2 + 1 = 0, have no real solutions.
More generally, this is the conundrum that for a polynomial

p(x) =
∑d
k=0 akx

k of degree d, the number of real solutions (counting
multiplicities in the case of repeated roots, such as the root 1 having
multiplicity 2 for the polynomial x2 − 2x+ 1 = (x− 1)2) lies somewhere
between 0 and d, and for any d ≥ 1 it is possible to construct examples
illustrating each of these possibilities.

To this end, we introduce the new quantity i =
√
−1 (so that i2 = −1).

Using i, the equation x2 + 1 = 0 has 2 solutions, namely x = ±i, since we
can write

x2 + 1 = (x− i)(x+ i).

The standard quadratic formula for the solutions of a quadratic equation
still holds, so that the equation

x2 − 2x+ 2 = 0

has solutions, namely

x =
2±
√

4− 8

2
=

2±
√

4(−1)

2
=

2±
√

4
√
−1

2
=

2± 2i

2
= 1± i

In general, the equation αx2 + βx+ c = 0, with α 6= 0, has solutions

x =
−β ±

√
β2 − 4αc

2α
,

where we allow the discriminant β2 − 4αc to be negative. (In the case that

the discriminant β2 − 4αc = 0, we have that − β
2α is a root of multiplicity

2.)

Definition 2.1.1. Numbers of the form a+ bi, where a and b are themselves
real numbers, are called complex numbers, and the set of all complex
numbers is denoted by C.

To any complex number z = x+ iy, we can naturally associate two real
quantities, its real part Re(z) = x and its imaginary part Im(z) = y.

For instance, the complex number z = 2 + 3i has real part Re(z) = 2 and
imaginary part Im(z) = 3. Please note that the imaginary part of z = 2 + 3i
is not 3i,. Rather, the real and imaginary parts of a complex number are
themselves real numbers.

69
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A complex number z with Im(z) = 0 is real (and so the real number R lie
naturally as a subset inside the complex numbers C), while a complex
number z with Re(z) = 0, such as z = 2i, is purely imaginary. In fact, the
complex numbers are an augmentation of the real numbers by the inclusion
of i, together with the condition that the arithmetic of i behaves well with
respect to the standard arithmetic of real numbers.

We add or subtract complex numbers by adding or subtracting (respectively)
real and imaginary parts respectively, for instance

Example 2.1.2.

(2− 3i) + (4 + 5i) = (2 + 4) + (−3 + 5)i = 6 + 2i

and

(−3 + 4i)− (2 + 5i) = (−3− 2) + (4− 5)i = −5− i.

Multiplication is slightly more work, but again is straightforward. As noted
above, the same commutative, associative, and distributive laws hold for the
complex numbers as for real numbers, and using i2 = −1, we proceed naively
forth, so for instance

Example 2.1.3.

(2 + 3i)(4− 5i) = (2)(4) + (3i)(4) + 2(−5i) + 3i(−5i) =

= 8 + 12i− 10i− 15i2 = 8 + 2i− 10(−1) = 18 + 2i.

In general,

(x+ iy) + (x′ + y′i) = (x+ x′) + (y + y′)i

and

(x+ iy)(x′ + y′i) = (xx′ − yy′) + (xy′ + x′y)i

Implicit in this discussion is the observation that, should we wish to do so,
we can view the complex numbers C as a vector space over the real numbers
R with basis {1, i}, and addition in C as defined above is then just the
standard vector addition in C as a vector space over R. This is not an
observation we will make use of to any significant extent. Recasting this
discussion, we have the following lemma, which expresses what we already
have seen about the addition and multiplication of complex numbers, but
phrased in terms of their real and imaginary parts.

Lemma 2.1.4. Let z and w be complex numbers. Then

(i) Re(z + w) = Re(z) + Re(w) and Im(z + w) = Im(z) + Im(w);

(ii) Re(zw) = Re(z)Re(w)− Im(z)Im(w) and
Im(zw) = Re(z)Im(w) + Re(w)Im(z).
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Every complex number z = x+ iy has a complex conjugate z, defined by
z = x− iy. Note that complex conjugation is an involution, in that doing it
twice returns us to where we began, so that z = z. Two complex numbers
are complex conjugates if each is the complex conjugate of the other; hence,
2 + 3i and 2− 3i are complex conjugates of one another.

Related to the complex conjugate is the norm or modulus |z| of the complex
number z, where |z| is defined as the nonnegative real number

|z| =
√
zz =

√
Re(z)2 + Im(z)2

The complex conjugate behaves well with respect to the basic operations of
addition and multiplication of complex numbers. Some of the more useful
properties are given below, with an indication of how they can be shown to
hold.

Lemma 2.1.5. Let z and w be complex numbers. We then have that

(i) z + w = z + w;

(ii) zw = z · w;

(iii) zn = (z)n for n ∈ Z;

(iv) zz = (Re(z))2 + (Im(z))2 = |z|2;

(v) z+z
2 = Re(z), and z−z

2 = iIm(z);

(vi) z = z if and only if z ∈ R.

Proof. The proofs of these facts are by direct calculation.

(i). We calculate, so that

z + w = (Re(z) + Im(z)i) + (Re(w) + Im(w)i)

= Re(z) + Re(w) + (Im(z) + Im(w))i

= Re(z) + Re(w)− (Im(z) + Im(w))i

= Re(z)− Im(z)i+ Re(w)− Im(w)i

= z + w

(ii). This is a direct calculation which we leave to the reader.

(iii). This is a direct calculation using induction.

(iv). Here we have
zz = (Re(z) + iIm(z))(Re(z)− iIm(z)) = (Re(z))2 + (Im(z))2.

(v). This is a again a direct calculation whose prove will leave to the reader.

(vi). If z ∈ R, then Im(z) = 0 and hence z = z. In the other direction, if
z = z, then

Re(z)− iIm(z) = Re(z) + iIm(z),

and subtracting the right hand side from the left hand side, we see that
Im(z) = 0.
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�

Example 2.1.6. We use the properties of the complex conjugate in the
arithmetic of dividing complex numbers. To whit, if z and w are complex
numbers with w 6= 0, then

z

w
=
z

w

w

w
=

zw

|w|2
=

zw

(Re(w))2 + (Im(w))2
.

To illustrate this with a specific examples, let us evaluate

3 + 4i

2− i
.

Calculating, we see that

3 + 4i

2− i
=

(3 + 4i)(2 + i)

(2− i)(2 + i)
=

(3 + 4i)(2 + i)

5
=

2

5
+

11

5
i.

For another example, we calculate

2− 3i

1 + i
=

(2− 3i)

(1 + i)
· (1− i)

(1− i)
=

2− 3i+ 2i− 3i2

1− i2
=

5− i
2

=
5

2
− 1

2
i.

The fact that complex conjugation behaves well with respect to both
addition and multiplication has the following interesting consequence.

Lemma 2.1.7. Let

p(z) = anz
n + · · ·+ a1z + a0

be a non-constant polynomial in the complex variable z with real coefficients.
If z0 is a root of p(z) satisfying z0 ∈ C and z0 6∈ R, then z0 is also a root of
p(z).

As a consequence, the roots of a quadratic polynomial p(x) = ax2 + bx+ c
with real coefficients and no real roots are always complex conjugates. More
generally, the complex (non-real) roots of a non-constant polynomial in z
with real coefficients always come in complex conjugate pairs, and so every
non-constant polynomial in z with real coefficients can be factored as a
product of linear and quadratic factors.

Proof of Lemma 2.1.7. Since z0 is a root of p(z), we have that
p(z0) = anz

n
0 + · · ·+ a1z0 + a0 = 0. Taking the complex conjugate of the

equation p(z0) = 0, using the properties above of complex conjugation, and
remembering that the coefficients an, . . . , a0 are real numbers, we see that

0 = anzn0 + · · ·+ a1z0 + a0 = anz0
n + · · ·+ a1z0 + a0 = p(z0),

and so z0 is also a root of p(z).

Calculating, we see that

(z − z0)(z − z0) = z2 − z0z − z0z + z0z0 = z2 − 2 · Re(z0)z + |z0|2,
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which is a quadratic polynomial with real coefficients. �

To see that any non-constant polynomial with real coefficients can be
factored as the product of linear and quadratic factors, we need the
Fundamental Theorem of Algebra:

Theorem 2.1.8 (The Fundamental Theorem of Algebra). Let p(z) be a
non-constant polynomial with complex coefficients. Then p(z) has a complex
root.

We do not prove the Fundamental Theorem of Algebra which is outside of
our scope here. Rather, let us apply it to understand how to factor
polynomials.

So, let p(z) be a non-constant polynomial of degree d ≥ 1 with real
coefficients. By the Fundamental Theorem of Algebra, p(z) has a root
z0.

If z0 is real, then we can factor out the linear factor z − z0 from p(z) to
express p(z) = (z − z0)q(z), where q(z) is a polynomial with complex
coefficients and degree d− 1.

If z0 is not real, then z0 is also a root of p(z), and so we can factor out the
quadratic factor

(z − z0)(z − z0) = z2 − 2 · Re(z0)z + |z0|2

from p(z) to express

p(z) = (z − z0)(z − z0)q(z),

where q(z) is a polynomial with complex coefficients and degree d− 2.

We now apply induction to see that any non-constant polynomial in z with
real coefficients can be factored as a product of linear and quadratic
factors.

2.1.1. Geometric representation of complex numbers. We can
represent complex numbers geometrically in the complex plane C using the
Argand diagram. We associate the point (x, y) in the xy-plane with the
complex number x+ iy. Thus the x-axis is the real axis and the y-axis the
imaginary axis in the complex plane. This goes back to the observation
made earlier, that we can view C as a vector space over R with basis {1, i},
in which we again view the real as the horizontal and the imaginary as the
vertical.
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We can use the Argand diagram to give a geometric interpretation of the
complex conjugate z of a complex number z as the reflection of z across the
real axis R in C; that is, z is the complex number on the other side of the
real axis R from z and the same distance from the real axis as z.
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Thinking of C as a vector space with basis 1 and i, we can identify C with
R2. In this way, we can give OP a direction from O to P and identify z with

the vector
−−→
OP . Addition in the complex plane can then be interpreted

geometrically through the parallelogram law. We take the origin as a vertex
of a parallelogram with adjacent sides z and z′: the sum z + z′ is the
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2.1.2. Polar form of a complex number. There are two natural
coordinate systems on the plane, the standard cartesian coordinates x and y
that we have been working with, and polar coordinates, in which we locate a
point using the quantities a distance from the origin r and an angle θ
measured counterclockwise from the positive real axis.

More explicitly, if we write z = x+ iy in terms of polar coordinates, we then
have

x = r cos(θ), y = r sin(θ),

where r = |z| and θ is a counterclockwise angle formed by the positive real
axis and the segment OP from the origin 0 to the complex number z.

Thus, we have another way of describing complex numbers:

Definition 2.1.9. For a complex number z = x+ iy, the polar form of z is
given by

z = r(cos(θ) + i sin(θ))

where x = r cos(θ), y = r sin(θ), r = |z| and θ is an angle, called an argument
of z, measured counterclockwise from the positive real axis to the vector
defined by z.

The discussion of the argument introduces some subtleties. The first of these
subtleties is that the argument of a complex number is not unique. This is
because both cos(θ) and sin(θ) are periodic with period 2π, so that
cos(θ + 2πk) = cos(θ) and sin(θ + 2πk) = sin(θ) for any k ∈ Z. Thus, the
argument arg(z) of a complex number z is not a function of the sort we have
dealt with before. Rather, it is a set valued function, as the argument arg(z)
of z is

arg(z) = {θ0 + 2πk | k ∈ Z},
where z = |z|(cos(θ0) + i sin(θ0)) is one polar representation of z.

Write the non-zero complex number z as z = |z|(cos(θ) + i sin(θ)), and note
that the angle θ then satisfies

tan(θ) =
Im(z)

Re(z)

provided Re(z) 6= 0.

However, because θ is determined only up to multiples of 2π but tan(x) is
determined up to multiplies of π, we see that

θ 6= tan−1

(
Im(z)

Re(z)

)
,

as tan−1
(

Im(z)
Re(z)

)
does not distinguish which quadrant of the plane contains

the complex number z. That is, if we are given z in cartesian form as
z = Re(z) + iIm(z), we need not only the formula for θ in terms of

tan−1
(

Im(z)
Re(z)

)
but we also need the additional piece of information about the

location of z in the complex plane.
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Example 2.1.10. As an example of this ambiguity and how to resolve it,
consider z = 1 + i and w = −z = −1− i. Calculating, we see that
|z| = |w| =

√
2. With regards to arguments, though, we have that

π

4
= tan−1

(
1

1

)
= tan−1

(
−1

−1

)
,

even though z lies in the first quadrant and w lies in the third quadrant.
Therefore, we have that

arg(z) =
{π

4
+ 2πk | k ∈ Z

}
and

arg(w) =

{
5π

4
+ 2πk | k ∈ Z

}
.

As this example illustrates, it is convenient to be able to pick out a single
best value from arg(z). The standard approach is to take the value of
θ ∈ arg(z) satisfying −π < θ ≤ π; this value in arg(z) is called the principal
argument of z and is denoted Arg(z).

• If Re(z) = 0, then z is purely imaginary and Arg(z) = ±π2 depending
on the quadrant z lies in.

• If Re(z) 6= 0, we calculate the principal argument of z as above, by
taking first

tan−1

(
Im(z)

Re(z)

)
and then applying the geometric information of which quadrant z
lies in, that is, adding or subtracting π from this angle, if necessary,
to bring it into the same quadrant as z while keeping it in the range
(−π, π].

Note that we have

arg(z) = {Arg(z) + 2πk | k ∈ Z}.

Example 2.1.11. Some examples of principal arguments are

Arg(1 + i) =
π

4
,

Arg(i) =
π

2
,

Arg(−1) = π,

and

Arg(−1− i) = −3π

4
It is left as an exercise to check that these are correct by plotting the points
in an Argand diagram.
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One of the most basic formulae for working with complex numbers,
particularly for working with them in polar form, is Euler’s formula.

Definition 2.1.12 (Euler’s formula). For any real number θ, we define eiθ

also denoted exp(iθ) by

eiθ = exp(iθ) = cos(θ) + i sin(θ).

It should be remarked that eiθ is generally defined using power series.
Therefore, the above expression is indeed a formula rather than a definition
though its proof is outside the scope of this course.

Using Euler’s formula and what we have already shown, we can express
complex numbers in exponential form, by calculating their norm and their
argument.

Example 2.1.13. For example, let z = 1 + i
√

3. Calculating, we see that
|1 +

√
3i| =

√
1 + 3 = 2 and that Arg(1 +

√
3i) = π

3 . Hence we have that

1 + i
√

3 = 2
(

cos
(π

3

)
+ i sin

(π
3

))
= 2eiπ/3.

The next lemma shows that eiθ has all the expected properties of an
exponential function.

Lemma 2.1.14. Let z1 = r1e
iθ1 and z2 = r2e

iθ2 be two complex numbers,
expressed in complex exponential form and let n be an integer. We then have

(i) z1z2 = r1e
iθ1r2e

iθ2 = r1r2e
i(θ1+θ2);

(ii) |z1z2| = |z1| |z2|;

(iii) arg(z1z2) = arg(z1) + arg(z2);

(iv) z1
z2

= r1e
iθ1

r2eiθ2
= r1

r2
ei(θ1−θ2) provided z2 6= 0;

(v)
∣∣∣ z1z2 ∣∣∣ = |z1|

|z2| provided z2 6= 0;

(vi) arg
(
z1
z2

)
= arg(z1)− arg(z2) provided z2 6= 0;

(vii) zn1 = (r1e
iθ1)n = rn1 e

inθ1 ;

(viii) |zn1 | = |z1|n;

(ix) arg (zn1 ) = n · arg(z1).

These statements can be verified in many ways, such as by multiplying or
dividing in polar form and using addition theorems for sine and cosine.
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Note that in each case, the resultant angle, such as arg(z1z2) or arg (zn),
does not necessarily refer to the principal argument Arg(z1z2) or Arg (zn),
respectively, but may instead equal one of many equivalent angles
Arg(· · · ) + 2nπ. This distinction will become clearer in the next
section.

Example 2.1.15. Given z = 2 + 3i and w = 3− 4i, calculate

∣∣∣∣ (2 + 3i)6

(3− 4i)4

∣∣∣∣.
Begin with |z| =

√
13 and |w| = 5 so that∣∣∣∣ z6

w4

∣∣∣∣ =
|z|6

|w|4
=

√
13

6

54
=

2197

625

2.2. Roots of complex numbers

The following important result will help us to find roots of complex
numbers.

Theorem 2.2.1 (De Moivre’s Theorem). For any real number θ and any
integer n, we have

(cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ).(12)

Proof. Let z = cos(θ) + i sin(θ). Note that |z| = 1 and θ ∈ arg(z).

Now, by Lemma 2.1.14, we have that |zn| = |z|n = 1 and
nθ ∈ n arg(z) = arg(zn). This shows that zn = cos(nθ) + i sin(nθ). �

Example 2.2.2. Find the nth roots of unity.

We need to find the solutions to the equation zn = 1. Start with

z = r(cos(θ) + i sin(θ)), so that zn = rn(cos(nθ) + i sin(nθ)).

Taking the modulus of both sides of zn = 1 yields rn = 1, which in turn
gives r = 1. Taking real parts of zn = 1 then yields that cos(nθ) = 1. This in

its turn yields that θ = 0, 2π
n ,

4π
n , ...,

(2n−2)π
n .

(Note that by taking imaginary parts of both sides of zn = 1, we see that
sin(nθ) = 0, which yields a larger set of possible angles, namely θ = kπ

n for
k = 0, . . . , n− 1. However, not all of these angles are possible, as only some
of them satisfy the equation cos(nθ) = 1 and the rest satisfy
cos(nθ) = −1.)

Since

cos

(
2kπ

n

)
+ i sin

(
2kπ

n

)
k = 0, 1, ...n− 1,

are n distinct solutions of the equation zn − 1 = 0, we conclude that they are
all of the nth roots of unity.
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Example 2.2.3. For a specific example let us take n = 3. The roots of
z3 = 1 are

1, cos

(
2π

3

)
+ i sin

(
2π

3

)
=
−1 + i

√
3

2
, and cos

(
4π

3

)
+ i sin

(
4π

3

)
=
−1− i

√
3

2

The three points lie at the vertices of an equilateral triangle on the unit
circle in the complex plane:

"!
# sss

In general the n-th roots of unity lie at the vertices of a regular n-gon
inscribed in the unit circle, with one vertex at (1, 0).

This technique can be applied to any complex number. Consider the
following example.

Example 2.2.4. Given z = − 1
2 + 1

2 i, evaluate z1/3.

For z1/3, a third root, three solutions are expected.

We need the modulus r and the principal argument θ of z:

r2 =

(
1

2

)2

+

(
1

2

)2

=
1

4
+

1

4
=

1

2
, → r =

1√
2
.

To find the argument we begin with

tan−1

(
1/2

−1/2

)
= tan−1(−1) = −π

4
,

but in this case, crude application of the arctan function is misleading as z is
in the second quadrant. Recall that

tan
(
−π

4

)
= tan

(
3π

4

)
= −1

and we need

θ = Arg(z) =
3π

4
.

Therefore

z = −1

2
+

1

2
i =

1√
2

{
cos

(
3π

4

)
+ i sin

(
3π

4

)}
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= 2−1/2

{
cos

(
3π

4
+ 2nπ

)
+ i sin

(
3π

4
+ 2nπ

)}
Then

z1/3 =
(

2−1/2
)1/3

{
cos

(
π

4
+

2nπ

3

)
+ i sin

(
π

4
+

2nπ

3

)}
, n = 0, 1, 2

Hence the roots are

2−1/6
(
cos π4 + i sin π

4

)
, 2−1/6

(
cos 11π

12 + i sin 11π
12

)
, 2−1/6

(
cos 19π

12 + i sin 19π
12

)
The third argument lies outside the required range and so must be modified
by adding or subtracting integral multiples of 2π. In this case it is necessary
to subtract 2π making the third solution

2−1/6

{
cos

(
−5π

12

)
+ i sin

(
−5π

12

)}
.

2.3. Complex functions

So far we have studied functions that map a subset of R to a subset of R.
These were functions of one variable which we denoted by f : D ⊆ R→ R.
More generally, we also considered functions which mapped a subset of R2 to
a subset of R2, denoted f : D ⊆ R2 → R2. There is a natural way of
extending this study to the set of complex numbers.

Definition 2.3.1. A complex function f : D ⊆ C→ C is an assignment of a
unique complex number f(z) for each complex number z in D. The set D is
called the domain of the function.

Remark 2.3.2. As for functions from Rn to Rm, we suppress the
information about the domain and just write f : C→ C with the
understanding that the function may not be defined on all of the complex
numbers.

There are some basic functions that we use extensively in complex analysis.
The first consists of the polynomials

p(z) = anz
n + · · ·+ a1z + a0 =

n∑
k=0

akz
k

in the variable z = x+ iy, where a0, . . . , an ∈ C. Unless otherwise noted, we
adopt the convention that the leading coefficient an 6= 0.

Since p(z) takes its values in C, we can express p(z) in terms of its real and
imaginary parts

p(z) = u(x, y) + iv(x, y),

where u(x, y) = Re(p(z)) and v(x, y) = Im(p(z)) are both real-valued
functions of the real variables x = Re(z) and y = Im(z).
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Example 2.3.3. Let p(z) = z2 + 3z − 2z. Express p(z) in terms of its real
and imaginary parts.

We start by substituting z = x+ iy and then calculating. So,

p(z) = z2 + 3z − 2z

= (x+ iy)2 + 3(x+ iy)− 2(x− iy)

= x2 − y2 + 2ixy + 3x+ 3iy − 2x+ 2iy

= x2 − y2 + x+ i(2xy + 5y)

and so p(z) = u(x, y) + iv(x, y) where u(x, y) = Re(p(z)) = x2 − y2 + x and
v(x, y) = Im(z) = 2xy + 5y.

Another basic function is the exponential function f(z) = ez = exp(z).
Calculating using Euler’s formula, and assuming that the laws of exponents
hold in this case, we see that

exp(z) = ex+iy = exeiy = ex(cos(y) + i sin(y)) = ex cos(y) + iex sin(y),

and so

u(x, y) = Re(exp(z)) = ex cos(y) and v(x, y) = Im(exp(z)) = ex sin(y).

We can build the standard trigonometric functions cos(z) and sin(z) from
the exponential functions. Using Euler’s formula, we see that since

eiθ = cos(θ) + i sin(θ),

we have that

e−iθ = cos(−θ) + i sin(−θ) = cos(θ)− i sin(θ).

Combining these two expressions, we see that

cos(θ) =
1

2
(eiθ + e−iθ) and sin(θ) =

1

2i
(eiθ − e−iθ).

So, for a complex number z = x+ iy, let us define

cos(z) =
1

2
(eiz + e−iz) and sin(z) =

1

2i
(eiz − e−iz).

It is straightforward to expand the expressions for cos(z) and sin(z) into
their real and imaginary parts, and to verify that the standard trigonometric
identities hold under this definition. Some of these are listed here, and you
are invited to check that they do indeed hold.

(1) cos2(z) + sin2(z) = 1;

(2) 2 cos(z) sin(z) = sin(2z);

(3) cos2(z)− sin2(z) = cos(2z);

(4) sin(π2 + z) = sin(π2 − z) = cos(z).
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2.4. The derivative of a complex-valued function and the
Cauchy-Riemann equations

Let f(z) be a function of the complex variable z. As a first attempt to make
sense of the derivative of a complex valued function, we use the standard
definition of the derivative and just see what happens and what sense we can
make of it.

Definition 2.4.1. For z0 ∈ C, we say that f(z) is differentiable at z0 ∈ C if
the limit

lim
h→0

f(z0 + h)− f(z0)

h

exists. If this limit exists, we set

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h
,

and we refer to f ′(z0) as the derivative of f(z) at z0.

For this to make sense we need the analogous definition of the limit but for
complex valued functions.

Definition 2.4.2. Given a complex number L. We say that

lim
z→a

g(z) = L

if for every ε > 0 there exists δ > 0 so that 0 < |z − a| < δ implies that
|g(z)− L| < ε.

Note that we are using the same form of the definition of the limit as we
have before, and all the terms in it make sense. In fact this definition the
limit is similar to one for a function g : R2 → R2 where the norm in R2 is
replace by the norm of a complex number (compare with Definition 1.2.10).
This flexibility and breadth of application is one of the reasons that this
definition of limit is so powerful.

Looking at the limit in Definition 2.4.1, we make the observation that since
this limit exists for all h approaching 0 where h ∈ C, this limit then
necessarily still exists if we restrict the values of h that we consider. Writing
h = α+ iβ where α, β ∈ R, we will evaluate this limit twice, once when we
restrict to h being real and a second time when we restrict to h being purely
imaginary.

Restricting to h being real, we have h = α and so z0 + h = x0 + α+ iy0.
Hence, we have that
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f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h

= lim
α→0

u(x0 + α, y0) + iv(x0 + α, y0)− u(x0, y0)− iv(x0, y0)

α

= lim
α→0

u(x0 + α, y0)− u(x0, y0)

α
+ i lim

α→0

v(x0 + α, y0)− v(x0, y0)

α

=
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0).

This gives one representation for f ′(z0).

Restricting to h being purely imaginary, we have h = iβ and so
z0 + h = x0 + i(y0 + β). Hence, we have that

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h

= lim
β→0

u(x0, y0 + β) + iv(x0, y0 + β)− u(x0, y0)− iv(x0, y0)

iβ

= lim
β→0

u(x0, y0 + β)− u(x0, y0)

iβ
+ i lim

β→0

v(x0, y0 + β)− v(x0, y0)

iβ

= −i lim
β→0

u(x0, y0 + β)− u(x0, y0)

β
+ lim
β→0

v(x0, y0 + β)− v(x0, y0)

β

= −i∂u
∂y

(x0, y0) +
∂v

∂y
(x0, y0).

This gives a second representation for f ′(z0). (We note that there is a bit of
arithmetic involving i in the middle of this calculation. This is necessary
because when evaluating the limits to produce the partial derivatives with
respect to y, the incremental term we add to the second argument of the
function must equal exactly the denominator.)

Setting these two representations for f ′(z0) equal to one another, we see that
the partial derivatives of u(x, y) and v(x, y) are linked by two equations. We
refer to these as the Cauchy-Riemann equations.

The argument we gave above to derive the Cauchy-Riemann Equations
above contains the proof of the following fundamental result.

Theorem 2.4.3 (Cauchy-Riemann Theorem). If f(z) = u(x, y) + i v(x, y) is
differentiable at z0 = x0 + iy0, then the Cauchy-Riemann equations
associated to f(z) hold at z0 = x0 + iy0. That is,

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂v

∂x
(x0, y0) = −∂u

∂y
(x0, y0).

As we have hinted already, given a function f : C→ C by forgetting for a
moment that the complex numbers can be multiplied we can identify C with
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the real plane R2 and in this way we get f : R2 → R2. As a consequence of
complex differentiability we saw that both partial derivatives of u(x, y) and
v(x, y) must exist at the point (x0, y0). In fact more is true. It is nontrivial
exercise to check that the differentiability of f as complex function at
z0 = x0 + iy0 implies its differentiability as a function f : R2 → R2 at (x0, y0)
where the derivative is of course the Jacobian matrix:

Jf =


∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

 Th. 2.4.3
=


∂u

∂x
−∂v
∂x

∂v

∂x

∂u

∂x

 .

evaluated at (x0, y0).

We have the following converse to the Cauchy-Riemann Theorem.

Theorem 2.4.4 (Sufficiency Theorem). Let f(z) = u(x, y) + iv(x, y). If f is
differentiable at (x0, y0) as a function f : R2 → R2 where z0 = x0 + iy0 and
if the Cauchy-Riemann equations associated to f(z) hold at z0, then f(z) is
differentiable at z0 = x0 + iy0. Moreover, the derivative of f(z) at z0 is
f ′(z0) = ∂u

∂x (x0, y0) + i ∂v∂x (x0, y0).

Remark 2.4.5. Recall that, by Theorem 1.8.6, the function f : R2 → R2

would be differentiable at (x0, y0) if u(x, y), v(x, y), ∂u
∂x (x, y), ∂u

∂y (x, y),
∂v
∂x (x, y), and ∂v

∂y (x, y) are continuous on a neighbourhood of (x0, y0).

Proof of Theorem 2.4.4. We need to show that

lim
h→0

f(z0 + h)− f(z0)

h
=
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0).

Viewing C as a vector spaces with basis 1 and i, denote h = s+ it =

(
s
t

)
for s, t ∈ R . Then

lim
h→0

f(z0 + h)− f(z0)

h
= lim
h→0

f(z0 + h)− f(z0)− Jfh+ Jfh

h

= lim
h→0

f(z0 + h)− f(z0)− Jfh
h

+ lim
h→0

Jfh

h

= lim
h→0

h

|h|
·
(
f(z0 + h)− f(z0)− Jfh

|h|

)
+ lim
h→0

Jfh

h

= lim
h→0

Jfh

h
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= lim
(s+it)→0

 ∂u
∂x − ∂v

∂x

∂v
∂x

∂u
∂x

( s
t

)
(s+ it)

= lim
(s+it)→0

 ∂u
∂xs−

∂v
∂x t

∂v
∂xs+ ∂u

∂x t


(s+ it)

= lim
(s+it)→0

(
∂u
∂xs−

∂v
∂x t
)

+ i
(
∂v
∂xs+ ∂u

∂x t
)

(s+ it)

= lim
(s+it)→0

∂u
∂x (s+ it) + i ∂v∂x (s+ it)

(s+ it)

=
∂u

∂x
+ i

∂v

∂x
.

Here, the fourth equality follows by differentiability of f at z0 = (x0, y0) as a
function f : R2 → R2. �

As we are examining things through the lens of calculus, one of the basic
questions we ask is:

Given a function f(z), at which points is f(z) differentiable?

The basic strategy for determining where a complex-valued function
f(z) = u(x, y) + iv(x, y) is differentiable has two basic steps:

(1) We first determine the points at which the Cauchy-Riemann equations
hold, as these are all the the points in C at which f(z) might be
differentiable;

(2) Verify that f(z) is indeed differentiable at these points, normally using
either the Sufficiency Theorem (Theorem 2.4.4), but perhaps using the
definition of the derivative if that is what is required.

Example 2.4.6. Determine the points of C at which f(z) = z is
differentiable.

We start by writing f(z) = z = x− iy in terms of its real and imaginary
parts, so that if we have f(z) = u(x, y) + iv(x, y), we have in this case that
u(x, y) = x and v(x, y) = −y. To check where f(z) might be differentiable,
we first calculate the partial derivatives of u(x, y) and v(x, y) with respect to
x and y:

∂u

∂x
= 1 and

∂u

∂y
= 0,
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and
∂v

∂x
= 0 and

∂v

∂y
= −1.

Applying the Cauchy-Riemann equations yields that f(z) can only be
differentiable at points z0 = x0 + iy0 where

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0).

However, since
∂u

∂x
(x0, y0) = 1 6= −1 =

∂v

∂y
(x0, y0)

for all z0 = x0 + iy0 for our function f(z) = z, we see that f(z) = z is
differentiable at no point of C.

Example 2.4.7. Let f(z) = u(x, y) + iv(x, y) denote the function defined by

f(z) =


z2

z
if z 6= 0,

0 if z = 0.

Show that f(z) satisfies the Cauchy-Riemann equations at z = 0 but that
f(z) is not differentiable there.

To see that the Cauchy-Riemann equations hold at z = 0, we calculate the
partial derivatives of u(x, y) and v(x, y) with respect to both x and y at
(x, y) = (0, 0). We begin by rewriting f(z) (for z 6= 0) in terms of real and
imaginary parts:

f(z) =
z2

z
=
z3

zz
=
x3 − 3xy2

x2 + y2
+ i

y3 − 3x2y

x2 + y2
= u(x, y) + iv(x, y).

To evaluate the partial derivatives at z = 0, we use the limit
definition:

∂u

∂x
(0, 0) = lim

x→0

u(x, 0)− u(0, 0)

x
= lim
x→0

x3

x3
= 1.

Similarly,
∂u

∂y
(0, 0) = lim

y→0

u(0, y)− u(0, 0)

y
= 0,

∂v

∂x
(0, 0) = lim

x→0

v(x, 0)− v(0, 0)

x
= 0,

and
∂v

∂y
(0, 0) = lim

y→0

v(0, y)− v(0, 0)

y
= 1.

So, we see that

∂u

∂x
(0, 0) =

∂v

∂y
(0, 0) and

∂v

∂x
(0, 0) = −∂v

∂x
(0, 0),

and so the Cauchy-Riemann equations are satisfied at z = 0.
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To see that f(z) is not differentiable at z = 0, we consider the definition at
z = 0:

lim
h→0

f(h)− f(0)

h
= lim
h→0

h
2

h2
.

If we take h to be real, so that we approach 0 along the real axis, we
get

lim
h→0

f(h)− f(0)

h
= lim
h→0

h
2

h2
= 1.

If we take h = α exp(iπ/4), so that we approach 0 along the line making
angle π

4 with the positive real axis, we get

lim
h→0

f(h)− f(0)

h
= lim
α→0

α2 exp(−iπ/2)

α2 exp(iπ/2)
= lim
α→0+

−i
i

= −1.

Hence, the limit

lim
h→0

f(h)− f(0)

h

does not exist, and so f(z) is not differentiable at z = 0.

Example 2.4.8. Let f(z) be a real-valued function of the complex variable
z = x+ iy that is differentiable at every point z0 ∈ C. Then, f(z) is
constant.

We start by writing f(z) in terms of its real and imaginary parts:

f(z) = f(x+ iy) = u(x, y) + iv(x, y).

The hypotheses that f(z) is real-valued then translates to v(x, y) = 0. Since
f(z) is differentiable at every point of C, we can apply the Cauchy-Riemann
equations. Since ∂v

∂x = 0 we see that ∂u
∂y = 0, and since ∂v

∂y = 0 we see that
∂u
∂x = 0.

We now solve for u(x, y). Since ∂u
∂y = 0, we integrate with respect to y to see

that u(x, y) = ϕ(x), which is the constant of integration with respect to y.
Applying that ∂u

∂x = 0, we see that ϕ′(x) = 0 and hence that ϕ(x) = K is
constant. Hence, f(z) = K is constant as well, and we are done.

Example 2.4.9. Let f(z) = u(x, y) + i v(x, y) be a function of the complex
variable z = x+ iy. Suppose that both f(z) and the square |f(z)|2 of the
norm of f(z) are differentiable at all points of the complex plane C. Show
that f(z) is constant.

Since f(z) = u(x, y) + i v(x, y) is differentiable at all points z = x+ iy of C,
we know from the Cauchy-Riemann Theorem that

∂u

∂x
(x, y) =

∂v

∂y
(x, y) and

∂u

∂y
(x, y) = −∂v

∂x
(x, y)

at all points z = x+ iy of C.
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Similarly, since |f(z)|2 = u2(x, y) + v2(x, y) is differentiable at all points
z = x+ iy of C, we know from the Cauchy-Riemann equations applied to the
function |f(z)|2 that

∂

∂x
(u2(x, y) + v2(x, y)) =

∂

∂y
(0) = 0

and
∂

∂y
(u2(x, y) + v2(x, y)) = − ∂

∂x
(0) = 0

at all points z = x+ iy of C. Expanding by using the product rule, we see
that

2u(x, y)
∂u

∂x
(x, y) + 2v(x, y)

∂v

∂x
(x, y) = 0

and

2u(x, y)
∂u

∂y
(x, y) + 2v(x, y)

∂v

∂y
(x, y) = 0.

Using the relations from the differentiability of f(z) = u(x, y) + i v(x, y)
coming from the Cauchy-Riemann equations, namely that

∂u

∂x
(x, y) =

∂v

∂y
(x, y) and

∂u

∂y
(x, y) = −∂v

∂x
(x, y),

we can express everything in terms of the partial derivatives of u(x, y).

We now have that

u(x, y)
∂u

∂x
(x, y)− v(x, y)

∂u

∂y
(x, y) = 0,

and

u(x, y)
∂u

∂y
(x, y) + v(x, y)

∂u

∂x
(x, y) = 0.

We multiply the first equation by u(x, y) and the second equation by v(x, y)
to obtain

u2(x, y)
∂u

∂x
(x, y)− u(x, y)v(x, y)

∂u

∂y
(x, y) = 0,

and

u(x, y)v(x, y)
∂u

∂y
(x, y) + v2(x, y)

∂u

∂x
(x, y) = 0.

Combining these two equations, we see that

(u2(x, y) + v2(x, y))
∂u

∂x
(x, y) = 0.

From this, we have either that u2(x, y) + v2(x, y) = 0, which forces both
u(x, y) = 0 and v(x, y) = 0 and hence that f(z) = u(x, y) + iv(x, y) is
constant (and equal to 0), or that ∂u

∂x (x, y) = 0.

Similarly, if we multiply the first equation by v(x, y) and the second equation
by u(x, y), we can then combine the equations to obtain that

(u2(x, y) + v2(x, y))
∂u

∂y
(x, y) = 0,

so that either f(z) is constant or ∂u
∂y (x, y) = 0.
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Since we have that ∂u
∂x (x, y) = 0 and ∂u

∂y (x, y) = 0 for all points x+ iy ∈ C,

reasoning as in Example 2.4.8, we have that u(x, y) and v(x, y) are both
constant.

Example 2.4.10. Let u(x, y) = x3 − 3xy2 − 2x2 + 2y2 − 4. Find a real
valued function v(x, y) so that f(z) = u(x, y) + i v(x, y) is differentiable at all
points z ∈ C.

Since we are asked to find v(x, y) so that f(z) = u(x, y) + i v(x, y) is
differentiable at all points z ∈ C, we know that the Cauchy-Riemann
equations need to hold at all points z ∈ C. Calculating, we then see
that

∂v

∂y
=
∂u

∂x
= 3x2 − 3y2 − 4x

and
∂v

∂x
= −∂u

∂y
= −(−6xy + 4y) = 6xy − 4y.

To find a function v(x, y) that satisfies such conditions, we can start by
taking the first equation and integrating with respect to y to get

v(x, y) = 3x2y − y3 − 4xy + ϕ(x),

where ϕ(x) is the constant of integration with respect to y.

We now use the second equation to see that

6xy − 4y =
∂v

∂x
= 6xy − 4y + ϕ′(x).

Therefore, we have that ϕ′(x) = 0 and hence that ϕ(x) = K is
constant.

Putting everything together and setting K = 0, we then see that

f(z) = u(x, y) + iv(x, y) = x3 − 3xy2 − 2x2 + 2y2 − 4 + i(3x2y − y3 − 4xy)

is differentiable at all points z ∈ C.

Example 2.4.11. Let u(x, y) = x2 + y2. Show that there does not exist a
real valued function v(x, y) so that f(z) = u(x, y) + i v(x, y) is differentiable
at all points z ∈ C.

Since we are considering that f(z) = u(x, y) + i v(x, y) is differentiable at all
points z ∈ C, we know that we need the Cauchy-Riemann Equations need to
hold at all points z ∈ C. Calculating, we then see that

∂v

∂y
=
∂u

∂x
= 2x

and
∂v

∂x
= −∂u

∂y
= −2y.

To find a function v(x, y) that satisfies such conditions, we can start by
taking the first equation and integrating with respect to y to get

v(x, y) = 2xy + ϕ(x),
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where ϕ(x) is the constant of integration with respect to y. As before, the
second equation above then yields that

−2y =
∂v

∂x
= 2y + ϕ′(x).

However, in this case we then have that −4y = ϕ′(x), which cannot be as
ϕ(x) is a function of x alone.

What this means is that the given function u(x, y) = x2 + y2 cannot be the
real part of a function of a complex variable, as we are unable to find its
corresponding imaginary part.

We close this section by noting that in addition to writing a function
f(z) = u(x, y) + iv(x, y) in terms of its real and imaginary parts, we can also
write f(z) = s(r, θ) exp(it(r, θ)) in polar form, where here z = r exp(iθ). We
have the analogue of the Cauchy-Riemann equations, namely,

r
∂u

∂r
(r0, θ0) =

∂v

∂θ
(r0, θ0) and − r ∂v

∂r
(r0, θ0) = −∂u

∂θ
(r0, θ0),

and the Sufficiency Theorem for the polar form of f(z).



Chapter 3. Integral calculus of functions of two or three variables

We were told that the area of the disc in R2 of radius r > 0 (and with any
centre) is πr2, that the volume of the ball in R3 of radius r > 0 (and with
any centre) is 4

3πr
3, that the volume of a pyramid of height h whose base has

area b is 1
3bh, et cetera, but we were rarely if ever told why. As a point of

focus for the other side of calculus, integration, we will consider the why of
such formulae.

As with differentiation, we integrate a function of several variables one
variable at a time. This approach does leave us with some fundamental
questions to consider, such as, to what extent, if any, does the order of
integration matter or is the result independent of the order of integration.
We will address these questions later. However, our focus in this chapter is
on the mechanics of integration, the setting of limits, the different coordinate
systems within which we can describe regions and perform the integration in
question, and the change of variables formula. While integration, like
differentiation, is defined in terms of limits, we do not focus on the more
theoretical aspects here.

We focus in this chapter on definite integrals, which are those integrals for
which we have limits at which we evaluate the integrated integrand. That is,
using an example from one-variable calculus, we will work with the higher

dimensional equivalent of integrals of the sort
∫ b
a
f(x) dx rather than

indefinite integrals of the sort
∫
f(x) dx.

3.1. Double integral over rectangle

We take as our starting point the most straightforward of cases, which is the
integration of a continuous function f(x, y) over a rectangle R in the plane,
described in terms of the standard Cartesian coordinates x and y, where the
sides of R are parallel to the coordinate axes. The first question we face is
how to define the integral of f(x, y) over the region R.

The answer is similar to what we do for functions of one variable. That is,
we can approximate the function f(x, y) by subdividing the rectangle R into
smaller rectangles and restrict f(x, y) to each of these rectangles.

Suppose R = [a, b]× [c, d] and we have the subdivisions of the two
intervals

a = x0 < x1 < · · · < xm = b,

c = y0 < y1 < · · · < yn = d.

This gives us a partition of R into mn smaller rectangles Rij , 0 ≤ i ≤ m,
0 ≤ j ≤ n (see Figure 12) each of which has area Aij given by
Aij = (xi − xi−1)(yj − yj−1).
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Figure 12. partition of R into smaller rectangles Rij (1 ≤
i ≤ m, 1 ≤ j ≤ n)

Now, the volume under the graph of the function f(x, y) (counting any
volume below the xy-plane as negative) is then approximated by adding the
areas of all the rectangular boxes

m∑
i=1

n∑
j=1

f(x′i, y
′
j)Aij

where (x′i, y
′
j) is an arbitrary point in the interior of Rij .

This double sum depends of course on the choice of the partition of R and
on the choice of the points (x′i, y

′
j) is each smaller rectangle Rij . But as we

make the rectangles Rij subdividing R smaller and smaller we hope that it
will tend to a limit which we then call the integral of f(x, y) on R.

Definition 3.1.1. A function f : R2 → R is said to be integrable over the
rectangular region R = [a, b]× [c, d] and has double integral denoted by∫ ∫

R
f(x, y) dA, if for every ε > 0, the exists a partition of R so that

|
m∑
i=1

n∑
j=1

f(x′i, y
′
j)Aij −

∫ ∫
R

f(x, y) dA| < ε

for all choices of the points (x′i, y
′
j) in the interior of the sub-rectangles Rij of

R.

It is generally not so simple to check whether a given function is integrable.
The following theorem allows us to circumvent this problem at least in the
cases that will be of interest to us.

Theorem 3.1.2. If f : R2 → R is continuous on a rectangular region R,
then it is in integrable over R.
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The next questions we face are, what notation do we use to express the
integral of f(x, y) over the region R, and how do we evaluate this
integral?

We address the notational question first. We wish to include in our notation
the information that we are integrating with respect to both variables x and
y, which leaves us with the choices

∫ ∫
R
f(x, y) dx dy and

∫ ∫
R
f(x, y) dy dx,

and they are equally valid. (Here, we have in essence run into the basic issue
that we do not want to yet have to specify an order of integration, as we
have not yet chosen an order of integration, but given that writing is at its
core a linear act, we have no choice but to put either dx or dy first.) So, the
convention we use is that if we do not have limits on the individual integrals,
then we accept that we have not yet chosen an order of integration. We use
dA rather than dx dy or dy dx in order to decrease confusion, writing the
integral as

∫ ∫
R
f(x, y) dA, in those cases when we have not yet chosen an

order of integration.

We now discuss the process of evaluation. Since we are focussing our
attention on the mechanics of describing regions, we will by and large
integrate functions which are straightforward to integrate, rather than
functions for which the integration itself is the interesting or tricky part of
the calculation. The area of a region R in the plane is just the integral over
R of the constant function f(x, y) = 1. We will often evaluate areas of
regions, rather than evaluating integrals with more complicated integrands
than f(x, y) = 1, so that we do not confuse the issue by mixing choosing the
order of integration and setting the limits, with the issue of the mechanics of
integration.

By the description of R as having sides parallel to the coordinate axes, we
can express R as the product R = [a, b]× [c, d], and we integrate f(x, y) one
variable at a time. Holding y constant and first integrating f(x, y) with

respect to x over the interval [a, b], we obtain
∫ b
a
f(x, y) dx, and the result of

this integration is then a function of y only. (This is the integration analogue
of partial differentiation.) We are now able to integrate this function∫ b
a
f(x, y) dx of y with respect to y over the interval [c, d] to obtain∫ d

c

(∫ b
a
f(x, y) dx

)
dy.

Alternatively, holding x constant and first integrating f(x, y) with respect to

y over the interval [c, d], we obtain the partial integral
∫ d
c
f(x, y) dy, which is

a function of x only. We then integrate this function
∫ d
c
f(x, y) dy of x with

respect to x over the interval [a, b] to obtain
∫ b
a

(∫ d
c
f(x, y) dy

)
dx.

Example 3.1.3. Let R = [0, 1]× [0, 2] and evaluate
∫ ∫

R
xy dA.

Since there are two variables, we have two possible orders of integration:
first with respect to x and then with respect to y, or first with respect to y
and then with respect to x.
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Start with integration first with respect to x and then with respect to y. The
integral is then written and evaluated (working from the inside out) as
follows:
(13)∫ 2

0

∫ 1

0

xydxdy =

∫ 2

0

(∫ 1

0

xy dx

)
dy =

∫ 2

0

(
1

2
x2y

∣∣∣∣x=1

x=0

)
dy =

∫ 2

0

1

2
ydy =

1

4
y2
∣∣∣∣2
0

= 1.

First integrating with respect to y and then with respect to x, the integral
in then written and evaluated (again working from the inside out) as follows:

(14)∫ 1

0

∫ 2

0

xydydx =

∫ 1

0

(∫ 2

0

xy dy

)
dx =

∫ 1

0

(
1

2
xy2
∣∣∣∣y=2

y=0

)
dx =

∫ 1

0

2xdx = x2
∣∣1
0
= 1.

When we first integrate with respect to x, as in (13) above, we are in effect
breaking our rectangle up into horizontal slices. We fix a value of y satisfying
0 ≤ y ≤ 2 (as these are the limits on y coming from the rectangle R), and we
integrate f(x, y) as a function of x along this horizontal slice, viewing y as a
constant. The value of the integral along the horizontal slice depends on y,
the parameter determining the horizontal slice along which we are
integrating, and so we then integrate the resulting function of y. In (14), we
proceed in exactly the same way, but we break the rectangle up into vertical
slices instead of horizontal slices.

Not surprisingly, the evaluations of this integral in the 2 different orders of
integration are the same. That this fact holds in full generality for
continuous functions over rectangles is a result of Fubini.

Theorem 3.1.4. (Fubini) Let R = [a, b]× [c, d] be a rectangle in R2 whose
sides are parallel to the coordinate axes and let f(x, y) be a function that is
continuous on R. Then,∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy.

Caution: When we change the order of integration as in Example 3.1.3
above, we need also to ensure that the limits on x remain the limits on x and
that the limits on y remain the limits of y.

Consider the integral∫ 2

0

∫ 1

0

x2y dx dy =

∫ 2

0

(
1

3
x2y

∣∣∣∣1
x=0

)
dy =

∫ 2

0

1

3
y dy =

1

6
y2

∣∣∣∣2
0

=
2

3
.

If we change the order of integration, integrating first with respect to x but
forget to change the limits correspondingly, we get∫ 2

0

∫ 1

0

x2y dy dx =

∫ 2

0

(
1

2
x2y2

∣∣∣∣1
y=0

)
dx =

∫ 2

0

1

2
x2 dx =

1

6
x3

∣∣∣∣2
0

=
4

3
.
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We can be a bit more expansive in our statement of Theorem 3.1.4. Let a
generalised interval be an interval in R of the form [a, b], [a,∞), (∞, b] or all
of R, expressed as an interval as (−∞,∞). We can generalise Theorem 3.1.4
as follows (assuming that you the reader have some familiarity with
improper integrals).

Theorem 3.1.5. Let R = I × J be a region in R2, where I and J are both
generalised intervals in R. Let f(x, y) be a function that is continuous on R.
If either∫

I

(∫
J

|f(x, y)| dy

)
dx <∞ or

∫
J

(∫
I

|f(x, y)| dx

)
dy <∞,

then∫
I

(∫
J

f(x, y) dy

)
dx =

∫
J

(∫
I

f(x, y) dx

)
dy =

∫
I×J

f(x, y) dx dy.

Corollary 3.1.6. Let R = I × J be a region in R2, where I and J are both
generalised intervals in R. Let f(x, y) = g(x)h(y) be a function that is
continuous on R. If either∫

I

(∫
J

|f(x, y)| dy

)
dx <∞ or

∫
J

(∫
I

|f(x, y)| dx

)
dy <∞,

then(∫
I

g(x) dx

)(∫
J

h(y) dy

)
=

∫
I×J

f(x, y) dx dy =

∫
I×J

g(x)h(y) dx dy.

3.2. Double integrals over more complicated regions

In this section, we consider integration over more complicated regions in the
plane than those discussed in the previous Section 3.1. The main technical
issue to be addressed is the determination of the endpoints of the vertical
and horizontal slices as once these are determined, the integration itself
becomes a mechanical act. As there are no new technical results that we
need, we dive directly into an example.

Example 3.2.1. Let R be the triangular region in the plane R2 with vertices
(0, 0), (2, 0) and (1, 1) (see Figure 13) and evaluate the integral

∫ ∫
R
xy dA.

There are two possible orders of integration and we will tackle both. We
start with integration first respect to x and then with respect to y. Since we
will integrate with respect to y last, we have that the limits of integration for
y need to be constants. They are the smallest and largest values of y for any
point (x, y) in R, and so we see that 0 ≤ y ≤ 1.

For a fixed value of y satisfying 0 ≤ y ≤ 1, we now need to determine the
limits on x. That is, for this fixed value of y, we need to know the smallest
and largest values of x for points with this fixed y coordinate that lie in R.
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Figure 13. triangular region R

The slice through R at height y is a single interval, with its left endpoint on
the left-hand side of R (which has equation y = x) and with its right-hand
endpoint on the right-hand side of R (which has equation y = 2− x, or
equivalently, x = 2− y). Hence, for this fixed value of y, the smallest value of
x so that (x, y) lies in R is x = y, and the largest value of x so that (x, y) lies
in R is x = 2− y, and so y ≤ x ≤ 2− y.

We do note here that, since we first integrate with respect to x, the limits on
x can involve y, which is the other variable in the question. However, since
we are last integrating with respect to y, the limits on y cannot involve the
variable x but rather can involve only constants. Similarly, the integrand
when we integrate with respect to x can involve both x and y in addition to
constants, but the integrand of the integral with respect to y can involve
only y and constants but not the variable x.

Hence, we can write the integral as∫ ∫
R

xy dx dy =

∫ 1

0

∫ 2−y

y

xy dx dy

=

∫ 1

0

(
1

2
x2y

∣∣∣∣x=2−y

x=y

)
dy

=

∫ 1

0

1

2
y
(
(2− y)2 − y2

)
dy

=

∫ 1

0

(2y − 2y2) dy

=

(
y2 − 2

3
y3

)∣∣∣∣1
0

=
1

3
.

We can now consider this integral but with the other order of integration,
namely first integrate with respect to y and then integrate with respect to x.
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Since we integrate with respect to x last, the limits on x are the smallest and
largest values of x for any point (x, y) in R, and so 0 ≤ x ≤ 2.

Now fix a value of x satisfying 0 ≤ x ≤ 2 and consider the vertical slice
through R passing through x on the real axis. Something different happens
here than happened with the other order of integration. Namely, for
0 ≤ x ≤ 1, the bottom of the vertical slice through R lies on the x-axis,
which is the line y = 0, while the top of the vertical slice lies on the line
y = x. However, for 1 ≤ x ≤ 2, while the bottom of the vertical slice lies
again on the line y = 0, the top now lies on the line y = 2− x. That is, there
are two types of vertical slices and hence we have to break up the integral in
this case into two integrals. To whit,∫ ∫

R

xy dy dx =

∫ 1

0

∫ x

0

xy dy dx+

∫ 2

1

∫ 2−x

0

xy dy dx

=

∫ 1

0

(
1

2
xy2

∣∣∣∣y=x

y=0

)
dx+

∫ 2

1

(
1

2
xy2

∣∣∣∣y=2−x

y=0

)
dx

=
1

2

∫ 1

0

x3 dx+
1

2

∫ 2

1

x(2− x)2 dx

=
1

8
x4
∣∣1
0

+
1

2

∫ 2

1

(4x− 4x2 + x3) dx

=
1

8
+

1

2

(
2x2 − 4

3
x3 +

1

4
x4

)∣∣∣∣2
1

=
1

8
+

1

2

(
8− 32

3
+ 4− 2 +

4

3
− 1

4

)
=

1

3

We can encapsulate the behaviour of the region R in the previous example
by saying that R is horizontally simple but not vertically simple.

Figure 14. horizon-
tally simple region

Figure 15. verti-
cally simple region

Here, horizontally simple means that all of the horizontal slices through the
region in question have the property that their left endpoints all are given by
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a single equation, and all of their right endpoints are given by a (different)
single equation (see Figure 14).

And vertically simple means that all of the vertical slices through the region
in question have the property that their top endpoints all are given by a
single equation, and all of their bottom endpoints are given by a (different)
single equation (see Figure 15).

Let us explain the general principle which allows us to compute double
integrals over horizontally or vertically simple regions.

If a given double integral of a function f(x, y) is over a horizontally simple
region R, we can first subdivide the region into horizontal slices. Then we
integrate f(x, y) as a function of x along a horizontal slice, viewing y as a
constant. This is the inner integral∫ b(y)

a(y)

f(x, y)dx

whose limits are continuous functions of y. The resulting expression (the
inner integral) becomes a function of y and we integrate now with respect to
y to get ∫ d

c

(∫ b(y)

a(y)

f(x, y)dx

)
dy.

The limits for the this outer integral are the bounds for the horizontal slices,
that is, they are the minimum and the maximum values of y on the region
R: c ≤ y ≤ d. We state this as a theorem.

Theorem 3.2.2. Suppose f : R→ R is a continuous function on a region
R ⊆ R2.

(a) If R horizontally simple region defined by by a(y) ≤ x ≤ b(y) and
c ≤ y ≤ d, then∫ ∫

R

f(x, y)dA =

∫ d

c

(∫ b(y)

a(y)

f(x, y)dx

)
dy.

(b) If R vertically simple region defined by c(x) ≤ y ≤ d(x) and a ≤ x ≤ b,
then ∫ ∫

R

f(x, y)dA =

∫ b

a

(∫ d(x)

c(x)

f(x, y)dy

)
dx.

To simply notation, when there is no confusion, will the drop the parenthesis
from the double integral expressions such as in Theorem 3.2.2.

A region can be both horizontally simple and vertically simple (such as a
rectangle with sides parallel to the coordinate axes), horizontally simple but
not vertically simple (as the region R in Example 3.2.1), vertically simple
but not horizontally simple, or neither horizontally simple nor vertically
simple. When integrating over a region R that is one of horizontally or
vertically simple but not the other, we typically start by choosing the order
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of integration that respects the direction of simplicity of R, whereas if R is
neither horizontally nor vertically simple, then we consider both orders of
integration, write out the resulting (sums of) integrals, and choose the one
that seems easier to integrate. In general there the following properties of
the double integral that can assist us with computations.

Theorem 3.2.3 (Properties of the Double Integral). Let f : R→ R and
g : R→ R be continuous functions on a bounded region R of R2. Suppose M
and N are constants. Then

(a) ∫ ∫
R

1dA = area of R.

(b) More generally, if f(x, y) ≥ 0 on R, then∫ ∫
R

f(x, y)dA = volume of S

where S is the solid formed below the graph of f(x, y) and directly above
the region R.

(c)∫ ∫
R

Mf(x, y) +Ng(x, y)dA = M

∫ ∫
R

f(x, y)dA+N

∫ ∫
R

f(x, y)dA.

(d) If R = R1 ∪ · · · ∪Rk and any two Ri and Rj do not intersect for i 6= j,
then ∫ ∫

R

f(x, y)dA =

k∑
i=1

∫ ∫
Ri

f(x, y)dA.

Example 3.2.4. Suppose R = {(x, y) | x2 + y2 ≤ 1} is the disc of radius 1
centred at the origin. Compute the integral∫ ∫

R

3
√

1− x2 − y2dA.

Note that the graph of the function

f(x, y) =
√

1− x2 − y2

on R is the upper hemisphere of radius 1. Since the volume of the sphere of
radius 1 is 4π

3 , the hemisphere has volume 2π
3 . Now, we see that∫ ∫

R

3
√

1− x2 − y2dA = 3

∫ ∫
R

√
1− x2 − y2dA = 3 · 2π

3
= 2π.

Example 3.2.5. Let R be the square bounded by the lines x+ y = 1,
x+ y = −1, x− y = 1, and x− y = −1. Evaluate∫ ∫

R

(3xy + 2x)dA.
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Figure 16. square region R subdivided into two triangles

Note that we can write R as the union of of the two triangles R1 and R2

bounded respectively by the lines x− y = −1, x+ y = −1, x = 0 and
x+ y = 1, x− y = 1, x = 0 (see Figure 16). Since the intersection of these
triangles is a line segment on x = 0, it contributes zero to the integral. So,
we can write∫ ∫

R

(3xy + 2x)dA =

∫ ∫
R1

(3xy + 2x)dA+

∫ ∫
R2

(3xy + 2x)dA.

Note that both triangles are vertically simple regions where R1 is bounded
above by x− y = −1 and below by x+ y = −1 and R2 bounded above by
x+ y = 1 and below by x− y = 1. This give us∫ ∫

R

(3xy+2x)dA =

∫ x=0

x=−1

∫ y=x+1

y=−x−1

(3xy+2x)dy dx+

∫ x=1

x=0

∫ y=−x+1

y=x−1

(3xy+2x)dy dx.

Now, we get ∫ x=0

x=−1

∫ y=x+1

y=−x−1

(3xy + 2x)dy dx =

=

∫ x=0

x=−1

∫ y=x+1

y=−x−1

3xydy dx+

∫ x=0

x=−1

∫ y=x+1

y=−x−1

2xdy dx

=

∫ x=0

x=−1

3

2
xy2

∣∣∣∣y=x+1

y=−x−1

dx+

∫ x=0

x=−1

2xy

∣∣∣∣y=x+1

y=−x−1

dx

= 0 +

∫ x=0

x=−1

(4x2 + 4x) dx

= (4x2 + 4x)
∣∣x=0

x=−1
= 0.

Similarly, we have ∫ x=1

x=0

∫ y=−x+1

y=x−1

(3xy + 2x)dy dx =
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=

∫ x=1

x=0

∫ y=−x+1

y=x−1

3xydy dx+

∫ x=1

x=0

∫ y=−x+1

y=x−1

2xdy dx

=

∫ x=1

x=0

3

2
xy2

∣∣∣∣y=−x+1

y=x−1

dx+

∫ x=1

x=0

2xy

∣∣∣∣y=−x+1

y=x−1

dx

= 0 +

∫ x=1

x=0

(−4x2 + 4x) dx

= (−4x2 + 4x)
∣∣x=1

x=0
= 0.

This shows that
∫ ∫

R
(3xy + 2x)dA = 0.

There are also situations in which we need to change the order of integration
in order to be able to evaluate the integral at all. For this consider the
following example.

Example 3.2.6. Change the order of integration and evaluate the integral∫√π
0

∫√π
y

sin(x2) dx dy.

The triangular region over which we are integrating is bounded by the lines
y = 0, x =

√
π and y = x. With the order of integration dx dy, we are using

horizontal slices. Moving to vertical slices, we get the integral∫ √π
0

∫ √π
y

sin(x2) dx dy =

∫ √π
0

∫ x

0

sin(x2) dy dx

=

∫ √π
0

x sin(x2) dx

= −1

2
cos(x2)

∣∣∣∣
√
π

0

= 1.

3.3. Triple integration

One of the points that we made above for regions in R2, particularly with
Fubini’s theorem under our belt, is that the actual integration possesses the
same sorts of difficulties as the integration over intervals in R. Hence, the
main difficulty in integration over regions in the plane is setting up the
integral in the first place and determining the limits of integration.

The same holds in R3. The essential difficulties do not arise in actually
evaluating the integrals, but rather in setting them up, and in particular in
determining the limits of integration.

As with the notation of dA used for integration over regions in the plane, we
sometimes use dV as the volume form for integration over regions in R3
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where we have not yet chosen an order of integration. We note here, and will
note later as well, that implicit in our use of dA or dV is the understanding
of which set of coordinates we are using.

As with integration over regions in the plane, we begin this section with an
example.

Example 3.3.1. Let T be the tetrahedron in R3 bounded by the planes
{x = 0}, {y = 0}, {z = 0} and {x+ y + z = 1} (see Figure 17). Evaluate∫ ∫ ∫

T
dV.

Figure 17. tetrahedron T

The first thing to do is to choose an order of integration. Of the 6 possible
orders of integration with 3 variables, we choose to first integrate with
respect to x, then z, and then y. So we need to find the appropriate limits.

We start by looking at the last variable with respect to which we are
integrating, for the following reason. The limits of integration corresponding
to a variable can contain only constants and the variables which get
integrated after. So, since we have chosen to integrate first with respect to x,
the limits of integration on x can involve constants and both y and z. Since
we integrate with respect to z after we have integrated with respect to x, the
limits on z can involve constants and y, but they cannot involve x, as we
have already integrated with respect to x. Finally, we integrate with respect
to y, and the limits on y can involve only constants and not the variables x
and z, as we have already integrated out all terms involving on x and z.

So, we start from the outside and work inwards, and so we start with the
limits on y. Since T is bounded by the plane {y = 0}, which is the xz-plane,
we see that either y ≥ 0 or y ≤ 0 for all points (x, y, z) in T . The geometry
of the situation dictates that y ≥ 0 for all points in T . Similarly, we can see
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that x ≥ 0 and z ≥ 0 for all points in T . Hence, the largest possible value of
y for any point in T is y = 1, which occurs at the point (0, 1, 0).

We now fix an arbitrary value of y satisfying 0 ≤ y ≤ 1 and we slice T with
the plane parallel to the xz-plane corresponding to this value of y. This
yields a triangle whose sides lie on the planes {x = 0}, {z = 0}, and
{x+ z = 1− y}. For this last plane, we have moved y to the right-hand side,
to remind ourselves that at this point in the argument, we are considering y
to be a constant.

Draw the triangle with the line x = 0 along the left hand side, the line z = 0
along the bottom, and the hypotenuse is x+ z = 1− y. Since we are
integrating with respect to x and then with respect to z, we are allowing x
to vary and we are holding z constant, and this yields that we are working
with horizontal slices of our triangle. (And we have thus reduced this
question to the case of integrating over regions in the plane considered in the
previous section.)

Viewing z as fixed, we can see that 0 ≤ x ≤ 1− y − z, and that the largest
value that z can take, at the upper vertex of the triangle, occurs where the
lines x = 0 and x+ z = 1− y intersect, which occurs at z = 1− y. Therefore,
we see that∫ ∫ ∫

T

dV =

∫ 1

0

∫ 1−y

0

∫ 1−y−z

0

dx dz dy

=

∫ 1

0

∫ 1−y

0

(
x|1−y−zx=0

)
dz dy

=

∫ 1

0

∫ 1−y

0

(1− y − z) dz dy

=

∫ 1

0

((
z(1− y)− 1

2
z2

)∣∣∣∣z=1−y

z=0

)
dy

=

∫ 1

0

1

2
(1− y)2 dy = −1

6
(1− y)3

∣∣1
0

=
1

6
.

Example 3.3.2. Let T be the tetrahedron bounded by the planes {x = 1},
{y = 1}, {z = 1} and {x+ y + z = 4}. Evaluate

∫ ∫ ∫
T
x dx dy dz.

We first choose an order of integration. There is an inherent symmetry in
the question, in that we have three of the bounding planes of T each being
defined in terms of a single variable being constant, and the fourth plane
being defined using all of the variables. Particularly given that the integrand
is a polynomial in x, y and z, all choices of order of integration have equal
levels of difficulty.

So, we integrate with respect to z last. The minimum value of z over all
points (x, y, z) in T is 1 and the maximum value of z is 2, because we have
that x ≥ 1 and y ≥ 1 for all points in T and hence we have that
z = 4− x− y ≤ 2. So, we have that 1 ≤ z ≤ 2.
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Consider a horizontal slice of T for some constant value of z. In this slice, we
have that x ≥ 1 and y ≥ 1 and that x+ y ≤ 4− z. We integrate with respect
to x first and with respect to y second. So, we choose a value of y in the
range 1 ≤ y ≤ 3− z, and we finally have that 1 ≤ x ≤ 4− y − z. Therefore,
we have that∫ ∫ ∫

x dx dy dz =

∫ 2

1

∫ 3−z

1

∫ 4−y−z

1

x dx dy dz

=

∫ 2

1

∫ 3−z

1

∫ 4−y−z

1

x dx dy dz

Evaluating, we see that∫ 2

1

∫ 3−z

1

∫ 4−y−z

1

x dx dy dz =

∫ 2

1

∫ 3−z

1

x2

2

∣∣∣∣x=4−y−z

x=1

dy dz

=
1

2

∫ 2

1

∫ 3−z

1

(
(4− y − z)2 − 1

)
dy dz

= −1

6

∫ 2

1

(
(4− y − z)3 + 3y

)∣∣y=3−z
y=1

dz

= −1

6

∫ 2

1

(
−2 + 3(3− z)− (3− z)3

)
dz =

5

24
.

All the properties of double integrals stated in Sections 3.1 and 3.2 have
analogues for triple integrals. There are straightforward generalisations of
Fubini’s Theorem 3.1.4 to triple integrals over rectangular boxes, of Theorem
3.2.3 (a), namely, the volume formula:∫ ∫ ∫

R

1dV = volume of R,

and of the other properties (b), ( c), and (d).

3.4. Change of variables and Jacobians

We have already seen for integrals of functions of one variable what is the
effect of changing variables. This is integration by substitution. To take an
example, let [a, b] be a closed interval in the real line R and let f : [a, b]→ R
be a continuous function (this is a stronger condition than we actually need),

then
∫ b
a
f(x) dx exists. Let [c, d] be another interval in R and let

g : [c, d]→ [a, b] be a bijective continuous function that is differentiable on
(c, d).

Let t be the coordinate on [c, d] and x the coordinate on [a, b], so that we can
make the substitution x = g(t). Since g : [c, d]→ [a, b] is injective, we
understand the behaviour of g on the endpoints of these 2 intervals and on
the interior. One possibility is that g(c) = a and g(d) = b, in which case
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g′(t) ≥ 0 for all c < t < d; the other possibility is that g(c) = b and g(d) = a,
in which case g′(t) ≤ 0 for all c < t < d. Here, we make use of the
observation that if the derivative g′(t) changes sign anywhere in (a, b), then
g : [a, b]→ [c, d] cannot be injective.

In the former case, we make the substitution x = g(t) and rewrite
∫ b
a
f(x) dx

as ∫ b

a

f(x) dx =

∫ d

c

f(g(t)) g′(t) dt =

∫ d

c

f(g(t)) |g′(t)| dt

since g′(t) = |g′(t)| in this case.

In the latter case, we make the substitution x = g(t) and rewrite
∫ b
a
f(x) dx

as ∫ b

a

f(x) dx =

∫ c

d

f(g(t)) g′(t) dt =

∫ d

c

f(g(t)) |g′(t)| dt

using that |g′(t)| = −g′(t) and
∫ d
c
h(t) dt = −

∫ c
d
h(t) dt in this case. Note

that in both cases, we get the same relationship, namely∫ b

a

f(x) dx =

∫ d

c

f(g(t)) |g′(t)| dt

The change of variables formula gives us the equivalent statement for
changes of variables, or synonymously for changes of coordinates, for
integrals over regions in R2 and R3.

As before, we start in the plane and give the general statement of the change
of variables formula. Let R2

(x,y) be the plane R2 with coordinates (x, y), and

let R2
(s,t) be the plane with coordinates (s, t). For the moment, we make no

assumption of what these coordinates are, only that (as is the case with both
cartesian and polar coordinates on the plane) we are able to (almost
uniquely) locate a point by an ordered pair of coordinates and that the
coordinates each take values in R. We would like to impose the condition
that points are determined by unique ordered pairs of coordinates, which is
the case for cartesian coordinates, but not for polar coordinates, as it is not
possible to locate the origin uniquely in polar coordinates.

Next, we would like a map F : R2
(s,t) → R2

(x,y) given by

F (s, t) = (x(s, t), y(s, t)) that allows us to relate the two systems of
coordinates from a region S in the (s, t)-plane to the region R = F (S) in the
(x, y)-plane.

We now bring the Jacobian matrix back into the picture. The Jacobian
matrix is the natural notion of the derivative for the function
F : R2

(s,t) → R2
(x,y), but the integrand of the integrals need to be functions

into R and not functions into R2. We rectify this by taking the determinant.
As a standard piece of notation, we write F (s, t) = (x(s, t), y(s, t)) = (x, y)
and set

∂(x, y)

∂(s, t)
= det(JF (s, t)).
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Definition 3.4.1. A map F : R2
(s,t) → R2

(x,y) given by

F (s, t) = (x(s, t), y(s, t)) is called a change of coordinates map if it is
injective in the interior int(S) of S (that is, we allow the possibility that F
identifies points on the boundary ∂S of S but not in the interior int(S) of S)
and if the Jacobian matrix of F (s, t) is continuous and det(JF (s, t)) 6= 0 in S.

Theorem 3.4.2 (Change of Variables planar case). Let F : R2
(s,t) → R2

(x,y)

given by F (s, t) = (x(s, t), y(s, t)) be a change of coordinates map between
R2

(s,t) and R2
(x,y) on S. Let R = F (S) and suppose f : R→ R is an integrable

function. We then have that f ◦ F : S → R is an integrable function and∫ ∫
R

f(x, y) dx dy =

∫ ∫
S

(f ◦ F )(s, t)

∣∣∣∣∂(x, y)

∂(s, t)

∣∣∣∣ ds dt.

Sketch of Proof. Let us assume for simplicity that the regions of integration
are rectangles R and S and both (x, y)- and (s, t)-coordinate systems are
rectangular.

The double integral
∫ ∫

R
f(x, y) dA is a limit of summations of the volumes

of the rectangular boxes over partitions of R (see Definition 3.1.1). So, we
can make the approximation

(15)

∫ ∫
R

f(x, y) dA ≈
m∑
i=1

n∑
j=1

f(x′i, y
′
j)Aij =

m∑
i=1

n∑
j=1

f(x′i, y
′
j)∆x ∆y.

On the other hand, we can approximate the area ∆x ∆y of the sub-rectangle
Rij in (s, t)-coordinates using the derivative JF of the function F because it
approximates F near the value (x′i, y

′
j). Since JF : R2

(s,t) → R2
(x,y) is a linear

transformation, one has

∆x ∆y ≈
∣∣∣∣∂(x, y)

∂(s, t)

∣∣∣∣ (s′i, t′j) ∆s∆t

where F (s′i, t
′
j) = (x′i, y

′
j). Substituting into (15), we get

(16)

∫ ∫
R

f(x, y) dA ≈
m∑
i=1

n∑
j=1

(f ◦ F )(s′i, t
′
j)

∣∣∣∣∂(x, y)

∂(s, t)

∣∣∣∣ (s′i, t′j) ∆s∆t.

Note that, by Definition 3.1.1, the right side of (16) also approximates the
double integral:∫ ∫

S

(f ◦F )(s, t)

∣∣∣∣∂(x, y)

∂(s, t)

∣∣∣∣ dsdt ≈
m∑
i=1

n∑
j=1

(f ◦F )(s′i, t
′
j)

∣∣∣∣∂(x, y)

∂(s, t)

∣∣∣∣ (s′i, t′j)∆s∆t.

Therefore, we conclude that∫ ∫
R

f(x, y) dx dy =

∫ ∫
R

f(x, y) dA =

∫ ∫
S

(f ◦ F )(s, t)

∣∣∣∣∂(x, y)

∂(s, t)

∣∣∣∣ ds dt.

�
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We can generalise the change of variables formula to three dimensions, and
to all higher dimensions. For n ≥ 1, let F : Rn(s1,...,sn) → Rn(x1,...,xn) given

by
F (s1, . . . , sn) = (x1(s1, . . . , sn), . . . , xn(s1, . . . , sn))

be a change of coordinates map (the definition is analogous to the two
dimensional case). As above, we set

∂(x1, . . . , xn)

∂(s1, . . . , sn)
= det(JF (s1, . . . , sn)).

The general version of Theorem 3.4.2 then becomes

Theorem 3.4.3 (Change of Variables general case). Let
F : Rn(s1,...,sn) → Rn(x1,...,xn) given by

F (s1, . . . , sn) = (x1(s1, . . . , sn), . . . , xn(s1, . . . , sn))

be a change of coordinates map between Rn(s1,...,sn) and Rn(x1,...,xn) on S. Let

R = F (S) and suppose f : R→ R is an integrable function. We then have
that f ◦ F : S → R is an integrable function and∫ ∫

R

f(x1, . . . , xn)dx1 · · ·dxn =

∫ ∫
S

(f ◦F )(s1, . . . , sn)

∣∣∣∣∂(x1, . . . , xn)∂(s1, . . . , sn)

∣∣∣∣ ds1 · · ·dsn.
Example 3.4.4. Let R be the region in the plane bounded by the lines
{x+ y = 1}, {x+ y = 2}, {2x− 3y = 2}, and {2x− 3y = 5}. Use the change
of variables formula to determine the area of R.

Admittedly, this is the mathematical equivalent of using a hammer to kill a
fly, but we use it as an illustrative example. Even if we do not have the
formula for the area of a parallelogram (which we do), we could just as easily
use the method of Section 3.2. However, we are asked to use the change of
variables formula, and so use the change of variables formula we shall.

We need to evaluate
∫ ∫

R
dx dy. So, to make use of the change of variables

formula, we need to introduce coordinates (s, t) on R2 and a map
F (s, t) = (x(s, t), y(s, t)) relating (s, t) to (x, y). Let s = x+ y and
t = 2x− 3y and solve for x and y in terms of s and t. Setting this up as a
system of linear equations, we have that(

s
t

)
=

(
1 1
2 −3

)(
x
y

)
,

and hence that (
x
y

)
= −1

5

(
−3 −1
−2 1

)(
s
t

)
.

Therefore, F (s, t) = (x(s, t), y(s, t)) = ( 3
5s+ 1

5 t,
2
5s−

1
5 t), and so

det(JF (s, t)) =
∂(x, y)

∂(s, t)
= −1

5
.

In order to complete the calculation, we need determine the region S in the
(s, t)-plane for which R = F (S). Given how we defined s and t in terms of x
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and y, we have that 1 ≤ s ≤ 2 and 2 ≤ t ≤ 5, so that S = [1, 2]× [2, 5]. Note
that F (s, t) is indeed a change of coordinates map on S. Moreover, since we
are integrating the function f(x, y) = 1 over R, we have that the function we
integrate over S is also f(s, t) = 1. Therefore, we complete the calculation by
evaluating∫ ∫

R

dx dy =

∫ ∫
S

∣∣∣∣∂(x, y)

∂(s, t)

∣∣∣∣ ds dt =
1

5

∫ 5

2

∫ 2

1

ds dt =
3

5
.

Even in the case that the region R is described in terms that can be
interpreted as non-linear expressions for s and t as functions of x and y, we
can use the same logic as in the Example 3.4.4.

Example 3.4.5. Let R be the region in the first quadrant bounded by the
curves {x2 − y2 = 1}, {x2 − y2 = 4}, {xy = 1}, and {xy = 3}. Use the
change of variables formula to evaluate

∫ ∫
R

(x2 + y2) dx dy.

In this example, we will need to be cleverer in our use of the change of
variables formula. As in Example 3.4.4, we set s = x2 − y2 and t = xy, so
that the region S in the st-plane corresponding to the region R in the
xy-plane is S = [1, 4]× [1, 3].

Note that even if we set up the change of variables map
F (s, t) = (x(s, t), y(s, t)), we are not able to determine the functions x(s, t)
and y(s, t) explicitly, given the expressions above for s and t in terms of x
and y. Therefore, we will need to work through this example without
knowing F (s, t) explicitly. However, in order to create the list of what things
we need to determine before moving forward, we invoke the change of
variables formula to observe that∫ ∫

R

(x2 + y2) dx dy =

∫ ∫
S

(f ◦ F )(s, t)

∣∣∣∣∂(x, y)

∂(s, t)

∣∣∣∣ ds dt.

We do know that the composition

(f ◦ F )(s, t) = f(x(s, t), y(s, t)) = x2 + y2.

Therefore, we need to express x2 + y2 in terms of s and t, using that
s = x2 − y2 and t = xy. Playing around, we see that

(x2 + y2)2 = x4 + 2x2y2 + y4 = x4 − 2x2y2 + y4 + 4x2y2 = s2 + 4t2,

so that x2 + y2 =
√
s2 + 4t2.

Since we have expressions for s and t in terms of x and y, we are able to

determine ∂(s,t)
∂(x,y) , namely

∂(s, t)

∂(x, y)
= det

(
∂s
∂x

∂s
∂y

∂t
∂x

∂t
∂y

)
= det

(
2x −2y
y x

)
= 2(x2 + y2).

We now need to relate ∂(s,t)
∂(x,y) to ∂(x,y)

∂(s,t) , because we need the latter but have

the former.
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Recall that we have set up the function F (s, t) but only implicitly. Suppose,
in general, that there is a function going the other direction, a function
G(x, y) undoing F (s, t), so that

F ◦G(x, y) = (x, y) and G ◦ F (s, t) = (s, t),

or in other words, the function G(x, y) is the inverse of F (s, t).

We differentiate the latter composition using the Chain Rule (see Theorem
1.6.1) to see that

JG(F (s, t)) · JF (s, t) = I

and hence, taking determinants, that

det(JG(F (s, t))) · det(JF (s, t)) = 1.

It remains only to reinterpret det(JF (s, t)) = ∂(x,y)
∂(s,t) and

det(JG(F (s, t))) = ∂(s,t)
∂(x,y) . This leads to formula:

∂(x, y)

∂(s, t)
=

1

∂(s, t)

∂(x, y)

This shows that the function F (s, t) is a change of coordinates map if and
only if its inverse G(x, y) is a change of coordinates map.

Returning to our example, we see that

∂(x, y)

∂(s, t)
=

1
∂(s,t)
∂(x,y)

=
1

2(x2 + y2)
=

1

2
√
s2 + 4t2

.

The last equality in the previous line follows because we need to express
∂(s,t)
∂(x,y) as a function in x and y, rather than as a function in s and t.

As stated earlier, to see that F (s, t) is a change of coordinate map on S it
suffices to show that its inverse G(x, y) is such a map on D = F (S). But
G(x, y) is given explicitly by

G(x, y) = (s, t) = (x2 − y2, xy)

and we already know that its first partial derivatives are continuous on D
and the Jacobian matrix is nontrivial on D. So, it remains to see that
D = R and G(x, y) is one-to-one on D. We leave this part as an exercise. It
follows that G(x, y) and hence F (s, t) are coordinate maps. So, we can apply
the Change of Variables Formula.

Bringing all of this together, we see that∫ ∫
R

(x2 + y2) dx dy =

∫ ∫
S

√
s2 + 4t2

∣∣∣∣∂(x, y)

∂(s, t)

∣∣∣∣ ds dt =

=

∫ ∫
S

√
s2 + 4t2

1

2
√
s2 + 4t2

ds dt =
1

2

∫ ∫
S

ds dt = 3.
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3.5. Polar coordinates on R2

We normally use the Cartesian coordinates x and y as our base set of
coordinates on the plane. However, we can use other coordinate systems as
well. One very common set of coordinates on R2 are polar coordinates.
Cartesian coordinates determine the location of a point with respect to two
intersecting set of parallel lines intersecting at right angles, where one set of
lines is parallel to the x-axis and the other is parallel to the y-axis. So, we
use left-right and up-down as our directions in interpreting the location of a
point given at an ordered pair (a, b) of real numbers.

For polar coordinates, we determine the location of a point P relative to the
positive x-axis from the origin 0, where one coordinate of P is the distance
from 0 and the other coordinate is the angle of the ray from 0 to P ,
measured counterclockwise from the positive x-axis. There is a standard
conversion from the cartesian coordinates (x, y) of a point to its polar
coordinates (r, θ) given by

x = r cos(θ) and y = r sin(θ),

which is a direct consequence of basic trigonometry. Let
P : [0,∞)× [0, 2π]→ R2 be the map defined by

P (r, θ) = (x(r, θ), y(r, θ)) = (r cos(θ), r sin(θ)).

This is the change of coordinates map from polar to Cartesian
coordinates.

We note here that there is no clearly defined change of coordinates map from
Cartesian to polar coordinates. Given the Cartesian coordinates (x, y) of a
point in the plane R2, we can almost find its polar coordinates by setting

r =
√
x2 + y2 and θ = arctan( yx ), but this does not determine θ completely;

rather, this only determines θ up to the possible addition of π, depending on
the quadrant in which the point lies.

Consider for instance z = 1 + i and w = −1− i. For both, the calculation of
θ in terms of arctan given above yields θ = π

4 , but this is not the correct

angle for w. The correct angle for w is π
4 + π = 5π

4 .

So, let R be a region in R2, described in terms of the Cartesian coordinates,
and let f : R2 → R be a continuous function. Let T be the region R
described in terms of polar coordinates. Then R = P (T ) = P (R). In order
to use the change of variables formula in this case, we need to calculate the
Jacobian matrix JP (r, θ) of the change of coordinates map, which is

JP (r, θ) =

(
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
=

(
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)
,

from which we see that

det(JP (r, θ)) =
∂(x, y)

∂(r, θ)
= r
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and so ∫ ∫
R

f(x, y) dx dy =

∫ ∫
R

(f ◦ P )(r, θ) r dr dθ .

Before evaluating some example integrals, we consider the issue of describing
regions in terms of polar coordinates.

Example 3.5.1. Let R = {(x, y) ∈ R2 | x2 + y2 < 1} be the open unit disc
in R2, with radius 1 and centre the origin 0. Describe R in terms of both
cartesian and polar coordinates.

In terms of the Cartesian coordinates (x, y) on R2, we can describe R as the
set of points R = {(x, y) ∈ R2 | x2 + y2 < 1}. If we wish to take horizontal
slices, then

R = {(x, y) ∈ R2 | − 1 < y < 1 and −
√

1− y2 < x <
√

1− y2}.

If we wish to take vertical slices, then

R = {(x, y) ∈ R2 | − 1 < x < 1 and −
√

1− x2 < y <
√

1− x2}.

We use these latter two descriptions when we are integrating a function over
R using Cartesian coordinates.

To describe R in terms of polar coordinates, we see that the points in the
disc are those for which 0 ≤ r < 1 and 0 ≤ θ ≤ 2π, and so

R = {(r, θ) ∈ R2 | 0 ≤ r < 1 and 0 ≤ θ ≤ 2π}.

Note that in the inequality for θ, we should properly say that 0 ≤ θ < 2π so
that we are not double counting any points. However, as the set of points we
double count by letting 0 ≤ θ ≤ 2π is only a line, it contributes nothing to
the integral and is just easier to deal with. The formal justification of this
sort of issue, which occurs rather frequently but which will brush under the
carpet for now, comes from measure theory.

Therefore a disc (centred at the origin) in Cartesian coordinates becomes a
rectangle when described in terms of polar coordinates. This is one of the
main reasons we consider changes of coordinates, so that the region of
integration becomes much simpler to integrate over. Ideally, a change of
coordinates will produce a region of integration that is as simple as possible.
There is of course a trade off. We may make the region of integration
simpler but make the integrand more complicated, and we need to balance
where we would prefer the difficulty to lie.

Example 3.5.2. Let S be the square in cartesian coordinates with vertices
(0, 0), (2, 0), (0, 2), and (2, 2). Describe S in polar coordinates.

The most difficult aspect of describing a region in terms of coordinates which
are not suited for the purpose, for instance describing this square in terms of
polar coordinates, is determining which coordinate(s) to describe in terms of
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other coordinate(s) and which coordinate(s) to bound by constants. In this
example, we attempt both.

Over all points in S, it is easy to see that 0 ≤ θ ≤ π
2 . We can now ask the

question, for each value of θ satisfying 0 ≤ θ ≤ π
2 , what are the largest and

smallest values of r so that the point (r, θ) in polar coordinates lies in the
square. As sometimes happens, there are two cases.

For 0 ≤ θ ≤ π
4 , the point in the square that lies on the ray making angle θ

with the positive x-axis (measured anti-clockwise, as always) lies on the line
x = 2. Using our standard conversion between cartesian and polar
coordinates, we have that r cos(θ) = 2 and hence (since we’re viewing θ as
fixed) that r = 2 sec(θ).

For π
4 ≤ θ ≤

π
2 , the point in the square that lies on the ray making angle θ

with the positive x-axis (measured anti-clockwise, as always) lies on the line
y = 2. Using our standard conversion between cartesian and polar
coordinates, we have that r sin(θ) = 2 and hence (since we’re viewing θ as
fixed) that r = 2 csc(θ).

Hence, one description of this square in polar coordinates is as the
union

S =
{
(r, θ) | 0 ≤ θ ≤ π

4
and 0 ≤ r ≤ 2 sec(θ)

}
∪
{
(r, θ) | π

4
≤ θ ≤ π

2
and 0 ≤ r ≤ 2 csc(θ)

}
.

If we attempt to first determine the limits on r and from this place bounds
on the possible values of θ, we will again have a description of S as a union.
Finding the limits on r is not an issue. The point in S farthest from the
origin is the point (2, 2) which has distance 2

√
2 from 0, from which we see

that 0 ≤ r ≤ 2
√

2. For 0 ≤ r ≤ 1, the limits on θ are straightforwardly
0 ≤ θ ≤ π

2 .

For 1 ≤ r ≤ 2
√

2, we see that arccos( 2
r ) ≤ θ ≤ arcsin( 2

r ), and so in this case
the description of S is{
(r, θ) | 0 ≤ r ≤ 2 and 0 ≤ θ ≤ π

2

}
∪
{
(r, θ) | 2 ≤ r ≤ 2

√
2, arccos

(
2

r

)
≤ θ ≤ arcsin

(
2

r

)}
.

We are now able to answer one of the questions raised at the beginning of
this chapter.

Example 3.5.3. Let D be a disc in the plane with centre (a, b) and radius
R > 0. The area of D is then πR2.

We start with the Cartesian coordinates. The order of integration does not
matter in this case, and so we will integrate first with respect to y and then
with respect to x. The limits on x are a−R ≤ x ≤ a+R, since the
x-coordinate of the centre of the disc is a and the radius of the disc is R. For
a given value of x in this range, the limits on y come from the fact that the
boundary circle of the disc has the equation

(x− a)2 + (y − b)2 = R2.
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Solving for y, we see that y = b±
√
R2 − (x− a)2.

Therefore, the integral for the area of R becomes∫ a+R

a−R

∫ b+
√
r2−(x−a)2

b−
√
R2−(x−a)2

dy dx =

=

∫ a+R

a−R
2
√
R2 − (x− a)2 dx

= −2

∫ 0

π

R2
√

1− cos2(θ) sin(θ) dθ (with substitution x = a+R cos(θ))

= −2R2

∫ 0

π

sin2(θ) dθ

= −2R2

∫ 0

π

1

2
(1− cos(2θ)) dθ = −R2

(
θ − 1

2
sin(2θ)

)∣∣∣∣0
π

= πR2.

Using polar coordinates, we start with the observation that describing a disc
with an arbitrary centre in polar coordinates is potentially complicated. So,
we take this calculation in two parts. The first part is to work in the case
that the disc R has centre (0, 0) and radius R > 0. The description of this
disc in polar coordinates is

D = {(r, θ) | 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π}.

Hence, the area of this disc using polar coordinates is∫ 2π

0

∫ R

0

r dr dθ =

∫ 2π

0

(
1

2
r2

)∣∣∣∣R
0

dθ = πR2.

To handle the general disc with centre (a, b) and radius R > 0, let
T : R2 → R2 be the affine transformation given by

T (s, t) = (s+ a, t+ b).

The map T takes the disc with centre (0, 0) and radius R bijectively to the
disc with centre (a, b) and radius R. Moreover, since the Jacobian matrix of
T is

JT (s, t) =

(
1 0
0 1

)
,

so that

det(JT (s, t)) = 1,

so that T is a change of coordinates map. In fact, it just moves the set
coordinates lines crossing at (0, 0) to the ones crossing the point (a, b). So,
we can apply the Change of Variables Formula to obtain∫ ∫

D

dx dy =

∫ ∫
T (D)

ds dt.

Since D has area πR2, we see that T (D) also has area πR2.
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We close this section with the following example.

Example 3.5.4. As an application of Corollary 3.1.6, we evaluate∫
R exp(−x2) dx.

This calculation uses several tricks that are potentially useful in other
contexts.

Note that exp(−x2) has no anti-derivative and hence we are not able to
evaluate this integral directly. Let

K =

∫
R

exp(−x2) dx

and note that R is a generalised interval. We can write the square K2 of K
as

K2 = K ·K

=

(∫
R

exp(−x2) dx

)2

=

(∫
R

exp(−x2) dx

)(∫
R

exp(−y2) dy

)
=

∫ ∫
R2

exp(−x2 − y2) dx dy

=

∫ ∫
R2

exp(−r2)r dr dθ

=

∫ ∞
0

∫ 2π

0

r exp(−r2) dθ dr

= 2π

∫ ∞
0

r exp(−r2) dr

= 2π lim
M→∞

∫ M

0

r exp(−r2) dr = 2π

(
lim
M→∞

(
−1

2
exp(−M2)

)
+

1

2

)
= π,

and so K =
∫
R exp(−x2) dx =

√
π.

3.6. Cylindrical coordinates on R3

Cylindrical coordinates are one way of generalising polar coordinates to R3.
In essence, we use polar coordinates on the xy-plane and then adjoin the
standard cartesian z-coordinate. So, cylindrical coordinates are (r, θ, z),
where the conversion from cartesian coordinates to cylindrical coordinates
is

x = r cos(θ), y = r sin(θ), z = z.

In preparation for using the Change of Variables Formula, we first calculate
the Jacobian matrix of the change of variables function

C(r, θ, z) = (x(r, θ, z), y(r, θ, z), z(r, θ, z)) = (r cos(θ), r sin(θ), z).



Cylindrical coordinates on R3 115

The Jacobian matrix is

JC(r, θ, z) =

 ∂x
∂r (r, θ, z) ∂x

∂θ (r, θ, z) ∂x
∂z (r, θ, z)

∂y
∂r (r, θ, z) ∂y

∂θ (r, θ, z) ∂y
∂z (r, θ, z)

∂z
∂r (r, θ, z) ∂z

∂θ (r, θ, z) ∂z
∂z (r, θ, z)


=

 cos(θ) −r sin(θ) 0
sin(θ) r cos(θ) 0

0 0 1

 .

Note that the upper left-hand 2× 2-sub-matrix of JC(r, θ, z) is the same as
the Jacobian matrix for the change of coordinates from polar coordinates to
the Cartesian coordinates in the plane. This should not be a surprise, as
cylindrical coordinates in R3 are just polar coordinates in the xy-plane R2

with the same z-coordinate as the Cartesian coordinates.

An easy calculation then yields that the determinant of the Jacobian matrix
of the change from cylindrical coordinates to cartesian coordinates in R3

is

det(JC(r, θ, z)) = r .

Example 3.6.1. Let BK = {(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ K2} be the
closed ball of radius K > 0 centred at the origin 0. For 0 < k < K, let
Ck = {(x, y, z) ∈ R3 | x2 + y2 < k2} be the open cylindrical region of radius k
centred on the z-axis. Remove Ck from BK to form the region X (see Figure
18). Determine the volume of X.

Figure 18. the region X formed by removing the solid cylin-
der Ck from the ball BK

There are two ways to proceed. We can either use that we know the volume
of the ball (which is 4

3πK
3), calculate the volume of the portion of the

cylindrical region Ck that lies inside BK and subtract one from the other,
using that X ∪ Ck = BK and X ∩ Ck = ∅, or we can directly evaluate the
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volume of X. Which way we proceed depends on which regions are easier to
parametrise using the chosen coordinates.

In this example, we proceed in the former way.

We start by parametrising the portion Ck ∩BK of Ck that lies inside BK .
Given how Ck is defined, we can see that any point (x, y, z) in Ck ∩BK
satisfies x2 + y2 ≤ k2, be definition of Ck. Converting into cylindrical
coordinates, we see that 0 ≤ r ≤ k and 0 ≤ θ ≤ 2π.

It remains only to set the limits on z. Since the point (x, y, z) lies inside BK ,
we see that since x2 + y2 + z2 ≤ K2, we have that
z2 ≤ K2 − x2 − y2 = K2 − r2. Therefore, we have that
−
√
K2 − r2 ≤ z ≤

√
K2 − r2. Hence, the integral for the volume of BK ∩ Ck

in cylindrical coordinates is

vol(Ck ∩BK) =

∫ ∫ ∫
r dz dr dθ

=

∫ 2π

0

∫ k

0

∫ √K2−r2

−
√
K2−r2

r dz dr dθ

=

∫ 2π

0

∫ k

0

rz|
√
K2−r2

z=−
√
K2−r2 dr dθ

=

∫ 2π

0

∫ k

0

2r
√
K2 − r2 dr dθ

= −
∫ 2π

0

2

3
(K2 − r2)3/2

∣∣∣k
r=0

dθ

=
4

3
π(K3 − (K2 − k2)3/2)

The volume of X is then
4
3πK

3 − 4
3π(K3 − (K2 − k2)3/2) = 4

3π(K2 − k2)3/2.

3.7. Spherical coordinates on R3

Spherical coordinates are a different generalisation of polar coordinates to
R3. For a point (x, y, z) in R3, we let ρ be the coordinate giving the distance

from the origin, so that ρ =
√
x2 + y2 + z2. We use the same coordinate θ as

in cylindrical coordinates, giving the angle around the z-axis. We let ϕ be
the coordinate giving the angle between (x, y, z) and the positive z-axis. So,
the limits on these coordinates are

ρ ≥ 0, 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π.

To determine the appropriate factor to use in the Change of Variables
Formula, we first calculate the Jacobian matrix of the change of variables
function

S(ρ, ϕ, θ) =

= (x(ρ, θ, ϕ), y(ρ, θ, ϕ), z(ρ, θ, ϕ)) = (ρ cos(θ) sin(ϕ), ρ sin(θ) sin(ϕ), ρ cos(ϕ)).
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The Jacobian matrix of S(ρ, θ, ϕ) is

JS(ρ, θ, ϕ) =


∂x
∂ρ (ρ, θ, ϕ) ∂x

∂θ (ρ, θ, ϕ) ∂x
∂ϕ (ρ, θ, ϕ)

∂y
∂ρ (ρ, θ, ϕ) ∂y

∂θ (ρ, θ, ϕ) ∂y
∂ϕ (ρ, θ, ϕ)

∂z
∂ρ (ρ, θ, ϕ) ∂z

∂θ (ρ, θ, ϕ) ∂z
∂ϕ (ρ, θ, ϕ)



=


cos(θ) sin(ϕ) −ρ sin(θ) sin(ϕ) ρ cos(θ) cos(ϕ)

sin(θ) sin(ϕ) ρ cos(θ) sin(ϕ) ρ sin(θ) cos(ϕ)

cos(ϕ) 0 −ρ sin(ϕ)



A straightforward calculation yields that the determinant of the Jacobian
matrix of the change of coordinates map is then

det(JS(ρ, θ, ϕ)) = ρ2 sin(ϕ) .

Example 3.7.1. We repeat the Example 3.6.1, but this time we
parametrise X directly. We see that 0 ≤ θ ≤ 2π, since X is symmetric about
the z-axis. The smallest value of ϕ occurs when the ray from the origin
passes through the intersection of the boundary of Ck with the boundary of
BK . Letting ϕ0 be this value of ϕ, we see that 0 < ϕ0 <

π
2 and that

sin(ϕ0) = k
K . Using basic trigonometric identities, we see that

cos(ϕ0) =

√
1−

(
k

K

)2

=
1

K

√
K2 − k2.

We will need the expression for cot(ϕ0) = 1
k

√
K2 − k2 and

cot(π − ϕ0) = − 1
k

√
K2 − k2.

As ϕ increases, we see that the smallest value of ρ satisfies sin(ϕ) = k
ρ , so

that ρ = k
sin(ϕ) . Therefore, the range of ρ satisfies k

sin(ϕ) ≤ ρ ≤ K. So, the
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volume of X, calculating using spherical coordinates, is∫ ∫ ∫
X

dx dy dz =

∫ 2π

0

∫ π−ϕ0

ϕ0

∫ K

k
sin(ϕ)

ρ2 sin(ϕ) dρ dϕ dθ

=
1

3

∫ 2π

0

∫ π−ϕ0

ϕ0

(
K3 −

(
k

sin(ϕ)

)3
)

sin(ϕ) dϕ dθ

=
1

3

∫ 2π

0

∫ π−ϕ0

ϕ0

(
K3 sin(ϕ)− k3 csc2(ϕ)

)
dϕ dθ

=
1

3

∫ 2π

0

(
−K3 cos(ϕ) + k3 cot(ϕ)

)∣∣π−ϕ0

ϕ0
dθ

=
2π

3
(2K3 cos(ϕ0)− 2k3 cot(ϕ0))

=
4π

3

(
K2
√
K2 − k2 − k2

√
K2 − k2

)
=

4π

3
(K2 − k2)3/2.



Appendix: Further reading

Here is a selection of books that you may find helpful. Not all the material is
covered by a single text, but the closest to the syllabus for this module
is:

- ADAMS R. A. Calculus - A Complete Course, (Addison-Wesley)
which also covers revisions of differentiation and integration.

- SPIVAK M., Calculus (CUP)
nicely covers fundamental ideas of calculus.

- LARSON R. and EDWARDS B. E., Calculus, 10th edition,
(Cengage Learning)
also has a good introduction to calculus and its 10th edition covers
the topics on multivariable calculus.

- BROWN J. W. and CHURCHILL R. V., Complex variables and
Applications, (McGraw-Hill)
has the material on complex numbers, complex functions and
complex differentiation.
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Calculus is one of the core modules taken by first-year students in all
the Mathematics programmes at the University of Southampton. The
module provides the theoretical basis for calculus and studies
generalisations of calculus to functions of several variables and to
complex analysis.

Calculus and analysis form the foundation of much of modern
mathematics and physics. Newton and Leibniz’s discovery of the
derivative and integral was fundamental to the understanding of
classical mechanics. Nowadays calculus is pervasive throughout
mathematics and science, from general relativity and quantum
mechanics, through modelling population and the spread of diseases, to
options pricing and the Black-Scholes equation.

In the second volume of this calculus text, we study functions of several
variables and of a complex variable. We extend much of the theory from
single variable calculus with a strong emphasis on applications such as
determining extreme values, finding roots of complex numbers and
calculating double and triple integrals over simple regions.


	MATH1056: Calculus
	Contents
	Introduction to Volume II
	Notation and Terminology
	Greek letters

	Chapter 1. Differential calculus for functions of several variables
	1.1. Functions of several variables
	1.1.1. Graphs
	1.1.2. Contours
	1.2. Limits in R2 and continuity
	1.3. Partial derivatives

	1.4. The Chain Rule
	1.5. The gradient and the Jacobian matrix
	1.6. The Chain Rule via the Jacobian matrix
	1.7. Equations of normal vectors and tangent planes
	1.8. Differentiability
	1.8.1. Differentiability in the case of two variable functions
	1.8.2. Derivative as a linear transformation (section is not assessed)

	1.9. Directional derivative
	1.10. Higher order derivatives
	1.11. Review of maximisation and minimisation of a function of one variable
	1.12. Extreme Values
	1.13. Compactness
	1.14. Lagrange multipliers
	1.15. Shapes of maxima and minima, the Hessian, and the second derivative test
	1.16. When the second derivative test fails …
	Chapter 2. Differentiable calculus of functions of complex variable
	2.1. Introduction to complex numbers
	2.1.1. Geometric representation of complex numbers
	2.1.2. Polar form of a complex number
	2.2. Roots of complex numbers
	2.3. Complex functions

	2.4. The derivative of a complex-valued function and the Cauchy-Riemann equations
	Chapter 3. Integral calculus of functions of two or three variables
	3.1. Double integral over rectangle
	3.2. Double integrals over more complicated regions
	3.3. Triple integration
	3.4. Change of variables and Jacobians
	3.5. Polar coordinates on R2

	3.6. Cylindrical coordinates on R3
	3.7. Spherical coordinates on R3
	 Appendix: Further reading
	Index




