A Proof of the Poincaré Conjecture ?
by
M.J.Dunwoody

Colin Rourke has pointed out there is a problem in the statement

“This 2-sphere will have the property that for any equivalence class {p,q} and any 2-
simplex o containing it, the arcs of C pp’, qq' containing p, q are uncrossed, i.e. it uncrosses
every configuration.”

It is certainly true for any configuration as in Fig 2 but I do not see how to prove it
for the Fig 3 ones. There may be an argument using thin position (I hope!).

We give a prospective proof of the Poincaré Conjecture. The proof was inspired by
the beautiful algorithm of Hyam Rubinstein [2] for recognizing the 3-sphere and the proof
of this by Abigail Thompson [3]. The philosophy is that of the final chapter of Dicks and
Dunwoody [1].

I am grateful to Graham Niblo for his very perceptive observations and pointing out
errors in earlier versions.

I thank Matt Brin, Colin Rourke, Lee Mosher, John Crisp and particularly Marc
Lackenby for pointing out mistakes in earlier versions of this paper.

In the Recognition Algorithm one determines a maximal set of disjoint normal surfaces
in a triangulated 3-manifold M that are 2-spheres. Each such surface separates M and
so the set of surfaces correspond to the edges of a finite tree. It is proved that M is a
3-sphere if each region corresponding to a vertex of this tree of valency one either contains
a single vertex of the triangulation or contains no vertices but does contain an almost
normal surface, i.e. one for which the intersections of the surface with 3-simplices are all
3 or 4-sided except for one exceptional 8-sided disc.

In our case we will be dealing with a fake 3-ball M. The algorithm now says that after
finding a maximal set of disjoint normal 2-spheres one only has to examine those regions
corresponding to vertices of valency one which do not contain the boundary region or a
single vertex.

Let M be a fake 3-ball with boundary 2-sphere dM. We assume that M has a
fixed trangulation 7. We also assume that 7' is such that every vertex is in M. Let
f':S? — §M be a homeomorphism and let f = ¢f’ : S? — M where ¢ : 6M — M is the
inclusion map. Since M is a fake 3-ball the map f is null homotopic. Let F': S2 x I — M
be a homotopy between f and a constant map. For t € I let f; : S? — M, fi(s) =
F(s,t). We can assume that for all but finitely many values ¢, f; meets the 1-skeleton 7'
of the triangulation transversely and for each t for which the map f; does not meet 7'
transversely there is precisely one point where f; is tangential to T*. Note that fy = f.
Let ty = 0,t),th,...,t, be the values of ¢ for which f; does not meet T transversely and
put ¢, ., = 1. Fori=0,1,...,n choose t; € (t;,t;,,) and put f; = fi,.

Let W; be the set of intersections of f;(S?) with the 1-skeleton of T' and let w; = |[W;].
Rearrange the weights w; into a finite non-increasing sequence. Order these sequences
lexicographically. The width of T is the minimum sequence of weights as F' ranges over
all possible homotopies.



If F realizes the width of T' then F' is said to be in thin position. Now revert to the
original ordering of the w;’s Clearly for each ¢ either w;y; = w; +2 or w;11 = w; — 2. Note
that wg which is the number of times a boundary of a regular neighbourhood of § M meets
the 1-skeleton is twice the number of internal edges, since each edge has both vertices in
0M. We are particularly interested in the values ¢ for which w; 1 = w;31 = w; — 2. For
such an i, f;(S?) is called a thick sphere, while if w;_; = w;y1 = w; + 2, then f;(S?) is
called a thin sphere .

Given two finite subsets F, F5 of the open interval (0, 1) and a bijection §; : F} — Fj,
there is a continuous map ¢; : I — I which restricts to # on F} and to the identity on
{0,1}. Building up from such maps on the edges of T', it can be seen that given a bijection
B : G1 — G5 between two finite subsets of points in the interior of edges taking a point in
a given edge to a point in the same edge, there is a continuous map v : M — M preserving
simplices and restricting to § on GG;. Such a map will be homotopic to the identity map
on M.

By composing F' with such a map it can be assumed that both W,_; C W, and
W1 C W;. Put W = W;, and let C' be the collection of (possibly intersecting) arcs in
fi(S%) N do as o ranges over the 2-simplexes of T. In fact by altering F' we can assume
W; C W for every j and pairs of vertices which are joined by arcs of C'in W; are also
joined in W.

Let {u,v} =W; — W,_1 and let {z,y} = W; — W,;4;.

Consider the inverse image (under f;) of the 2-skeleton of T'. This will give a tessella-
tion of the 2-sphere. In the case we will be mainly considering we will show that it can be
assumed that the regions are simply connected. In this case we get a cell decomposition
> of the 2-sphere. A 2-cells is called an n-gon if its boundary meets the inverse image of
the 1-skeleton exactly n times.

The 1-skeleton of 3 is a graph I' of which the vertices are the inverse images of the
1-skeleton vertices, and the edges are the arcs of C.

Orient the sphere by selection a direction for a normal at every point and put an
orientation on every edge of the triangulation. Call an intersection of an edge with the
sphere a + intersection if the orientations agree and a — intersection if they do not.

First note that if two vertices of a region lie in the same 1-simplex and one is + and
one is — we can join them be an arc in the region (or by an edge if the vertices are adjacent)
and find a map of S? homotopic to f; and equal to f; outside a neighbourhood of this arc,
so that the new map has 2 less intersections with the 1-skeleton. There is a (singular) disc
in the relevant 3-simplex which is bounded by the image of the arc and the interval of the
1 simplex between the end points of the image of the arc and the homotopy takes place in
a neighbourhood of this disc.

It can be assumed that f;_; and f;1; are obtained from f; by such homotopies as
described above. If the regions involved in the two homotopies are different then the order
of the homotopies can be changed and the weight of the total homotopy reduced - one
peak is replaced by two smaller peaks. Also if x,y, u, v are in the same region and x,y are
still in the same region for the map f;_; then we can also swap the homotopies round and
reduce weight. Similarly if u,v are in the same region for the map f;11 then we can swap
the homotopies. It follows that the exceptional region has two 4, — pairs of vertices and
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the two arcs between the pairs involved in the two homotopies cross.

The simplest such region is as in Fig 1 (a). Note that z,y will be two points on one
edge and u,v will be the vertices on the opposite edge. Removing u, v creates two 3-gons
each containing one of x,y.

We will show that all the other regions have no +, — pairs of vertices which map to
the same 1-simplex. This is similar to the proof in [3].

Suppose p, q are such a pair of vertices in a region. By the above they can be removed
by a homotopy. Suppose first that p,q are both different from any of u,v,z,y. Starting
from the (i — 1)-th stage, we can carry out a homotopy that removes p,q. We then add
in the pair u,v and remove z,y and finally replace p,q so that we are at the (i + 1)-th
stage. This sequence of homotopies has a lower sequence of weights than the original as
the weight of the highest peak has been reduced by two. If, say p = u but ¢ # v then
we can remove p, q this will not separate x,y and so we can remove x,y and then add in
u, v this has replaced the points of W, except that we have replaced ¢ by v and this
can be achieved by a homotopy which only affects the points on one 1-simplex. Again this
sequence of homotopies has a lower weight sequence.

By a similar argument we can show that the only 4, — pairs in the exceptional region
are u,v and x,y.

Note that if two points in a region map to the same 1-simplex, and they are adjacent
in the boundary then they must be a 4, — pair and so it follows that an arc in C' must
join points in distinct faces of a 2-simplex.

Note that the only simple closed curves on the boundary of a 3-simplex which intersect
each 1-simplex so that the intersections are all + or all — intersect each 1-simplex only
once and so they bound a 3-gon and a 4-gon. Also the only embedded curve with the
intersection properties of the exceptional curve is the 8-gon as illustrated in Fig 1. We will
show that we can alter a thick disc by a homotopy so that it is embedded. This means
that it must originally have had only 3-gons and 4-gons plus one exceptional 8-gon.

W

Figl

Consider first the case when f;(S?) is the only thick sphere.

We can alter F' so that no component of the intersection f;(S?) with a 2-simplex
is a closed curve (possibly self-intersecting) and so that the regions described above are
simply connected. If a region is not simply connected then it contains an essentiol simple

3



closed curve. If we carry out surgery along the image of this curve the surface S obtained
is a union of two (possibly intersecting) 2-spheres. Only one of these can contain the
exceptional disc and as such it will be the only 2-sphere containing a returning arc. It
follows that the homotopy as t increases cannot affect the other 2-sphere. Hence it will
not reach the constant map. It follows that the surgery only cuts off singular 2-spheres
which do not intersect the 1-skeleton. It is possible to alter F' to avoid these occurring.
This means that we can assume the regions for f; are all n-gons as we wanted.

As we only have one thick sphere f;(S5?) the sequence of weights satisfies wg < w; <
e <wy > Wig >...>wn:0andwj:wj+1—2ifj<iwhilewj+1:wj—Qifj>i.

Define an equivalence relation on W as follows:- p ~ ¢ if p € W; if and only if ¢ € W
for every j > 1.

Each equivalence class contains two elements. Let o be a 2-simplex of T'.

Define a configuration in a 2-simplex o to be a minimal collection of arcs of C' in o
whose end points are a complete collection of equivalence classes. There are configurations
with 2 pairs as in Fig 2. There are configurations with 3n pairs as in Fig 3 (this shows
the cases n = 1 and 2). There may even be more exotic configurations. The set of
configurations which are not as in Fig 2 is denoted As. A configuration is uncrossed if
for every equivalent pair p,q that it contains the arcs containing p and ¢ are uncrossed.
Otherwise the configuration is said to be crossed. The the configuration in Fig 2 is crossed
as is the first configuration in Fig 3. The more exotic configurations only exist in crossed
form.

Fig2

Fig3

3 3

Eliminating the pairs {p;,q;} in X for each j = 1,2,...n creates a region in which
Pn+1sQn+1 are a 4+, — pair in the boundary.



For such a pair the normals to the surface either point inwards or outwards. Construct
a product of transpositions on the points of W.

First p1,q are left fixed. Transpose p,,q, if and only if the normals to the surface
point outwards.

The product of these transposition can be used to produce a continuous map v : M —
M as above which after“straightening” composed with f; produces a new 2-sphere with
the same set W of intersections with the 1-skeleton.

This 2-sphere will have the property that for any equivalence class {p, ¢} and any 2-
simplex o containing it, the arcs of C pp’, q¢’ containing p, g are uncrossed, i.e. it uncrosses
every configuration.

Thus we see that the above process reduces the number of pairs of crossing arcs, unless
all the ones involving a pair of points in an equivalence class were uncrossed to start with.

We now repeat the above process, except that we work down from W = W, to W,
instead of from W; to W,,. Note that W, determines a normal surface Sy parallel to the
boundary of M. As before define an equivalence relation on W. Put x ~ y if {z,y} C
W; —W;_q for any j = 1,2,...,4. In this case W} is an equivalence class and all other
equivalence classes have two elements. We repeat the unravelling using the new equivalence
relation on W. This new unravelling will produce non-intersecting configurations going
from i to 1. However the new map f/ : S? — M may give rise to a new equivalence
relation corresponding to going from 7 to n. If we keep swapping the processes we must
eventually reach a stage when the configurations for both processes are non-intersecting.
When this happens the patterned surface corresponding to f; is an embedding and so are
each of the intermediate homotoped maps. It follows easily that M is a 3-ball.

In the general case - in which there are more than one thick sphere - let f; : $% — M
be the last thick sphere and let g : S? — M be the last thin sphere. Now g¢(S?) may
contain returning arcs, i.e. it may not intersect the 2-simplices in (possibly intersecting)
arcs joining the same edge. However any such can be removed by homotopies and we
end up with a surface in which the intersections with the 2-skeleton are (intersecting) arcs
joining distinct edges.

The intersections with the 1-skeleton determine a patterned (embedded) surface in
M (see [1]). We show that this surface is a normal 2-sphere N. Using the unravelling
procedure described above we can alter F' so that f; is a 2 sphere which homotops via
embeddings both to a point and also to N. Hence N is a 2-sphere. To complete the proof
we use the Recognition Algorithm. The algorithm now says that after finding a maximal
set of disjoint normal 2-spheres one only has to examine those regions corresponding to
vertices of valency one which do not contain the boundary region or singleton vertices.

We can create a fake 3-ball M; by separating such a region from the rest of M by
cutting along the normal 2-sphere. It is clear from the above that M; must contain an
almost normal surface and so M is not fake at all.
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