THE KROPHOLLER CONJECTURE

M.J.DUNWOODY

ABSTRACT. The first version of this paper, gave another proof of the Kropholler
Conjecture, which gives a relative version of Stallings’ Ends Theorem, following
an earlier incorrect proof. It has been pointed out by Sam Shepherd that the
the second proof was still inadequate. We explain the difficulty and possible
ways to obtain a correct proof.

1. INTRODUCTION

In [2] the I gave the first of two incorrect proofs of the long standing Kropholler
Conjecture. Unfortunately the proof was inadequate, as was pointed out by Alex
Margolis in a careful analysis. The mistake was on p168 in the discussion about
fitting two trees together. In the first version of this paper I attempted another
proof, but again it was inadequate.

2. THE KROPHOLLER CONJECTURE

We follow the notation and terminology of [2], which contains a historical account
of the conjecture and the results already obtained.

Let G be a group and let H be a subgroup. A subset S C G is said to be H-finite
if S is contained in finitely many right cosets of H, i.e. for some finite subset F' of
G, we have S C HF'. A subgroup K of G is H-finite, if and only if H N K has finite
index in K. Two subsets R, S C G are said to be H-almost equal if the symmetric
difference R + S is H-finite. We write R =* S. A set A is H-almost invariant if
A =2 Ag for every g € G. If A is almost invariant, then so is A* = G — A. We say
that A is proper if neither A not A* is H-finite.

Conjecture 2.1 (Kropholler, 1988). Let G be a group and let H be a subgroup.
If there is a proper H-almost invariant set A such that A = AH, then G has a
non-trivial action on a tree in which H fixes a verter v and every edge incident
with v has an H-finite stabiliser.

If a group G has such an action, then it has such an action in which there is
one orbit of edges. This will correspond to a decomposition of G as a free product
with amalgamation or as an HNN-group. We say that G splits over an H-finite
subgroup.

In [2] it is shown that if G is finitely generated over H, i.e. G is generated by
H U S, where S is finite, then there is a connected G-graph X with one orbit of
vertices and finitely many orbits of edges, and for which there is a vertex o fixed
by H. If there is a set A as above, then the graph H\X has more than one end.
This means that B(H\X) has a nested set of generators, at least one of which will
be an infinite subset of V(H\X), with infinite complement. It is shown that lifting
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this set to VX will give a proper H'-almost invariant subset A’ of G, with right
stabiliser K, satisfying H'A'K = A’, with H' < H < K.

This means that in Conjecture 2.1, we can replace the condition A = AH by
A= HAK where H < K, in the case when G is finitely generated over H.

Let A be H-almost invariant and let HA = A, so that A+ Ag is a union of finitely
many right H-cosets for every g € G. Let K be the right stabiliser of A. Suppose
that H is the left stabiliser of A and that H < K, so that A= HAH = HAK.

Let X be the 2-complex in which the 1-skeleton is the complete graph on VX =
AG, and there is a 2-simplex for each triple of distinct vertices in V. X. Thus X is
the complete 2-complex on the set AG = {Ag|g € G}.

Let o = o(u, v, w) be the 2-simplex with vertices u, v, w. The set u+v is a finite
set of cosets. Each coset in u 4 v also belongs to exactly one of u + w and v 4+ w,
so that u +v = (u+ w) + (v + w).

As in [2] we can define a metric on VX in which d(u,v) is the number of right
H-cosets in u + v.

Consider a 2-simplex o of X with vertices u,v,w. We know that d(u,v) <
d(u,w) + d(w,v). Also (u+v)+ (v+ w) + (w+ u) = 0(mod 2) and so the sum
d(u,v) +d(v+w) 4+ d(w,u) is even. Hence as in [1] p224 there is a pattern P in | X|
for which

(i) For each 2-simplex o of X PN|o| is a union of finitely many disjoint straight
lines joining distinct faces of o.
(ii) If v = [u,v] is a 1-simplex of X, then |y| N P consists of d(u,v) points.
A track is a connected pattern.

Let EX be the set of 1- simplexes of X. Let jp : EX — Z, where jp(y) is the
number of points in |y| N P. Two patterns P,Q are equivalent if jp = jo. Two
disjoint tracks are equivalent if and only if they bound a band, a closed subset of
X that contains no vertex or central region.

Since H'(X,Zs) = 0 (see below) our complex X admits a two colouring in
which vertices u, v have the same colour if d(u,v) is even. This colouring extends
to | X| — P (see Fig 1) in such a way that adjacent regions have different colours.

As in [1] p225, let Dp be the graph in which

VDp is the set of components of | X|— P,

EDp is the set of tracks of P

v

FIGURE 1.

If e € EDp, then the vertices of e are the components whose closures contain
e. Because X can be two coloured as above, every edge of Dp is incident with
different vertices, so that there are no twisted tracks. In fact Dp is a tree, since
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HY(X,Zs) = 0, which means that tracks separate by [1] Proposition VI, 4.3. We
get H'(X,Z5) = 0, since every n-cycle in the 1-skeleton of X bounds a disc made
up of n — 2 triangles, each containing a a particular vertex v of the cycle and one
of the n — 2 edges of the cycle not incident with v.

The pattern P is invariant under the action of G, and so Dp is a G-tree. We
have shown that for an H-almost invariant set A such that A = HAK as above,
there is a uniquely determined G-tree given by the pattern P.

Let Hx be a coset. If Hx is in an edge uv of the 2-simplex o = wvw, then it
belongs to exactly one of the other two sides. For each edge containing Hx select
an interior point. Joining points corresponding to Hx in every 2-simplex will give
a track t intersecting each simplex at most once. If every track of P was such a
track, then Dp would be a tree as predicted in Conjecture 2.1.

A ‘proof’ was given of this in the first version of this paper. However Sam
Shepherd has pointed out that a track of P might intersect an edge of X in more
than one point. To see how this can happen consider four distinct vertices u, v, w, z
in VX. They determine a subcomplex. Y of X consisting of 4 2-simplexes that are
the faces of a 3-simplex (tetrahedron) with those four vertices. Topologically this
will be a 2-sphere, and a track will intersect the 2-sphere in finitely many simple
closed curves.

A track of P might intersect Y in a pattern in which there is a track as in Fig 2.

In the first version of this paper it was claimed that this tree had the prop-
erties required to prove Conjecture 2.1. This was done by showing that tracks
corresponded to cosets in a nice way.

In fact this will be the case if every track intersects any edge in at most one
point, but so far we have been unable to show that this is the case.

The fact that each track separates, means that there is another metric d; on VX
in which d; (u,v) is the number of tracks of P which separate u,v. It can be seen
that for every pair u,v we have dj(u,v) < d(u,v). The metric d; is a tree metric,
since d (u,v) is the number of edges in the tree Dp joining u, v.

The metric d; will give rise to tracks that intersect each edge as most once. For
example consider the tracks for d and d; intersecting Y. A track in Y is a simple
closed curve, and will partition VY into two subsets and each partition will be the
same as one corresponding to a track which intersects each edge at most once. Thus
for example the partition {u, v, w, z} = {u, v}U{w, 2} given by the track in Fig 2 can
be achieved by the track as in Fig 3, and the partition {u,v, w, z} = {u, 2} U {v, w}
can be achieved by the track as in Fig 4.

There is a bijection between the set of tracks for the metric d; and the set of
tracks for the metric d. To see this note that a track of P separates u,v if and
only if it intersects the edge uv an odd number of times. Since there are no twisted
tracks, every track intersects at least one edge an odd number of times.

Suppose that the G-tree T corresponding to the di-metric for P is trivial. Thus
there will be a vertex o of T' which is fixed by G. If o is in the orbit of the vertices
of X, then T will consist of a single point. If not then T will have an orbit uG of
vertices of X and there will be a vertex o of T fixed by G so that the d; distance
of o from every vertex of uG is constant. It seems likely that this means that the
only possibility for the intersection of Y with the pattern corresponding to d; is a
multiple of the four tracks as in Fig 5. The action on T is trivial, if and only if the
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values taken by d; are bounded. If the action is trivial, then d; can take only even
values.

v z v z
u w u w
FIGURE 2.

v z v V4
u w u w
FIGURE 3.

v V4 v V4
u w u w
FIGURE 4.

The tracks for the metric d; intersect each 2-simplex in just one line joining two
edges.

If every intersection of the pattern P with Y is as in Figures 3, 4, 5 or 6, then
one can prove that the metrics d and d; are the same. This is because if there are
no intersections of tracks with Y as in Fig 2, then it is the case that every track
intersects each edge at most once and there is a bijection between tracks and cosets.

If the tree Dp is non-trivial, it will be a G-tree. If, in addition, the metrics d and
dy are the same, then this tree will be as predicted in Conjecture 2.1. The vertex
of Dp corresponding to the vertex A of X will have stabiliser K which contains H.
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v V4 v V4
u w u w
FIGURE 5.

v z v z
u w u w
FIGURE 6.

For H finite, the Almost Stability Theorem [1] tells us that the almost equality
class of A is the vertex set of a G-tree with finite edge groups. If A is a proper
almost invariant set, then this set does not include either the empty set or all of G,
and so this tree is non-trivial. This will also be the case for our tree Dp.
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