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Abstract. It is shown that for any action of a finitely presented group G on

an R-tree, there is a decomposition of G as the fundamental group of a graph

of groups related to this action. If the action of G on T is non-trivial, i.e. there
is no global fixed point, then G has a non-trivial action on a simplicial R-tree.

1. Introduction

A group G is said to split over a subgroup C if either G = A ∗C B, where A 6= C
and B 6= C or G is an HNN-group G =< A∗C =< A, t|t−1at = θ(a) > where
θ : C → A is an injective homomorphism. It is one of the basic results of Bass-
Serre theory (see [6] or [[20]), that a finitely generated group G splits over some
subgroup C if and only if there is an action of G on a tree T , without inversions,
such that for no vertex v ∈ V T is v fixed by all of G. Here the tree is a combinatorial
tree, i.e. a connected graph with no cycles, and an action without inversions is one
in which no element g ∈ G transposes the vertices of an edge. Tits [23] introduced
the idea of an R-tree, which is a non-empty metric space in which any two points
are joined by a unique arc, and in which every arc is isometric to a closed interval
in the real line R. Alternatively an R-tree is a 0-hyperbolic space. A tree in the
combinatorial sense can be regarded as a 1-dimensional simplicial complex. The
polyhedron of this complex will be an R-tree - called a simplicial R-tree. However
not every R-tree is like this. A point p of an R-tree T is called regular if T − p has
two components. An R-tree is simplicial if the points of T which are not regular
form a discrete subspace of T . It is fairly easy to construct examples of R-trees
where the set of non-regular points is not discrete. There are good introductory
accounts of groups acting on R-trees in [2] and [21]. We assume that all our actions
are by isometries. It is a classical result that a group is free if and only if it has a
free action on a simplicial tree. As the real line R is an R-tree and R acts on itself
freely by translations, any free abelian group has a free action on a R. Morgan
and Shalen [17] showed that the fundamental group of any compact surface other
than the projective plane and the Klein bottle has a free action on an R-tree. Rips
showed that the only finitely generated groups that act freely on an R-tree are
free products of free abelian groups and surface groups. Rips never published his
proof, but there are proofs of more general results by Bestvina -Feighn [4] and by
Gaboriau-Levitt-Paulin (see [19] or [5]). Bestvina and Feighn classify the stable
actions of finitely generated groups on R-trees. Recall, that an action of a group G
on an R-tree is said to be stable if there is no sequence of arcs li such that li+1 is
properly contained in li for every i, and for which the stabilizer GI of li is properly
contained in Gi+1 for every i. In particular [4] Bestvina and Feighn proved that if
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a finitely presented group has a non-trivial minimal stable action on an R-tree then
it has a non-trivial action on some simplicial tree.

A group is said to be (FA) if it has no non-trivial action on a simplicial R-tree
and it is said to be (FR) if it has no non-trivial action on any R-tree. A trivial
action is one in which there is a point of the tree that is a global fixed point.
In contrast A.Minasyan [16] and I [11] in separate papers have given examples of
finitely generated groups that are (FA) but not (FR). These provided a negative
answer to Shalen’s Question A of [21]. In an earlier paper [11] I gave an example of a
finitely generated group that had a non-trivial action on an R-tree with finite cyclc
arc stabilizers but for which any simplicial decomposition has an edge group that
contains a non-cyclic free group. This gave a negative answer to Conjecture D of
[21]. In this paper it is shown that there are positive answers to these questions for
finitely presented groups. The situation is therefore similar to that of accessibility
in finitely generated groups, in that finitely presented groups are accessible [7], but
there are examples of finitely generated groups that are not accessible [8],[9]. The
questions are closely related.

A morphism from a segment I to an R-tree T is a continuous map φ : I → T such
that I may be subdivided into finitely many subsegments that φ maps isometrically
into T . Let T, T ′ be R-trees with actions of groups G,G′ respectively. Let ρ : G→
G′ be a homomorphism. A morphism from T to T ′ is a map φ equivariant with
respect to ρ which induces a morphism on every segment I ⊂ T .

In this paper the following theorem is proved.

Theorem 1.1. Let G be a finitely presented group and let T be a G-tree, i.e. an
R-tree on which G acts by isometries.

Then G is the fundamental group of a finite graph (Y, Y ) of groups, in which
every edge group is finitely generated and fixes a point of T . If v ∈ V Y , then either
Y(v) fixes a vertex of T or there is a homomorphism from Y(v) to a target group
Z(v) (a parallelepiped group), which is the fundamental group of a cube complex of
groups based on a single n-cube c(v).

Every hyperplane of c(v) is associated with a non-trivial splitting of G.
There is a marking of the cube c(v) so that the corresponding R-tree with its

Z(v)-action is the image of a morphism from a Y(v)-tree Tv and this tree is the
minimal Y(v)-subtree of T .

The action of a target group on an R-tree is usually unstable, but a parallelepiped
group of rank n contains a free abelian group of rank n and this acts freely on R
by translation.

The main theorem in a previous version of this paper is incorrect. I thought that
the Higman group H = 〈a, b, c, d|aba−1 = b2, bcb−1 = c2, cdc−1 = d2, dad−1 = a2〉.
had an action on a nonsimplicial R-tree, since it had non-compatible decompositions
as a free product with amalgamation. In fact this is not the case. I thought that
adding linear combinations of tracks corresponding to these decompositons would
result in infinitely many non-trivial such decompositions. In fact all the tracks
obtained correspond to trivial decompositions (see [1]).

We do not encounter Levitt (or thin) type actions in our analysis (see [2]). This
is because any such action is resolved by a simplicial action.

2. Target Groups

In [12] rectangle groups were constructed.
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The rectangle group R = R(m.n.p.q),m, n, p, q ∈ {2, 3, . . . } ∪ {∞} is the group
with presentation

R = {a, b, c, d|am = bn = cp = dq = 1, ab−1 = cd−1, ac−1 = bd−1}.

a c

b d

m p

n q

Figure 1. rectangle group

Think of the relations as saying that opposite edge vectors are equal and that
the corners are assigned orders, a corner can have infinite order.

In the group R above, let x = ab−1 = cd−1, y = ac−1 = bd−1, then xy =
ab−1bd−1 = ad−1 = ac−1cd−1 = yx, and x, y generate a free abelian rank 2 group.

Also R has incompatible decompositions as a free product with amalgamation

R = 〈a, b〉 ∗ab−1=cd−1,b−1a=d−1c 〈c, d〉,
and

R = 〈a, c〉 ∗ac−1=bd−1,c−1a=d−1b 〈b, d〉,
the amalgamated subgroup in each case is free of rank two.
The decompositions are incompatible because the lines dividing the rectangle

intersect.

a c

b d

Figure 2. Decompositions of a rectangle group

A cube complex is similar to a simplicial complex except that the building blocks
are n-cubes rather than n-simplexes. A rectangle group R acts on a simply con-
nected 2-dimensional cube complex C̃ with orbit space C. This is illustrated in
Fig 3. Apart from some exceptional cases, when two or more of m,n, p, q are 2,
there are three orbits of 2-cells, each with trivial stabilizer. In all cases there are
four orbits of edges also with trivial stabilizers, and four orbits of vertices labelled
A,B,C,D with stabilizers which are cyclic of orders m,n, p, q respectively. In the
group R(2, 2, 2, 2) the subgroup 〈x, y〉 has index 2 and there is one orbit of 2-cells.
In R(2, 2, 2, q) or R(2, 2, p, q) for p, q ≥ 3 there are two orbits of 2-cells and both C

and C̃ are 2-orbifolds.
In [12] it is shown that for any action of J = 〈x, y〉 on an R-tree there is an

action of the rectangle group on an R tree T which restricts to the given action on
the minimal J-subtree of T . This action is unstable in all cases when there are 3
orbits of 2-cells.
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Figure 3. The Euclidean space for a rectangle group

There is a Euclidean 2-dimensional subspace E of C̃ acted on by 〈x, y〉 . For
the action of 〈x, y〉 on E there is one orbit of 2-cells, each of which is made up of

4 smaller rectangles of C̃. In the diagram the points A,B,C,D are stabilised by
a, b, c, d respectively.

Note that the blue rectangle A, aB, aC, aD is in the same R-orbit as the red
rectangle A,B,C,D, and bD = bd−1D = yD, cD = cd−1D = xD.

A parallelepiped group of dimension n has 2n generators corresponding to the
vertices of an n-cube. The generators corresponding to a 2-dimensional face satisfy
the relations of a rectangle group. Such a group has an action on an n-dimensional
cube complex Cn for which the orbit space is an n-cube. There is a subgroup Jn
that is free abelian of rank n, which acts on a subcomplex En of Cn so that the
orbit space Jn\En consists of 2n smaller cubes.

In [12] there is a detailed description of the action for n = 3.

3. Finitely presented groups

Let X be a finite CW 2-complex. We introduce the idea of a complex of groups
G(X) based on X. This is a slightly different notion to a special case of the complex
of groups described by Haefliger [14]. Haefliger restricts X to be a simplicial cell
complex. One can get from our situation to that of Haefliger by triangulating each
2 cell. We are only concerned with the situation when each group assigned to a
2-cell is trivial.

Thus the 1-skeleton X1 of X is a graph. We take the edges to be oriented, and
use Serre’s notation, so that each edge e has an initial vertex ιe and a terminal
vertex τe and ē is e with the opposite orientation. Let G(X1) be a graph of groups
based on X1 The attaching map of each 2-cell σ is given by a closed path in
X1. Let S be a spanning tree in X1. The fundamental group π(G(X), S) of the
complex of groups G(X) is the fundamental group of the graph of groups G(X1)
together with extra relations corresponding to the attaching maps of the 2-cells.
Thus π(G(X), S) is generated by the groups G(v), v ∈ V (X1) and the elements
e ∈ E(X1). For each e ∈ E(X1), G(e) is a distinguished subgroup of G(ιe) and
there are injective homomorphisms te : G(e) → G(τe), g 7→ gτe. The relations of
π(G(X), S) are as follows:-
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the relations for G(v), for each v ∈ V (X1)
e−1ge = gτe for all e ∈ E(X1), g ∈ G(e) ≤ G(ιe),
e = 1 if e ∈ E(S).
For each attaching closed path e1, e2, . . . , en in X of a 2-cell, there is a relation

g0e1g1e2x2 . . . gn−1en = 1,

where gi ∈ Gτei = Gιei+1
, called the attaching word. The elements gi are called

joining elements. Such a word represents both a path p, called the attaching path
in the Bass-Serre tree T corresponding to the graph of groups G(X1), for which
initial point ιp and end point τp are in the same π(G(X1), S)-orbit and an element
g ∈ π(G(X1), S) for which gιp = τp. Adding the relation identifies the points ιp
and τp and puts g = 1. If we carry out all these identifications, we obtain a G-graph
Γ in which the attaching paths are all closed paths. We describe specifically how
this path arises (as in [6], p15). We lift S to an isomorphic subtree of S1 of Γ. Thus
the vertex set of S1 is a transversal for the action of G on Γ. For each edge e in
X−S we can choose an edge ẽ ∈ T such that ẽ maps to e in the natural projection,
and ιẽ is a vertex of S1. Let S̃ be the union of S1 with these extra edges. Note that
it will not normally be the case that τ ẽ ∈ S̃ and so S̃ is not usually a subtree of T ,
but there will be an element c(e) ∈ G such that c(e)−1(τ ẽ) ∈ S̃. These elements
(called the connecting elements) together with the stabilizers of elements of V S1

generate G. Clearly S̃ consists of a transversal for the action of G on both the
edges and vertices of Γ. Let ιp = v0 be the vertex of S̃ lying above ιe1, and put
x0 = g0 Suppose we have constructed vi and xi ∈ G so that vi is the terminal
vertex of the path corresponding to g0e1g1e2g2 . . . gi−2ei−1, and so that if ṽi is the

element of S̃ in the orbit of vi, then vi = xiṽi. This is certainly true when i = 0. To
construct vi+1 and xi+1, put xi+1 = xic(ei+1)gi+1 where we put c(e) = 1 if e ∈ S.
Then xi+1ṽi+1 = xic(ei+1)ṽi+1 is the terminal vertex of the edge xiẽi+1 with initial
vertex vi. Note that xi is obtained from g0e1g1e2g2 . . . gi−2ei−1 by replacing each
ei by c(ei).

We now foliate each 2-cell of X in a particular way. Thus let D = {(x, y)|x, y ∈
R, x2 + y2 ≤ 1} be the unit disc.

e1

x

v

y

e2

Figure 4. Foliated 2-cell
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Give this the foliation in which leaves are the intersection of D with the vertical
lines x = c where c is a constant in the interval [−1, 1]. Let σ be a 2-cell of X
which is attached via the closed path e1, e2, . . . , en. We map D to σ so that for
some j = 2, . . . , n − 1 the upper semi-circle joining (−1, 0) and (1, 0) is mapped
to the path e1, . . . ej . Thus there are points z0 = (−1, 0), z1, . . . , zj = (1, 0) on
the upper semi-circle so that zi 7→ ιei, i = 1, 2, . . . ej+1 and the map is continuous
and injective on each segment [zi, zi+1], except if ιei = ιei+1 in which case the
map is injective on the interior points of this segment. In a similar way the lower
semi-circle is mapped to the path ēn, . . . , ēj+1.

Let, then, X be a 2-complex of groups in which each 2-cell is foliated as described
above and let T be a G-tree, i.e. T is an R-tree on which G acts by isometries.
We say that the X resolves T if there is an isomorphism θ : π(X,S) → G which
is injective on vertex groups (and hence on all groups Gσ for all cells σ of X). In
this situation (see [14]), the complex of groups is developable, i.e. there is a cell

complex X̃ on which G acts and G(X) is the complex of groups associated with

this action. We also require that there be a G-map α : X̃ → T such that for each
1-cell γ the restriction of α to γ is injective and for each 2-cell σ and each t ∈ T ,
the intersection of σ with α−1(t) is either empty or a leaf of the foliation described
above.

We show that if G is finitely presented then any G-tree has a resolution, i.e.
there is a cell complex X as above that resolves T . Our approach is similar to that
of [18].

Since G is finitely presented, there is simplicial 2-complex X such that π(X,S) ∼=
G. Here S is a spanning tree in the 1-skeleton of X. Let X̃ be the universal cover of
X. Clearly there is a G-map θ0 : V X̃ → T , which can be obtained by first mapping
a representive of each G-orbit of vertices into T and then extending so as to make
the map commute with the G-action. Now extend this map to the 1-skeleton so
that each 1-simplex γ with vertices u, v of X̃ is mapped injectively to the geodesic
joining θ0(u) and θ0(v). It may be necessary to subdivide X and choose the map θ0
to ensure that θ0(u) 6= θ0(v) for every 1-simplex γ. We can extend the map to every

1-simplex so that it commutes with the G-action giving a G-map θ1 : X̃1 → T . Now
we extend the map to the 2-simplices. Let σ be a 2-simplex with vertices u, v, w. If
θ0(u) lies on the geodesic joining θ0(v) and θ0(w) then we can map σ as indicated
in Fig 5 (ii). Each vertical line is mapped to a point. If θ0(u), θ0(v) and θ0(w) are
situated as in Fig 5(i) so that no point is on the geodesic joining the other two,
then we subdivide σ as in Fig 5 (iii). The new vertex is mapped to the point p of (i)
and the three new simplexes now have the middle vertex mapped into the geodesic
joining the images of the other two sides and are mapped as shown in (iii).

Again this map can be extended to every subdivided 2-simplex so that it com-
mutes with the G-action. We change X to be this subdivided complex. Regard
X as a 2-complex in which each cell is attached via a loop of length three. We
can make a complex of groups in which each Gσ is the trivial group. Since G is
the fundamental group of X it is the fundamental group of this complex of groups.
We have described a way of foliating the 2-cells which shows that this complex of
groups resolves T .

We now describe some moves on a resolving 2-complex which can be made on
a resolving complex which change a resolving 2-complex to another resolving 2-
complex.



FINITELY PRESENTED GROUPS ACTING ON TREES 7

v

u

w v

u

w

θ(u)

θ(v) θ(w)

(i) (ii) (iii)

Figure 5. Foliating a simplex

Move 1. Subdividing a 1-cell.
Let γ be a 1-cell, with vertices u, v, which may be the same. This can be replaced

by two 1-cells γ1, γ2 and a new vertex w, so that γ1 has vertices u,w and γ2 has
vertices v, w. The groups associated with w, γ1, γ2 in the new complex of groups
are all G(γ). The attaching maps of 2-cells are adjusted in the obvious way.

Move 2. Folding the corner of a 2-cell.
Suppose that one end of a foliated 2-cell is as in Fig 4. Thus v is the end vertex

of the 2-cell and adjacent vertices are x, y and x, y are mapped to the same point
of T , so that they lie on the same vertical line. Let the adjacent 1-cells to v be e1
and e2, which conflicts with our earlier notation but is in line with that of [11] and
[3]. Let the groups associated with the cells (in the complex of groups) be denoted
by the corresponding capital letters.

Folding the corner results in a fold of the graph of groups associated with the
1-skeleton of X. Such a fold is one of three types which are listed in [3] (as Type
A folds) or in [11]. They are shown in Fig 6 for the reader’s convenience. As the
group acting is always G it is not necessary to carry out vertex morphisms (see [11])
which are necessary when carrying out morphisms of trees rather than graphs.

The attaching word of the 2-cell, whose corner has been folded is changed in
a way which we will describe in an example. One can arrange that the joining
element at the pivot vertex is trivial, by changing the lift of the spanning tree. In
this case, any other attaching word of a 2-cell that involves e1 or e2, ē2 is replaced
by the folded edge element < e1, e2 > and e1 is replaced by < e1, e2 >. Let the
new complex of groups be X ′

Clearly there is a surjective homomophism φ : π(X,S) → π(X ′, S′) in which
gve1g

−1
v and e2 are both mapped to < e1, e2 >. In fact this homomorphism is an

isomorphism since the resolving isomorphism α : π(X,S) → G factors through φ.
We conclude that X ′ also resolves the G-tree T .
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V V

E1

E2

X

Y

〈E1, E2〉

〈X,Y 〉

type I
⇒

V V

E

X

〈E, g〉

〈X, g〉

type II
⇒

V V

E1

E2

X

Y

〈E1, E2〉

〈X, g〉

type III
⇒

Figure 6. Folding operations

If both the upper semi-circle and the lower semi-circle consist of a single 1-cell,
then folding results in the elimination of a 2-cell, and a reduction in the number of
1-cells.

Move 3 Contracting a leaf.
Consider a foliated 2-cell . Let ` be a particular vertical line of the foliation. This

will contain points u, v of the upper semi-circle and lower semi-circle respectively.
After subdividing the relevant 1-cells, it can be assumed that these points are
vertices. Contracting the leaf ` results in the 2-cell σ being replaced by two 2-cells
σ1 and σ2. The vertices u, v become a single vertex w and its group Gw is the
subgroup of G generated by Gu and Gv in G, except if u, v belong to the same
G-orbit, in which case Gw is generated by Gu and an element g ∈ G such that
gv = u. Let gu, gv be the respective elements of Gu and Gv in the attaching word
for σ. Let the edge after reaching u in the attaching word end up in σ2. This means
that the edge after reaching v ends up in σ1. Suppose first that u, v are in different
orbits, then after the move the element for w in σ2 is gu and the element for w in
σ1 is gv. Note that an edge has to be removed from the spanning tree S. If u, v are
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in the same orbit then the element for w in σ2 is gug and the element for w in σ1
is gvg

−1.
A similar argument to that for Move 2 shows that the complex we have created

also resolves the G-tree T .
Let σ be a 2-cell of X. We now examine what can happen as we repeatedly fold

corners of σ, at each stage replacing σ by the new 2-cell created. Since each 1-cell
of X̃ injects into T we can assign each 1-cell γ of X a length, namely the distance
in T between θ(u) and θ(v) where u, v are the vertices of a lift of γ in X̃.

As above let x be the corner vertex and let e1, e2 be the incident edges.
If e1, e2 have the same length, then we can fold the corner of σ. If e1 is shorter

than e2 then subdivide e2 so that the initial part has the same length as e1 and
then fold the corner. If e2 is shorter than e1 then we subdivide e1 and then fold the
corner. Now repeat the process. This process may terminate when all the 2-cell is
folded away.

However it may happen that the folding sequence is infinite i.e. it never termi-
nates.

First we give an example making it easier to understand the following general
explanation. This example is a corrected version of Example 6 of [10].

A
B

D
C

B
B

D
A

D

C

>
e

>
f

>
g

>

>>
h g

g
<
e

B

A

D

D

B

C

A
B

A

D
C

D

D
B

D
A

D

C

AB

D
C

B

D

C
B

D

C
A

C

A

Figure 7. Folding sequence

Example 3.1. Let the complex X1 have four vertices A,B,C,D and three oriented
edges e, f, g. Let ιe = A, τe = B, ιf = B, τf = D, ιg = D, τg = C. Let the groups
of A,B,C,D be finite cyclic of order 3 and generated by u, v, y, z respectively. Let
the 6-sided 2-cell be attached via the word

w ∪ w′ = ēa−1ebfgc−1ḡdf̄

Here w = ēa−1ebf and w′ = fd−1gcg. In this case X1 is a 2-sphere with 4 cone
points. Let G1 be the group of this complex of groups.
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The attaching word is describing a loop in X̃1 the universal cover of the complex
of groups. This loop maps to the loop,starting at B ēefgḡf̄ in X1. This loop is
obtained by omitting the joining elements, which are elements of the vertex group
that has been reached at that point. How a path in X̃1 corresponds to such a word
was described earlier. We now discuss how the joining elements occur in w ∪ w′.

In this case the 1-skeleton of X1 is a tree. We choose a particular lift of this tree
in X1 to the universal orbifold cover X̃1, which is the (hyperbolic) plane tessellated

by 6-gons. Here X̃1 is the universal cover of the complex of groups described above.
The attaching word traces out a loop in X̃1, which is the boundary of a fundamental
region. Note that although the image of the path backtracks in X1, it is not allowed
to backtrack in X̃1. This means that there must be non-trivial joining elements
where the image backtracks. In X̃ each fundamental region has 6 vertices, including
one point (incident with 3 edges in X̃1) from the orbits corresponding to A and C

and two vertices (incident with 6 edges in X̃1) from each of B and D. At one of the
visits of the attaching word to vertices corresponding to B (or D) we have to use
a non-trivial joining element. We can choose where this is. We get a presentation
for G1 in which the generators are a, b, c, d and a relation obtained by deleting the
edges in the attaching word. This is because the 1-skeleton of X1 is a tree. Thus
there is a relation a−1bd−1c = 1. There are also relations a3 = b3 = c3 = d3 = 1.

Clearly there is a surjective homomorphism φ from G1 to the rectangle group

G = 〈a, b, c, d|a3 = b3 = c3 = d3, x = a−1b = c−1d, y = a−1c = b−1d〉.

Consider the folding sequence corresponding to the “marking” in which lengths
are assigned to the edges with |e| = |g| = 1, |f | =

√
2. Initially we have the 2-cell

attached along w ∪ w′ = ēa−1ebfgc−1ḡdf̄ . The attaching word is quadratic - its
image in X1 is ēefgḡf̄ - and we will see that there is an infinite folding sequence
in which w = ēa−1ebf is folded against w̄′ = fd−1gcḡ. The total length along
top or bottom is 1 +

√
2. After the first subdivision and fold we have a new

complex X2 with the same vertices A,B,C,D and with edges b, c and a new edge
h with length

√
2 − 1 with ιh = A, τh = D and the attaching word has become

ebēb−1a−1bhgc−1ḡdh̄. Note that the joining element a−1 has changed to a conjugate
b−1a−1b as its position has changed.

The 2-cell has w = ebēb−1a−1bh, w̄′ = hd−1ḡcg After the next subdivision and
fold we have a new complex X3 with the same vertex set but with edges h, g, j where
ιj = D, τj = B and j has length 1 − (

√
2 − 1) = 2 −

√
2 and the attaching word

has become jbj̄(b−1db)h̄(b−1a−1bhgcḡ. Note that in this graph there is a vertex D
of valency 3 whereas previously no vertex had valency more than 2. The attaching
word visits the vertex D three times. As before we move the non-trivial joining
element so that it is not at the start or end point of w = jbj̄(b−1db)h̄(b−1a−1b)h.
As noted above this change of position of the joining element corresponds to a
change of the lift of a spanning tree - in this case the whole of the 1-skeleton S1

of X1. Having chosen a lift D̃ of D there are 27 different lifts of S1 to X̃1. These
are acted on by the stabilizer of D̃ and there are nine different orbits under this
action. The attaching map must have at least one non-trivlal joining element on
a visit to D̃, since otherwise one could have used the trivial group as the group at
D. We can choose the lift of S1 so that the joining element is non-trivial at exactly
one visit. In this case we do it so that the non-trivial joining element is at a visit
which is not the start or end point of w. We now have w = jbj̄(b−1db)h̄(b−1a−1b)h
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and w̄′ = gc−1ḡ. We can translate the whole lift by b giving an attaching word
jbj̄dh̄a−1hg(bcb−1)ḡ. All we have done here is conjugate all the elements by b
to make the elements shorter. The next subdivision and fold starts at D and
folds j the shorter edge against g, so that we then have a new edge k with length
1− (2−

√
2) =

√
2− 1 replacing g. Here ιk = B, τk = C and the attaching word is

j̄dh̄a−1hj(c−1bc)k(bcb−1)k̄. Now note that the situation we have reached is similar

to the initial situation scaled by
√

2−1. In fact the positions of A and C have been
transposed from the original position. To get an exact scaling carry out the next 3
folds to get the initial position scaled by (

√
2− 1)2.

The foliation of X1 corresponding to our marking, lifts to a foliation of X̃ and
there is an R-tree T1 in which the points are leaves of this foliation. Clearly T1 is
a G1-tree. Let C be the cube complex for the rectangle group G. As described in

B

A

B D

C

D

Figure 8. The image of a 2-cell

[12] there is a cube complex C̃ on which G acts. Thus

G = 〈a, b, c, d|a3 = b3 = c3 = d3, x = a−1b = c−1d, y = a−1c = b−1d〉.
There is a Euclidean subspace E of C̃ acted on by 〈x, y〉 Assume that x acts on E

by translation 2 in the x-direction, and y by translation of 2
√

2 There is a foliation
on C which induces a foliation on C̃ and E given by the lines x+ y = c. The leaves
of the foliation on C̃ give an R-tree T . There is a map θ : X1 → C, which induces
a homomorphism, denoted θ′ : G1 → G. The map θ induces a map θ̃ : X̃1 → C̃
in which a 2-cell of X̃1 maps into E as indicated in Fig 8. It can be seen that the
foliation of E lifts to the foliation on X̃1 which is the one induced on the 2-cell of
X! corresponding to the marking with |e| = |f | = 1, |g| =

√
2. Thus there is a map

θ̄ : T1 → T which commutes with the actions of G1 and G via θ′.
In G1 the three elements y = b−1d, y′ = a−1c and x = a−1b = c−1d freely

generate a subgroup F and the minimal F -subtree of T1 is non-simplicial. The
elements y, y′ are hyperbolic elements with the same hyperbolic length 2

√
2. Their

axes intersect is a segment of length 2
√

2. In G these elements become equal and
so have the same axis. There may be a G1-tree T ′ for which there are morphisms
T1 → T ′ → T , in which the two axes have a larger intersection than in T1.

Proof of Theorem 1.1. Let T be a G-tree, where G is a finitely presented group.
We have seen that G is the fundamental group of a complex of groups G(X) that
resolves the action.

Let σ be a 2-cell of X. We now examine what can happen as we repeatedly fold
corners of σ, at each stage replacing σ by the new 2-cell created. Since each 1-cell
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of X̃ injects into T we can assign each 1-cell γ of X a length, namely the distance
in T between θ(u) and θ(v) where u, v are the vertices of a lift of γ in X̃.

As above let x be the corner vertex and let e1, e2 be the incident edges.
If e1, e2 have the same length, then we can fold the corner of σ. If e1 is shorter

than e2 then subdivide e2 so that the initial part has the same length as e1 and
then fold the corner. If e2 is shorter than e1 then we subdivide e1 and then fold the
corner. Now repeat the process. This process may terminate when all the 2-cell is
folded away.

However it may happen that the folding sequence is infinite i.e. it never ter-
minates. We examine when this happens. Suppose this is the case and that the
2-complexes in the sequence are Xn, n = 1, 2, . . . .

We can assign lengths to the edges (1-cells) of Xn. Traversing the top semi-
circular boundary of the 2-cell σ determines to a path (or rather walk) w in the
1-skeleton of X1. Let w′ be the path corresponding to the lower semi-circular
boundary. These paths are usually not segments - they can even backtrack. Let
`n be the total length of edges of Xn. It is clear that `n ≥ `n+1 ≥ 0. We have
`n+1 = `n if and only if the fold is a subdivision or a type II fold. In going from Xn

to Xn+1 an arc [yn, yn+1] of the upper semicircular boundary of σ is identified with
an are [y′n, y

′
n+1] of the lower semicircular boundary. Each such arc is identified

with a 1-cell of Xn and so has a length. In Xn the folding has identified [x, yn]
with [x, y′n]. We assume that y = limn yn, and that y′ = lim y′n. It is possible that
y = y′ is the end point of σ and we will see that this is often the case. Let λn be
the length of the arc [yn, y]. Thus λn is the length of the arc which remains to be
folded.

We show that there can only be finitely many type II folds in our sequence. This
is because there can only be a finite number of type II folds to start with as each
such fold will use up the full length of an edge of X1. In our sequence, a type I
fold can only be followed by a type II fold if the type II fold is between edges in
the same orbits as as the ones that were folded together in the type I fold. Thus
there is a vertex in [x, y] such that the adjacent edges are in the same orbit. Such a
vertex must have been a vertex in the original path [x, y] in X1 and so this happens
only finitely many times. Each type III fold decreases the first Betti number of the
quotient graph and so there can only be a finite number of type III folds. In our
sequence there are therefore only finitely many type II or type III folds. Assume
then that all folds in the sequence are of type I. Consider the subspace of X1 which
is the union of the images of the paths corresponding to [x, y] and [x, y′]. If this
is not a subgraph of X1, then one of the paths corresponding to [x, y], [x, y′] in X1

must end in part of an edge not visited by the other path. It is not hard to see
that this will not produce an infinite folding sequence. Thus we assume that this
subgraph is all of the 1-skeleton of X1.

In our sequence of subdivision and type I folds the number of edges in the
quotient graph does not increase, since any subdivision which increases the number
of edges by one is immediately followed by a type I fold which reduces it by one.
Clearly there can only be a finite number of type I folds which are not preceded by
a subdivision, since the number of such folds is bounded by the number of edges of
X1. It may happen that a fold at the n-th stage involves an edge which is not in the
subgraph X ′n+1 determined by the remaining folding sequence. This can happen
for only a finite number of folds, since if this happens X ′n+1 has fewer edges than
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Xn. Thus we assume that each folded edge is in the subgraph determined by the
remaining folding sequence.

For a type I fold `n and λn are reduced by the same amount.
Since we are assuming that each folded edge is in the subgraph determined by

the remaining folding sequence, it is clear that `n tends to zero as λn tends to zero.
Since `n − λn is constant, it follows that `n = λn.

Let wy, w
′
y′ be the directed paths in X1 which are the images of [x, y], [x, y′]

respectively. Clearly they are initial parts of the paths w,w′, so they begin at the
same point. In fact we can assume that they end at the same point by using a
Move 3 to contract the leaf that contains the points y and y′. In fact we will show
that y and y′ are always vertices in the original graph.

From length considerations every edge of X1 occurs exactly twice in w∪w′ or at
least one edge occurs only once. If the latter occurs we will arrive at a contradiction
by showing that the folding sequence must have been finite. Let e the edge which
occurs only once in w∪w′. Without loss of generality suppose it is in w. In fact we
can assume that it is the first edge of w, since we can fold away any edges which
precede it. This folding will not affect the edge e. There is also a folding sequence
starting at the other end of σ. It is not hard to see that this must also be an infinite
sequence and in the limit all of w ∪ w′ is folded away. Folding away those edges
which occur before e in this sequence and after e in the original sequence, we arrive
at a new 2-cell in which the entire path w consists of a single edge e. But such a
folding sequence must be finite - it will just fold e onto the path w′. We have the
desired contradiction.

An infinite folding sequence therefore occurs when there is a 2-cell in which
the attaching map contains every edge exactly twice. As we shall see, however,
a quadratic attaching map does not necessariy correspond to an infinite folding
sequence.

We want to show that we can carry out folding on the different 2-cells and end
up with a complex in which each cell is attached via a quadratic word.

After carrying out a finite number of Type 3 moves we can assume that each
leaf of the foliation intersects the top and bottom of each 2-cell in at most one
vertex. The argument above shows that the limit points y, y′ of an infinite folding
sequence must be vertex points on the same leaf of a foliation and so y = y′ will
be an end point of the 2-cell. If one considers the folding sequence starting from
the other end of the 2-cell, we see that the first point reached where the attaching
word becomes quadratic must also correspond to a leaf of the foliation which, if
it was different from an end point of the 2-cell, would contain two vertices. Thus
every 2-cell corresponds to a finite folding sequence or it corresponds to an infinite
folding sequence given by a quadratic attaching word.

Suppose a complex is given by a single quadratic word w ∪w′. A marking is an
assignment of positive lengths to the letters in such a way that the total length of
w is the same as that of w′. Let a1, a2, . . . , ar be the letters which lie both in w,
and w′. Let b1, b2, . . . bs be the letters which occur twice in w (and so not in w′)
and let c1, c2, . . . , ct be the letter which occur twice in w′, then the aibj , ck can be
assigned arbitrary positive lengths αi, βj , γk subject only to the single constraint
β1 + β2 · · · + βs = γ1 + γ2 · · · + γt. The subspace of the real numbers generated
by the coefficients therefore, has maximal dimension r if there are no letters that
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occur twice in either V or W and it has dimension r + s+ t− 1 if there are letters
that do occur twice in either w or w′.

Choose a resolving complex X that has fewest 1-cells. Each attachment of a 2-
cell must induce an infinite folding sequence, since Type I and Type III folds result
in a reduction in the number of edges, so any Type I fold must be preceded by a
subdivision, and there are no Type III folds. We define an equivalence relation on
the set U of 1-cells that occur as a face of a 2-cell of X. We require that e ∼ f if
there is a 2-cell that includes both e, f in its attaching map. We take ∼ to be the
smallest equivalence relation for which this is the case. For any 2-cell σ of X all
the 1-cells to which it is attached lie in a single equivalence class. Thus for each
equivalence class there is a subcomplex consisting of those 1-cells and its vertices
together with the 2-cells attached to that class. Any two such complexes intersect
in a set of vertices, but no edges. If two 2-cells σ, σ′ share an edge e and vertex u in
their boundaries, then we will see that we can choose the same joining elements in
Gu for the two 2-cells. This is because, as in the example above, if a vertex requires
a joining element, then at some stage in the folding sequence the attaching words
for both σ and σ′ will contain a subword of the form fjuf̄ . In the tree T , f will
map to an arc, τf = u will map to a point v and juf will map to an arc intersecting
f in the single point v. Thus f and juf determine different directions d1, d2 at v,
such that d2 = jvd1. This will be true for both the attached two cells, so that we
can choose the same ju for both attaching words.

For the moment let us assume that there is a single equivalence class, and so
there is a single subcomplex X itself.

In the resolution of the action of G on T each 1-cell e is effectively assigned a
length |e| ∈ R, which is the length of the arc in T joining the images in T of the

end points of a lift of e to the universal cover X̃. Let A be the the subgroup of R,
regarded as an additive group, generated by the set {|e||e ∈ X1}. The group A is
isomorphic to Zn for some n. Let Pn be a parallelepiped group corresponding to
an n-cube, in which we will assign orders to the vertex elements in a certain way.

As described in [12] the group Pn acts on a 1-connected, n-dimensional cubing
Cn that contains an n-dimensional Euclidean space En and Pn contains a free
abelian rank n subgroup Jn that acts on En by translations of 2 units in each of
the coordinate directions. The space Pn\Cn is obtained from Jn\En be identifying
a single antipodal pair of n-cells in Jn\En. We show that there is a subgroup
G′ of G generated by cyclic subgroups of distinct vertex groups of X and a map
θ : X̃ → Cn which is equivariant with respect to a homomorphism G′ → Pn. For
each 2-cell σ in X there is a lift σ̃ such that θ(σ̃) ⊂ En, and the map θ is defined
by specifying how θ acts on these 2-cells.

Suppose A is generated by the real numbers α1, α2, . . . , αn. We assume now that
Jn acts on En by translations of 2αi in each of the coordinate directions. We give
En the structure of a cell complex in the obvious way so that, as for the rectangle
group, Jn acts cellularly and there is one orbit of n-cells subdivided into 2n orbits
of smaller n-cells. For the left hand vertex v in a particular 2-cell σ̃ of X̃ let θ(v)

be the origin in En. Each 1-cell in X̃ has a particular length in A, and this length
will determine a vertex of En. Proceeding around the boundary of σ̃ will determine
a loop in the positive quadrant of En. The distance from the origin will increase
as one passes along the top or bottom of σ̃ away from v and one will reach the
same point which is the image of the right hand vertex of the 2-cell. If a vertex is
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visited more than once in passing along the top or bottom, then on one of the visits
one has to use a joining element to pass to the antipodal subcube in En. This will
mean that the path traced out in En never backtracks, though its image in X will
backtrack.

We illustrate the above argument with another example.

Example 3.2. Consider the pair (aābb̄cc̄, dd̄eē). Suppose a 2-cell corresponding to
this pair arises in the action of a group G on an R-tree with marking |a| = 1, |b| =√

(2).|c| =
√

(3), |d| =
√

(5).|e| = 1 +
√

(2) +
√

(3)−
√

(5).
In this case n = 4 . The path traced out by the word ww′ visits the vertices

(0, 0, 0, 0), (1, 0, 0, 0), (2, 0, 0, 0), (2, 1, 0, 0), (2, 2, 0, 0), (2, 2, 1, 0), (2, 2, 2, 0), (1, 1, 1, , 1),
(0, 0, 0, 2), (0, 0, 0, 1), (0, 0, 0, 0).

If the 1-skeleton of X is a tree X1, in the loop in X1 corresponding to the
boundary of σ the path corresponding to successive visits to a particular vertex
will pass over each edge an even number of times. It the edge is oriented then it
must pass over the edge the same number of times in each direction. This means
that in En if two vertices of σ̃ are in the same G-orbit, then their images in En
are in the same Jn-orbit. Consider the subgroup Gσ of G generated by the joining
elements of σ. The group Gσ is the fundamental group of the complex Xσ of groups
corresponding to σ. All the vertex groups and edge groups are cyclic. Each one is
generated by a power of a joining element. An element that fixes an edge of X̃σ

must fix every edge for the reason explained above. Thus Gσ has a cyclic normal
subgroup Nσ such that Gσ/Nσ acts on X̃σ with trivial edge stabilizers. We now

show that there is a a map θσ : X̃σ → C̃n which is equivariant with respect to a
homomorphism from Gσ to Pn with kernel Nσ.

We map Gσ into Pn by mapping Nσ to the identity element and giving each
joining element to a vertex element in which its order is the order of that element
modulo Nσ. The defining relations between the joining elements of Gσ are given by
the attaching maps of σ as described above. If we map σ̃ into En then the relation
is a consequence of the relations of Jn. Thus we have a homomorphism from Gσ
to Pn.

If a different 2-cell σ′ of X shares an edge e with σ, then there will be a lift σ̃′

that shares an edge with σ̃ and the boundary map of σ′ will determine a closed path
in En. Thus the maps θσ and θσ′ match up nicely and carrying out the extension
to every 2-cell we see that there will be a map θ : X̃ → Cn which restricts to θσ
on each 2-cell σ̃. This map will be equivariant with respect to G′, the subgroup
of G generated by all the Gσ for every 2-cell σ. An infinite folding sequence will
produce an in infinite non-decreasing sequence of edge groups whose union will be
a normal subgroup of the group of the cube complex that is the kernel of the map
to the target group.

Note that any folding sequence results in a sequence of complexes that resolve the
action on T and it can never be the case that the joining element becomes trivial in
the folding. This is because at some stage in a folding sequence the joining element
will lie between an edge e and ē and if the joining element is trivial, then the action
on T will not be resolved. Two vertices in different G orbits in X̃ may end up in
the same Jn-orbit (I don’t know if this can happen - it may be that if two vertices
are mapped to the same Jn-orbit, then some folding sequence will result in a Type
III fold and the images of the vertices lying in the same G-orbit ). If it can happen,
then a way of dealing with this is to give the vertex element in Pn as its order
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the lowest common multiple of the finite orders of any joining elements mapped to
it (modulo the smallest power of that element that fixes an edge) and map each
joining element to an appropriate power of the vertex element in Pn.

If the one skeleton X1 of X is not a tree, then let W be a spanning tree for X1.
In this case we take G′ to be the subgroup of G generated by the joining elements
corresponding to a lift of W to X̃ together with a connecting element generator for
each edge e of X that is not in W . If u, u′ are the vertices of e then the lift of W
to X̃ will contain unique lifts ũ, ũ′ of u, u′. There will not usually be an edge of
X̃ joining ũ, ũ′ but there is a lift ẽ of e with ιẽ = ũ. The generator corresponding
to e is an element c(e) of G such that c(e)−1τ ẽ = ũ′. The edge e is given a length
1
2 |e| in our action on T . We want the corresponding generator to be mapped to
a translation by |e| in Jn. In this case let A be the subgroup of R generated by
{|e||e ∈ EW} ∪ { 12 |e||e ∈ EX

1 \EW}. Taking a generator 1
2 |e| for e ∈ EX1 \EW

means that there is a translation of |e| in Jn since it is through an even number
of units. Let G′ be the subgroup of G generated by all the joining elements and
connecting elements. We can now define a homomorphism from G′ to Pn. We map
each joining element as before, as it will correspond to a vertex of the spanning tree.
For each edge e that is not in the spanning tree, we introduce a vertex that is the
midpoint of the subdivided edge. In Pn we give the corresponding vertex element
v(e) the order two. If the vertex element in Pn corresponding to the initial vertex
of e in Y is u, then we map the connecting element c(e) to the element v(e)u−1,
which will then correspond to a translation of length |e|.

Now consider the case when U may have more than one equivalence class for
the relation ∼. Let Y be the graph in which V Y is the union V X with the set of
equivalence classes U/ ∼ that have more than one element.

Let (Y, Y ) be the graph of groups in which for each v ∈ V X, Y(v) = Gv′ , where

Gv′ is the G-stabiliser of the image v′ under θ of the lift of v in the lift of W to X̃.
For each v that is an equivalence class in U/ ∼ we take Y(v) to be the group G′

defined above. The set EY is the union of EX \ U with an edge for any v ∈ V X
that is the vertex of an edge e that lies in the equivalence class [e] of U , joining v
to [e]. The group in (Y, Y ) attached to this edge will be the cyclic subgroup of G
generated by the joining element of v. If v has not had a joinig element attached
to it, then let the group attached to this edge be the identity subgroup.

The graph of groups we have constructed has the properties listed in the state-
ment of the theorem, and so the proof is complete. �

Not every quadratic word will correspond to an infinite folding sequence. We say
that the pair (V,W ) of words is admissible if the word V ∪ W̄ is quadratic and for
some marking the corresponding folding sequence starts at one end and finishes at
the other. Here we may have to include joining elements to represent the attaching
word in X̃, for example if either V or W contains a subword eē. If (V,W ) is
admissible then any marking which produces such a folding sequence is called an
admissible marking. We now explore which pairs of words (V,W ) are admissible.
Which pairs are admissible seems quite tricky to determine. We have seen in
Example 3.1 that the pair (ēef, fgḡ) is admissible with the admissible marking |e| =
|g| = 1, |f | =

√
(2) On the other hand the pair (aabbcc, ddee) of Example 3.2 with

marking |a| = 1, |b| =
√

(2), |c| =
√

(3), |d| =
√

(5), |e| = 1 +
√

(2) +
√

(3)−
√

(5)
reaches a Type III fold after eleven folds and the pair (aabbcc, ddeeff), |a| = 1, |b| =
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(7), |c| =

√
(11), |d| =

√
(2), |e| =

√
(3), |f | = 1 +

√
(7) +

√
(11)−

√
(2)−

√
(11)

reaches a Type III fold at the hundredth fold. That I am able to determine that the
latter markngs are not admissible is thanks to Andrew Bartholomew for producing
a programme that carries out folding sequences. In the last two cases, there are
homomorphisms to discrete subgroups R4 and R5.

I think the following is true.

Conjecture 3.3. If (V, W̄ ) is admissible, then any marking of maximal dimension
is an admissibe marking.

We have seen above that the pair (aāb, bcc̄) is admissible. Another example is
(abcd, dcba). If the conjecture is true then (aabb, cc), (aabb, ccdd). and (abāb̄, cdc̄d̄)
are not admissible, as there are markings of maximal dimension that result in
folding sequences that give Tyoe III folds.

Proposition 3.4. If Conjecture 3.3 is true then so are the following statements.

(i) A quadratic pair is admissible if and only if one marking of maximal di-
mension is admissible.

(ii) If a pair (V,W ) is admissible then any pair of edges which occurs in both
V and W must have the same orientation.

(iii) Let (V,W ) be an admissible pair. If an edge pair with the same orientation
occurs in V , then no edge pair with opposite orientations can occur in W .

Proof. [(i)]. This is immediate.
[(ii)] Suppose the pair (UaV,WāX) is admissible. By folding from both ends

we can assume that U and X are empty. Let b be the first edge of W , so that
W = bW ′. if a is longer than b then folding will give (a′V,W ′ā′b̄) which means that
(aV,W ′āb̄) is admissible. There will certainly be a marking of maximal dimension
in which a is longer than b. Note that W ′ has fewer edges than W . By repeating
this process we get an admissible pair (aV, āU). But since the first internal vertices
match up, this cannot be admissible.

[(iii)] First note that if V = aUaX and W = bY b̄Z, then by folding and assuming
b is longer than a produces an admissible pair (UaX, b′Y b̄′āZ), which contradicts
(ii). Thus the original pair was not admissible. In general if W contains a pair
of edges b, b̄ that do not have the same orientation, then by folding from one end
we can assume that V = aUaX,W = W ′bY b̄Z. Then by assuming the length
of a is greater than the total length of W ′, by folding we get an admissible pair
(a′UW ′a′X, bY b̄Z). But we have just seen that this cannot be admissible. �
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