
A SHORT PROOF OF THE POINCARÉ CONJECTURE

M.J. DUNWOODY

Abstract. A short, fairly self-contained proof is given of the Poincaré Conjecture.

1. Introduction

In 2002 I attempted a proof of the Poincaré Conjecture and put it on my home page. A number of
errors were pointed out. At the time I was unable to resolve all of them and came to the conclusion
that the approach could not work. Recently I wrote an account of my research [2], particularly
relating to Stallings’ Theorem and the accessibility of finitely generated groups and that made me
think again about my aborted proof. It now seems to me that the approach was a good one and I
have come up with a proof that I think resolves the earlier problems. I think the approach could
provide the proof of the Sphere Theorem that I was looking for on the last page of [1].

The proof, then and now, was inspired by the beautiful algorithm of Hyam Rubinstein [4] for
recognising the 3-sphere and the proof of this by Abigail Thompson [5].

Perelman gave a proof of the Poincaré Conjecture in 2002.
My understanding of simple closed curves on tetrahedrons has benefitted from correspondence

with Sam Shepherd.

2. Patterns in a Tetrahedron

Recall from [1] the definition of a pattern. Let K be a finite 2-complex with polyhedron |K|. A
pattern is a subset P of |K| satisfying the following conditions:-

(i) For each 2-simplex σ of K, P ∩ |σ| is a union of finitely many disjoint straight lines joining
distinct faces of σ.

(ii) For each 1-simplex γ of K, P ∩ |γ| consists of finitely many points in the interior of |γ|.
A track is a connected pattern. If two patterns P and Q intersect each 1-simplex in the same

number of points then the patterns are said to be equivalent. Two equivalent disjoint tracks in the
same 2-complex are said to be parallel. We investigate tracks and patterns in a tetrahedron T , which
we regard as the 2-skeleton |ρ2| of a 3-simplex ρ. We call a track in T an n-track if it intersects n
edges.
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Figure 1.
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If a pattern is as in Figure 1 then the tracks are all 3-tracks or 4-tracks. A pattern in a 3-manifold
is called a normal pattern if the intersection with the boundary of every 3-simplex is like this.

An 8-track is shown in Figure 2. The only tracks one can have in a tetrahedron are n-tracks
where n = 3 or n = 4m for m = 1, 2, . . . .
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Figure 3.

Figure 3 shows a 12-track. A pattern in T can only have two types of track. There can be
3-tracks, each of which separates one of the corner vertices from the other three vertices. There can
be one other parallel set of tracks each of which is a 4n-track for the same positive integer n. Each
such track separates the four vertices into two pairs. If n > 0 is even, the 4n-track separating u, v
from w, z is as in Figure 2 but with n − 1 lines crossing from uv to wz. While if n > 1 is odd the
4n-track separating u, z from v, w is as in Figure 3 but with n− 1 lines crossing from uv to wz.

A track in T is a simple closed curve, which will bound a disc in |ρ|. If M is a 3-manifold and M
is triangulated so that M = |K| where K is a finite 3-complex, then a pattern P in |K| determines
a patterned surface S such that for each 3-simplex ρ, S ∩ |ρ| consists of disjoint properly embedded
discs and S ∩ |K2| = P . A patterned surface is determined, up to isotopy, by the intersection
P ∩ |K1|. If the pattern in |K2| is normal, then the patterned surface is a normal surface.

Orient a track in T by choosing a positive direction as one goes along the track. At adjacent points
of intersection of a track with an edge the directions of the track will be opposite to each other. This
gives what we call a + - pair, i.e. a pair of points - not necessarily adjacent - of intersection points
of an edge with a track where the track has opposite directions. This will be of more significance
for singular “tracks ” or stracks as shown in Figures 4 and 5, as if a pair of points of intersection
on an edge can be removed by a homotopy iand then the pair is a + - pair. A track in T has a +
- pair if and only if it is not a 3-track or a 4-track, since any track which intersects an edge more
than once will have a + - pair.

A spattern sP in K is defined to be a subset of |K| satisfying

(i) For each 2-simplex σ of K, sP ∩ |σ| is a union of finitely many straight lines joining distinct
faces of σ.

(ii) For each 1-simplex γ of K, sP ∩ |γ| consists of finitely many points in the interior of |γ|.
Each such point belongs to exactly one straight line in each of the 2-simplexes containing γ.
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A strack is a spattern that has no proper subspatterns. Every spattern is a union of finitely many
stracks. A strack in T is the image of a circle. If M is a 3-manifold and M is triangulated so that
M = |K| where K is a 3-complex, then a spattern sP in |K2| determines a spatterned surface S
such that for each 3-simplex ρ, S ∩ |ρ| consists of singular discs and S ∩ |K2| = sP .

Let f : S2 → M be a general position map (see Hempel [3], Chapter 1), in which f is in general
position with respect to a triangulation K of M . An i-piece of f is defined to be a component of
f−1(σ) where σ is an (i + 1)-simplex of K. Thus a 0-piece is a point of S2. A 1-piece is either an
scc (simple closed curve) or an arc joining two 0-pieces. If there are no 1-pieces that are scc’s, then
each 2-piece has boundary that is is a union of 1-pieces. One can use surgery along simple closed
curves to change f to a map in which there are no 1-pieces that are scc’s, and in which every 2-piece
is a disc. The 2-pieces will then give a cell decomposition (tessellation) of the 2-sphere.

If R is a 1-piece with end points u, v whose images under f are in the same 1-simplex, then the
restriction of f to R is called a returning arc.

If f : S2 → M is a general position map with no 1-pieces that are returning arcs, then the
intersection of f(S2) with the 2-skeleton of M is a spattern sP and there is a homotopy from f to
f ′ : S2 →M in which the image is the spatterned surface determined by sP .

Let γ be a 1-simplex of M . Two points p, q ∈ γ ∩ f(S2) are said to be removable if there is a
homotopy from f to a map f ′ : S2 →M such that f(x) = f ′(x) for every x that is not in the interior
of a simplex with γ as a face and γ ∩ f ′(S2) is the same as γ ∩ f(S2) but with p, q removed.

The pair of end points of a returning arc R are removable by the following homotopy. Let σ
be the 2-simplex of K such that f(R) ⊂ σ. Let V be a regular neighbourhood of R in S2. Let
V ◦ be the interior of V regarded as a subspace of V . Let βV be the boundary of V regarded as
a subspace of S2, so that βV = V − V ◦. Let γ be the 1-simplex containing the end points of R.
The regular neighbourhood V is a disc and βV = δV is a simple closed curve in S2. The union
of all the 3-simplexes that contain γ is a closed ball and f(βV ) ⊂ B◦ − σ, which is contractible.
Define f ′ : S2 →M so that f ′ is continuous, f ′ and f are the same when restricted to S2−V ◦, and
f ′(V ) ⊂ B◦ − σ. Note that removing p may create more 1-pieces that are returning arcs or sccs,
but the size of the intersection with the 1-skeleton goes down by two. In the case in which we are
interested intersections which are sccs can be removed as above. The maps f and f ′ are homotopic.
This is illustrated in Figure 4, where it is shown how the removal of the ends of a returning arc will
create returning arcs in two other simplexes that have the same 1-face.

There are also removable pairs of points if a strack intersects a 1-simplex in a + - pair. In [1]
there is a mistake on page 253 of that section on simplifying surface maps. It is incorrectly asserted
there that any pair of points in the intersection of the boundary of a 2-piece with a 1-simplex can
be removed by a homotopy. Suppose Q is a 2-piece and that γ is a 1-simplex for which δQ ∩ γ
contains at least one + - pair. Let s : S1 → δQ be as in the definition of a strack. There will be
at least one + - pair in γ for which there is an arc I = [p, q] ⊂ S1 such that s(p) = u and s(q) = v
and s(I) intersects γ only in its end points u, v. Such a pair is removable. Thus if γ contains a +
- pair, then it contains a removable pair. Let p, q be a removable pair as above. There will be a
map s′ : [p, q] → Q which is close to s, for which s′(p) = u, s′(q) = v and the image of the open
interval (p, q) is contained in the interior of the 3-simplex ρ containing Q. Any two maps of I into
the interior of ρ are homotopic. In particular there will be such a map that is close to the interval J
in γ joining p, q. We can adjust f : S2 →M by a homotopy so that the piece Q contains the image
of this map. Thus f ′ : S2 →M is the same outside Q and on the boundary of Q, but in the interior
of Q takes the arc close to s to the arc J . Now f and f ′ are homotopic. Another homotopy in a
neighbourhood of I, will give a new map f ′′ in which the pair p, q has been removed. This homotopy
is similar to the one for removing a returning arc.

In both cases, a removable pair can be removed without disturbing any other points of intersection
with the 1-skeleton.

Figure 5 shows an 11-strack in T that has no + - pairs of points. I conjecture that a strack in T
must intersect all six edges to have a + - pair.
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Figure 5.

If S is a spattern in a 2-complex K, then there is a uniquely determined underlying pattern P
that has the same intersection with the 1-skeleton of K. Put W = S ∩ |K1| = P ∩ |K1|.

Figure 6 shows a spattern in T that is a union of a red 12-track and a blue 3-track, and its
underlying pattern, which is also a 3-track and a 12-track. The underlying pattern for the strack of
Figure 5 has two 4-tracks. and one 3-track.
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Figure 6.

Given two finite subsets F1, F2 of the closed interval [0, 1] and a bijection βI : F1 → F2, there is
a continuous map φI : I → I which restricts to β on F1 and to the identity on {0, 1}. There is a
homotopy between φI and the identity map.

Building up from such maps, if ν : W → W is a permutation that restricts to a permutation on
W ∩ |γ| for each 1-simplex γ, then ν extends to a map of the 1-skeleton into itself which restricts
to the identity on the 0-skeleton and which is homotopic to the identity map on K(1). This map
can be further extended linearly to a map of the 2-skeleton and then, in the case of a triangulated
3-manifold, to a continuous map ν : M → M which is homotopic to the identity map on M . It
will have the property that if two points on the boundary of a 2-simplex σ are joined by a line in
S ∩ σ, then they are joined by a line in νS ∩ σ. A spattern S in K is mapped to another spattern.
Lines that were uncrossed may become crossed, and lines that were crossed may become uncrossed.
The underlying pattern P is not changed. The tessellation of S together with the pieces of the
tessellation are unchanged in such a map.

Our proof of the Poincaré Conjecture is to show that a certain spattern must occur in a homotopy
from the boundary of a fake ball to a constant map, and this spattern is homotopic to its underlying
pattern by such a homotopy.
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3. The Proof

Let M = |K| be a 3-manifold, where K is a finite 3-complex. It follows from a result of Kneser
(see [1] or [3]) that there is a bound on the number of disjoint non parallel normal surfaces in a
compact triangulated 3-manifold. I was able to prove that finitely presented groups are accessible
by generalising this result to patterns in a finite 2-complex. In the Recognition Algorithm one
determines a maximal set of disjoint normal surfaces in a triangulated 3-manifold M that are 2-
spheres. If M is simply connected, then each such surface separates M and so the set of surfaces
correspond to the edges of a finite tree. It is proved that M is a 3-sphere if each region corresponding
to a vertex of valency one in this tree either contains a single vertex of the triangulation or contains
no vertices but does contain an almost normal surface, i.e. one for which the intersections of the
surface with 3-simplexes are all 3 or 4-sided except for one exceptional 8-sided disc.

Let M be a fake 3-ball. Let M0 be a component, obtained by cutting along the maximal collection
of normal 2-spheres, which has one boundary component and which does not contain a vertex. By
Van Kampen, M0 is simply connected, and so it is either a ball or a fake ball. In either case there is a
homotopy between the boundary and the constant map. Let f : S2 →M be an injective map whose
image is the normal 2-sphere δM0. Let F : S2 × I →M0 be a homotopy between f and a constant
map. For t ∈ I let ft : S2 → M0, ft(s) = F (s, t). We can assume that for all but finitely many
values t, ft meets the 1-skeleton T 1 of the triangulation transversely and for each t for which the
map ft does not meet T 1 transversely, there is precisely one point where ft is tangential to T 1. Let
t′1, t

′
2, . . . , t

′
n be the values of t for which ft does not meet T 1 transversely and put t0 = 0, tn+1 = 1.

For i = 1, ..., n choose ti ∈ (t′i, t
′
i+1) and put fi = fti .

Let Wi be the set of intersections of fi(S
2) with the 1-skeleton of T and let wi = |Wi|. Rearrange

the weights wi into a finite non-increasing sequence. Order these sequences lexicographically. The
width of T is the minimum sequence of weights as F ranges over all possible homotopies. If F
realises the width of T , then F is said to be in thin position. Now revert to the original ordering
of the wi’s. Clearly for each i either wi+1 = wi + 2 or wi+1 = wi − 2. Note that w0 is the number
of intersections of δM0 with the 1-skeleton. For F in thin position, we are particularly interested in
the values i for which wi−1 = wi+1 = wi − 2. For such an i, fi(S

2) is called a thick sphere, while
if wi−1 = wi+1 = wi + 2, then fi(S

2) is called a thin sphere. Our interest will be in the first thick
sphere. Since there are no removable pairs in a normal surface, w1 = w0 + 2. Let S = fk(S2) be the
first thick sphere. Each of the preceding fj(S

2) = Sj , 1 ≤ j ≤ k, satisfies wj−1 = wj − 2, so that
Wj = Wj−1 ∪ {uj , vj} where uj , vj are a pair of points, labelled j, j, from a particular 1-simplex γj .

Now consider fk : S2 → M0 with S = fk(S2). We follow the argument of [5]. We know that
the homotopy going from fk to fk+1 results in the deletion a removable pair in a 1-simplex γ and
the homotopy going from fk to fk−1 results in the removal of another pair. Both pairs must belong
to the same 2-piece, for if there is no 2-piece that contains both pairs, so that one pair is in one
2-piece and the other removable pair is in another 2-piece, then the order of the homotopies can be
changed and the weight of the total homotopy reduced - one peak is replaced by two smaller peaks.
Also if both pairs are in the same 2-piece and one pair is not separated by the removal of the other
pair, then we can also swap the homotopies round and reduce weight. It follows that the exceptional
2-piece has two removable pairs and that removing one pair disconnects the 2-piece. The simplest
such 2-piece has boundary an 8-track as in Figure 2. Removing one pair (labelled k, k) creates two
3-tracks, with the pair on the opposite edge separated as shown in Figure 7. In an isotopy this is
the only possibility for the exceptional 2-piece. For a homotopy there are other possibilities such as
the 12-strack in Figure 8. In this case removing the pair labelled k, k gives a blue 3-track and a red
7-strack. In both cases, note that the lines joining the pair labelled k, k connect to points on the
other two edges of the 2–simplex. They are neither returning arcs, nor do they connect to points
on the same 2-simplex.. If they did, then removal of the pair labelled k, k would not disconnect the
strack.

We will show that all the 2-pieces apart from the exceptional one have no removable pairs. This
is similar to the proof in [5]. Suppose p, q are a removable pair of 0-pieces in a 2-piece different
from the exceptional 2-piece. Starting from the (k − 1)-th stage, we can carry out a homotopy that
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Figure 8.

removes p, q. We then carry out the homotopies fk and fk+1 before replacing p, q. This sequence of
homotopies has a lower sequence of weights than the original, as the weight of the highest peak has
been reduced by two lower ones. If p, q are in the exceptional 2-piece but are also in Wk−1 or Wk+1,
then we can also construct a sequence of homotopies with a lower weight sequence.

Let W = Wk. It is clear that S = fk(S2) has no returning arcs and so it is a spattern. Let
P be the underlying pattern. It will be shown that there is a permutation of W , restricting to a
permutation on each intersection with a 1-simplex for which the corresponding homotopy changes
S to P .

We see that W0 is the set of vertices of a normal 2-sphere S0 = δM0. The pair u1, v1 will be the
ends of a returning arc in at least one 2-simplex. In another 2-simplex u1, v1 will be joined by lines
in both S1 and S to the vertices of an edge in S0. Having such a situation in a 2-simplex is the only
way that removing u1, v1 will give a normal pattern.

u1 v1x y

w z

Figure 9.

Figure 9 shows the situation for u1, v1 which lie in the 1-simplex γ1. In at least one 2-simplex
containing γ1 as a face, u1, v1 will be joined to the vertices w, z of an edge of S0, shown dashed red.
In P , w, z will be joined to points x, y by lines, shown blue in Figure 9. Let ν1 be the permutation of
W , which restricts to (v1, x)(u1, y) for W ∩ γ1 and is the identity map on all the other 1-simplexes.
Under the corresponding homotopy the two lines become uncrossed if they were crossed before. Note
that the end points are adjacent and stay adjacent because the homotopy takes place in M0 and so
the new lines of the homotopy do not intersect the lines of S0. The pattern for S0 in each 3-simplex
is as in Figure 1 and so the homotopy ν1 must take place in one of the regions which is not bounded
by two parallel lines. This is illustrated in Figure 10, which indicates what can happen in the faces
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of a 3-simplex. If a 2-simplex σ contains γ1 as one of its faces, but has no intersection with S0, then
the points will be joined by a returning arc in σ. In σ, a 4-track has been replaced by two 3-tracks.
If instead of joining the ordered pair u1, v1 to the vertices of the second edge, we joined v1, u1 to
those vertices we would get a 6-strack. To get a subgraph of P one must join up the points to give
two 3-tracks.
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Figure 10.

We use an induction argument for defining νi for 2 ≤ i ≤ k.

ui vix y ui vix y

(a) (b)

Figure 11.

Our aim is to show that for each 1-simplex γ we can permute the finite set γ ∩ S in such a way
that under the associated homotopies the spattterned 2-sphere S becomes the underlying patterned
2-sphere P . It will then be the case that F becomes an isotopy.

Let γi be the 1-simplex containing ui and vi.
We have defined ν1. Let µ1 = ν1. We now define νi and µi for i = 2, . . . , k to be permutations

of W , where νi restricts to a permutation on the points of W ∩ γi and is the identity on the other
points of W , and so that the homotopy associated with µi = νiµi−1 moves the points of Wi to the
positions they should have in P . In at least one of the 2-simplexes containing γi as a face there are
lines in S joining uj to ui for some j < i or there is a situation as in Figure 9, in which ui, vi are
joined to the vertices of an edge of Sj for j < i.

If there are lines in µi−1S joining ui to uj and vi to vj it will be as in Figure 11(a) or there will
be three labelled pairs joined by lines as in Figure 11(b). This is because Si has a returning arc
joining ui and vi and this returning arc was created by one or more homotopy fj for j < i.

In Figure 11 (a) we see what happens in a 2-simplex σi containing γi, if the lines joining ui and
vi come from a single pair uj , vj . In Figure 11(b) the lines to ui, vi come from two pairs. The lines
in blue are those of µi−1S ∩ σi. The lines in red are the ones we move them to in µiS. The bottom
edge is the 1-simplex γi containing the pair ui, vi which have labels i, i in the labelling for S. In
at least one of the 2-simplexes containing γ there will be a 1-face different from γ containing an
adjacent pair with labels l, l for l < i, which are joined by non-intersecting lines in P to the pair
x, y in γi, or the situation will be as in Figure 11(b) so that there are pairs with labels less than i in



8 M.J. DUNWOODY

each of the other two faces. The induction step is to apply the permutation νi = (vi, x)(ui, y) to the
set γi ∩W . Of course if ui = y we apply the transposition (vi, x). Again with each transposition we
also transpose all attaching lines in all 2-simplexes containing γ. This change will not disturb any
of the vertices of Wi−1 or the edges joining them. Note that x, y will have labels bigger than i as
if, say, x ∈Wi−1, then in Si−1 there would be a point in the intersection of a 1-simplex with µi−1S
joined to both ui and y and this does not happen in a spattern.. Put µ = µk.

For each labelled point of W we can choose a line in µS joining the point to a point of W0 or a
point with a smaller label. This will give us a connected subgraph of both P and µS that contains
every point of W . This must mean that P is connected. Since S is a 2-sphere and µS is obtained
from S by permuting the points of W and the lines joining them, µS is also a 2-sphere. But we now
know P and µS have a common spanning subtree. Also P and µS have the same number of edges.
This means that P is also a 2-sphere, as P and µS will have the same Euler characteristic. The
addition of each edge not in a spanning tree results in a region being divided in two, and so there is
one extra face for each such edge..

It now follows that at the end of the induction P = µkS so that P determines a patterned
2-sphere.

We now know that µS is a patterned surface. All the 2-pieces, apart from the exceptional one,
intersect each 1-simplex at most once and so are 3-sided or 4-sided. The 8-track shown in Figure 6(a)
is the only possibility for the exceptional 2-piece. Thus S has become an almost normal 2-sphere
and we have a proof of the Poincaré Conjecture. In the homotopy F , the first thick sphere S will
also be the last thick sphere. After applying µ, then for j > k each step of the homotopy becomes
an isotopy in which a returning arc joining adjacent points is removed. There is now a new labelling
of W in which every point receives a label j, where n+ 1 ≤ j ≤ n. The pair of points labelled j + 1
will be a removable pair in fj(S

2).
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