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Abstract. This is a report on our long term project to find an algorithm to

decide if a finitely presented group has a non-trivial action on a tree.

1. Introduction

In his seminal work [12] Stallings showed that a finitely generated group with
more than one end splits over a finite subgroup. In [3] it was shown that a finitely
presented group is accessible. This means that a finitely presented group G has
a decomposition as the fundamental group of a graph of groups in which vertex
groups are at most one ended and edge groups are finite. This decomposition
provides information about every action of G on a simplicial tree with finite edge
groups. Thus, let S be the Bass-Serre G-tree associated with the decomposition
described and let T be an arbitrary G-tree with finite edge stabilizers, then there is
a G-morphism θ : S → T . We say that any action is resolved by the action on S. In
[4] and [5] examples are given of inaccessible groups. These are finitely generated
groups - but not finitely presented - for which there is no such G-tree S. These
groups do have actions on a special sort of R-tree (a realization of a protree) but
there appears to be no such action which resolves all the other actions.

An earlier version of this paper sought to show that a finitely presented group
has an action that resolves all actions. Sadly this is incorrect. The Higman group,
discussed below, has two incompatible decompositions and there is no action on a
tree that that resolves both the trees corresponding to these decompositions.

It is easy to determine if a finitely presented group splits as an HNN-group.
This is the case if and only if the group made abelian is infinite. Deciding if a
group splits as a free product with amalgamation is much harder. It is known that
there is a group H which has a presentation for which it cannot be decided if the
group is non-trivial. One could use this presentation to construct a presentation for
H ∗H. Clearly it will not be possible to decide it this decomposition is non-trivial.
It seems possible that for a finitely presented group G that there is a finite list of
decompositions such that if G has a non-trivial decomposition then a non-trivial
decomposition is in this list. If the group G has a solvable membership algorithm
then it will be possible to decide if a decomposition in the list is non-trivial. In
an earlier version of this paper we claimed that a list we could construct for G did
have the required property. However our proof was not correct. We think that
the methods, described here, of determining a list of different decompositions of a
finitely presented group, could yet lead to interesting results.

The result -and its proof - on the accessibility of finitely presented groups can
be seen as a generalization of a result by Kneser (see [8]) - and its proof - that
a compact 3-manifold (without boundary) has a prime decomposition, i.e. it can
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be expressed as a connected sum of a finite number of prime factors. A compact
3-manifold M is prime if for every decomposition M = M1]M2 as a connected sum,
either M1 or M2 is a 3-sphere. Expressed as a result about fundamental groups,
it says that the fundamental group of a compact 3-manifold is a free product of
finitely many factors, which, of course, is true for any finitely generated group by
Grushko’s Theorem.

Kneser’s result is a basis for the theory of normal surfaces in 3-manifolds, due
to Haken (see [7]), used to provide an algorithm to decide if a knot is trivial. Jaco
and Oertel [10] and Jaco and Tollefson [11] used normal surface theory to develop
algorithms for deciding if a compact 3-maniflold M contains an incompressible
surface. If this is the case then G = π1M splits over a subgroup that is the group
of the embedded surface. The theory of tracks and patterns used in [2] and [3] is a
generalisation of the theory of normal surfaces. Instead of using the way a surface
intersects the different 3 simplexes, a pattern is determined by intersections with 2-
simplexes, A pattern in the 2-skeleton of a 3-manifold determines a surface in which
the intersection with each 3-simplex is a finite set of disjoint discs. This surface is
called a patterned surface. The proofs of Jaco and Oertel for normal surfaces will
also work for patterned surfaces. In [2] the theory of patterned surfaces is used to
give proofs of the equivariant loop and sphere theorems. It is a natural question
to ask if the theory of tracks and patterns can be used to provide algorithms for
deciding if a finitely presented group splits. In this paper we describe our attempts
to answer this question.

A normal surface in a compact 3-manifold corresponds to a particular solution
to a set of matching equations in Zn. These solutions all lie in a polyhedral convex
cone in Rn. The algorithms referred to above consist of showing that if a there is
an incompressible surface in M , then there is one that corresponds to one in a finite
list of points in this cone. In some cases the list is just the extreme fundamental
solutions, (or vertex solutions) i.e. those points that are the smallest integer valued
points in the one dimensionsal faces of the cone. Thus Jaco and Tollefson show
that that there is a face of the cone for which the extreme fundamental solutions
give a prime decomposition of the manifold.

Using software developed by the first author we have found examples that the
results for patterned surfaces in 3-manifolds cannot be generalised as much as one
might hope. Thus for any finitely presented group G, there is a finite 2-dimensional
2-complex X with fundamental group G. The tracks in X correspond to points in
a cone P, We had been hoping to show that if G has a non-trivial splitting that
corresponds to an internal point of the face of P, then at least one or hopefully all
of the vertex solutions of that face will give non-trivial splittings. However this is
not always the case. We give an example in which two trivial vertex solutions have
a rational linear combination that gives a non-trivial splitting.

The vertex solutions of P and the corresponding decompositions can be com-
puted. Programmes for doing this are available on the first author’s website.

It still seems likely that if a finitely presented group has a non-trivial decompo-
sition, then there will be a fundamental solution that corresponds to a track giving
a non-trival decompostion, and that there are only finitely many fundamental so-
lutions which lie in a bounded subset of the solution cone.

Here are some questions that remain to be answered.
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Let G be a finitely presented group, with presentation complex X and corre-
sponding solution cone P.

1. If there is a non-trivial homomorphism G → Z, then is there at least one
fundamental solution or even a vertex solution that is non-separating?

2. If G splits, then is there a non-trivial fundamental solution or even a non-
trivial vertex solution?

3. If G has more than one end, i.e. if G splits over a finite subgroup, then is
there a fundamental solution of even a vertex solution corresponding to a splitting
over a finite subgroup?

4. Do the fuundamental solutions lie in a bounded region of P?

2. Tracks and Patterns

We illustrate the theory by repeated reference to a particular example.
The cell complex for the trefoil group G = 〈c, d|c3 = d2〉
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Attach the 5-sided disc to the figure eight as specified by the letters and arrows.
The space X has π1(X) = G.

A group presentation can be changed so that every relation has length at most
three, giving a presentation complex with 2-cells having at most 3 edges.
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Thus G = 〈c, d|c3 = d2〉 = 〈c, d, e, f |d2 = e, e = fc, f = c2〉.
The cell complex X consists of three 3-sided 2-cells attached to a 4-leaved rose.

Let X be a cell complex in which each 2-cell is 3-sided.
A pattern is a subset of X which intersects each 2-cell in a finite number of

disjoint lines each of which intersects the boundary of the 2-cell in its two end
points which lie in distinct edges.

A track is a connected pattern.
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If X has m 2-cells then a pattern is specified (up to an obvious equivalence) by
a 3m-vector in which there are three coefficients for each 2-cell which record the
number of lines joining the two edges at each corner.

If X has m 2-cells then a pattern is specified (up to an obvious equivalence) by
a 3m-vector in which there are three coefficients for each 2-cell which record the
number of lines joining the two edges at each corner. Thus for previous 2-cell

2

2

3

the coefficients 2, 2, 3 record the intersection of the pattern with that particular
2-cell.

For the complex X for the trefoil group G a pattern is specified by a 9-vector,
where the i-th coefficient corresponds to the number of lines crossing the i-th corner
labelled i in red in the diagram below. In the trefoil complex a vector of non-
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negative integers x = (x1, x2, . . . , x9) is a pattern in if it satisfies the matching
equations

x1 + x2 = x2 + x3 = x5 + x6

(number of intersection points with edge c)
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x1 + x3 = x4 + x5

(number of intersection points with edge f)

x4 + x6 = x7 + x8

(number of intersection points with edge e)

x7 + x9 = x8 + x9

(number of intersection points with edge d)
In general a 3m-vector corresponds to a pattern, if and only if

(i) Each entry is a non-negative integer.
(ii) It is a solution vector to a finite set of linear equations called the matching

equations, where if an edge e lies in k 2-simplexes, then there are k − 1
matching equations corresponding to the intersection of the pattern with
e.

In general a pattern P in a 2-complex X will lift to a pattern P̃ in X̃. Each
track component of P̃ will separate and there is a G-tree TP in which the edges
correspond to the track components of P̃ (see [2], Chapter VI or [3] for details). If P
consists of a single track then TP will be the Bass-Serre tree for a decomposition of
G as a free product with amalgamation, if the track is separating, and as an HNN-
group if it is untwisted and non-separating. An untwisted track t is one which has
a neighbourhood that is homeomorphic to t× I where I is a closed interval.

∨
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In the trefoil complex X an example of a pattern is as follows. The 9-vector
t1 = (1, 1, 1, 0, 2, 0, 0, 0, 0)
corresponds to the pattern shown above. Thus there is one line crossing each of

the corners labelled 1, 2 and 3 and 2 lines crossing the corner labelled 5.
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This pattern is in fact a separating track and corresponds to the decomposition
of G.

G = 〈d〉 ∗〈d2=c3〉 〈c〉.
The track separates into two regions one of which is coloured green.
A separating track is always untwisted. It t is twisted, then 2t is separating and

hence untwisted.
The track t shown below in blue is twisted so the pattern 2t is also a track. The

separating track 2t gives the trivial decomposition G = G ∗H H where H has index
two in G

∨

c

c
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d

The track shown in red is non-separating and untwisted, and gives a decompo-
sition of G as an HNN-group.
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Such a track is always associated with a homomorphism G → Z. In this case
c 7→ 2, d 7→ 3.

If X has n 2-simplexes and m 1-simplexes (edges) then X1 has 3n 2-cells and
3n+m 1-cells. A marking of X1 is a solution to the matching equations. A marking
will be any point of a compact, convex linear cell in R3n+m called the projective
solution space P. This theory is a generalization of the theory of normal surfaces or
patterned surfaces in 3-manifolds (see [10],[11] and [2], Chapter VI). The extreme
or vertex solutions are the ones corresponding to vertices of the projective solution
space. Jaco-Oertel [10] and Jaco-Tollefson [11] have shown that vertex solutions
carry important information about normal surfaces in a 3-manifold. Thus in [11]
it is shown that there is a face of P for which the vertex solutions give a set of
2-spheres giving a complete factorization of a closed 3-manifold. A solution is a
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vertex solution v if it has integer coefficients and integer multiples of v are the
only solutions to nv = v1 + v2, where n is a positive integer and v1,v2 are non-
zero vectors in P with non-negative integer coefficients. The first author, in his
D.Phil. Thesis [1] investigated the solution space for a group presentation on a
computer. It was hoped to show that at least one vertex solution gives a non-
trivial decomposition if the group has such a decomposition. We are still unable to
show that this is the case. It is the case in all the examples we have investigated,
but we have counterexamples to stronger results we thought might be true.

Two patterns are equivalent if they have the same number of intersections with
each edge, so that they determine the same vector u. Two tracks t1, t2 are compat-
ible if there is a pattern with two components which are equivalent to t1 and t2. A
track is a fundamental solution if it cannot be written as a sum of more than one
track. Clearly vertex solutions are fundamental solutions.

Each separating track gives a decomposition of G as a free product with amal-
gamation (possibly trivial). Each non-separating track gives a decomposition of G
as an HNN-group.

For the trefoil. example the software developed by the first author gives the
following output.
G =< c, d|ccc = dd > .
There are five vertex solutions.
Vertex solutions (extreme fundamental tracks), n=9 s=5
1. 1 1 1 0 2 0 0 0 0
2. 0 0 0 0 0 0 0 0 1
3. 0 2 0 0 0 2 1 1 0
4. 2 0 2 2 2 0 1 1 0
5. 2 0 2 4 0 2 3 3 0
The first vertex track is the one illustrated above as t1.
The second vertex track t2 is twisted. It has a neighbourhood that is a Möbius

Band. The programme gives the decomposition corresponding to 2t2, The boundary
of the Möbius Band, which is a separating track giving a non-trivial decomposition.

The third vertex solution t3 is also twisted, and is illustrated above as the blue
track and 2t3 gives a trivial decomposition.

Th fourth vertex solution is similar to the third.
The fifth vertex solution t5 is the one illustrated above as the red track.
The track t5 is non-separating and untwisted.
A different presentation of the trefoil group shows interesting behaviour of tracks.
We first state an easily proved result about twisted tracks. A track t is untwisted

if 2t is a pattern consisting of two copies of t. If t is twisted, then 2t is a separating
untwisted track, so that 4t is a pattern consisting of two copies of 2t.

Proposition 2.1. Let t be a twisted track. There are two possibilities for the
decomposition of G associated with 2t.

(i) The decomposition is trivial. One vertex group is G. The other vertex group
and the edge group are both a subgroup of index 2 in G.

(ii) The decomposition is non-trivial and the edge group has index 2 in one of
the vertex groups.

An alternative presentation B =< a, b|aba = bab > for the trefoil group provides
a number of examples in which what one might have hoped to be correct turns out
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to be not the case. A pattern for this presentation will be determined by a (12)–
tuple. Where the entries in the (12)-tuple are given by the number of lines crossing
the corners as in the diagram above. Note that there is an automorphism α of B
that transposes a and b, and α induces an autoomorphism of the cell complex and
also of the solution space P, which permutes the entries in each (12)-tuple by the
permutation (1, 10)(2, 12)(3, 11)(4, 7)(5, 9)(6, 8). For this presentation, there are 15
vertex solutions s1, s2, . . . , s15. The automorphism α induces the permutation

(s1, s6)(s2, s14)(s4, s9)(s5, s8)(s7, s13)(s12, s15)

The vertex solutions s3, s10, s11 are all fixed by α.
We have
s1 = (1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1) is a twisted track as in Proposition 2.1 (ii) so

that 2s1 gives a separating track giving a non-trivial decomposition in which one fac-
tor is generated by ba. and the other by aba. The vertex tracks s3, s4, s7, s9, s11, s13
are twisted tracks as in Proposition 2.1 (i). Thus 2s3 = (0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 2),
2s4 = (4, 2, 0, 4, 6, 8, 2, 0, 2, 6, 0), 2s7 = (4, 2, 0, 0, 4, 2, 2, 0, 2, 04, 2),

2s11 = ((2, 0, 2, 2, 2, 0, 2, 0, 2, 2, 2, 0). and 2s12 = (6, 0, 2, 2, 6, 0, 2, 0, 2, 0, 4, 2)
have trivial decompositions in which one vertex is G and the other has index two
in G.

The vertex tracks s2 = (3, 1, 1, 0, 4, 0, 0, 0, 2, 0, 2, 2), s5 = (2, 0, 0, 1, 1, 1, 2, 0, 0, 0, 2, 0)
and their images s14 = (0, 2, 2, 0, 2, 0, 0, 0, 4, 3, 1, 1) and s8 = (0, 0, 2, 2, 0, 0, 1, 1, 1, 2, 0, 0)
are all untwisted tracks giving trivial decompositions. Finally
s10 = (1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 1, 0) is untwisted and non-separating, and so it

gives a decomposition of G as an HNN- extension. The vertex group is the kernel
of the homomorphism to Z in which both a and b are mapped to 1. Note that s10
is the only vertex solution that is untwisted and non-trivial. Note that there is no
vertex track that is untwisted and separating and corresponds to the non-trivial
decomposition.

We have the interesting relation

s2 + s14 = 3(1, 1, 1, 0, 2, 0, 0, 0, 2, 1, 1, 1)

where f = (1, 1, 1, 0, 2, 0, 0, 0, 2, 1, 1, 1) is a track that is separating and untwisted.
It is a non-trivial fundamental solution but not a vertex solution.

The track f is compatible with both x2 and s14, even though s2 and s14 are not
compatible. This means that we have the following relations for positive integers
m,n where n ≥ m

ms2 + ns14 = 3mf + (n−m)s2,

ns2 +ms14 = 3mf + (n−m)s14.
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We had been hoping that if a group G had a non-trivial splitting then it would
show up as a vertex solution. This is not the case with this presentation of the trefoil
group. Thus 2s1 and f give the splitting as a free product with amalgamation, but
no vertex solution does give this splitting. The tracks 2s1 and f are compatible.
The tracks s5 and s8 = αs5 have contrasting behaviour to s2 and s14 = αs2. In
this case if m,n are coprime positive integers, then ms5 + ns8 is a track giving a
trivial decomposition, or at least looking at a lot of cases suggests that this is the
case.

3. Computing decompositions

A programme is available on the first author’s website that calculates the ex-
treme fundamental solutions (or vertex solutions) for the presentation complex of
a finitely presented group G. The programme then calculates the decomposition
corresponding to each such track and identifies those that are clearly trivial. The
remaining decompositions are left for manual inspection. Usually there are more
trivial decompositions.

See http://www.layer8.co.uk/maths/tracks.htm
We present some output for the Higman group.

Example 3.1. Let H = 〈a, b, c, d|aba−1 = b2, bcb−1 = c2, cdc−1 = d2, dad−1 = a2〉.
This group was investigated by Higman [9]. He showed that it was infinite and

had no non-trivial finite homomorphic images. His proof that it was non-trivial
involved showing that it had a decomposition as a free product with amalgamation

H = 〈a, b, c〉 ∗〈a,c〉 〈a, d, c〉.
Also 〈a, b, c〉 is the free product with amalgamation

〈a, b, c〉 = 〈a, b〉 ∗〈b〉 〈b, c〉,
where both 〈a, b〉 and 〈b, c〉 are isomorphic to the Baumslag-Solitar group BS(1, 2).

For this group presentation, there are 1429 vertex solutions. All but 4 of these
solutions give trivial decompositions. The ones giving non-trivial decompositions
are numbered 1, 2, 7 and 739. In fact it seems these are the only tracks giving
non-trivial decompositions. Taking linear combinations of an incompatible pair of
these non-trivial decompostions only appears to produce trivial decompositions.

Group presentation:
a b c d : ab-a-b-b bc-b-c-c cd-c-d-d da-d-a-a
Jobname: higman4
extreme fundamental track 1
The separating track
(2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2,

0, 0, 1, 1, 1)
Edge stabilizer generators. a-b-a b aad-a d
First vertex stabilizer generators. ab-a aad-a b d c
Second vertex stabilizer generators. b a d
extreme fundamental track 2
The separating track
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 1, 1, 1, 2, 0, 0, 0,

2, 0, 0, 0, 0)
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Edge stabilizer generators. ddc-d c d-a-d a
First vertex stabilizer generators. d-c-d-d d-a-d c a b
Second vertex stabilizer generators. d c a
Adding patterns
Tracks from .eft file:
Track 1. 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 1 1 1
Track 739. 0 0 2 2 0 0 1 1 1 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sum of patterns is the pattern: 2 0 2 2 2 0 1 1 1 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 2 0 0 1 1 1 which is a track
Decomposing a given track.
The separating track
(2, 0, 2, 2, 2, 0, 1, 1, 1, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2,

0, 0, 1, 1, 1)
Gives a trivial decomposition.
Edge stabilizer generators. a-b aba-b-a ab-a-bcba-b-a c a-d-a-a d
First vertex stabilizer generators. aad-a aba-b-a ab-a-b-cba-b-a a-b d c
Second vertex stabilizer. G
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