
AN (FA)-GROUP THAT IS NOT (FR)

M.J. DUNWOODY

Abstract. An example is given of a finitely generated group L that has a non-trivial stable action
on an R-tree but which cannot act, without fixing a vertex, on any simplicial tree. Moreover, any

finitely presented group mapping onto L does have a fixed point-free action on some simplicial

tree.

1. Introduction

In [20, p. 286] Peter Shalen asked the following:

Question A. Suppose that Γ is a finitely generated group which admits a non-trivial action by
isometries on some R-tree. Does it then follow that Γ admits a non-trivial action, by isometries
and without inversions, on a Z-tree? Equivalently, does Γ admit a non-trivial decomposition as the
fundamental group of a graph of groups?

In this paper we show that the answer to this question is negative by constructing a finitely
generated group L that has a non-trivial (i.e., without global fixed points) action on some R-tree T
but which has no non-trivial action on any simplicial tree. Recall that a group G is said to satisfy
Serre’s property (FA) if any simplicial action (without edge inversions) of G on a simplicial tree has
a global fixed point (see [19, I.6.1]). Similarly, G has property (FR) if every isometric action of G
on an R-tree fixes a point. The main result of this paper is

Theorem 1.1. There exists a finitely generated group L which has property (FA) but does not have
property (FR). Moreover, L is not a quotient of any finitely presented group with property (FA).

In fact, our approach (using Construction 3.2) shows that any finitely generated group G0 can
be embedded in a group L satisfying the claim of Theorem 1.1. Thus there are uncountably many
pairwise non-isomorphic groups L with above properties.

The second claim of Theorem 1.1 shows that property (FA) does not define an open subset in
the space of marked groups, which answers a question of Yves de Cornulier (see [4] or [21]). This
contrasts with the fact that any finitely generated group with property (FR) is a quotient of a
finitely presented group with this property (this follows from the work of Culler and Morgan [6] and
is explicitly stated in [21, Thm. 1.4]).

Recall, that an action of a group Γ on an R-tree is said to be stable if there is no sequence of
arcs li such that li+1 is properly contained in li for every i, and for which the stabilizer Γi of li is
properly contained in Γi+1 for every i. In [2] Bestvina and Feighn proved that if a finitely presented
group has a non-trivial minimal stable action on an R-tree then it has a non-trivial action on some
simplicial tree.

The group L from Theorem 1.1 is not finitely presented and possesses a non-trivial unstable action
on a real tree T . It is possible to construct unstable actions of finitely presented groups on R-trees
(see [11]), but all of such (known) examples admit non-trivial actions on simplicial trees. I have [12]
recently shown that the answer to Question A is positive if the group Γ is finitely presented.

The construction of L uses folding sequences which I have studied in various papers (e.g. [10]). In
[9] I used a folding sequence construction to give a negative answer to another question of Shalen [20,
Question D, p. 293], by showing that there is a finitely generated group that has a non-trivial action
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on an R-tree with finite cyclic arc stabilizers but which has no non-trivial action on a simplicial tree
with small arc stabilizers. This example did, however, have a non-trivial action on a simplicial tree
with edge stabilizers which were not small.

In our new examples the arc stabilizers are not small. However the construction depends on
finding an ascending sequence of groups Gi that satisfies certain properties (see Section 3). These
groups become arc stabilizers in L. It may be possible to construct such a sequence of groups which
are small or even finite. The resulting group L would then give a negative answer to both Shalen’s
questions mentioned above.

The first version of this paper, that appeared on arXiv , was coauthored by A. Minasyan. This
version contained errors, one of which was rather subtle. It has taken a substantial rewriting of the
paper to correct these errors. It was mistakenly stated in that paper that the R-tree constructed
there was a strong limit of the folding sequence given there. In this paper we give two different
folding sequences that have the same limit (possibly after some scaling). The R-tree T constructed
here is not a strong limit of the first folding sequence given here, which is a corrected version of
the folding sequence in the earlier version. In [15] it is shown that a non-geometric action of a
finitely generated group G on an R-tree is a strong limit of geometric actions.. Initially I thought
that the action here must be a counter-example to this result. However after a correspondence
with Gilbert Levitt, in which he displayed commendable patience, I have managed to construct a
different folding sequence that does converge strongly to the action. This folding sequence makes it
possible to deduce further properties of the limit action. In particular it follows that arc stabilisers
are subgroups of conjugates of a Gi. Information is also obtained about the structure of PLF (L),
the space of projectivized translation length functions of fixed-point free actions of L on R-trees. It
is shown that this space contains a subspace that is the closed interval [1/2, (

√
5 − 1)/2] in which

1/2 is identified 7/12, the action of our first folding sequence being this identified point.
Ashot Minasyan has indicated that he no longer wishes to be a coauthor of this paper. I regret this

and acknowledge his important contribution. In particular he was responsible for the construction
of the good sequences of groups. He also pointed out the relevance of [6].

2. The Folding Sequence

The definition below describes the families of groups we will be working with.

Definition 2.1. Let G0 < G1 < G2 < G3 < . . . be a strictly ascending sequence of groups. We will
say that this sequence is good if for every i ∈ N there is an element ai ∈ Gi+3 such that all of the
following hold:

(i) ai centralizes Gi−1 in Gi+3;
(ii) Gi+3 = 〈Gi, aiGia−1

i 〉;
(iii) if Gi+1 acts on a simplicial tree T then the restriction of this action to Gi fixes a vertex of

T .

Suppose that a sequence of groups G0 < G1 < . . . satisfies conditions (i) and (ii) of Definition
2.1. Associated with this sequence of groups and elements ai ∈ Gi+3 is an infinite folding sequence,
as in Figure 1.

More precisely we define L1 = K2 ∗K0=H0 H3, where K2 is an isomorphic copy of G2, H3 is an
isomorphic copy of G3. the respective isomorphisms taking G0 to K0 = H0 and G1 to K1 and H1

and taking H2 to G2. Here K2∩H3 = H0. We take T1 to be the Bass-Serre tree corresponding to this
decomposition. We define inductively the group Li, an Li-tree Ti, an epimorphism φi : Li → Li+1

and a morphism φi : Ti → Ti+1 of trees, such that φi(gt) = φi(g)φi(t) for each g ∈ Li, t ∈ Ti. If i
is even, then φi+1φi is as in Figure 1, while if i is odd then φi+1φi is as in Figure 1, but with the
roles of Hk andKk transposed. Assume that i is even and Li = Ki+1 ∗K∗

i−1=H
8
i−1

Hi+2, where in the
induction step we assume that for the isomorphisms αi+1 : Gi+1 → Ki+1 and βi+2 : Gi+2 → Hi+2 we
have αi+1(Gi) = Ki, αi+1(Gi−1) = K∗i−1, βi+2(Gi) := H∗i , βi+2(Gi−1) := H∗i−1, βi+2(Gi+1) = Hi+1.

The centre group in the third graph of groups in Figure 1 is the free product with amalgamation
Ki ∗H∗

i−1
H∗i . From property (ii) above there is an epimorphism from this group to Ki+3 for which
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there is an isomorphism αi+3 : Gi+3 → Ki+3. We also have αi+3(Gi) = H∗i = K∗i = a−1
i Kiai. Here

ai is an element of Ki+3. The isomorphism also means that we can define Ki+2 to be αi+3(Gi+2).
The next stage of the folding sequence, labelled conjugating to the left of centre vertex, does not

change the tree or the action. It just changes the lift of the spanning tree to give the change of
labels indicated. The two edges now have the same labels and so if we carry out a Type I fold we
obtain a single edge with that same label. The right hand vertex has label a−1

i Ki+1ai ∗H∗
i
Hi+2.

There is an isomorphism of a−1
i Ki+1ai with Hi+1 that restricts to the identity on H∗i . There is

then an epimorphism from a−1
i Ki+1ai ∗H∗

i
Hi+2 to Hi+2 that restricts to the identity on the right

hand factor. This gives the second vertex morphism of the part of the folding sequence illustrated
in Figure 1. A further iteration then gives the final graph of groups in which each suffix is two more
than in the original graph of groups.

In going from Ti to Ti+1 for i we define new groups Ki+2 < Ki+3 if i is even and new groups
Hi+2 < Hi+3 if i is odd. It is not the case that Ki+1 < Ki+2 if i is even or that Hi+1 < Hi+2 if i is
odd.

Although we have ai ∈ Gi+3, at the risk of ambiguity we identify these elements with their images
in the first group of the folding sequence in which their isomorphic images occur. Thus ai ∈ Ki+3 if
i is even and ai ∈ Hi+3 if i is odd. We have a−1

i Ki+1ai = Hi+1 for i even and a−1
i Hi+1ai = Ki+1 if

i is odd.
Repeating this procedure for i+ 1, i+ 2, . . . gives an infinite folding sequence and, as described in

[10] and [9]. there is a limit group L which is the direct limit of the sequence of φi’s. In fact, we will
show that one can put metrics on the trees Ti so that they become simplicial R-trees (also denoted)
Ti in such a way that there is a limit R-tree T of the trees Ti, and so that there is no point of T is
fixed by all of L.

Thus the limit group L possesses a non-trivial action on an R-tree. On the other hand we will show
that L has (FA). Some properties of L can be deduced from properties of the Gi. For example, if the
G1 and G2 are finitely generated, then so is L; if Gi are torsion-free for all i then L is torsion-free
too.

3. Constructing good sequences

In this section we suggest two approaches for constructing strictly ascending sequences of finitely
generated groups G0 < G1 < . . . satisfying conditions (i)-(iii) of Definition 2.1. The first method
will use R. Thompson’s group V , and the second method will be based on small cancellation theory
over HNN-extensions.

3.1. Construction using Thompson’s group V. R. Thompson’s group V can be defined as
the group of all piecewise linear right continuous bijections of the interval [0, 1) which map dyadic
rational numbers to dyadic rational numbers, are differentiable in all but finitely many dyadic
rational numbers and such that on every maximal interval, where the function is linear, its slope is
a power of 2. We refer the reader to [3] for a a good introduction to the group V .

The group V is finitely presented and simple [3]. Let every Gi be an isomorphic copy of V ,
i = 0, 1, . . . . To explain how Gi is embedded in Gi+1, consider the function f : [0, 1] → [0, 15/16]
defined as follows:

f(x) :=


x if x ∈

[
0, 1

4

)
x
2 + 1

8 if x ∈
[
1
4 ,

3
4

)
2x− 1 if x ∈

[
3
4 ,

15
16

)
x− 1

16 if x ∈
[
15
16 , 1

] .

Clearly f is continuous, increasing and piecewise linear on [0, 1]. Also note that f induces a
bijection between dyadic numbers on [0, 1] and [0, 15/16], and

(1) f(1) = 15/16, f(15/16) = 7/8, f(7/8) = 3/4 and f(3/4) = 1/2.



4 M.J. DUNWOODY

K∗i−1 = H∗i−1

(subdivision)

Ki H∗i

(Type II folds)

〈Ki, H
∗
i 〉

H∗iaiH
∗
i a
−1
i

(vertex morphism)

(conjugating to left of centre vertex)

H∗i H∗i

(Type I fold)

(vertex morphism)

Ki+3

a−1
i Ki+1ai

Ki+1

Ki+1

Ki+1

Ki+1

a−1
i Ki+1ai ∗H∗

i
Hi+2

Hi+2

Hi+2

Hi+2

Hi+2

Hi+2

Hi+2

H∗i

H∗i

Ki+3

Ki+3

Ki+3

(another iteration)

Ki+3 Hi+4K∗i+1

Figure 1. Folding sequence of graph of groups

For each i ∈ N∪{0} we define the embedding γi : Gi → Gi+1 as follows: for any function g ∈ V ∼= Gi
set

γi(g)(x) :=

{
(f ◦ g ◦ f−1)(x) if x ∈

[
0, 15

16

)
x if x ∈

[
15
16 , 1

) .

Clearly γi(V ) 6 V[0,15/16), where VS := {h ∈ V | supp(h) ⊆ S} 6 V for any subset S ⊆ [0, 1)
(where supp(h) := {x ∈ [0, 1) | h(x) 6= x}). It is also clear that γi is invertible and γ−1

i : V[0,15/16) →
V . Hence every γi is an isomorphism between V and V[0,15/16). Thus one can regard Gi inside of
Gi+1 as V[0,15/16) inside of V . Similarly, since we picked the function f to satisfy (1), Gi−1 and Gi
in Gi+3 will correspond to V[0,1/2) and V[0,3/4) in V respectively.
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Define ai ∈ Gi+3 to be the element of V exchanging the intervals [1/2, 3/4) and [3/4, 1), which
can be given by the following formula:

ai(x) :=


x if x ∈

[
0, 1

2

)
x+ 1

4 if x ∈
[
1
2 ,

3
4

)
x− 1

4 if x ∈
[
3
4 , 1
) .

Since supp(ai)∩ [0, 1/2) = ∅, ai will centralize V[0,1/2) in V , thus the condition (i) from Definition
2.1 is satisfied. Also observe that aiV[0,3/4)a

−1
i = V[0,1/2)∪[3/4,1) in V and in order to establish (ii)

we need to check that V is generated by V[0,3/4) and V[0,1/2)∪[3/4,1). We will do this by showing that
some generating set of V is contained in 〈V[0,3/4), V[0,1/2)∪[3/4,1)〉.

From [3, Lemma 6.1] we know that V is generated by its elements A,B,C and π0, where

A(x) :=


x
2 if x ∈

[
0, 1

2

)
x− 1

4 if x ∈
[
1
2 ,

3
4

)
2x− 1 if x ∈

[
3
4 , 1
) , B(x) :=


x if x ∈

[
0, 1

2

)
x
2 + 1

4 if x ∈
[
1
2 ,

3
4

)
x− 1

8 if x ∈
[
3
4 ,

7
8

)
2x− 1 if x ∈

[
7
8 , 1
) ,

C(x) :=


x
2 + 3

4 if x ∈
[
0, 1

2

)
2x− 1 if x ∈

[
1
2 ,

3
4

)
x− 1

4 if x ∈
[
3
4 , 1
) , π0(x) :=


x
2 + 1

2 if x ∈
[
0, 1

2

)
2x− 1 if x ∈

[
1
2 ,

3
4

)
x if x ∈

[
3
4 , 1
) .

One easily sees that π0 ∈ V[0,3/4), C ◦ π0 ∈ V[0,1/2)∪[3/4,1) and π0 ◦B ◦ π−1
0 ∈ V[0,1/2)∪[3/4,1). Note

that (A−1◦B)(x) = x for all x ∈ [7/8, 1), so taking any elementD ∈ V[0,1/2)∪[3/4,1) withD([3/4, 1)) =
[7/8, 1), we have (D−1 ◦A−1 ◦B ◦D)(x) = x for all x ∈ [3/4, 1). Thus D−1 ◦A−1 ◦B ◦D ∈ V[0,3/4)

and we have proved that A,B,C, π0 ∈ 〈V[0,3/4), V[0,1/2)∪[3/4,1)〉.
Hence the condition (ii) from Definition 2.1 holds for the sequence G0 < G2 < . . . . Finally, the

condition (iii) from Definition 2.1 holds because V has property (FA), as shown by D. Farley in [13]
(based on the notes of K. Brown).

3.2. Construction using small cancellation methods. Let us start with the following well-
known observation (see [7, Remark on p. 680]).

Lemma 3.1. Any countable group G can be embedded into a finitely generated group F with property
(FA). If G is finitely presented then one can take F also to be finitely presented.

Proof. Take any non-elementary word hyperbolic group H with property (FA) (e.g., a hyperbolic
triangle group or a hyperbolic group with Kazhdan’s property (T) if one looks for a torsion-free
example). The group H is SQ-universal (as proved by T. Delzant [7, Thm. 3.5], and independently,
by A. Olshanskii [17, Thm. 1]), thus G can be embedded into some quotient F of H. Since property
(FA) passes to quotients, this proves the first part of the lemma.

Now, suppose that G is finitely presented. This means that G ∼= Fn/N , where Fn is the free
group of rank n ≥ 2 and N C Fn is a normal subgroup which the normal closure of finitely many
elements f1, . . . , fk ∈ Fn for some k ∈ N∪{0}. According to [17, Theorems 2,3] the word hyperbolic
group H contains a copy of Fn with the congruence extension property. Abusing the notation, let
us identify Fn with this copy of it. The congruence extension property for Fn in H implies that
M ∩ Fn = N , where M is the normal closure of f1, . . . , fk in H. Therefore there is a natural
embedding of G ∼= Fn/N = Fn/(Fn ∩M) into F := H/M . As before, F will have (FA); F will also
be finitely presented because it is a quotient of the finitely presented group H by the normal closure
of finitely many elements. �

Remark 3.2. A more technical argument, still based on the methods from [17], would allow one to
ensure in Lemma 3.1 that F is torsion-free if one starts with a torsion-free group G .
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The construction of good sequences we suggest here employs the theory of small cancellation
quotients of HNN-extensions, which was developed by G. Sacerdote and P. Schupp in [18]. We refer
the reader to [18] or [16, V.11] for the details of this theory. This method is quite flexible and
allows us to start with an arbitrary finitely generated group G0. By Lemma 3.1 we can embed G0

into a finitely generated group F0 with property (FA), and we can let G1 to be the free product of
F0 with an infinite cyclic group: G1 := F0 ∗ 〈u1〉. For i = 2, 3 we proceed similarly: first embed
Gi−1 into a finitely generated group Fi−1 with (FA) and then set Gi := Fi−1 ∗ 〈ui〉. Now, suppose
G1, G2, . . . , Gi+2 have already been built, with i ∈ N. To simplify the notation we will identify
each Gj , Fj and uj+1 with their canonical images in Gi, whenever j < i. Again, we embed Gi+2

into a finitely generated group Fi+2 with property (FA), and consider the HNN-extension Ei+2, of
Fi+2 ∗ 〈ui+3〉, defined by the presentation

(2) Ei+2 := 〈Fi+2, ui+3, ti | tigt−1
i = g for all g ∈ Gi−1〉.

Let {v1, . . . , vl} be a finite generating set of Fi+2 ∗ 〈ui+3〉. By construction the subgroup that
Gi−1 and 〈ui〉 generate in Fi+2 is isomorphic to their free product. Therefore

(3) upiGi−1u
q
i ∩Gi−1 = ∅ whenever p, q ∈ Z and p 6= −q.

Hence we can replace ui with its power, if necessary, to assume that

(4) u100j+100
i v−1

j u100j+1
i /∈ Gi−1 for every j = 1, . . . , l.

Now, consider the words r0, r1, . . . , rl defined by

r0 := t−1
i uitiu

2
i t
−1
i . . . u98

i tiu
99
i t
−1
i u100

i , and

rj := v−1
j u100j+1

i tiu
100j+2
i t−1

i . . . u100j+98
i tiu

100j+99
i t−1

i u100j+100
i

for j = 1, . . . , l.
Observe that (3) and (4) imply that the words r0, . . . , rl are cyclically reduced in the HNN-

extension Ei+2. Let R be the set of all cyclically reduced conjugates of r±1
0 , . . . , r±1

l . It is straight-
forward to check (using (3)) that for any two words w1, w2 ∈ R, representing distinct elements of
Ei+2, at most three pairs of ti-letters can cancel in the product w1w2. It follows that the length
of every piece relative to R is at most 7 and so R satisfies the small cancellation condition C′(1/6)
(see [18]). Let N C Ei+2 be the normal closure of R in Ei+2 and let Gi+3 := Ei+2/N . Then [18,
Cor. 1] states that the natural epimorphism ν : Ei+2 → Gi+3 is injective on 〈Fi+2, ui+3〉. Let-
ting ai := ν(ti) ∈ Gi+3 and identifying Gi−1 and Gi with their images in Gi+3 we see that ai
centralizes Gi−1 in Gi+3 (by (2)). Moreover, since rj = 1 in Gi+3, for every j = 0, 1, . . . , l, we
see that the generating set {t, v1, . . . , vl} of Ei+2 is mapped inside of 〈ui, aiuia−1

i 〉 in Gi+3. Thus
Gi+3 = 〈ui, aiuia−1

i 〉 6 〈Gi, aiGia
−1
i 〉.

Evidently, continuing this way we will obtain a strictly ascending sequence of finitely generated
groups G0 < G1 < . . . that satisfies the properties (i) and (ii) from Definition 2.1. It is also clear
that this sequence satisfies property (iii) because for each i ∈ N, Gi < Fi < Gi+1 and Fi has (FA).

4. Proof of the main result

Proof of Theorem 1.1. Using any of the procedures from the previous section we can construct a
strictly ascending sequence G0 < G1 < . . . of finitely generated groups with properties (i),(ii) and
(iii). Section 2 tells us how to produce a sequence of finitely generated groups L1, L2, . . . together
with epimorphisms φi : Li → Li+1, i ∈ N. Let L := limi→∞(Li, φi) be the direct limit of this
sequence.

Observe that each Li, i ∈ N, splits as a non-trivial amalgamated free product, and so Li has a
fixed point-free action on the corresponding simplicial Bass-Serre tree Ti (cf. [19, Thm. I.4.7]).

We now show that L does not have (FR) using a general theorem of Culler and Morgan [6, Thm.
4.5], see also [21, Thm. 4.7]). We will also give a specific proof that L does not have (FR) by
describing the image of a edge of T1 in the limit R-tree T .

An action of a group on an R-tree is determined be a translation length function, which is a
function α defined on the conjugacy classes of G. Thus if C is a conjugacy class and g ∈ C, then the
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value of α on C is 0 is the minimal distance d(x, gx) for x ∈ G. This value is zero if g fixes a point
of G and, for a finitely generated group, is the value taken when x is on the axis of g. Let PLF (G)
be the set of projective classes of translation length functions. Culler and Morgan show that this
space is compact.

The action of Li on Ti gives an action of L1 on Ti and so we have a sequence in PLF (L1) which
has a convergent subsequence. The limit of this subsequence in fact will give a non-trivial action of
L on an R-tree.

In an earlier version of this paper it was incorrectly stated that the limit action was the strong
limit of the actions on the Ti. What this would mean is that if one puts a natural metric on Ti so
that the length of an edge in Ti is the sum of the lengths of its subdivided parts in Ti+1, then if
xi, yi are the images in Ti of points x = x1, y = y1 in T1, then d(xi, yi) is constant for i large enough.
For a strong limit one can deduce information about arc stabilizers of the limit action from the arc
stabilizers of the Ti. In our case the limit action is not a strong limit. The whole sequence for the
Ti’s does converge in PLF (L1), but one has to scale the metrics to get a non-trivial metric on the
limit tree. This metric is unique up to scaling.

We now give an analysis of what happens to an edge of T1 in the folding sequence.
Let Tn be the tree formed at stage n. The tree Tn is formed from Tn−1 by subdivision and

folding as in Figure 1. Let x, y be adjacent vertices in T1, and xi = φi−1φi−2 . . . φ1(x), yi =
φi−1φi−2 . . . φ1(y). There is an obvious metric on T1 so that d(x, y) = 1.

Lemma 4.1. If a vertex appears for the first time in Tn as a result of subdivision, then no folding
occurs at that vertex in Tn+1 or Tn+2. Folding does occur at that vertex in Tn+3.

Proof. The folding is illustrated in Fig 2 for n = 1. It is only necessary to consider n = 1, as the
situation for Tn is obtained by adding n−1 to each suffix. The label of vertex indicates the stabilizer
of that vertex. The centre vertex x is created by subdivision. We have a1x = x. Also if e′ is the
edge to the right of x then a1e

′ is the subdivided edge to the left of x. The only folds that can affect
the centre vertex are Type II folds. In T2, folding occurs between two edges if they are in the same
K2-orbit . In T3, folding occurs if two edges are in the same K3-orbit. In T4 folding occurs if they
are in the same a3H4a

−1
3 -orbit. Since K4 = a3H4a

−1
3 and a1 ∈ K4 the two incident edges to the

centre vertex are folded in T4 but not before. �

Let I be the unit interval in which each point is specified by its binary expansion. We regard
I as a simplicial tree with two vertices. Let In, n = 0, 1, 2, . . . be the finite trees that are defined
by induction as follows. Let I0 = I. Suppose In has been defined. Then In+1 is the tree obtained
from In by subdividing each edge (introducing a single mid-point to each edge), and then if v ∈ V In
was formed by subdivision in In−2, then a fold of the two incident edges takes place. Clearly every
vertex of In can be labelled by a binary expansion with n terms after the point. A vertex can have
more than one label. Thus .0111 and .1001 label the same point in I4.

Lemma 4.2. Let In be the tree as defined above.
(i) In In each vertex, apart from 1 is uniquely specified by a label of length n that contains no

subsequence 111.
(ii) In In each internal vertex in the geodesic path [0, 1]n joining 0 and 1 is specified uniquely by

a label of length n that contains no subsequence 000 or 111.

Proof. The proof for (i) is by induction on n. The statement is true for n = 0, 1, 2. Suppose n ≥ 2
and that the lemma is true for n. Thus every vertex is specified by a label without any subsequence
111. The vertices that arose by subdivision in Tn−2 have labels that end 100. A fold takes place
at such a vertex labelled x and so in In+1 there is a vertex with two labels corresponding to the
mid-points of the edges incident with x one of which ends in 1001 and the other in 111. We choose
the label ending in 1001 to represent this vertex.

The proof of (ii) is also by induction on n. The statement is true for n = 0, 1, 2. Suppose n ≥ 2
and that the statement is true for n. Thus every vertex in [0, 1]n is specified by a label without
any subsequence 000 or 111. Any vertex of In that is not in [0, 1]n will still not be in [0, 1]n+1 after
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subdivision and folding, nor will any vertex that is the mid-point of an edge that is not in [0, 1]n.
If v ∈ [0, 1]n, then adding a 0 to its label gives the same point in In+1 and this will be in [0, 1]n+1

unless the label for v ended in 100 in which case it is not in [0, 1]n+1. In all cases adding a 1 to the
label of v will be the label of a vertex in [0, 1]n+1. The statement is proved for n+ 1. �

We can see from the last two Lemmas what happens to an edge in the folding sequence. We define
a metric in Ti so that the sequence d(xi, yi) = 1 for every i. As is shown in Figure 2 there are paths
with 2 edges joining x2, y2, 4 edges joining x3, y3 and 8 edges joining x4, y4. However, because of
folding there are only 14 edges in the path joining x5, y5 and so the length of an edge in T5 is 1/14.
After n iterations there will be a path with 2n edges joining xn, yn, but this path can back-track
as shown in Fig 2. In fact what happens is that after a new vertex is created by subdivision, then
after three more iterations that vertex is moved off the geodesic. If we stick with the natural metric
so that an edge in Tn has length 1/2n then d(xn, yn) tends to zero, and so when we make the space
Hausforff by identifying points zero apart the limit tree will have only one point. However one can
linearly expand edges so that the limit is non-zero. If tn is the number of edges in the geodesic path
joining xn, yn, then this squence will tell one what the scaling has to be. Thus if δn is the length of
an edge in Tn and we put tδn = 1\tn then d(xn, yn) = 1 for every n.

If we take the binary expansion for points in the unit interval I as representing the points on the
edge joining x, y, then the points that are always on the geodesic path joining xn, yn are given by
those with a binary expansion that has no subsequence 0111 or 1000. This is clear from the last two
Lemmas.

Let εn be the real number with binary expansion .00...01001001001001001 in which there are
initially n zero ’s.

Let z ∈ I be a point with a finite binary expansion of length n ending in a 1 and which contains
no subsequence 1000 or 0111, then every w such that z < w < z+ εn has an expansion that contains
0001 and every w such that z− εn < w < z has an expansion containing 0111. In the limit space for
each such z the point z+ εn is identified with z− εn, when the limit space is made Hausdorff. Every
point of I with an expansion that contains a subsequence 0111 or 1000 must occur in a sub-interval
[z− εn, z+ εn. The points of I with binary expansion containing no subsequence 1000 or 0111 form
a Cantor set. If we scale as above and identify the end points of subintervals as indicated then we
obtain the geodesic [x, y] joining the limit points x, y which is homeomorphic to the unit interval I.

In the limit space a1 fixes the point .1− ε1 = .1+ ε1. This is the only point of the geodesic joining
x̄, ȳ fixed by a1, since a1 maps the second half of the geodesic to the first half. In a similar way each
ai fixes a single point on the geodesic and so a1a2 will be a hyperbolic element. This means that the
action is non-trivial. The translation length function takes non-zero value on the conjugacy class of
a1a2.

In an action that is the limit of a folding sequence of simplicial actions, each of which has one
orbit of edges and two orbits of vertices, there are only a limited number of possibilities for how the
folding affects an edge. If the limit is a strong limit, then no folding will affect the edge and at each
iteration subdivision is the only operation that affects the edge. If a folding operation does result in
folding of an edge, and each iteration involves a single subdivision as in our example, then the limit
tree will not be a strong limit and the folding of the edge will be as in our example in that the first
fold in the edge is at the centre vertex and it takes place after n iterations after that centre vertex
was created, and n is at least 3.

We now show that L does have property (FA). We assume that L contains the sequences of
subgroups Hi,Ki as described in Section 2, and that ai ∈ Ki+3 if i is even and ai ∈ Hi+3 is i is
odd. Suppose L acts on a simplicial tree T . We want to show that the action is trivial, i.e. there
is a vertex fixed by L. Let xi be a vertex fixed by Ki and let yi be a vertex fixed by Hi. We know
by property (iii) that such vertices must exist. Choose xi, yi+1 so that they are a minimal distance
di apart. Here we take distance as being the number of edges in the geodesic path joining the two
vertices. If xi = yi+1 then this vertex is fixed by 〈Hi,Ki+1〉 = L and we are done. Let m be such
that dj is constant for j ≥ m. We suppose xm 6= ym+1.
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Figure 2. Image of an edge in four iterations

We know that Hi+2 is generated by subgroups of Hi and Ki+1. If follows that Hi+2 will fix a vertex
of the geodesic [xi, yi+]. We therefore have a contradiction unless xm = xm+2 Since Hm+1 < Hm+2

we have xm = xm+1 = xm+2. It follows easily that xm = xj for all j > m and similarly that
yj = ym+1 for all j > i + 1. We saw in Section 2 that ai ∈ Ki+3 if i is even and ai ∈ Hi+3 if i is
odd. Also a−1

i Ki+1ai = Hi+1 for i even and a−1
i Hi+1ai = Ki+1 if i is odd. Thus for any i > m

either a−1
i Hi+1ai = Ki+1 or aiHi+1a

−1
i = Ki+1. It follows easily that xm is fixed by both Ki+1and

Hi+1 for every i > m, which means that xm is fixed by L and we have a contradiction. Thus L has
property (FA).

For the second claim of the theorem, suppose that P is a finitely presented group that maps
onto L. By a standard argument (see [5, Lemma 3.1]), there is n ∈ N such that P maps onto Ln.
The idea is simple: P is a quotient of some free group Fm modulo a normal subgroup N C Fm,
which is normally generated by finitely many elements. Any epimorphism from P to L gives rise
to an epimorphism ζ : Fm → L, which factors through each Li. Let Ni C Fm denote the kernel of
the corresponding homomorphism ζi : Fm → Li. It follows that Ni 6 Ni+1 and ker ζ =

⋃
i∈N Ni.

Evidently N 6 ker ζ, hence there is l ∈ N such that N 6 Ni for all i ≥ l because N is the normal
closure of finitely many elements of Fm. Consequently, the homomorphism ζi : Fm → Li factors
through the natural homomorphism from Fm to Fm/N ∼= P whenever i ≥ l. Finally, since L1

is finitely generated and ζ : Fm → L is surjective there is k ∈ N such that the homomorphisms
ζi : Fm → Li are surjective for all i ≥ k. Thus one can take n = max{k, l}. Therefore P will act
non-trivially on the Bass-Serre tree Tn and so it does not have (FA). This concludes the proof. �
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5. The action as a strong limit

In [15] Levitt and Paulin show that any action of a group on an R-tree is a strong limit of
geometric actions. As I could not see how the action just described was a strong limit, I thought
that this result must be incorrect. However after more consideration I was able to construct a
strongly limiting folding sequence which did have this action as its limit: or at least this action with
some scaling applied.

The new folding sequence is shown in Fig 3. The edges which are incompressible, i.e. the edge label
is a proper subgroup of each incident vertex label, are thick black. If one contracts the compressible
edges, one obtains a folding sequence similar to the one in Fig 1. The distances of the vertices in
the first graph of groups going from the left hand vertex are

a,
1
λ
a,

(2λ3 − 2λ+ 1)
λ(2λ− 1)

a,
(2λ2 − 2λ+ 1)

(2λ− 1)
a,

λ

(2λ− 1)
a.

Here 1/2 < λ ≤ (
√

5−1)/2. In Fig 3 λ = 0.6. In the final graph of groups the suffixes have increased
by one and the distances are scaled by λ. For λ = (

√
5− 1)/2, the middle edge disappears, but one

still has a folding sequence as in Fig 4.
It follows from viewing the action as a strong limit that we can see that the arc stabilizers in the

limit action are conjugates of the Gi’s. Every point in the limit tree has stabilizer that is a union
of conjugates of the Gi. Thus if a point of T is One point in the orbit of points in the limit tree
corresponding to the image of the left hand vertex in each graph of groups has stabilizer that is the
union of the Gi’s. It can be seen that there is just one direction at that point, since there is just one
direction at each vertex of the Bass-Serre tree corresponding to the left hand vertex of the graph of
groups at each stage of the iteration. If one removes these limit points from the limit R-tree T , one
obtains a connected space T ′ that is an R-tree, but which is not complete.

It is interesting - to me at least - to attempt to use the above analysis to understand something
about the structure of PLF (L), the space of projectivized translation length functions of fixed-point
free actions of L on R-trees. Culler and Morgan [6] show that this space is compact. One gets a
different action for each value of λ, 1/2 < λ ≤ (

√
5 − 1)/2. The obvious question is what action is

the limit as λ tends to 1
2 . Let `(λ) be the length function of L corresponding to the limit of the

folding sequence for a = 1 and a particular value of λ. Then (2λ − 1)`(λ) is the length function
for a = 2λ − 1. Observe that the vertices in Fig 3 for this length function will be at distances
(2λ− 1, (2λ− 1)/λ, (2λ3 − 2λ+ 1)/λ, 2λ− 2λ+ 1, λ, and as λ tends to 1/2, these distances tend to
0, 0, 1/2, 1/2, 1/2. These distances correspond to a folding sequence as in Fig 1. Thus as λ tends
to a 1/2 the sequence of actions tends to the first action described in this paper. This convergence
does not correspond to a strongly limiting sequence however. The fact that our original action is a
strong limit follows from the fact that it is also the action for λ = 7/12. To see this note that in
the first graph of groups of Fig 3 the right hand vertex labelled Ki+2 is at distance aλ

(2λ−1) which
we take to be 1 − ε0 and the vertex labelled Gi+2 in the last graph of groups is at distance aλ
which we take to be ε0 = .001 = 1/7. It follows from our analysis of what happens to an edge,
that if x ∈ K1 − K0 and y ∈ H2 − H1 then the hyperbolic length of xy is 1 − 2ε0. This give the
equality a λ

(2λ−1) = 1− ε0. Hence a = 12/49, λ = 7/12. It follow that PLF (L) has a subspace that

is the closed interval [1/2, (
√

5− 1)/2] in which 1/2 is identified with 7/12. It seems likely that this
subspace is all of PLF (L).
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Figure 4. The sequence for λ = (
√

5− 1)/2
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