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Abstract.

1. Introduction

In his seminal work [16] Stallings showed that a finitely generated group with
more than one end splits over a finite subgroup. In [3] it was shown that a finitely
presented group is accessible. This means that a finitely presented group G has
a decomposition as the fundamental group of a graph of groups in which vertex
groups are at most one ended and edge groups are finite. This decomposition
provides information about every action of G on a simplicial tree with finite edge
groups. Thus, let S be the Bass-Serre G-tree associated with the decomposition
described and let T be an arbitrary G-tree with finite edge stabilizers, then there is
a G-morphism θ : S → T . We say that any action is resolved by the action on S. In
[4] and [5] examples are given of inaccessible groups. These are finitely generated
groups - but not finitely presented - for which there is no such G-tree S. These
groups do have actions on a special sort of R-tree (a realization of a protree) but
there appears to be no such action which resolves all the other actions.

The result -and its proof - on the accessibility of finitely presented groups can
be seen as a generalization of a result by Kneser (see [7]) - and its proof - that
a compact 3-manifold (without boundary) has a prime decomposition, i.e. it can
be expressed as a connected sum of a finite number of prime factors. A compact
3-manifold M is prime if for every decomposition M = M1]M2 as a connected sum,
either M1 or M2 is a 3-sphere. Expressed as a result about fundamental groups,
it says that the fundamental group of a compact 3-manifold is a free product of
finitely many factors, which, of course, is true for any finitely generated group by
Grushko’s Theorem. The JSJ-decomposition of a compact 3-manifold M , due to
Jaco-Shalen [9] and Johannson [11] concerns the embeddings of tori in compact
prime 3-manifolds. They show that there exists a finite collection of embedded
2-sided incompressible tori, such that the pieces obtained by cutting M along these
tori are either Seifert fibered spaces or simple manifolds (acylindrical and atoroidal).
The JSJ–decomposition provides information about the splittings of π1(M) over
rank 2 free abelian subgroups. In a group theoretic setting JSJ-decompositions
were discussed first by Kropholler [12] and subsequently by many authors. The
first result for all finitely presented groups (over cyclic subgroups) was by Rips and
Sela [14] In their result 2-orbifold groups appear as special vertex groups for the
first time.

In this paper it is shown that a finitely presented group G has a decomposition
as the fundamental group of a cube complex of groups which provides information
about every action of G on an R-tree.
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For any group G a subgroup H of G is said to be G-unsplittable if, in any action
of G on an R-tree T , H fixes a point of T . We prove the following theorem.

Theorem 1.1. Let G be a finitely presented group.
Then there is a cubing C̃ with a G-action such that G\C̃ is finite. Every edge

and vertex stabilizer of C̃ is G-unsplittable. Every G-unsplittable subgroup of G
fixes a vertex of C̃

If G has a non-trivial splitting then some hyperplane of C̃ is associated with a
non-trivial splitting of G.

For any action of G on a simplicial tree T , there is a pattern in C so that the
corresponding tree with its G-action resolves the action on T .

We also show that the decompositions of Theorem 1.1 can be computed. It may,
however, not be possible to decide if the decomposition is non-trivial. In some cases
this will provide a way of deciding if a group has a non-trivial action on a tree or
if it has more than one end. Thus one will obtain a finite list of decompositions of
G as a free product with amalgamation or as an HNN-group. The theory indicates
that if G has a non-trivial decomposition then one of the decompositions in the list
will be non-trivial and if G has more than one end then one of the decompositions
in the list will be non-trivial and over a finite group. However it may not be possible
to decide if a particular decomposition is non-trivial. It is known that there is a
group H which has a presentation for which it cannot be decided if the group is
non-trivial. One could use this presentation to construct a presentation for H ∗H.
Clearly it will not be possible to decide it this decomposition is non-trivial. If the
group G has a solvable membership algorithm then it will be possible to decide if
a decomposition in the list is non-trivial.

In [6] the following theorem is proved.

Theorem 1.2. Let G be a finitely presented group and let T be a G-tree, i.e. an
R-tree on which G acts by isometries.

Then G is the fundamental group of a finite graph (Y, Y ) of groups, in which
every edge group is finitely generated and fixes a point of T . If v ∈ V Y , then either
Y(v) fixes a vertex of T or there is a homomorphism from Y(v) to a target group
Z(v) (an augmented parallelepiped group), which is the fundamental group of a cube
complex of groups based on a single n-cube c(v).

Every hyperplane of c(v) is associated with a non-trivial splitting of G.
There is a marking of the cube c(v) so that the corresponding R-tree with its

Z(v)-action is the image of a morphism from a Y(v)-tree Tv and this tree is the
minimal Y(v)-subtree of T .

In this paper we strengthen this result by showing that that there is a decom-
position as in the theorem that works for any G-tree.

Thus we prove the following.

Theorem 1.3. Let G be a finitely presented group.
Then G is the fundamental group of a finite graph (Y, Y ) of groups, in which

every edge group is finitely generated and G-unsplittable. If v ∈ V Y , then either
Y(v) is G-unsplittable or there is a homomorphism from Y(v) to a target group
Z(v) (an augmented parallelepiped group), which is the fundamental group of a
cube complex of groups based on a single n-cube c(v).

Every hyperplane of c(v) is associated with a non-trivial splitting of G.
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For any G-tree T there is a marking of the cube c(v) so that the corresponding
R-tree with its Z(v)-action is the image of a morphism from a Y(v)-tree Tv and
this tree is the minimal Y(v)-subtree of T .

It follows from the proof of this result that the list of splittings in Theorem
1.1 contains a list of compatible splittings of G over finite subgroups that together
define an action of G on a tree with finite edge stabillizers and for which vertex
stabilizers have at most one end. Thus if G is a finitely generated group with a
solvable membership problem, and for which it is possible to decide if a finitely
generated subgroup is finite, then it is possible to decide if the group has more than
one end.

2. Proof of Theorem 1.1

We illustrate the theory by repeated reference to a particular example.
The cell complex for the trefoil group G = 〈c, d|c3 = d2〉
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Attach the 5-sided disc to the figure eight as specified by the letters and arrows.
The space X has π1(X) = G.

A group presentation can be changed so that every relation has length at most
three, giving a presentation complex with 2-cells having at most 3 edges.
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Thus G = 〈c, d|c3 = d2〉 = 〈c, d, e, f |d2 = e, e = fc, f = c2〉.
The cell complex X consists of three 3-sided 2-cells attached to a 4-leaved rose.

Let X be a cell complex in which each 2-cell is 3-sided.
A pattern is a subset of X which intersects each 2-cell in a finite number of

disjoint lines each of which intersects the boundary of the 2-cell in its two end
points which lie in distinct edges.

A track is a connected pattern.
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If X has m 2-cells then a pattern is specified (up to an obvious equivalence) by
a 3m-vector in which there are three coefficients for each 2-cell which record the
number of lines joining the two edges at each corner.

If X has m 2-cells then a pattern is specified (up to an obvious equivalence) by
a 3m-vector in which there are three coefficients for each 2-cell which record the
number of lines joining the two edges at each corner. Thus for previous 2-cell

2

2

3

the coefficients 2, 2, 3 record the intersection of the pattern with that particular
2-cell.

For the complex X for the trefoil group G a pattern is specified by a 9-vector,
where the i-th coefficient corresponds to the number of lines crossing the i-th corner
labelled i in red in the diagram below. In the trefoil complex a vector of non-
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negative integers x = (x1, x2, . . . , x9) is a pattern in if it satisfies the matching
equations

x1 + x2 = x2 + x3 = x5 + x6

(number of intersection points with edge c)
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x1 + x3 = x4 + x5

(number of intersection points with edge f)

x4 + x6 = x7 + x8

(number of intersection points with edge e)

x7 + x9 = x8 + x9

(number of intersection points with edge d)
In general a 3m-vector corresponds to a pattern, if and only if

(i) Each entry is a non-negative integer.
(ii) It is a solution vector to a finite set of linear equations called the matching

equations, where if an edge e lies in k 2-simplexes, then there are k − 1
matching equations corresponding to the intersection of the pattern with
e.

In general a pattern P in a 2-complex X will lift to a pattern P̃ in X̃. Each
track component of P̃ will separate and there is a G-tree TP in which the edges
correspond to the track components of P̃ (see [2], Chapter VI or [3] for details). If P
consists of a single track then TP will be the Bass-Serre tree for a decomposition of
G as a free product with amalgamation, if the track is separating, and as an HNN-
group if it is untwisted and non-separating. An untwisted track t is one which has
a neighbourhood that is homeomorphic to t× I where I is a closed interval.

∨
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In the trefoil complex X an example of a pattern is as follows. The 9-vector
t1 = (1, 1, 1, 0, 2, 0, 0, 0, 0)
corresponds to the pattern shown above. Thus there is one line crossing each of

the corners labelled 1, 2 and 3 and 2 lines crossing the corner labelled 5.
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This pattern is in fact a separating track and corresponds to the decomposition
of G.

G = 〈d〉 ∗〈d2=c3〉 〈c〉.
The track separates into two regions one of which is coloured green.
A separating track is always untwisted. It t is twisted, then 2t is separating and

hence untwisted.
The track t shown below in blue is twisted so the pattern 2t is also a track. The

separating track 2t gives the trivial decomposition G = G ∗H H where H has index
two in G

∨

c

c

c

d

d

The track shown in red is non-separating and untwisted, and gives a decompo-
sition of G as an HNN-group.

∨

c

c

c

d

d

Such a track is always associated with a homomorphism G → Z. In this case
c 7→ 2, d 7→ 3.

If X has n 2-simplexes and m 1-simplexes (edges) then X1 has 3n 2-cells and
3n+m 1-cells. A marking of X1 is a solution to the matching equations. A marking
will be any point of a compact, convex linear cell in R3n+m called the projective
solution space P. This theory is a generalization of the theory of normal surfaces
or patterned surfaces in 3-manifolds (see [8],[10] and [2], Chapter VI). The extreme
or vertex solutions are the ones corresponding to vertices of the projective solution
space. Jaco-Oertel [8] and Jaco-Tollefson [10] have shown that vertex solutions
carry important information about normal surfaces in a 3-manifold. Thus in [10]
it is shown that there is a face of P for which the vertex solutions give a set
of 2-spheres giving a complete factorization of a closed 3-manifold. A solution
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is a vertex solution v if it has integer coefficients and integer multiples of v are
the only solutions to nv = v1 + v2, where n is a positive integer and v1,v2 are
non-zero vectors in P with non-negative integer coefficients. The first author, in
his D.Phil. Thesis [1] investigated the solution space for a group presentation on a
computer. It was hoped to show that at least one vertex solution gives a non-trivial
decomposition if the group has such a decomposition. At the time we were unable
to show that this was the case. Happily we are now able to show that that the
theory and algorithm described here provide a more efficient way of finding a finite
set of solutions that provide a non-trivial decomposition if such a decomposition
exists.

Choose a basis of solutions u1,u2, . . . ,un for the solution space to the matching
equations, with integer coefficients. We can, in fact, choose the ui’s so that they
have non-negative integer coefficients. This is because there is a solution to the
matching equations in which each entry is a positive integer. Thus we can give
each edge in the original cell complex the value 2, and give a value of 1 to each
of the edges created by subdividing a 2-cell into three new 2-cells. This gives a
solution o in which all coefficients are positive and a multiple of this vector can be
added to any vector solution to give a solution with non-negative coefficients.

Two patterns are equivalent if they have the same number of intersections with
each edge, so that they determine the same vector u. Two tracks t1, t2 are com-
patible if there is a pattern with two components which are equivalent to t1 and
t2.

If all the ui’s are compatible, then when lifted to the universal cover X̃1, the
pattern of lifted tracks forms the edges of G-tree.

If the solution space is one dimensional, then G has no non-trivial action on an
R-tree. This is because the non-zero vector o corresponds to a trivial action.

If u is a twisted track, then 2u is a separating track. By replacing any twisted ui

by 2ui, we obtain a basis u1,u2, . . . ,un of the solution space consisting of untwisted
tracks. Each separating track gives a decomposition of G as a free product with
amalgamation (possibly trivial). Each non-separating track gives a decomposition
of G as an HNN-group.

3. The Sageev Cubing

An untwisted track corresponds to a decomposition of the group G either as a
free product with amalgamation or an HNN-group. Michah Sageev [15] described
a cubing S associated with a finite number of such decompositions. The space S is
a CAT (0) cube complex with a G-action.

In fact we will be concerned with a G-sub-complex C̃ of the Sageev cubing. Let
t1, t2, . . . , tn be a set of untwisted tracks in a complex X. These tracks lift to a
G-pattern P̃ in the universal cover X̃. Each track in P̃ is separating. If b̃ ∈ P̃ then
P̃ \ b̃ has two components. Let Σ be the set of all such components. If A ∈ Σ is
associated with the track b̃, then let A∗ be the other component of P̃ \ b̃. A vertex
V of the Sageev cubing S is a subset of Σ which satisfies the conditions

(i) For each A ∈ Σ exactly one of A,A∗ is in V .
(ii) If A ∈ V,B ∈ Σ and A ⊂ B, then B ∈ V .

Two vertices in U, V ∈ S are joined by an edge if as subsets of Σ they differ by
exactly one element. If v ∈ V X̃ then the subset
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Vv = {A ∈ Σ|v ∈ A}

is easily seen to be in V S. If u, v are joined by an edge e in X̃, then Vu, Vv differ
on finitely many elements of Σ, each such element corresponding to a track in X̃
that intersects e. If there are n such tracks, then in S there are n! geodesic paths
joining Vu and Vv, one path for each permutation of the tracks. We take C̃ to be
the sub-complex of S consisting of all vertices and edges in a geodesic path joining
Vu, Vv where u, v are the vertices of an edge of X̃. An n-cell of S is in C̃ if all its
vertices are in C̃.

Theorem 3.1. The space C̃ is a simply connected CAT (0)-cube complex i.e. C̃ is
a cubing. The action of G on X̃ induces a cocompact action on C̃.

Proof. It follows from the fact that S is CAT (0) that C̃ is CAT (0). Let u, v
be adjacent vertices in X̃. In C̃ any two geodesic paths between Vu and Vv are
homotopic. This is because they are homotopic in S and the homotopy involves
changes between paths in C̃. Let u, v, w be vertices of a 2-cell in X̃. The tracks
that intersect the edge uv partition into two disjoint subsets, namely the ones that
intersect uw and the ones that intersect vw. There is a geodesic from Vu to Vv in
C̃ that first crosses the tracks that intersect uw and then those that intersect vw.
Let Vp be the vertex it reaches after crossing the tracks that intersect uw. Then Vp

is on a geodesic between any two of the vertices Vu, Vv, Vw. It follows easily that
any loop in C̃ consisting of three geodesic paths going from u to v and then v to w
and then w back to u must be null homotopic in C̃. It follows from this that C̃ is
simply connected.

�

Let K be a 2-dimensional cube complex. We extend the idea of patterns in a
complex where the 2-cells are three sided to patterns in a complex where the 2-cells
are four sided. We define a pattern in K to be a subset such that its intersection
with each 2-cell is specified by a pair of integers p, q and the lines join points on
the boundary so that there are p points of intersection on each of one pair of
opposite sides and q points on each of the other two sides. Thus the intersection
corresponding to the pair (2, 3) is as below. Note that for a given set of intersections
with the boundary, there are two different ways of joining up the boundary points.
A track is a connected pattern. As in the case for tracks in a simplicial 2-complex,
a track in a simply connected 2-dimensional cube complex will separate.
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We now describe how a pattern p in X is associated in a natural way with a
pattern in the cube complex C associated with a basis, consisting of untwisted
tracks, for the solution space.

The G-pattern p̃ is such that all the component tracks are untwisted. Suppose
that t1, t2, . . . , tn is a basis for the solution space, consisting of untwisted tracks.
Then for some positive integer β, βp = β1t1 + β2t2 + · · · + βntn where the βi’s
are integers. Choose an embedding of the tracks ti in X so that the ti’s intersect
transversely, specifically (for i 6= j) so that if σ is a 2-cell then a component of ti∩σ
and a component of tj ∩σ intersect transversely in at most one point in the interior
of σ.

We can then choose a small closed neighbourhood bi of each ti so that each
component of bi ∩ bj is a 4-sided disc containing exactly one point of intersection.

Now replace each ti by βi parallel copies lying within a bi.
Below βi = 2, βj = 3.

If in each intersection of bi with bj is replaced by non intersecting lines as below
then the pattern p = βiti + βjtj is obtained. If in the first of the above diagrams,
we had transposed the two intersection points at the bottom edge, then ti and tj
would not intersect in σ. In this case replacing ti and tj with non-parallel copies
will give the same intersection with σ as in the case when ti and tj do intersect in
σ, and we carry out the above intersection replacement in bi ∩ bj and straighten
lines. If all the βi’s are non-negative, and we carry out the above process at each
intersection in each σ then the pattern we end up with will be βp.

Let Q be the subspace of X that is the union of all the ti. There are many
possibilities for the intersection of Q with σ. If γ1, γ2, γ3 are the three sides of σ.
then permuting the intersection of the ti’s with any one of the sides will produce a
different possibility for Q∩σ. If πj , j = 1, 2, 3 are permutations of γj ∩Q, then each
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triple of permutations (π1, π2, π3) corresponds to an embedding of σ in C = G\C̃.
In fact every cell of C is obtained in at least one such embedding. The image of βp
will be a pattern in C. In this embedding the image of a pattern in X maps into
a pattern in C. As one varies the triple of permutations for every 2-cell in X the
whole pattern in C is obtained. To see how this happens we show that there is a
contraction ρ : X → D ⊂ C which restricts to a contraction on p. This lifts to a
contraction ρ̃; X̃ → D̃ ⊂ C̃ and the pattern ρ̃(p̃) in D̃ has a dual graph which can
be identified with the resolving tree corresponding to p̃.

To define ρ consider the union of the bands bi in X. Each point of X lies in
either zero, one or two bands.

Let x be a point in zero bands. In X̃ a point x̃ lying above x determines a vertex
of C̃, since, for each component track t of the pattern t̃i, it lies in one side of t.
We define ρ̃(x̃) to be this vertex. Let now x be a point which lies in a single band,
and let x̃ be a point lying above x. Then x̃ will lie in a region as below. The top
(or bottom) side will border a region of points belonging to no bands. This side is
mapped by ρ̃ to the vertex already assigned to that region. The vertices assigned
to the two sides will be the vertices of an edge in C̃, since there is exactly one track
that separates the points in X̃. The region is contracted by ρ̃ to that edge, so that
any horizontal line is mapped to the same point of the edge.

Finally the intersection of two bands has component regions as below. We have
already defined ρ̃ on the boundary of this region, and the image of this boundary
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is the boundary of a unique 2-cube in C̃. We map the region in X̃ to this 2-cube
in the obvious way.

The map ρ̃ is a G-map and so it induces a map ρ : X → C. Note that this
map will not usually be surjective. A different embedding of the tracks in X will
produce a different image in C.

The image of a 1-cell under ρ̃ will be a geodesic in C̃. In Sageev’s paper, he
shows that for any two geodesics between two points in a cubing one can get from
one to the other by a finite number of moves that involve changing two consecutive
edges for two edges that run on opposite sides of some 2-cube.

We now show that if some of the coefficients in the equation βp = β1t1 + β2t2 +
· · · + βntn are negative, then we can still get a mapping of X to C so that the
pattern p maps into a pattern in C.

Clearly we can write βp = p1 − p2, where p1 is the sum of those terms in which
the βi’s are positive and p2 is the sum of those terms in which the βi’s are negative.
Now p1 and p2 are patterns for which the above analysis applies, so that there are
two mappings of X into C which take these patterns into patterns in C. We now
show that we can combine these mappings into one mapping. The key point is that
since p1 − p2 is a pattern, each edge of X intersects p1 in at least as many points
as it intersects p2.

We proceed as before and thicken each track of p1 and p2 to a band bi so that for
any point of intersection is contained in a component of bi ∩ bj which only contains
one intersection point. Now replace each ti by βi parallel copies lying within a bi.
For βi = 2, βj = −3 the process is now as follows.

In each intersection of bi with bj replace by non intersecting lines as indicated
below. With this sort of intersection one will create a “pattern” in which there are
line segments that begin and end at the same edge. However it is possible to remove
such lines by moving the intersection across the edge as also indicated below. If
we think of the pattern p1 as being coloured red and p2 as coloured blue, then this
move cancels a red intersection with a blue intersection. It is possible to carry out
a succession of these moves so that there are no lines joining points on the same
edge. We can delete any simple closed curves lying inside a 2-cell.

We can assume that the points of intersection of the patterns with a particular
1-cell e are permuted so that the red and blue intersection points occur in any
order. Choose a particular 2-cell σ containing e. In σ we can arrange that each
blue line intersecting e is paired with a red line that it intersects.. No two blue
lines are paired with the same red edge. If one has such an arrangement then
when all intersections are replaced by non-intersecting lines as above, then all blue
intersection will be removed by the moves in Fig . Suppose the blue intersection
points in order along the edge are x1, x2, . . . xr. We can permute the red crossing
points so that the first point y1 is before x1 or between x1 and x2. We assume
the intersection points in all other edges stay the same. For exactly one of the two
cases the line in σ in p1 to x1 will cross the line in p2 to y1. Fix that position for
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y1. Carry out the same procedure to determine the position of y2, y3, . . . , yr. Thus
each such yi lies between xi−1 and xi+1 and its position relative to xi is determined
by ensuring that the line in σ in p1 to xi will cross the line in p2 to yi. If we
carry out the moves above for this arrangement of intersection points, then all blue
intersection points will be cancelled with red intersection points.

If we work through all the edges of X in this way, we see that there is a pattern
in C that will give rise to the pattern p in X.

x1x2x3

We now describe explicitly given X and a track basis, how to construct C and a
pattern in C corresponding to a given pattern in X
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Let t1, t2, . . . tn be the track basis.
Each crossing point of tracks ti, tj in X corresponds to a 2-cell σ of C. Let s1, s2

be the line segments of the two tracks that intersect in a three-sided two cell in
X. The 2-cell of C corresponding to this intersection has vertices corresponding to
the four regions into which σ is divided by the segments. One of the three sides
contains 2 points of s1 ∪ s2. In this case the bottom side.

a

cb

d

b

cd

a

Now mark the corner (b) in the square in C corresponding to that side.

a

cb

d

b

cd

a

In the track corresponding to 2t1 + 3t2 avoid lines crossing the marked corner.

a

cb

d

b

cd

a

In the track corresponding to 2t1 − 3t2 or −2t1 + 3t2 the lines should cross the
the marked corner.

An untwisted track in C will determine a decomposition of G, i.e. an action on
a tree. This is because C̃ is simply connected and so a track in C̃ separates and
again the dual graph will be a tree. Let C̃ be the cubing corresponding to the basis
of untwisted tracks. The advantage of using tracks in C rather than tracks in X
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is that the action of G on C̃ is not usually free. Thus we will show that if all the
tracks listed give trivial decompositions, then G fixes a vertex of C̃ which means
that any track in C will give a trivial action.

Theorem 3.2. Let t1, t2, . . . , tn be a set of tracks in X and let C = G\C̃ be as
above. If each ti is a separating track corresponding to a trivial decomposition then
there is a vertex of C̃ fixed by G.

Proof. Since each track is separating and corresponds to a trivial decomposition,
one of the two components of X−ti lifts to a component of X̃−Gt̃i fixed by G. Let
ci be the component of X−ti with this property. If it is the case that c1∩c2∩· · ·∩cn
is not empty then this intersection will correspond to a vertex of C which lifts to
vertex of C̃ with the right property. If there is a 2-cell σ intersected by all the ti’s
then it is fairly easy to see that we can arrange the intersections of the tracks so
that this is the case. Thus one can choose a point x in the interior of σ and then
move each track so that x is the right side of it. Suppose then that there is no 2-cell
that intersects all the tracks. Choose a 2-cell σ that intersects the largest number
of tracks. As before we can arrange that there is an x ∈ σ that lies the right side of
all the tracks that σ intersects. Let ti be a track that σ does not intersect. We will
show that all of σ is the right side of ti. We can assume that X has one 0-cell v0.
Each edge of σ corresponds to a generator, and this generator will fix the vertex
group corresponding to the side of ti containing σ. Clearly any generator involved
in a track that does intersect σ will fix the vertex of C̃ corresponding to x. Thus
every generator fixes this vertex and we are done.

�

Let now t1, t2, . . . , tn be a track basis for the matching equations of X. If p is
a pattern with untwisted track components in X, then for some positive integer β,
βp will correspond to a pattern in C = G\C̃. If all the ti’s correspond to trivial
actions, then the G-tree associated with this pattern will have a trivial action. Thus
p will give a trivial action. But any action of G on a simplicial tree is resolved by
an action associated with a pattern in X.

More generally, if we no longer assume that all the ti’s correspond to trivial
actions, and we take H to be a G-unsplittable subgroup of G, then we can show
that there is a vertex of C̃ fixed by H. In this case, we consider the action of H
on X̃ and put XH = H\X̃. There is a pattern pi = H\Gt̃i for each track ti in X.
Each track in pi corresponds to a trivial decomposition, since otherwise H would be
G-splittable. There is a component of XH −pi that lifts to a component of X̃−Gt̃i
that is fixed by H. This will map to a component ci of X − ti, which may be all
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of X − sti if ti in non-separating. Again we have to show that we can choose the
position of the ti’s in X so that the intersection of all the ci’s is non-empty. This
is done as in the last proof.

This completes the proof of Theorem 1.1.
In our example where X is the presentation complex of a trefoil group, the

diagram shows the cube complex C = G\C̃ for the two decompositions given by
the tracks t1 shown in red, and t2 shown in blue.
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Now note that the track t1 + t2 also corresponds to a “track ” in C. A pattern
βt1 + βt2 where β1, β2 are integers will correspond to a pattern in C

ing to all the minimal untwisted tracks, then we obtain
Now note that the track t1 + t2 also corresponds to a “track ” in C. A pattern

βt1 + βt2 where β1, β2 are positive integers will correspond to a pattern in C, but
only those with non-negative coefficients correspond to a pattern in X.
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4. Proof of Theorem 1.3

Choose a basis of solutions u1,u2, . . . ,un for the solution space to the matching
equations, with non-negative integer coefficients.

Let p = α1u1+α2u2+. . . αnun where α1 = 1, αi =
√
p

i−1
, where p1, p2 . . . , pn−1

are distinct primes.
In [6] it is shown how a marking (a non-negative solution of the matching equa-

tions) gives rise to a folding sequence of a complexes of groups with fundamental
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group G. In [6] the marking is given by a resolution of a particular G-tree. The
marking p may not correspond to such a resolution. It will, however, determine a
folding sequence. Each complex in the sequence has a marking induced by p which
results in a foliation of each 2-cell as below. The attaching map of the 2-cell is
given by a word w ∪ w′ where w,w′ are words in the 1-cells, corresponding to the
top and bottom of the 2-cell. The marking p gives a length for each 1-cell and the
lengths of the words w,w′ are the same.

e1

x

v

y

e2

Let M be the matrix in which the first n rows are the ui’s. Each column
corresponds to a 1-cell. Let M have an extra row corresponding to p.

Consider the effect of folding on p and the ui’s, and thus on M . In a folding
sequence we now only allow subdivision if it is immediately followed by a Type I
fold involving one of the subdivided edges. A subdivision followed by a Type I fold
results in an elementary column operation on M . If x, y are the lengths of the edges
at the relevant corner and x < y, then after the subdivision and fold the edge of
length y has been replaced by one of length y − x.

All the information about this operation can be obtained from the row of M
corresponding to p as the coefficients of the sum for p are linearly independent
over the rationals. If a Type III fold can be made, then two columns must be equal
as this happens if and only if the two column entries in the row corresponding to p
are the same. Note that this means that in any other linear combination of the ui’s
the two column entries will be the same. This means that if instead of p we started
with a marking corresponding to another internal point of the solution space then
we would reach a Type III move at precisely the same point of the folding process.
Deleting one of the two equal columns will induce a linear bijection on the solution
space.

A Type II fold has no effect on the matrix M
In the case of a marking that does correspond to a resolving of a tree, it was

deduced that if in the attaching word w ∪ w′ either w or w′ contained a subword
eē then there had to be a non-trivial joining element gv in Gv (modulo Ge) where
v = τe. Thus to correspond to G-tree, gv /∈ Ge. If we start with our marking p,
which may not correspond to a G-tree, then it may happen that we have gv ∈ Ge.
If this happens then we delete any row ui that contributes a non-zero entry to the
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column corresponding to e, as we are only interested in finding decompositions that
resolve actions on trees. Thus we delete all such ui’s from our list of tracks and
remove the corresponding terms from the marking p, and start a folding process
with the new p. One also deletes the column corresponding to e. If we continue
with this process we eventually obtain a matrix corresponding to a complex that
resolves any action of G on a tree. The marking p will then determine an action
on an R-tree. To see why this is the case we again follow the argument of [6].

Let X be a complex obtained in the above process with the smallest number
of 1-cells. This corresponds to a matrix M with the smallest number of columns.
There is a natural graph of groups decomposition for G = π(Y, Y ) corresponding
to X in which the edges of Y are the 1-cells of X that do not occur in the boundary
of any 2-cell. Each vertex group of G is the group of a sub-complex in which every
1-cell lies in the boundary of at least one 2-cell.

As in [6], it follows that if v ∈ V Y , then there is a homomorphism from each
vertex group Y (v) to a target group Z(v) which is the fundamental group of a cube
complex associated with a single n-cube c(v). The marking p will induce a marking
on c(v) which corresponds to a an action of Z(v) on an R-tree. Thus each vertex
group Y(v) will have an action on an R-tree.

We now show that each vertex group Y(v) has at most one end.
This follows from the fact that if a group G acts on a cubing It follows that any

action of G on a simplicial tree with finite edge stabilizers, is resolved by a combi-
nation of the ui’s which give splittings over finite subgroups. These decompositions
correspond to a mutually compatible set of tracks.

5. Computing decompositions

A programme is available on the first author’s website that calculates a basis of
untwisted tracks for the presentation complex of a finitely presented group G. The
programme then calculates the decomposition corresponding to each such track and
identifies those that are clearly trivial. The remaining decompositions are left for
manual inspection.

See http://www.layer8.co.uk/maths/tracks.htm
Here is some output for the Higman group.

H = 〈a, b, c, d|aba−1 = b2, bcb−1 = c2, cdc−1 = d2, dad−1 = a2〉.

For this group presentation, the track basis contains 12 tracks. Of these there
are three tracks that give non-trivial decompositions. In the following only the
decompositions for the first four basis tracks is included.

Group presentation:
a b c d : ab-a-b-b bc-b-c-c cd-c-d-d da-d-a-a
Jobname: higman4
Triangular 2-complex comprises: 1 0-cells, 12 1-cells and 12 2-cells.
Track basis (size 12 x 36)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 3 1 0 2 2 1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 4 5 1 1 3 3 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 5 6 2 2 4 4 2 2 4 0 0 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

check track basis element 0 The track
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(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1)

is untwisted and separating
check track basis element 1 The track (1, 3, 1, 0, 2, 2, 1, 1, 3, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) is untwisted and separating
check track basis element 2 The track (2, 0, 4, 5, 1, 1, 3, 3, 1, 3, 1, 1, 1, 3, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) is untwisted and separating
check track basis element 3 The track (3, 1, 5, 6, 2, 2, 4, 4, 2, 2, 4, 0, 0, 2, 4, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) is untwisted and separating

prune list of 12 separating tracks:
track basis element 0
The separating track
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1)
Gives a trivial decomposition.
Edge stabilizer generators. ab-a-bc-b-c-c ab-a-bc-b-cd-c-da-d-a-a
First vertex stabilizer generators. ab-a-bc-b-c-c ab-a-bc-b-cd-c-da-d-a-a
Second vertex stabilizer. G

track basis element 1
The separating track
(1, 3, 1, 0, 2, 2, 1, 1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2)
Gives a trivial decomposition.
Edge stabilizer generators. -b-a b-a cd-c-da-d-a-a bc-b-cd-c-d-d
First vertex stabilizer. G
Second vertex stabilizer generators. ab b-a aad-adc-d-c ddc-dcb-c-b

track basis element 2
The separating track
(2, 0, 4, 5, 1, 1, 3, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1)
Edge stabilizer generators. b-a-b-aba-b ab-a-b-a-b-ababa-b-a b-a-b-cba-b ab-a-

b-a-b-cbaba-b-a ab-a-bc-b-c-c ab-a-bc-b-cd-c-da-d-a-a
First vertex stabilizer generators. ab-a-bc-b-c-c ab-a-b-a-bababa-b-a ab-a-b-a-b-

cbaba-b-a ab-a-bc-b-cd-c-da-d-a-a b-a-b-aba-b b-a-bcba-b
Second vertex stabilizer generators. a b-a-b-aba-b b-a-b-a-b bba-b b-a-bcba-b c

b-cba-b d

track basis element 3
The separating track
(3, 1, 5, 6, 2, 2, 4, 4, 2, 2, 4, 0, 0, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2)
Edge stabilizer generators. -cba-b-a-cba-b-a, -cba-b-cba-b-a, -c-a-b-b-c-c, -c-ac,

ccb-a-b-c-c, -c-b-cba-b-a, ccbcbc, -c-b-c-c-cba-b-a, cd-c-da-d-a-a
First vertex stabilizer generators. ab-a-bc-b-c-c, cd-c-da-d-a-a, -c-a-b-b-c-c, -c-

b-cba-b-a, ab-a-bcb-a-bc, ab-a-bc-a-cba-b-a, ab-a-bcab-a-bc, ab-a-bccbc, -cac, ab-
a-bcccbc, ccba-b-c-c, -c-b-c-b-c-c, ab-a-bcd-cba-b-a

Second vertex stabilizer generators. a, c, b, d-adc-d
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In fact tracks 0.1.2 all give trivial decompositions, but track 3 gives a non-trivial
decomposition.
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