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Abstract. Different constructions by Cooke, Harper and Zabrodsky and by Cohen and Neisendor-

fer produce torsion free finite p-local H-spaces of rank l < p−1. The first construction goes through

when l = p− 1 and we show the second does as well. However, the space produced need not be an

H-space. We give a criterion for when an H-space is obtained. In the special case of rank 2 mod-3

H-spaces, we also give a practical test for when the criterion holds, and use this to give many new

examples of finite H-spaces.

1. Introduction

Finite H-spaces have been of abiding interest for more than fifty years. One driving problem has

been to classify all finite H-spaces, in a manner hopefully analogous to the classification of simple,

compact Lie groups. To introduce more flexibility, spaces are usually p-localized or p-completed at

a fixed prime p. A major recent development was the complete classification of all finite p-complete

loop spaces [AGMV, AG]. In the case of finite H-spaces which are not loop spaces, much remains to

be done. This paper sheds new light on a class of torsion free p-local finite H-spaces, and produces

many new examples of such spaces at the prime 3.

Let p be an odd prime and localize at p. The most basic example of an H-space is an odd

dimensional sphere S2n−1. It makes sense to then ask whether a sphere bundle over a sphere,

S2m−1 −→ B −→ S2n−1, is an H-space. Hagelgans [Ha] classified such H-spaces, provided p ≥ 5,

where the determining factor depended on the attaching map for the top cell in B. The case when

p = 3 remains open, and this is one question we will address in this paper. More generally, it can

be asked whether a space which is spherically resolved by odd dimensional spheres is an H-space.

To adequately address this, it is first useful to have a body of examples.

Constructions of spherically resolved finite p-local H-spaces were given by Cooke, Harper and

Zabrodsky [CHZ] and by Cohen and Neisendorfer [CN]. The techniques were different, and we

will follow in the footsteps of Cohen and Neisendorfer. Let Z(p) be the p-local integers, and take

homology with Z(p) coefficents. Both constructions state the following. Let A be a CW -complex

consisting of l cells, all in odd dimensions. Localize at p. If l < p − 1 then there is a spherically

resolved H-space B such that H∗(B) ∼= Λ(H̃∗(A)), where Λ( ) is the exterior algebra on the indicated

generating set, and there is a map A −→ B which induces the inclusion of the generating set in
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homology. The Cooke-Harper-Zabrodsky construction goes through when l = p− 1 but the space B

produced need not be an H-space. Our first result is to show the same is true using Cohen and

Neisendorfer’s methods.

Proposition 1.1. Fix a prime p. Let A be a CW -complex with p− 1 cells, all in odd dimensions.

Then there is a spherically resolved space B such that H∗(B) ∼= Λ(H̃∗(A)) as coalgebras and a map

A −→ B which induces the inclusion of the exterior algebra generators in homology.

One goal of this paper is to give a criterion for when the space B in Proposition 1.1 is an H-space.

To describe this we introduce some notation.

Suppose l ≤ p − 1 and let V = H̃∗(A). Then H∗(ΩΣA) ∼= T (V ), where T ( ) is the free tensor

algebra functor. The Cohen-Neisendorfer construction aims to produce a map ΩΣA −→ B which

induces the abelianization T (V ) −→ Λ(V ) in homology. In Lie algebraic terms, it is well known that

T (V ) ∼= UL〈V 〉, where L〈V 〉 is the free Lie algebra on V and U is the universal enveloping algebra

functor. As well, Λ(V ) ∼= ULab〈V 〉, where Lab〈V 〉 is the free abelian Lie algebra generated by V ,

that is, the Lie algebra in which the bracket is identically zero. The abelianization T (V ) −→ Λ(V )

is equivalent to UL〈V 〉 Uπ−→ ULab〈V 〉, where π is a map of Lie algebras. The kernel of π is the

Lie algebra [L〈V 〉, L〈V 〉] generated by the brackets in L〈V 〉. An explicit basis can be calculated as

W = ⊕l+1
k=2Wk, where Wk consists of homogeneous brackets of length k. We say that Wk can be

geometrically realized if there is a space Qk and a map φk : Qk −→ ΣA such that H∗(Qk) ∼= ΣWk

and (Ωφk)∗ induces the inclusion of UL〈Wk〉 in UL〈V 〉. The Cohen-Neisendorfer construction shows

that if l < p − 1 then Wk can be geometrically realized for each 2 ≤ k ≤ l + 1, and this leads to

the existence of a space B with H∗(B) ∼= Λ(V ) and a map ΩΣA −→ B which has a right homotopy

inverse. The retraction of B off ΩΣA implies that B is an H-space. The geometric realization of Wk

depends on the existence of a certain idempotent on ΣA(k), where A(k) is the k-fold smash product

of A with itself. This idempotent requires that k be invertible in Z(p). Thus the construction breaks

down when l = p− 1 as one tries to geometrically realize Wp.

Nevertheless, the geometric realization of Wp may exist, but for different reasons. We show that

the existence of this geometric realization is equivalent to B being an H-space.

Theorem 1.2. Fix a prime p. Let A be a CW -complex with p − 1 cells, all in odd dimensions.

Localize at p. Then the following are equivalent:

(a) the space B in Proposition 1.1 is an H-space;

(b) Wp can be geometrically realized.

We go on to study the case l = 2 and p = 3 more closely. It is worth emphasizing that in

this case the space A has two cells, both in odd dimensions, and B is a sphere bundle over a

sphere, S2m−1 −→ B −→ S2n−1, where m < n. We give a criterion for when W3 is geometrically
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realizable, which by Theorem 1.2 is equivalent to showing that B is an H-space. To state this, let

α : S2n−2 −→ S2m−1 be the attaching map for the top cell of A. Let j : S2m−1 −→ A be the inclusion

of the bottom cell and let sm : S6m−3 −→ S2m−1 represent the least dimensional nonvanishing

homotopy class in the kernel of the double suspension. The geometric realization of W2 is a space Q2,

and there is a homotopy cofibration sequence S4m−1 −→ Q2 −→ Σ2nA
d(α)−→ S4m where d(α) is the

connecting map. Let D(α) : Σ2n+2m−3A −→ S6m−3 be the (2m− 3)-fold suspension of d(α).

Theorem 1.3. Fix p = 3. Let A be a CW -complex with two cells, both in odd dimension. Localize

at 3. The following are equivalent:

(a) the space B in Proposition 1.1 is an H-space;

(b) j ◦ sm ◦D(α) is null homotopic;

(c) sm ◦D(α) ' α ◦ x for some map Σ2m+2n−3A
x−→ S2n.

Theorem 1.3 is practical. Part (b) can be used in tandem with Toda’s calculations [T] of the

3-primary homotopy groups of spheres to produce several families of new 3-local H-spaces, and to

show that several families of 3-local sphere bundles over spheres are not H-spaces. The power of

this is illustrated by the fact that, prior to this result, essentially the only case that had been worked

out was for S2m−1 −→ B −→ S2m+3 where the attaching map for the 2m + 3-cell in B is α1.

Zabrodsky [Z] showed that B cannot be an H-space if m > 2 and m 6≡ 0 (mod 3) and the third

author [Har1] showed that B is an H-space if m ≡ 0 (mod 3). We can now use Theorem 1.3 to go

much further: for example, almost all S3-bundles over S2n−1 for n ≤ 42 and entirely all S5-bundles

over S2n−1 for n ≤ 43 are H-spaces. A comprehensive list of examples is given in Theorem 7.1.

Little is known about the more general case of rank p− 1 mod-p H-spaces for p > 3. Hemmi [He]

generalized Zabrodsky’s negative results to primes larger than 3 by showing that there is no mod-p

H-space with cohomology isomorphic to Λ(x2n−1,P1x2n−1, . . . ,Pp−2x2n−1) unless n = p − 1 or

n ≡ 0 mod p. Harper [Har3] later proved that if n = p − 1 or n ≡ 0 mod p then such an H-space

does exist.

Finally, now equipped with a wide range of examples, we return to the question of when a

spherically resolved space is an H-space.

Theorem 1.4. Let B be a spherically resolved space with H∗(B) ∼= Λ(x1, . . . , xk) where k < p − 1

and each |xi| is odd. Suppose there is a space A such that H∗(A) ∼= {x1, . . . , xk} and a map A
i−→ B

which induces the inclusion of the generating set in homology. Then B is an H-space if and only

if Σi has a left homotopy inverse.

In particular, suppose k = 2. Then B is a sphere bundle over a sphere, S2m−1 −→ B −→ S2n−1

and A always exists - let A be the (2n− 2)-skeleton of B and let A
i−→ B be the skeletal inclusion.

Let f : S2n+2m−3 −→ A be the attaching map for the top cell of B. Then Σi has a left homotopy
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inverse if and only if Σf is null homotopic. Thus Theorem 1.4 implies that if p ≥ 5 then B is an H-

space if and only if Σf is null homotopic. This reproduces Hagelgans’ result in [Ha]. So Theorem 1.4

can be regarded as a generalization of Hagelgans’ result to higher ranks.

Collecting our results so far, we obtain a classification of when a sphere bundle over a sphere

S2m−1 −→ B −→ S2n−1 is an H-space. If p ≥ 5 we just saw this occurs if and only if Σf is

null homotopic. If p = 3 we show in Proposition 6.3 that if B is an H-space then it is homotopy

equivalent to the space labelled B in Proposition 1.1. Thus B is an H-space if and only if W3 can

be geometrically realized.

The authors would like to thank the referee for a close reading of the paper and many helpful

comments.

2. Cohen and Neisendorfer’s construction of finite H-spaces

In this section we review Cohen and Neisendorfer’s [CN] construction of finite p-local H-spaces.

The results are stated in Theorem 2.1. But the methods can do more, as they knew, and we present

one generalization in Theorem 2.3 which will be used later in Section 3.

We repeat our standing assumptions that p is an odd prime and homology is taken with coefficients

in Z(p).

Theorem 2.1. Let A be a CW -complex consisting of l cells, all in odd dimensions. Localize at p.

If l < p− 1 then there is a homotopy fibration B −→ Q −→ ΣA satisfying:

(a) ΩΣA ' B × ΩQ;

(b) there is a Hopf algebra isomorphism H∗(B) ∼= Λ(H̃∗(A));

(c) the composite A
E−→ ΩΣA −→ B includes H̃∗(A) into H∗(B) as the generating

set of the exterior algebra.

Further, all of these statements are functorial for maps f : A −→ A′ between spaces A and A′

satisfying the hypotheses. �

Theorem 2.1 (a) implies B is an H-space. The functorial property implies that B is spherically

resolved. For if the bottom cell of A is S2m+1 then the homotopy cofibration

S2m+1 −→ A −→ A′

results in a homotopy fibration

S2m+1 −→ B −→ B′.

This can then be iterated with respect to A′ and B′.

For later purposes, we need more explicit information about the construction of the fibration

B −→ Q −→ ΣA. To motivate what is to come, observe that because A has cells only in odd

dimensions, it is torsion free. The James construction [J] implies that ΣΩΣA '
∨∞
i=1 ΣA(i), where
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A(i) is the i-fold smash product of A with itself. In particular, as A is torsion free so is each A(i), and

therefore so is ΣΩΣA. But as H∗(ΩΣA) is a desuspension of H∗(ΣΩΣA), we also have that ΩΣA

is torsion free. Thus the Bott-Samelson Theorem applies, and states that H∗(ΩΣA) ∼= T (H̃∗(A)),

where T ( ) is the free tensor algebra. It is well known that T (H̃∗(A)) is isomorphic to the universal

enveloping algebra of the free graded Lie algebra generated by H̃∗(A). It is this Lie algebraic point

of view that is crucial, so we give some general constructions.

Everything that follows is from [CN]. Let V be a graded vector space over Z(p). Let L = L〈V 〉

be the free graded Lie algebra generated by V and let UL be the universal enveloping algebra. Let

Lab = Lab〈V 〉 be the free graded abelian Lie algebra generated by V , that is, the bracket in Lab is

identically zero. Let [L,L] be the kernel of the quotient map L −→ Lab. The short exact sequence

of graded Lie algebras

0 −→ [L,L] −→ L −→ Lab −→ 0

results in a short exact sequence of Hopf algebras

0 −→ U [L,L] −→ UL −→ ULab −→ 0.

When the elements of V are all of odd dimension, an explicit Lie basis for [L,L] is given by the

following.

Lemma 2.2. Suppose V = {u1, . . . , ul} where each ui is of odd dimension and l is a positive integer.

Let L = L〈V 〉. Then a Lie basis for [L,L] is given by the elements

[ui, uj ], [uk1 , [ui, uj ]], [uk2 , [uk1 , [ui, uj ]]], . . .

where 1 ≤ j ≤ i ≤ l and 1 ≤ kt < kt−1 < · · · < k2 < k1 < i. In particular, the basis elements have

bracket lengths from 2 through l + 1. �

We now turn to topology. Let A be a CW -complex consisting of l cells, all in odd dimensions.

Localize at p. Let V = H̃∗(A) and L = L〈V 〉. We would like to geometrically realize the Lie basis

elements of [L,L] in Lemma 2.2 as certain Whitehead products. We will see that this can always be

done if l < p− 1 but obstructions arise if l = p− 1.

To see how this comes about, let

wk : ΣA(k) −→ ΣA

be the k-fold Whitehead product of the identity map on ΣA with itself. Observe that if σ is a

permutation in the symmetric group Σk on k letters then there is a corresponding map σ : ΣA(k) −→

ΣA(k) defined by permuting the smash factors. Define a map

βk : ΣA(k) −→ ΣA(k)

inductively by letting β2 = 1 − (1, 2) and βk = (1 − (k, k − 1, . . . , 2, 1)) ◦ (1 ∧ βk−1). In homology

(ignoring the suspension coordinate), (βk)∗(x1 ⊗ · · · ⊗ xk) = [x1, [x2, . . . [xk−1, xk] . . .]]. This map
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has the property that (βk)∗ ◦ (βk)∗ ' k · (βk)∗. Thus if we restrict to k < p and define βk = 1
kβk

then (βk)∗ is an idempotent. However, the image of (βk)∗ consists of the suspensions of all length k

brackets in L rather than those length k brackets in the basis W . So Cohen and Neisendorfer

made a refinement by defining another map ak : ΣA(k) −→ ΣA(k) with the property that (ak)∗ is an

idempotent in homology and the composite (ak ◦ βk)∗ has image ΣWk. Now let bk = ak ◦ βk and

let Qk be the mapping telescope of bk. Then H∗(Qk) ∼= Im (bk)∗ ∼= ΣWk. Let Sk be the mapping

telescope of 1 − bk. As (bk)∗ is an idempotent, so is (1 − bk)∗. Thus, since (bk)∗ + (1 − bk)∗ is the

identity map, the map

ΣA(k) −→ Qk ∨ Sk

induces an isomorphism in homology and so is a homotopy equivalence. Let Q be the wedge sum

Q '
p−1∨
k=2

Qk.

Define

Q −→ ΣA

as the wedge sum of the composites

Qk −→ ΣA(k) wk−→ ΣA.

Observe that the cells of H∗(Q) ∼= ΣW . Define B by the homotopy fibration

B −→ Q −→ ΣA.

Cohen and Neisendorfer [CN] proved the following result. Note that their explicit statement

restricted to the case when l < p− 1, but their argument held in the generality stated below.

Theorem 2.3. Let A be a CW complex consisting of l cells, all in odd dimensions. Localize at p.

Let V = H̃∗(A) and let L = L〈V 〉. Then the homotopy fibration sequence

ΩQ −→ ΩΣA −→ B −→ Q −→ ΣA

has the following property. Let t be the least degree of the Lie basis elements in [L,L] of length p.

A homological model for the homotopy fibration ΩQ −→ ΩΣA −→ B in degrees < t is given by the

short exact sequence of Hopf algebras

0 −→ U [L,L] −→ UL −→ ULab −→ 0.

In particular, if l < p− 1 then no basis element of [L,L] has length p and so t = ∞, implying that

H∗(B) ∼= ULab ∼= Λ(H̃∗(A)). Furthermore, all of these statements are functorial for maps A −→ A′

between spaces A and A′ satisfying the hypotheses. �
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3. Rank p− 1 spherically resolved spaces

Cohen and Neisendorfer’s construction of H-spaces in Theorem 2.1 works provided the CW -

complex A has l cells, all in odd dimensions, where l < p − 1. The boundary case when l = p − 1

is the concern of this paper. In this section we prove Proposition 1.1: given a CW -complex A with

p − 1 cells, all in odd dimensions, it is possible to construct a spherically resolved space B such

that H∗(B) ∼= Λ(H̃∗(A)) as coalgebras. Whether B is an H-space is another question, which will be

addressed in Section 6. A proof of Proposition 1.1 can be found in [W], where B is also shown to

fit in a certain EHP -style fibration. However, we do not require this extra property, which leads to

a much simpler proof.

We begin by constructing a homotopy fibration sequence to which we can apply Theorem 2.3. Let

V = H̃∗(A) and suppose V = {x1, . . . , xp−1} where each |xi| is odd. As in Section 2, let L = L〈V 〉,

Lab = Lab〈V 〉, and let [L,L] be the kernel of the Lie algebra map L
π−→ Lab which takes all brackets

in L to zero. By Lemma 2.2, a Lie basis W for [L,L] is given by W = ⊕pk=2Wk, where Wk consists

of homogeneous brackets of length k, and

Wp = {[xi, [x1, [x2, . . . , [xp−2, xp−1]] . . .] | 1 ≤ i ≤ p− 1}.

As in Section 2, for 2 ≤ k ≤ p−1, there are spaces Qk with H∗(Qk) ∼= ΣWk and maps φk : Qk −→ ΣA

such that the image of (Ωφk)∗ is isomorphic to the sub-Hopf-algebra of UL〈V 〉 generated by UL〈Wk〉.

Let

φ :

p−1∨
k=2

Qk −→ ΣA

be the wedge sum of the maps φk. Define F as the homotopy fiber of φ, so there is a fibration

sequence

(1) Ω

(
p−1∨
k=2

Qk

)
Ωφ−→ ΩΣA −→ F −→

p−1∨
k=2

Qk
φ−→ ΣA.

Observe that the image of (Ωφ)∗ is UL〈⊕p−1
k=2Wi〉.

Proof of Proposition 1.1. Assume the elements x1, . . . , xp−1 ∈ V have been ordered so that |x1| ≤

|x2| ≤ · · · ≤ |xp−1|. Observe that Wp is m-connected, where m = (Σp−1
i=1 |xi|) + (|x1| − 1). Thus

Theorem 2.3 implies that a homological model for the homotopy fibration Ω(
∨p−1
k=2Qk)

Ωφ−→ ΩΣA −→

F in degrees ≤ m is given by the short exact sequence of Hopf algebras U [L,L] −→ UL −→ ULab. In

particular, in dimensions ≤ m, there is a coalgebra isomorphism H∗(F ) ∼= ULab ∼= Λ(x1, . . . , xp−1).

Let B be the m-skeleton of F . Observe that the dimension of Λ(x1, . . . , xp−1) is Σp−1
i=1 |xi|, which

is less than m. Thus there is a coalgebra isomorphism H∗(B) ∼= Λ(x1, . . . , xp−1). Further, since the

dimension of A is less than m, the composite A
E−→ ΩΣA −→ F factors through the m-skeleton

of F to give a map i : A −→ B. Since A
E−→ ΩΣA induces the inclusion of the generating set

in homology and since ΩΣA −→ F induces the abelianization of the universal enveloping algebra
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in dimensions ≤ m, we have A
i−→ B inducing the inclusion of the exterior algebra generators in

homology. Finally, since Theorem 2.3 is functorial, if A′ −→ A −→
∨t
j=1 S

2k+1 is a cofibration which

pinches onto the cells of A of highest dimension, then there is a fibration B′ −→ B −→
∏t
j=1 S

2k+1

where H∗(B
′) ∼= Λ(H̃∗(A

′)) as coalgebras, and there is a map A′ −→ B′ which induces the inclusion

of the exterior algebra generators in homology. Inductively, B′ is spherically resolved, and so B is

spherically resolved. �

We now record two additional properties of the construction of B which will be used subsequently

in Section 4.

Lemma 3.1. The homotopy fibration Ω(
∨p−1
k=2Qk)

Ωφ−→ ΩΣA −→ F splits as ΩΣA ' F×Ω(
∨p−1
k=2Qk).

Proof. This is a consequence of a much more general construction by Selick and the sixth au-

thor in [SW1, SW2]. They show that if X is a space, there is a homotopy fibration sequence

Ω(
∨∞
k=1Qk)

Ωφ−→ ΩΣX −→ Amin(X) −→
∨∞
k=2Qk

φ−→ ΣX and a decomposition ΩΣX ' Amin(X)×

Ω(
∨∞
k=2Qk), where Amin(X) is the minimal functorial homotopy retract of ΩΣA. In our case, with

X = A, the definition of Qk for 2 ≤ k ≤ p−1 is precisely the same as that for Qk, and the definition

of φ|Qk
is precisely the same as that for φk. Thus Selick and Wu’s decomposition implies that Ωφ

has a left homotopy inverse. The lemma now follows. �

Lemma 3.2. The map ΣA
Σi−→ ΣB has a left homotopy inverse.

Proof. The proof is modelled on [CN, 4.1]. By [J], there is a homotopy equivalence ΣΩΣA '∨∞
k=1A

(k), and H∗(ΣA
(k)) is the suspension of the submodule of length k tensors in H∗(ΩΣA) ∼=

T (H̃∗(A)). By permuting smash factors, there is a map sk : ΣA(k) −→ ΣA(k) which corresponds to

the sum of all permutations in the symmetric group on k letters. So (sk)∗ ◦ (sk)∗ = k!(sk)∗. Thus

if k < p the map s̄k = 1
k!sk induces an idempotent in homology. Let Sk be the mapping telescope

of s̄k and let Tk be the mapping telescope of 1 − s̄k. Then the sum ΣA(k) −→ Sk ∨ Tk induces an

isomorphism in homology and so is a homotopy equivalence.

Note that H∗(Sk) ∼= ΣMk where Mk is the submodule of length k symmetric tensors in T (H̃∗(A)).

Note also that the abelianization T (H̃∗(A)) −→ Λ(H̃∗(A)) induces an isomorphism θ : ⊕p−1
k=1 Mk ↪→

T (H̃∗(A)) −→ Λ(H̃∗(A)). After suspending, this can be geometrically realized. Consider the com-

posite f :
∨p−1
k=1 Sk −→

∨p−1
k=1 ΣA(k) −→

∨∞
k=1 ΣA(k) ' ΣΩΣA −→ ΣF . Let d be the dimension of B.

Recall from the proof of Proposition 1.1 that ΩΣA −→ F induces in homology the abelianization

of the tensor algebra T (H̃∗(A)) in degrees ≤ d. Thus f∗ = Σθ in dimensions ≤ d + 1. But B was

defined as the d-skeleton of F and each Sk has dimension ≤ d + 1, so for dimensional reasons f

factors through a map
∨p−1
k=1 Sk

f ′−→ ΣB, and (f ′)∗ = Σθ. As Σθ is an isomorphism, f ′ is a homotopy

equivalence.
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Finally, observe that S1 = ΣA. By definition of i, in homology i∗ is the inclusion of the generating

set. Thus the composite ΣA
Σi−→ ΣB −→ S1 induces an isomorphism in homology and so is a

homotopy equivalence. �

4. A characterization of rank p− 1 torsion free H-spaces

We continue to assume that the underlying CW -complex A has p−1 cells, all in odd dimensions.

In this section we prove Theorem 1.2, which states that, starting with A, the space B produced in

Proposition 1.1 is an H-space if and only if the Wp can be geometrically realized. Recall that Wp

consists of the homogeneous brackets of length p in the Lie basis W = ⊕pk=2Wk of [L,L]. Recall as

well what is meant by being geometrically realized.

Definition 4.1. We say that the module Wk can be geometrically realized if there is a space Qk

and a map φk : Qk −→ ΣA such that H∗(Qk) ∼= ΣWk and (Ωφk)∗ induces the inclusion of UL〈Wk〉

in UL.

To prove the equivalence in Theorem 1.2, we begin with the easier direction.

Proposition 4.2. Let B be as in Proposition 1.1. If Wp can be geometrically realized then B is an

H-space.

Proof. As in (1), each Wk for 2 ≤ k ≤ p − 1 is geometrically realized by a map Qk
φk−→ ΣA. By

assumption, Wp is also geometrically realized by a map Qp
φp−→ ΣA. Let φ′ :

∨p
k=2Qk −→ ΣA be

the wedge sum of the maps φk for 2 ≤ k ≤ p. Observe that (Ωφ′)∗ induces the inclusion of U [L,L]

in UL. Define the space F ′ by the homotopy fibration sequence

(2) Ω

(
p∨
k=2

Qk

)
Ωφ′−→ ΩΣA −→ F ′ −→

p∨
k=2

Qk
φ′−→ ΣA.

Consider the Eilenberg-Moore spectral sequence for the fibration Ω(
∨p
k=2Qk)

Ωφ′−→ ΩΣA −→ F ′

which converges to H∗(F
′). This has E2-term TorU [L,L](Z(p), UL). Since the sequence of Hopf

algebras U [L,L] −→ UL −→ ULab is short exact, there is an isomorphim UL ∼= ULab ⊗ U [L,L]

of right U [L,L]-modules. Therefore the Eilenberg-Moore spectral sequence collapses at E2, and we

obtain a coalgebra isomorphism H∗(F
′) ∼= ULab.

By Lemma 3.2, the map ΣA
Σi−→ ΣB has a left homotopy inverse ΣB −→ ΣA. Adjointing, we

obtain a map B −→ ΩΣA with the property that the composite A
i−→ B −→ ΩΣA is homotopic

to the suspension E. Thus the composite B −→ ΩΣA −→ F ′ induces in homology a self-map of

ULab ∼= Λ(x1, . . . , xp−1) which acts as the identity map on each xi. Dualizing, this implies that

the map B −→ F ′ induces an isomorphism in cohomology and so is a homotopy equivalence. In

particular, we obtain a decomposition ΩΣA ' B×Ω (
∨p
k=2Qk), implying that B is an H-space. �
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To prove the converse in Theorem 1.2 we require several preliminary lemmas and constructions.

We may assume that B is an H-space. Let µ : B ∗ B −→ ΣB be the Hopf construction, which has

homotopy fibre B. Define the space R and the map r by the homotopy pullback

B // R
r //

��

ΣA

i

��
B // B ∗B

µ
// ΣB.

From this we obtain a homotopy commutative diagram of fibration connecting maps

ΩΣA
γ

//

ΩΣi

��

B

ΩΣB
∂ // B

which defines the maps γ and ∂. One property of the Hopf construction is that ∂ has a right

homotopy inverse. The next lemma shows that γ also has a right homotopy inverse.

Lemma 4.3. The map ΩΣA
γ−→ B has a right homotopy inverse s : B −→ ΩΣA which can be

chosen so that (s ◦ i)∗ = E∗.

Proof. Since B is an H-space, Lemma 3.2 implies that ΣA
Σi−→ ΣB has a left homotopy inverse

t : ΣB −→ ΣA. Consider the diagram

A
EA //

i

��

ΩΣA

ΩΣi

�� HHHHHHHHH

HHHHHHHHH

B
EB // ΩΣB

Ωt // ΩΣA

where EA and EB are the suspension maps. The left square homotopy commutes by the naturality

of the suspension map, and the right triangle homotopy commutes since t is a left homotopy inverse

of Σi. Let s : B −→ ΩΣA be the composite s = Ωt ◦ EB . Then the outer perimeter of the diagram

implies that EA ' s ◦ i.

We claim that the composite B
s−→ ΩΣA

γ−→ B is a homotopy equivalence, which would complete

the lemma. We have just seen that s ◦ i ' EA. Suppose that (γ ◦EA)∗ = i∗. Then (γ ◦ s ◦ i)∗ = i∗,

so (γ ◦ s)∗ is a self-map of H∗(B) ∼= Λ(H̃∗(A)) which sends H̃∗(A) to itself. Dualizing, (γ ◦ s)∗ is a

self-map of H∗(B) ∼= Λ(H̃∗(A)) which induces an isomorphism of the generating set. As (γ ◦ s)∗ is

an algebra map, it is therefore an isomorphism. Hence γ ◦ s is a homotopy equivalence.

It remains to show that (γ ◦ EA)∗ = i∗. Consider the homotopy commutative diagram

A
EA //

i

��

ΩΣA
γ

//

ΩΣi

��

B

B
EB // ΩΣB

∂ // B.
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The Hopf construction B∗B µ−→ ΣB has the property that H̃∗(ΣA) ↪→ H̃∗(ΣB) is in the complement

of Im(µ)∗. Thus Ω(B ∗ B)
Ωµ−→ ΩΣB has the property that H̃∗(A) ↪→ H̃∗(B) ↪→ H∗(ΩΣB) ∼=

T (H̃∗(B)) is in the algebra cokernel of (Ωµ)∗. The Hopf construction has the property that the

fibration Ω(B ∗ B)
Ωµ−→ ΩΣB

∂−→ B splits as ΩΣB ' B × Ω(B ∗ B). Thus the algebra cokernel of

(Ωµ)∗ is H∗(B). Therefore the composite H̃∗(A) ↪→ H̃∗(B) ↪→ H∗(ΩΣB) ∼= T (H̃∗(B))
∂∗−→ H∗(B) ∼=

Λ(H̃∗(A)) is the inclusion of the generating set. But the sequence of inclusions H̃∗(A) ↪→ H̃∗(B) ↪→

H∗(ΩΣB) ∼= T (H̃∗(B)) is the map induced in homology by the composite A
i−→ B

EB−→ ΩΣB. Hence

the composite A
i−→ B

EB−→ ΩΣB
∂−→ B induces the inclusion of the exterior algebra generators

in homology. The homotopy commutativity of the previous diagram therefore implies that the

composite A
EA−→ ΩΣA

γ−→ B induces the inclusion of the exterior algebra generators in homology.

That is, (γ ◦ EA)∗ = i∗, as required. �

Corollary 4.4. The homotopy fibration ΩR
Ωr−→ ΩΣA

γ−→ B splits as ΩΣA ' B × ΩR. �

We will need one more property.

Lemma 4.5. In the homotopy fibration sequence ΩΣA
γ−→ B −→ R

r−→ ΣA the space R is a

co-H-space.

Proof. In [Gr2] it was shown that for a homotopy fibration F −→ E −→ ΣX there is a homotopy

equivalence E/F ' ΣAo F . In our case, R/B ' ΣAoB. Note that ΣAoB ' ΣA ∨ (ΣA ∧B), so

ΣAoB is a suspension. On the other hand, by Lemma 4.3, γ has a left homotopy inverse. Thus the

map B −→ R is null homotopic, implying that R/B ' R∨ΣB. Hence R retracts off the suspension

ΣAoB, implying that it is a co-H-space. �

We can now compare the two fibrations

ΩR
Ωr−→ ΩΣA

γ−→ B

Ω(

p−1∨
k=2

Qk)
Ωφ−→ ΩΣA −→ F.

By Corollary 4.4 there is a homotopy equivalence ΩΣA ' B×ΩR, so Ωr has a left homotopy inverse

s : ΩΣA −→ ΩR.

By Lemma 3.1 there is a homotopy equivalence ΩΣA×F ×Ω(
∨p−1
k=2Qk), so Ωφ has a left homotopy

inverse

t : ΩΣA −→ Ω(

p−1∨
k=2

Qk).

In general, if X is a co-H-space, then [Ga2] proved that there is a map σ : X −→ ΣΩX which

is a right homotopy inverse of the canonical evaluation map ev : ΣΩX −→ X. In our case, by
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construction each Qi is a co-H-space so there is a map σ1 :
∨p−1
k=2Qk −→ ΣΩ(

∨p−1
k=2Qk), giving a

composite

(3) f :

p−1∨
k=2

Qk
σ1−→ ΣΩ(

p−1∨
k=2

Qk)
ΣΩw−→ ΣΩΣA

Σs−→ ΣΩR
ev−→ R.

As well, by Lemma 4.5, R is a co-H-space so there is a map σ2 : R −→ ΣΩR, giving a composite

(4) g : R
σ2−→ ΣΩR

ΣΩr−→ ΣΩΣA
Σt−→ ΣΩ(

p−1∨
k=2

Qk)
ev−→

p−1∨
k=2

Qk.

We aim towards Proposition 4.15, which states that the composite
∨p−1
k=2Qk

f−→ R
g−→
∨p−1
k=2Qk

is a homotopy equivalence. Recall that we are assuming that all spaces and maps have been localized

at p. We begin by showing that g ◦ f is a p-local equivalence provided it is a rational equivalence.

For a space X or a map f , let X(0) and f(0) be their rationalizations.

Lemma 4.6. The composite
∨p−1
i=2 Qi

f−→ R
g−→
∨p−1
i=2 Qi is a p-local homotopy equivalence if and

only if the composite
∨p−1
i=2 (Qi)(0)

f(0)−→ R(0)

g(0)−→
∨p−1
i=2 (Qi)(0) is a homotopy equivalence.

Proof. In general, rationalization preserves homotopy equivalences. That is, if Y
a−→ X

b−→ Y is

a homotopy equivalence in the p-local category, then the rationalization Y(0)

a(0)−→ X(0)

b(0)−→ Y(0) is

a homotopy equivalence in the rational category. The converse is not true in general. However,

it is true if X and Y are simply-connected, of finite type, and torsion free. For then the finite

type and torsion free conditions imply that the induced maps H∗(Y ;Z(p)) −→ H∗(Y(0);Q) and

H∗(X;Z(p)) −→ H∗(X(0);Q) in turn induce isomorphisms between the Z(p) and rational Euler-

Poincaré series. Since g(0) ◦ f(0) is a homotopy equivalence, it too induces an isomorphism of Euler-

Poincaré series. Thus (g ◦f)∗ induces an isomorphism of Euler-Poincaré series. Therefore, (g ◦f)∗ is

a self-map of H∗(Y ;Z(p)) which induces an isomorphism on Euler-Poincaré series, implying that it

is an isomorphism. Since X and Y are simply-connected, g ◦ f is therefore a homotopy equivalence.

In our case, both A and B are assumed to be path-connected. Also, A is assumed to have cells only

in odd dimensions, and B is constructed so that H∗(B;Z(p)) ∼= Λ(H̃∗(A;Z(p))). So both A and B are

torsion free and of finite type. This implies that ΣA(i) for 2 ≤ i ≤ p−1 and ΣAoB ' ΣA∨(ΣA∧B)

are torsion free and of finite type. Note that the suspension in each case implies that these spaces

are also simply-connected. By its construction, Qi is a retract of ΣA(i) and by Proposition 4.5, R

is a retract of ΣA o B. Hence each Qi for 2 ≤ i ≤ p − 1 and R are simply-connected, torsion free,

and of finite type. The statement of the lemma now follows from the general argument in the first

paragraph. �

We are reduced to showing that g(0) ◦f(0) is a homotopy equivalence. We begin with two observa-

tions. First, since B is an H-space, it is rationally homotopy equivalent to a product of Eilenberg-

MacLane spaces, B(0) '
∏p−1
i=1 K(Q, 2ni−1). This implies that

∏p−1
i=1 K(Q, 2ni) is a classifying space

B(B(0)) for B(0). In particular, there is an evaluation map ev : ΣB(0) ' ΣΩB(B(0)) −→ B(B(0)).
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By [Ga1], the evaluation map fits in a homotopy fibration B(0) ∗B(0)

µ(0)−→ ΣB(0)
ev−→ B(B(0)). Thus

the definition of R as the pullback of µ and Σi implies that, rationally, there is a homotopy pullback

diagram

R(0)

r(0)
//

��

ΣA(0)
a //

Σi(0)

��

B(B0))

B(0) ∗B(0)

µ(0)
// ΣB(0)

ev // B(B0))

where a is defined as ev ◦ Σi(0). Consequently, we have the following.

Lemma 4.7. When the p-local homotopy fibration sequence B −→ R
r−→ ΣA is rationalized, the

connecting map can be chosen to be the loop map Ωa. �

For the second observation, By (1) there is a p-local homotopy fibration sequence

(5) ΩΣA
∂−→ F −→

p−1∨
k=2

Qk
φ−→ ΣA

whereQk retracts off ΣA(k), φ =
∨p−1
k=2 φk, and each wk factors through the k-fold iterated Whitehead

product wk of the identity map on ΣA with itself. The space Qk is defined functorially as the

mapping telescope of an idempotent ek on ΣA(k), where ek depends on k being invertible in Z(p).

In particular, ep does not exist functorially, so the space Qp does not exist functorially. However,

when the fibration sequence (5) is rationalized, the idempotent ep does exist on ΣA
(p)
(0), so we can

define Q̂p as the mapping telescope of ep, and φ̂p as the composite

φ̂p : Q̂p −→ ΣA
(p)
(0)

wp−→ ΣA(0).

Therefore the Cohen-Neisendorfer construction can be completed rationally. Let

Q̂p−1
2 =

p−1∨
k=2

(Qk)(0)

and let

φ̂ : Q̂p−1
2 ∨ Q̂p −→ ΣA(0)

be the wedge sum of φ(0) and φ̂. We immediately obtain the following.

Lemma 4.8. There is a homotopy fibration sequence

ΩΣA(0)
∂̂−→ B(0) −→ Q̂p−1

2 ∨ Q̂p
φ̂−→ ΣA(0)

where ∂̂ has a right homotopy inverse, Q̂p−1
2 ∨ Q̂p geometrically realizes (⊕pk=2Wk) ⊗ Q, and Q̂p

geometrically realizes Wp ⊗Q. �
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Now let us compare the fibration sequences in Lemmas 4.7 and 4.8. Consider the composite

Q̂p−1
2 ∨ Q̂p

φ̂−→ ΣA(0)
a−→ B(B(0)). Since B(B(0)) is a product of Eilenberg-MacLane spaces, it is an

H-space. Therefore, as φ̂ factors thorugh Whitehead products the composite a◦ φ̂ is null homotopic.

Thus there is a lift

Q̂p−1
2 ∨ Q̂p

φ̂

��

λ

zzuuuuuuuuu

R(0)

r(0)
// ΣA(0)

for some map λ. This lift induces a homotopy fibration diagram

(6)

ΩΣA(0)
∂̂ // B(0) //

θ

��

Q̂p−1
2 ∨ Q̂p

φ̂
//

λ

��

ΣA(0)

ΩΣA(0)
Ωa // B(0) // R(0)

r(0)
// ΣA(0)

for some map θ of fibres.

Lemma 4.9. The maps θ and λ in (6) are homotopy equivalences.

Proof. It suffices to show that θ is a homotopy equivalence, for then the five-lemma implies that λ

is as well. To see that θ is a homotopy equivalence, recall that H∗(B(0);Q) ∼= Λ(H̃∗(A(0);Q)).

Precompose the leftmost square in (6) with the suspension map A0)

E(0)−→ ΩΣA(0). One property

of the Cohen-Neisendorfer construction is that the composite ∂̂ ◦ E(0) is homotopic to i(0). On

the other hand, Lemmas 4.7 and 4.3 imply that the composite Ωa ◦ E(0) has the property that

in rational homology (Ωa ◦ E(0))∗ equals (E(0))∗. Thus the commutativity of the leftmost square

in (6) implies that θ∗ is a self-map of H∗(B(0);Q) which is the identity map on the generating set.

Dualizing to cohomology, θ∗ is an algebra map which is the identity on the generating set and so is

an isomorphism in all degrees. Hence θ is a homotopy equivalence. �

Lemma 4.9 shows that the two homotopy fibrations in (6) derived from the Cohen-Neisendorfer

construction and the Hopf construction can be identified rationally.

Next, we use the fact that λ is a homotopy equivalence to identify certain composites as loop

maps. By Lemma 4.8, the map Ω(Q̂p−1
2 ∨Q̂p)

Ωφ̂−→ ΩΣA(0) has a left homotopy inverse t′ : ΩΣA(0) −→

Ω(Q̂p−1
2 ∨ Q̂p).

Lemma 4.10. The composite ΩR(0)

Ωr(0)−→ ΩΣA(0)
t′−→ Ω(Q̂p−1

2 ∨ Q̂p) is homotopic to Ω(λ−1).

Proof. Consider the diagram

Ω(Q̂p−1
2 ∨ Q̂p)

Ωφ̂

��

Ωλ

yyrrrrrrrrrr

PPPPPPPPPPPP

PPPPPPPPPPPP

ΩR(0)

Ωr(0)
// ΩΣA(0)

t // Ω(Q̂p−1
2 ∨ Q̂p).
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The left triangle homotopy commutes by definition of λ as a lift through r(0). The right triangle

homotopy commutes by definition of t. The outer perimeter of the diagram implies that t ◦ Ωr(0) ◦

Ωλ ' 1, where 1 is the identity map on Ω(Q̂p−1
2 ∨ Q̂p). On the other hand, λ is a homotopy

equivalence so λ−1 exists, and we have Ω(λ−1) ◦ Ωλ ' 1. Thus t ◦ Ωr(0) ◦ Ωλ ' Ω(λ−1) ◦ Ωλ.

Composing on the right with Ω(λ−1) we obtain t ◦ Ωr(0) ' Ω(λ−1). �

Similarly, if s : ΩΣA(0) −→ ΩR(0) is a left homotopy inverse of Ωr(0), then we obtain the following.

Lemma 4.11. The composite Ω(Q̂p−1
2 ∨ Q̂p)

Ωφ̂−→ ΩΣA(0)
s−→ ΩR(0) is homotopic to Ωλ.

Proof. Argue as in Lemma 4.10. �

In what follows, we wish to choose the map t′ somewhat more precisely. Start with a ran-

dom left homotopy inverse t̄ : ΩΣA(0) −→ Ω(Q̂p−1
2 ∨ Q̂p) of Ωφ̂. Recall that the p-local map

Ω(
∨p−1
k=2Qk) −→ ΩΣA has a left homotopy inverse t : ΩΣA −→ Ω(

∨p−1
k=2Qk) and that, by definition,

Q̂p−1
2 =

∨p−1
k=2(Qk)(0). In general, for any simply-connected spaces there is a homotopy equivalence

Ω(X∨Y ) ' ΩX×ΩY ×Ω(ΩX∗ΩY ). In our case, we have a homotopy equivalence Ω(Q̂p−1
2 ∨Q̂p)

e−→

ΩQ̂p−1
2 × ΩQ̂p × Ω(ΩQ̂p−1

2 ∗ ΩQ̂p). Define t′′ as the composite t′′ : ΩΣA(0)
t̄−→ Ω(Q̂p−1

2 ∨ Q̂p) −→

ΩQ̂p×Ω(ΩQ̂p−1
2 ∗ΩQ̂p), where the right map is the projection. Define t′ : ΩΣA(0) −→ Ω(Q̂p−1

2 ∨ Q̂p)

by taking the product of t(0) and t′′ and applying e−1. Notice that t(0) is then homotopic to the

composite ΩΣA(0)
t′−→ Ω(ΩQ̂p−1

2 ∗ ΩQ̂p)
Ωq−→ ΩQ(0), where q is the pinch map.

Now we identify the maps f(0) and g(0). Consider the diagram

R(0)

(σ2)(0)
//

FFFFFFFFF

FFFFFFFFF
ΣΩR(0)

ΣΩr(0)
//

ev

��

ΣΩΣA(0)
Σt′ // ΣΩQ̂p−1

2 ∨ Q̂p)
ΣΩq

//

ev

��

ΣΩ(Q̂p−1
2

ev

��
R(0)

λ−1

// Q̂p−1
2 ∨ Q̂p

q
// Q̂p−1

2

The left square homotopy commutes since σ2 is a right inverse of ev. By Lemma 4.10, Σt′ ◦ΣΩr(0) '

ΣΩ(λ−1). So the middle rectangle and the right square homotopy commute by the naturality of the

evaluation map. By the choice of t′ in the paragraph preceding the lemma, we have Ωq ◦ t′ ' t(0).

Therefore the upper direction around the diagram is the rationalization of the composite (4) defining

the map g. The homotopy commutativity of the diagram therefore implies the following.

Lemma 4.12. There is a homotopy g(0) ' q ◦ λ−1. �

Next, consider the diagram

Q̂p−1
2

(σ1)(0)
//

HHHHHHHHH

HHHHHHHHH
ΣΩQ̂p−1

2

ΣΩι //

ev

��

ΣΩ(Q̂p−1
2 ∨ Q̂p)

ΣΩφ̂
//

ev

��

ΣΩA(0)

Σs(0)
// ΣΩR(0)

ev

��
Q̂p−1

2

ι // Q̂p−1
2 ∨ Q̂p

λ // R(0)
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where ι is the inclusion of the wedge summand. The left square homotopy commutes since σ1 is a

right homotopy inverse of ev. By Lemma 4.11, Σs(0) ◦ ΣΩw ' ΣΩλ. So the middle square and the

right rectangle homotopy commute by the naturality of the evaluation map. By the definition of φ̂,

the composite φ̂ ◦ ι is ∨p−1
i=2 φi. Thus the upper direction around the diagram is the rationalization

of the composite (3) defining the map f . The homotopy commutativity of the diagram therefore

implies the following.

Lemma 4.13. There is a homotopy f(0) ' λ ◦ ι. �

Finally, we prove that g(0) ◦ f(0) is a homotopy equivalence.

Lemma 4.14. The composite Q̂p−1
2

f(0)−→ R(0)

g(0)−→ Q̂p−1
2 is a homotopy equivalence.

Proof. The identifications of g(0) and f(0) in Lemmas 4.12 and 4.13 show that g(0) ◦ f(0) ' q ◦ λ−1 ◦

λ ◦ ι ' q ◦ ι. But ι is the inclusion of Q̂p−1
2 in Q̂p−1

2 ∨ Q̂p, while q is the pinch map onto the same

summand. Thus q ◦ ι is the identity map on Q̂p−1
2 , so in fact g(0) ◦ f(0) is homotopic to the identity

map on Q̂p−1
2 . �

Combining Lemmas 4.6 and 4.14 gives the following.

Proposition 4.15. The composite
∨p−1
k=2Qk

f−→ R
g−→
∨p−1
k=2Qk is a homotopy equivalence. �

Define Qp by the cofibration
p−1∨
k=2

Qk
f−→ R −→ Qp.

By Proposition 4.15, f has a left homotopy inverse, which implies that there is a homotopy equiva-

lence

R ' (

p−1∨
k=2

Qk) ∨Qp.

Proposition 4.16. The space R geometrically realizes ⊕pk=2Wk and the space Qp geometrically

realizes Wp.

Proof. Again using Q̂p−1
2 =

∨p−1
k=1(Qi)(0), consider the diagram

(7)

∨p−1
k=2Qk

f
//

��

R
r //

��

ΣA

��
Q̂p−1

2

f(0)
// R(0)

r(0)
//

λ−1

��

ΣA(0)

Q̂p−1
2

ι // Q̂p−1
2 ∨ Q̂p

φ̂
// ΣA(0).
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The middle row is the rationalization of the top row so the two upper squares homotopy commute.

The lower left square homotopy commutes by Lemma 4.13 and the lower right square homotopy

commutes by (6). By Lemma 4.8, Q̂p−1
2 ∨ Q̂p geometrically realizes (⊕pk=2Wk)⊗Q. Since λ−1 is a

homotopy equivalence, we equivalently have that r(0) geometrically realizes (⊕pk=2Wk) ⊗ Q. That

is, the map (Ωr(0))∗ has image isomorphic to the sub-Hopf-algebra U〈⊕pk=2Wk〉 ⊗Q ∼= U [L,L]⊗Q.

Since A has cells only in odd dimensions, it is torsion free. Therefore so is ΣA(k) for each k ≥ 1.

Hence so is ΣΩΣA '
∨∞
k=1 ΣA(k). Since H∗(ΣΩΣA;Z(p)) ∼= ΣH∗(ΩΣA;Z(p)), we see that ΩΣA is

torsion free as well. Thus the loop of the rationalization, ΩΣA −→ ΩΣA(0), induces an isomorphism

between the Z(p) and rational Euler-Poincaré series. This implies that (Ωr)∗ has image isomorphic

to the sub-Hopf-algebra U〈⊕pk=2Wk〉 ∼= U [L,L]. That is, R geometrically realizes ⊕pk=2Wk.

Similarly, since the restriction of φ̂ to Q̂p−1
2 geometrically realizes (⊕p−1

k=2Wk)⊗Q, the homotopy

commutativity of (7) implies that, via r ◦ f ,
∨p−1
k=2Qk geometrically realizes ⊕p−1

k=2Wk. Therefore

the complement of
∨p−1
k=2Qk in R – that is, Qp – has the property that the image of the map

Σ−1H̃∗(Qp;Z(p)) ↪→ H∗(ΩQp;Z(p)) −→ H∗(ΩR;Z(p))
(Ωr)∗−→ H∗(ΩΣA;Z(p)) is isomorphic to Wp.

Therefore the composite ΩQp −→ ΩR −→ ΩΣA has image isomorphic to the sub-Hopf-algebra

U〈Wp〉. In other words, Qp geometrically realizes Wp. �

At last, we can prove Theorem 1.2.

Proof of Theorem 1.2. Proposition 4.2 shows that if Qp can be geometrically realized then B is an

H-space. Conversely, if B is an H-space then Proposition 4.16 states that Qp can be geometrically

realized. �

5. A condition for producing H-spaces at the prime 3

In this section we specialize to the prime 3 and prove Theorem 1.3. Now A is a two-cell complex,

the space B from Theorem 1.1 is a sphere bundle over a sphere, and there is an inclusion A −→ B

of the bottom two cells which induces the inclusion of the generating set in homology. In terms

of the related algebra, suppose that H̃∗(A) ∼= {u, v} where u and v both have odd degree. Then

H∗(ΩΣA) ∼= UL〈u, v〉. Letting L = L〈u, v〉 there is a short exact sequence of Lie algebras 0 −→

[L,L] −→ L −→ Lab −→ 0. and by Lemma 2.2, a Lie basis for [L,L] is W = W2 ⊕W3 where

W2 = {[u, u], [u, v], [v, v]}

W3 = {[u, [u, v]], [u, [v, v]]}.

By Theorem 2.3, W2 can be geometrically realized. By Theorem 1.2, B is an H-space if and only

if W3 can also be geometrically realized.

We will use the simple structure of W2 and W3 to produce a condition which guarantees that W3

can be realized. The condition is practical in the sense that it reproduces known examples of rank 2

mod 3 H-spaces and also produces many more new examples.
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We begin by recalling the geometric realization of W2, and then relating it to an obstruction

for the geometric realization of W3. We have H̃∗(A) ∼= {u, v}. Suppose |u| = 2m − 1 and |v| =

2n− 1. Let α : S2m−2 −→ S2n−1 be the attaching map for A. As in Section 2, there is a homotopy

decomposition ΣA(2) ' Q2 ∨ T2, where Q2 is the mapping telescope of ΣA(2) b2−→ ΣA(2) and T2

is the mapping telescope of 1 − b2. It is worth noting for simplicity’s sake that b2 = 1
2 (1 − ΣT )

where T is the map interchanging the factors of A(2). We have H̃∗(Q2) ∼= ΣW2 and the composite

φ2 : Q2 −→ ΣA(2) w2−→ ΣA has the property that (Ωφ2)∗ is the inclusion of the sub-Hopf-algebra

UL〈W2〉 in UL〈u, v〉.

Lemma 5.1. There is a homotopy cofibration S4m−1 −→ Q2 −→ Σ2nA where the left map is the

inclusion of the bottom cell.

Proof. Let i1 : S4m−1 −→ Q2 be the inclusion of the bottom cell and let C be its homotopy cofibre.

We wish to identify the homotopy type of C. There is a homotopy equivalence ΣA(2) ' Q2 ∨ T2

where H∗(Q2) ∼= ΣW2. This implies that H∗(T2) ∼= H∗(S
2m+2m−1), and therefore T2 ' S2m+2n−1.

Let i2 : S4m−1 −→ ΣA(2) be the inclusion of the bottom cell and let X be its homotopy cofibre.

Since the complementary wedge summand T2 of Q2 in ΣA(2) is (2m+ 2n− 2)-connected, i1 factors

through i2 and vice-versa. Thus there is a cofibration diagram

S4m−1

��

S4m−1

��

S4m−1

��
Q2

//

��

ΣA(2) //

��

Q2

��
C // X // C

in which the columns are cofibrations. Since the middle row is a homotopy equivalence, the five-

lemma implies that the bottom row is as well. Thus X ' C ∨ T2.

On the other hand, the inclusion i2 factors as a composite S4m−1 ' ΣS2m−1 ∧ S2m−1 −→

ΣA ∧ S2m−1 −→ ΣA ∧A. This determines a homotopy pushout diagram

ΣS2m−1 ∧ S2m−1 //

��

ΣA ∧ S2m−1 //

��

ΣS2n−1 ∧ S2m−1

��
ΣS2m−1 ∧ S2m−1 // ΣA ∧A //

c

��

X

d

��
ΣA ∧ S2n−1 ΣA ∧ S2n−1

which defines the maps c and d. We claim that the composite C
a−→ X

d−→ ΣA ∧ S2n−1 ' Σ2nA

induces an isomorphism in homology, in which case it is a homotopy equivalence, and thereby proves

the lemma.
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We have H̃∗(A
(2)) = {u⊗u, u⊗ v, v⊗u, v⊗ v} and H̃∗(Q2) ∼= ΣW2 for W2 = {[u, u], [u, v], [v, v]}.

Removing the bottom cell from Q2 we obtain H∗(C) ∼= {σ[u, v], σ[v, v]}. Note that in H̃∗(A
(2)), we

have [u, u] = u⊗u−(−1)|u|·|u|u⊗u = 2u⊗u, similarly [v, v] = 2v⊗v, and [u, v] = u⊗v−(−1)|u|·|u|v⊗

u = u⊗v+v⊗u. As well, c∗(σu⊗v) = 0, c∗(σv⊗u) = σv⊗u and c∗(σv⊗v) = σv⊗v. Since d factors

through c, we obtain (d◦a)∗([u, v]) = d∗(u⊗v+v⊗u) = v⊗u and (d◦a)∗([v, v]) = d∗(2v⊗v) = 2v⊗v.

Thus (d ◦ a)∗ is an isomorphism, as required. �

Recall that the attaching map for the top cell in A is S2n−2 α−→ S2m−1. Let Σ2nA
d(α)−→ S4m

be the connecting map for the homotopy cofibration in Lemma 5.1. Define the map D(α) by

suspending d(α) enough times so the target sphere is S6m−3 -

D(α) : Σ2m+2n−3A
Σ2m−3d(α)−−−−−−→ S6m−3.

The reason for introducing S6m−3 is to connectD(α) to the double suspension. Let E2 : S2m−1 −→

Ω2S2m+1 be the double suspension. Let Wm be its homotopy fibre. It is well known that Wm is

(6m− 4)-connected. Let sm be the composite

sm : S6m−3 −→Wm −→ S2m−1

where the left map is the inclusion of the bottom cell. It is well known (see [T], for example) that sm

generates an element of order 3 in π6m−3(S2m−1), and that S6m−2 Σsm−→ S2m is homotopic to the

iterated Whitehead product [ι, [ι, ι]] where ι is the identity map on S2m.

Now consider the composition

Σ2m+2n−3A
D(α)−→ S6m−3 sm−→ S2m−1 j−→ A

where j is the inclusion of the bottom cell. Understanding this composition is the heart of proving

Theorem 1.3 and producing examples of sphere bundles over spheres which are H-spaces (or are

non-H-spaces). Before proving this, we require a lemma concerning the double suspension. This is

stated at the prime 3, but is easily modified to any odd prime.

Lemma 5.2. Let X be a space of dimension ≤ 6m−3 and suppose there is a map X −→ Ω2S2m+1.

Then X lifts through E2 to a map X −→ S2m−1.

Proof. By [Gr2], the fibre Wm of the double suspension has a classifying space BWm and there is a

homotopy fibration S2m−1 E2

−→ Ω2S2m+1 −→ BWm. Since BWm is (6m− 3)-connected and X is of

smaller dimension, the composite X −→ Ω2S2m+1 −→ BWm is null homotopic. Thus the asserted

lift exists. �

Proof of Theorem 1.3. We begin with some preliminary work. The composite Q2 −→ ΣA(2) w2−→ ΣA

geometrically realizes W2. Now take the Whitehead product with Σj to obtain a composite

S2m−1 ∧Q2 −−−−→ S2m−1 ∧ ΣA(2) [Σj,w2]−−−−→ ΣA.
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Observe that Σ2m−1Q2 has its bottom cell in degree 6m− 2. Including this, we obtain a homotopy

commutative diagram

(8)

S6m−2
±[ι,[ι,ι]]

//

��

S2m

Σj

��
Σ2m−1Q2

// S2m−1 ∧ ΣA(2)
[Σj,w2]

// ΣA

where [ι, [ι, ι]] is the three-fold Whitehead product of the identity map on S2m with itself. The sign

of [ι, [ι, ι]] may depend on how Q2 is included into ΣA(2), but this is not essential.

Let ϕ3 : Σ2m−2 ∧ Q2 −→ ΩΣA be the adjoint of the map in the bottom row of (8). Since

[ι, [ι, ι]] ' Σsm, taking adjoints in (8) gives a homotopy commutative diagram

(9)

S6m−3
sm //

��

S2m−1
j

// A

E

��
Σ2m−2Q2

ϕ3 // ΩΣA.

Since Q2 geometrically realizes W2 and algebraically, W3 = [u,W2] and [u, [u, u]] = 0, the definition

of ϕ3 as the adjoint of a Whitehead product implies that Im (ϕ3)∗ = W3.

Now we show that (b) implies (a). Consider the diagram

Σ2m+2n−3A
D(α)

// S6m−3 //

j◦sm
��

Σ2m−2Q2

ϕ3

��
A

E // ΩΣA.

The square homotopy commutes by (9) and the top row is a cofibration. By assumption, j◦sm◦D(α)

is null homotopic, so there is a map s̄ : Σ2m−2Q2 −→ A which extends j◦sm. Define f : Σ2m−2Q2 −→

ΩΣA by f = ϕ3 − E ◦ s̄. Then the restriction of f to S2m−3 is null homotopic, so it extends to

a map g : Σ2m+2n−2A −→ ΩΣA. Since (ϕ3)∗ = W3, we also have g∗ = W3. Thus if we define

Q3 = Σ2m+2n−1A and define φ3 : Q3 −→ ΣA as the adjoint of g, then Q3 geometrically realizes W3.

Therefore by Theorem 1.2, B is an H-space.

Next, we show that (a) implies (c). Since B is an H-space, by Lemma 4.3 there is a map

ΩΣA
γ−→ B which has a right homotopy inverse. Consider the diagram

(10)

Σ2m+2n−3A
D(α)

//

���
�
�
�
�
�
�

y

���
�

�
�

�
�

�
�

�

x

S6m−3 //

sm

��

Σ2m−2Q2

ϕ3

��
S2m−3

E◦j
// ΩΣA

γ

��
S2n−2

E // ΩS2n−1
∂ // S2m−1

j′

// B
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where j′ is the inclusion of the bottom sphere and the maps y and x will be defined momentarily.

The upper right square homotopy commutes by (9). The lower right square homotopy commutes

since j ◦E is the inclusion of the bottom cell in ΩΣA and γ∗ is degree one in H2m−3. Notice that ∂ is

the homotopy fibre of j′ and that the composite ∂ ◦E is homotopic to the attaching map α. Observe

that the top row is null homotopic since it is two consecutive maps in a homotopy cofibration. The

homotopy commutativity of the two righthand squares then implies that the composite j′◦sm◦D(α)

is null homotopic. Therefore sm◦D(α) lifts to a map y. Since A has dimension 2n−1, the dimension

of Σ2m+2n−3A is 2m+4n−4. As we have assumed m < n, we obtain 2m+4n−4 ≤ 6n−4 < 6n−2.

So Lemma 5.2 implies that y lifts through E to a map x. Now the homotopy commutativity of (10)

as a whole implies that sm ◦D(α) ' ∂ ◦E ◦x for some map x. But ∂ ◦E ' α, so sm ◦D(α) ' α ◦x,

proving part (c).

Finally, we show that (c) implies (b). As there is a homotopy cofibration S2n−2 α−→ S2m−1 j−→ A,

the composite j ◦α is null homotopic. Therefore the assumption that sm ◦D(α) ' α◦x implies that

j ◦ sm ◦D(α) ' j ◦ α ◦ x ' ∗, and so part (b) holds. �

6. H-structures on spherically resolved spaces

Before using Theorem 1.3 to produce examples of rank 2 mod-3 H-spaces, we need to deal a

uniqueness property. One of the equivalent conditions in Theorem 1.3 for the existence of a rank 2

mod-3 H-space involves a particular construction of a spherically resolved space B. In Section 7 it

is more convenient to use a different construction. So we need to know that the two constructions

produce spaces which are homotopy equivalent. More generally, we can ask for conditions which

determine the homotopy type of a spherically resolved space. This can be asked at any rank, so we

return momentarily to the more general case where the rank is ≤ p− 1. A set of conditions is given

in Proposition 6.3.

We begin with the following question.

Question. Let B be a spherically resolved space such that H∗(B) ∼= Λ(x1, . . . , xp−1) as coalgebras,

where each |xi| is odd. When is B an H-space?

We will consider a special class of such spherically resolved spaces, which we call retractile.

Definition 6.1. Let B be a spherically resolved space with H∗(B) ∼= Λ(x1, . . . , xk) where each

|xi| is odd. Then B is retractile if there is a space A such that H∗(A) ∼= {x1, . . . , xk}, a map

i : A −→ B which induces the inclusion of the exterior algebra generators in homology, and Σi has

a left homotopy inverse. We also say that (A, i,B) is a retractile triple.

Note that if p = 3 and B is any sphere bundle over a sphere, then the space A and the map i

always exist. For if H∗(B) ∼= Λ(x1, x2) with |x1| ≤ |x2| then take A to be the |x2|-skeleton of B

and i to be the skeletal inclusion. Note also that if S|x1|+|x2|−1 f−→ A
i−→ B is a cofibration where f
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attaches the top cell to B, then the condition that B is retractile is equivalent to Σf being null

homotopic. For suspending this cofibration, we see that Σi has a left homotopy inverse if and only

if Σf is null homotopic.

Our first result shows that the retractile property is closely linked to the existence of an H-

structure.

Lemma 6.2. Let B be a spherically resolved space with H∗(B) ∼= Λ(x1, . . . , xk) where each |xi| is

odd and k ≤ p − 1. Suppose there is a space A such that H∗(A) ∼= {x1, . . . , xk} and there is map

i : A −→ B which induces the inclusion of the exterior algebra generators in homology. If B is an

H-space, then (A, i,B) is a retractile triple.

Proof. Since B is an H-space, the map i extends to a map ī : ΩΣA −→ B. We have ī◦E ' i, and i∗

is the inclusion of the generating set in homology. So as k ≤ p − 1, by [CN] there is a homotopy

equivalence ΣB '
∨k
j=1 Sj where H∗(Sj) is isomorphic to the submodule of symmetric tensors

of length j in H∗(ΩΣA) ∼= T (H̃∗(A)). In particular, H∗(S1) ∼= H̃∗(ΣA), and this isomorphism is

induced by the composite ΣA
Σi−→ ΣB −→ S1. Hence S1 ' ΣA, implying that (A, i,B) is a retractile

triple. �

To go further, we link the retractile condition to our earlier work in Section 3 where, starting

with a space A consisting of l odd dimensional cells, we constructed a spherically resolved space B

such that H∗(B) ∼= Λ(H̃∗(A)). This requires a slight change of notation, as the letter B is being

used two ways. Let A be a space such that H̃∗(A) ∼= {xi, . . . , xk} where each |xi| is odd. If k < p−1

then by Theorem 2.1 there is a homotopy fibration sequence

(11) ΩΣA
r−→ B −→

k∨
i=2

Qi −→ ΣA

where H∗(B) ∼= Λ(H̃∗(A)) and r∗ is the abelianization of the tensor algebra. If k = p−1 then by (1)

and Proposition 1.1, there is a homotopy fibration sequence

(12) ΩΣA
r−→ F −→

p−1∨
i=2

Qi −→ ΣA

where if d = Σp−1
i=1 |xi| and B is the d-skeleton of F , then there is a coalgebra isomorphism H∗(B) ∼=

Λ(H̃∗(A)) and the restriction of r∗ to dimensions ≤ d is the abelianization of the tensor algebra.

Proposition 6.3. Let B be a spherically resolved space such that (A, i,B) is a retractile triple.

Suppose the rank k of B satisfies k < p. Let B be the space constructed from A in (11) if k < p− 1

or in (12) if k = p− 1. Then there is a homotopy equivalence B ' B. Further, if k < p− 1 then B

and B are H-spaces.
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Proof. Since (A, i,B) is a retractile triple, the map ΣA
Σi−→ ΣB has a left homotopy inverse

s : ΣB −→ ΣA. Adjointing, we obtain a map t : B −→ ΩΣA. Consider the diagram

A
i //

E

��

B

E

��

t

$$IIIIIIIII

ΩΣA
ΩΣi // ΩΣB

Ωs // ΩΣA.

The square homotopy commutes by the naturality of the suspension map E. The triangle homotopy

commutes by the definition of t as the adjoint of s. The bottom row is homotopic to the identity

map on ΩΣA since s is a left homotopy inverse of Σi. Thus the diagram as a whole shows that the

composite A
i−→ B

t−→ ΩΣA is homotopic to the suspension map E.

Now suppose k < p − 1 and consider the composite B
t−→ ΩΣA

r−→ B. We have H∗(B) ∼=

Λ(H̃∗(A)) ∼= H∗(B). Since t ◦ i ' E and (r ◦ E)∗ is the inclusion of the generating set, the

restriction of (r ◦ t)∗ to H̃∗(A) is the identity map. Dualizing to cohomology, we obtain a map

H∗(B)
(r◦t)∗−→ H∗(B) which is an isomorphism on the generating set, and therefore an isomorphism

in all degrees. Hence r ◦ t is a homotopy equivalence. This implies that B and B are retracts of

ΩΣA, and so they are both H-spaces.

If k = p− 1, consider the composite B
t−→ ΩΣA

r−→ F . Since the B has dimension d, the map t

factors through the d-skeleton of F , which by definition is B. Thus we obtain a map B −→ B, whose

behavior in homology is determined by (r ◦ t)∗. Now arguing as in the previous case, we obtain a

homotopy equivalence B ' B. �

Corollary 6.4. Let B and B be as in Lemma 6.3. Then B is an H-space if and only B is an

H-space. �

Thus, up to homotopy equivalence, Theorem 2.1 and Proposition 1.1 produce all possible H-

spaces which are resolved by odd dimension spheres, of rank ≤ p − 1, and have a generating set

in homology which can be geometrically realized. In particular, if p = 3 then, up to homotopy

equivalence, Proposition 1.1 produces all possible H-spaces which are sphere bundles over a sphere,

S2m−1 −→ B −→ S2n−1.

Finally, we prove Theorem 1.4, which states that a triple (A, i,B) with the rank of B less than

p − 1 is an H-space if and only if it is retractile. Consequences, especially for p = 3, were given in

the Introduction.

Proof of Theorem 1.4. Combine Proposition 6.3 with Lemma 6.2. �

7. Examples of rank 2 mod-3 H-spaces

Let α ∈ π2n−2(S2m−1) and write Bm(α) for the space introduced in Proposition 1.1. This section

is concerned with determining whether Bm(α) is an H-space at the prime 3. By Theorem 1.3, this

question is equivalent to determining whether the composite j ◦ sm ◦D(α) is null homotopic.
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Before engaging in computations, we first give a classical construction for Bm(α) that works for

any odd prime. After this, we present two general properties of D(α), based on its construction, that

are aids in computation. We then make several computations. The principal results are presented

in the following summary. Our notation is Toda’s as found in the memoir [T].

Theorem 7.1. The space Bm(α) is a 3-local H-space in the following cases:

(a) α is unstable in stems ≤ 75;

(b) α is divisible by 3;

(c) α = α1 and either m = 2 or m ≡ 0 (3);

(d) α = α2 and either m = 7 or both m 6≡ 7 (9) and m 6≡ 23 (27) hold;

(e) α = α1 ◦ γ and m ≡ 0 (3); α = α1 ◦ γ and m = 2, where γ and β1 commute up

to sign on S6; α = α1β
2
1β2 and m ≡ 1 (3);

(f) α = β1 ◦ γ and m ≡ 0 (3).

The space Bm(α) is not a 3-local H-space in the following cases:

(g) α = α1, m 6≡ 0 (3), and m 6= 2;

(h) α ∈ {α1β1, α1β2, α1β
2
2}, m ≡ 2 (3), and m 6= 2;

(i) α ∈ {α1β1, α1β
2
1 , α1β2} and m ≡ 1 (3);

(j) α ∈ {ε′, β1ε
′, µ}, m 6≡ 0 (3), and m ≥ 4.

Construction on Bm(α).

Regard S2m−1 as the unit sphere in R2m. The map

ϕ : S2m−1 × S2m−1 −→ S2m−1

given by ϕ(x, y) = y − 2〈x, y〉x is reflection of y through the hyperplane perpindicular to x. This

map has bidegree (2,−1). The Hopf construction on ϕ yields a map

H(ϕ) : S4m−1 −→ S2m

with classical Hopf invariant equal to −2. Moreover, H(ϕ) is a quasi-fibration. Our model for Bm(α)

is the (strict) pullback

Bm(α) //

��

S4m−1

H(ϕ)

��
S2n−1

α // S2m.

To analyze the homotopy type of the space produced by the construction, we observe that r ◦ϕ =

ϕ◦(r×r), where r : S2m−1 −→ S2m−1 is the reflection r(x1, . . . , x2m) = (−x1, x2, . . . , x2m). It follows

by naturality for pullbacks that there is a self-map r] : Bm(α) −→ Bm(α). Let A = S2m−1 ∪α e2n−1

be the (2n− 1)-skeleton of Bm(α) and let i : A −→ Bm(α) be the skeletal inclusion. If (A, i,B) is a

retractile triple then r] induces a map in integral homology with the property that H̃∗(A;Z) is the
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(−1)-eigenspace in H∗(Bm(α);Z). The retractile property also ensures, by Proposition 6.3, that the

rank 2 spherically resolved space Bm(α) is homotopy equivalent to the space B produced from A

in Proposition 1.1. Therefore, to check whether Bm(α) is an H-space, we can use the equivalent

conditions in Theorem 1.3.

Next, observe that at odd primes H(ϕ) is homotopic to the Whitehead product −[ι2m, ι2m]. To

see this, note that the property r ◦φ = φ◦ (r× r) yields Σr ◦H(ϕ) ' H(ϕ), and Σr is multiplication

by −1 on suspensions. So 2ΣH(ϕ) is null homotopic. Thus both H(ϕ) and −[ι2m, ι2m] have Hopf

invariant −2 and both suspend trivially at odd primes. Since π4m−1(S2m) = Z ⊕ S, where the Z

generator is determined by the Hopf invariant and S survives the first suspension, we therefore have

H(ϕ) ' −[ι2m, ι2m] at odd primes.

As additional information, we compare the case B2(α1) (that is, m = 2 and α = α1) with the

classical Lie group Sp(2). These spaces are 3-equivalent, but the respective 3-local fibrations are

pullbacks from different maps:

B2(α) //

��

S7

−[ι4,ι4]

��

Sp(2) //

��

S7

ν

��
S7

α1 // S4 S7
±α1 // S4

where ν is the result of the Hopf construction on quaternionic multiplication on S3.

For the remainder of the section, we assume all spaces and maps are localized at 3.

Two general properties of D(α).

From here on, as notational convenience we give generators of homotopy groups and representative

maps the same label. In particular, for a map α we say α = 0 if α is null homotopic.

It is useful to first observe the following fact about D(α).

Lemma 7.2. The restriction of Σ2m+2n−3A
D(α)−→ S6m−3 to the bottom cell of Σ2m+2n−3A is Σ4m−2α.

Proof. By definition, D(α) = Σ2m−3d(α) where d(α) is the connecting map for the cofibration

S4m−1 −→ Q2 −→ Σ2nA in Lemma 5.1. The space Q2 is a 3-cell complex, and the restriction to its

bottom two cells is homotopy equivalent to Σ2mA. Thus the restriction of d(α) to the bottom cell

of Σ2nA is Σ2m+1α. The lemma now follows. �

Theorem 1.3 states that j ◦ sm ◦ D(α) = 0 if and only if sm ◦ D(α) = α ◦ x′ for some map

Σ2m+2n−3A
x′−→ S2n. The first property of D(α) we prove is a refinement of this equivalence, given

the extra condition that α is stably trivial. The argument proving this property in Lemma 7.3 was

suggested to the authors by Lucia Fernández.

Lemma 7.3. Suppose that Σ∞α = 0. Then j ◦ sm ◦D(α) = 0 if and only if sm ◦ Σ4m−2α = α ◦ x

for some map S4m+2n−4 x−→ S2n in the stable 4m− 2 stem.
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Proof. If j ◦ sm ◦ D(α) = 0, then Theorem 1.3 states that sm ◦ D(α) = α ◦ x′ for some map

Σ2m+2n−3A
x′−→ S2n. Restricting to the bottom cell of Σ4m+2n−3A and using Lemma 7.2, we obtain

sm ◦Σ4m−2α = α ◦ x where x is the restriction of x′ to S4m+2n−4. Note that as n > m, x′ is in the

stable range.

Conversely, suppose that sm ◦ Σ4m−2α = α ◦ x. Arguing as in the (b) implies (c) part of the

proof of Theorem 1.3 shows that j ◦ sm ◦ Σ4m−2α = 0. (That is, the restriction of j ◦ sm ◦D(α) to

the bottom cell of Σ2m+4n−3A is trivial.) Now arguing as in the preliminary part of the proof of

Theorem 1.3 shows that the element [u, [u, v]] ∈ H∗(ΩΣA;Z(3)) is spherical. We wish to show that

the element [u, [v, v]] ∈ H∗(ΩΣA;Z(3)) is also spherical. If so, then W3 = {[u, [u, v]], [u, [v, v]]} is

geometrically realized by a wedge of two spheres. Therefore Bm(α) is an H-space by Theorem 1.2,

which implies by Theorem 1.3 that j ◦ sm ◦D(α) = 0.

It remains to show that [u, [v, v]] is spherical. The space A(2) is produced in the following 3 × 3

diagram by smashing the cofibration sequence S2n−2 α−→ S2m−1 −→ A with its terms:

S4n−4
Σ2n−2α //

Σ2n−2α

��

S2m+2n−3 //

Σ2m−1α

��

A ∧ S2n−2

��
S2m+2n−3

Σ2m−1α //

��

S4m−2 //

��

A ∧ S2m−1

��
S2n−2 ∧A // S2m−1 ∧A // A ∧A.

The space S2m−1 ∧ A(2) is obtained by suspending this diagram. In the suspended diagram, the

maps out of the top left corner are both equal to Σ2m+2n−3α. This map is null homotopic because

it lies in the stable range. By using the same null homotopy for both maps in the top left square of

the suspended diagram, this square is equivalent to the square

S2m+4n−5
∗ //

∗
��

S4m+2n−3

Σ4m−2α

��
S4m+2n−3

Σ4m−2α // S6m−3

where equivalence is in the sense of Mather [Ma, p.229]. Thus S2m−1 ∧A(2) is homotopy equivalent

to the mapping cone of the map S4m+2n−4 ∨ S2m+4n−4 Σ4m−2α∨∗−−−−−−→ S4m−2 ∧ A. It follows that the

homology class [u, [v, v]] is spherical in dimension 2m+ 4n− 3 of H∗(ΩΣA;Z(3)). �

Remark 7.4. In what follows, it is useful to observe that, in general, if sm ◦ Σ4m−2α cannot be

expressed as α ◦ x for some x ∈ πS4m−2, then Bm(α) is not a 3-local H-space. For the failure of

sm ◦ Σ4m−2α = α ◦ x implies, by Lemma 7.2, a failure of the equation sm ◦D(α) = α ◦ x′ for some

map Σ2m+2n−3A
x′−→ S2n. Theorem 1.3 then implies that Bm(α) is not a 3-local H-space.
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To develop the second property of D(α) we exploit the functorial nature of its construction to

obtain a formula for D(α) when α is a composition, α = β ◦ γ. In this paper, both β and γ are

maps of spheres. However, our development is more general so that one can analyze D(α) when the

factors may not pass through spheres, as in secondary compositions. We keep S2m−1 as the target

sphere for α.

Suppose L is (2m − 2)-connected (so as not to interfere with homology in dimension 2m − 1)

and α factors through L as in the diagram

S2n−2
γ

//

��

L

β

��
S2n−2

α // S2m−1.

Let C = S2m−1 ∪β CL be the mapping cone of β. Recall that A = S2m−1 ∪α CS2n−2. Let

γ̂ : A −→ C

extend the identity on S2m−1 by forming the cone on γ, Cγ : CS2n−1 −→ CL. As in Section 5, for

a space X, let b2 : ΣX(2) −→ ΣX(2) be the map b2 = 1
2 (1 − ΣT ), where T is the map swapping

the factors of X(2). Let Telb2(ΣX(2)) be the mapping telescope of b2. In our case, by naturality,

b2 commutes with Σγ̂(2). Thus we obtain a cofibration diagram

(13)

S4m−1 // Telb2(ΣA(2)) //

��

Telb2(ΣA(2))/S4m−1
d(α)

//

q(γ)

��

S4m

S4m−1 // Telb2(ΣC(2)) // Telb2(ΣC(2))/S4m−1
d(β)

// S4m

where d(α) and d(β) are defined as the cofibration connecting maps, and q(γ) is an induced map of

cofibres. (Note that as A has two cells, both in odd dimensions, the top row of this diagram can

be identified with the cofibration S4m−1 −→ Q2(A) −→ Σ2nA in Lemma 5.1.) As in Section 5, let

D(α) = Σ2m−3d(α) and Q(γ) = Σ2m−3q(γ). Then from the rightmost square in (13) we obtain the

formula

D(α) = D(β) ◦Q(γ).

In case L is a sphere we may say more. If L = S2r−2 is an even dimensional sphere, then C has

two cells, both in odd dimensions, so the bottom row in (13) can be identified with the cofibration

S4m−1 −→ Q2(C) −→ Σ2rC in Lemma 5.1. Thus q(γ) is a map q(γ) : Σ2nA −→ Σ2rC. The

pointwise construction of (13) says more, that there is a cofibration diagram

(14)

S4n−2
Σ2nα //

γ(2)

��

S2m+2n−1

Σ2mγ

��

// Σ2nA

q(γ)

��
S4r−2

Σ2rβ
// S2m+2r−1 // Σ2rC.
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Now consider the diagram

(15)

Σ2m+2n−3A

D(α)

��

Σ2m+2n−3A
k′ //

Q(γ)

��

S2m+4n−4

Σ4n−4rγ(2)

���������������������

S6m−3

sm

��

Σ2m+2r−3C

k

��

D(β)
oo

S2m−1 S2m+4r−4
η

oo

where the maps k, k′ and η are to be defined momentarily. The upper left square homotopy

commutes since we already have the formula D(α) = D(β) ◦ Q(γ). The restriction of D(β) to

the bottom cell of Σ2m+2r−4C is Σ4m−2β. Suppose sm ◦ Σ4m−2β = 0. Then D(β) factors as

Σ2m+2r−3C
k−→ S2m+4r−4 η−→ S2m−1 where k is the pinch map to the top cell and η is some map,

so the lower left square homotopy commutes. The map k′ is the pinch map to the top cell and

the right triangle homotopy commutes since it is the square of cofibration connecting maps induced

by (14). Thus the entire diagram homotopy commutes, given the hypothesis that sm ◦Σ4m−2β = 0.

If L = S2r−1 is an odd dimensional sphere, then C = S2m−1 ∪β e2r and a calculation shows

that H∗(Telb2(ΣC(2))) = span{σ[u, u], σ[u, v]} where |u| = 2m − 1 and |v| = 2r. Arguing as in

Lemma 5.1 shows that Telb2(ΣC(2)) ' Σ2mC. Thus in (13) the cofibration sequence S4m−1 −→

Telb2(ΣC(2)) −→ Telb2(ΣC(2))
d(β)−→ S4m can be identified with the cofibration sequence S4m−1 a−→

Σ2mC
b−→ S2m+2r Σ2m+1β−→ S4m where a is the inclusion of the bottom cell and b is the pinch map to

the top cell. Therefore D(β) = Σ2m−3d(β) ' Σ4m−2β.

We summarize all these properties in Lemma 7.5.

Lemma 7.5. If α = β ◦ γ, where β and γ are maps of spheres, then the following hold:

(a) if the stem of β is odd and sm ◦ Σ4m−2β = 0, then sm ◦D(α) factors through a

suspension of γ(2);

(b) if the stem of β is even, then D(α) = Σ4m−2β ◦ Q(γ). In particular, if β is

multiplication by 3, then sm ◦D(α) is null homotopic.

Remark 7.6. Lemma 7.5 (b) yields Theorem 7.1 (b) since sm has order 3.

Framework for the calculations.

We map the calculation of sm ◦D(α) into the EHP sequence for the double suspension. Recall

from Section 5 the homotopy fibration Wm −→ S2m−1 E2

−→ Ω2S2m+1, and the fact that sm is defined

as the composite S6m−3 −→Wm −→ S2m−1, where the left map is the inclusion of the bottom cell.

To label maps, consider the fibration sequence induced by E2,

ΩS2m−1 E−→ Ω3S2m+1 H−→Wm
P−→ S2m−1
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which defines the maps E, H and P . Note that E ' ΩE2. In [Gr2] it was shown that Wm has a

classifying space BWm and there is a homotopy fibration S2m−1 E2

−→ Ω2S2m+1 −→ BWm. Further,

there is a homotopy fibration (localized at 3) ΩS6m−1 −→ BWm −→ Ω2S6m+1, where the composite

ΩS2m+1 −→ BWm −→ Ω2S6m+1 is homotopic to the loops on the 3rd James-Hopf invariant. To

label maps, looping gives a homotopy fibration Ω2S6m−1 I−→ Wm
J−→ Ω3S6m+1. Note that the

composite S6m−3 E2

−→ Ω2S6m−1 I−→ Wm is homotopic to the inclusion of the bottom cell. So

sm = P ◦ I ◦ E2.

We relate the calculations for sm◦D(α) and the EHP sequence in the following principal diagram,

valid for m ≥ 2:

(16)

Σ2m+2n−3A
k′ //

D(α)

��

S2m+4n−4

η]

��
S2m+4n−5

Σ2m+2n−3α //

η

��

S4m+3n−4
Σ4m−2α //

ζ

��

S6m−3
sm //

E2

��

S2m−1

Ω2S6m−1

I

��
ΩS2m−1

E // Ω3S2m+1
H // Wm

P //

J

��

S2m−1

Ω3S6m+1

Starting with the lower right square sm = P ◦ I ◦ E2, the diagram is constructed based on the

assumptions that the composites sm ◦ Σ4m−2α and Σ4m−2α ◦ Σ2m+2n−3α are null homotopic. The

null homotopy for sm◦Σ4m−2α implies the existence of a map ζ making the middle square homotopy

commute. Note that ζ is an element with Hopf invariant I ◦ E2 ◦ Σ4m−2α. The null homotopy for

Σ4m−2α ◦Σ2m+2n−3α along with the homotopy commutativity of the middle square determines the

map η, making the left square homotopy commute. Since the restriction of D(α) to the bottom cell

S4m+3n−4 of Σ2m+2n−3A is Σ4m−2α, the null homotopy for sm ◦Σ4m−2α implies that D(α) factors

as a composite Σ2m+2n−3A
k′−→ S2m+4n−4 ε−→ S2m−1, where k′ is the pinch map to the top cell

and ε is some map. By the Peterson-Stein formula (see [Har2, 3.4.2] for example), we may choose ε

to be η], the adjoint of η. Thus the upper right square homotopy commutes.

Observe that the map η] is a representative for the Toda bracket 〈sm, α, α〉 but, because of the

way D(α) is constructed, we cannot assume that any null homotopy for the α-composition may be

used to construct η]. In fact, one of our examples in Theorem 7.1 (i) is a case where the bracket

contains 0 but the space is not an H-space.



30 J. GRBIĆ, J. HARPER, M.MIMURA, S. THERIAULT, AND J. WU

We use Toda’s notation for the maps to and from Wm. The elements discusssed in Theorem 7.1

are:

Toda name stem sphere of origin Hopf invariant

α1 3 3 1

α2 7 3 H(α2) = α1

β1 10 5 I(α1)

β2 26 9 JH(β2) = β1

ε′ 37 7 I(β2)

µ 75 5 I(λ)

Comments:

• for α1 and α2 the Hopf invariant is the 3rd James-Hopf invariant ΩS3 H−→ ΩS7;

• for ε′, we have ε′ ∈ 〈β1, [3], β2〉 and ε′ ∈ 〈α1, α1, β
3
1〉;

• for µ the element λ is in the 68-stem, is born on S9, and satisfies JH(λ) = β2
2 .

We begin our calculations with the unstable elements in Theorem 7.1 (a).

Proposition 7.7. In stems ≤ 79, every unstable element yields a 3-local H-space with the possible

exception of an element of order 3 in the 77-stem with m = 4.

Proof. Inspection of Toda’s tables reveals that Σ4m−2α = 0 for all the unstable elements in this

range, except for α1β
3
1 when m = 2, and an element of order 3 in the 77-stem when m = 3, 4, 5.

The sphere of origin for this element, which we call ρ, is either S5 or S7, but it is not known which.

Moreover, ρ suspends to 0 on S29. We assume ρ is born on S5.

For the elements satisfying Σ4m−2α = 0, Lemma 7.3 implies that j ◦ sm ◦D(α) = 0. Theorem 1.3

therefore implies that Bm(α) is a 3-local H-space.

For the remaining elements, observe that s2 ◦ α1β
3
1 = 0 because s2 = α2

1 and α3
1 = 0. Note too

that α1β
3
1 is a 6-fold suspension here. Next, we have s3 ◦ Σ10ρ = 0 since s3 = β1 ◦ [3] and ρ has

order 3. As well, we have s5 ◦Σ22ρ = P ◦ I ◦E2 ◦Σ22ρ = P ◦ I ◦Σ24ρ = 0, where the equality with

zero is due to the fact that the target of Σ24ρ is S29 and ρ has the property that it suspends to 0

on S29. In all three cases, we have sm ◦Σ4m−2α = 0. So Lemma 7.3 implies that j ◦ sm ◦D(α) = 0,

which implies by Theorem 1.3 that Bm(α) is a 3-local H-space.

The case of B4(ρ) remains open. �

Next, we turn our attention to the case of α1. The original impetus to this work appears in [Mi].

In [Z], Zabrodsky extended the negative results by Mimura and Toda for the cases m = 5, 8 to

the cases of Theorem 7.1 (g). The positive result in Theorem 7.1 (c) first appeared in [Har1] and

suggested a possible pattern. Here we obtain these results by means of our formulas.

By [T, Proposition 4.4], the Hopf invariant on sm satisfies

H(sm) = χI(α1) with χ ≡ 0 (3)⇔ m ≡ 0 (3).
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On S5, H(β1) = I(α1) up to sign for m = 3 and s3 = 3β1. On S3, s2 = α2
1.

Proposition 7.8. If m ≡ 2 (3), m 6= 2, then Bm(α1) is not a 3-local H-space.

Proof. Toda’s calculation in [T, chart 5.1.11, first column p.46] shows that there is an element

ξ ∈ π6m−2(S2m−3) such that Eξ = sm ◦ α1 6= 0 and H(ξ) = I(β1) 6= 0. In fact, ξ ∈ 〈sm−1, α1, α1〉,

but we do not need this here. We will show that the equation sm ◦ α1 = α1 ◦ x cannot hold.

Theorem 1.3 then implies that Bm(α1) is not a 3-local H-space.

If sm ◦ α1 = α1 ◦ x holds, then x is at least a 4-fold suspension, so α1 ◦ x = Σ4y. Then

E(ξ − Σ2y) = 0 so ξ − Σ2y = P (z) for some z. For dimensional reasons, z = I(α2) is the only

nonzero possibility. Thus ξ − Σ2y = PI(α2). Now, the Hopf invariant of the double suspension

Σ2y is zero, so H(ξ − Σ2y) = H(ξ) = I(β1) 6= 0. On the other hand, H(ξ − Σ2) = HPI(α2) =

H(sm−1 ◦ α2) = α1α2 = 0, a contradiction. �

Proposition 7.9. If m ≡ 1 (3), then Bm(α1) is not a 3-local H-space.

Proof. We wish to show that j ◦ sm ◦ D(α1) 6= 0, which implies by Theorem 1.3 that Bm(α1) is

not a 3-local H-space. In this case sm ◦ α1 = 0 and, up to sign, H(sm+1) = I(α1). Let ζ = sm+1

in the principal diagram (16). Then ζ ◦ α1 6= 0 and it is the image of the map ξ in the proof of

Proposition 7.8 under double suspension. That is, Eξ = ζ ◦ α1. With this composition, consider

the two squares on the left side of the diagram (15). The maps β and η in (15) correspond to the

present maps α1 and ζ] respectively, where ζ] is the adjoint of ζ. Further, with β = α1 we have

Σ2m+2r−3C = Σ4m+2p−5A, where A = S2m−1 ∪α1
e2m+2p−3. So the bottom left square of (15) is

S6m−3

sm

��

Σ4m+2p−5A

k

��

D(α1)

oo

S2m−1 S6m+4p−8.
ζ]

oo

Thus to show that j ◦ sm ◦D(α1) 6= 0 it is equivalent to show that j ◦ ζ] ◦ k 6= 0.

Since A is the cone on α1 and j maps into this cone, we can say two things. If j ◦ ζ] = 0 then

ζ] = α1 ◦ x for some map x. Also, if ζ] ◦ k = 0 then ζ] = α1 ◦ y for some map y. So to show that

j ◦ ζ] ◦ k 6= 0 it is equivalent to show that the equation

ζ] = α1 ◦ x+ y ◦ α1

cannot hold. If the equation does hold, then as in the proof of Proposition 7.8, we have H(ζ]) = I(β1)

and H(α1 ◦ x) = 0. Since y lies in π6m+1(S2m−1), taking Hopf invariants on both sides of the

equation above yields I(β1) = H(y) ◦ α1. But this equation of Hopf invariants cannot hold since

β1 ∈ 〈α1, α1, α1〉. �

Proposition 7.10. If m ≡ 0 (3), then Bm(α1) is a 3-local H-space.
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Proof. In this case we have sm ◦α1 = 0 and, up to sign, H(sm+1) = I(α1). Moreover, sm+1 ◦α1 = 0

in the principal diagram. Thus η = P (z) for some z ∈ π6m+3(ΩWm). The only nonzero possibility

is η = P ◦ I(α2) = sm ◦ α2. But sm ◦ α2 = 0 for m ≡ 0 (3) by the computing diagram in [T, p.37].

Hence η = 0 and sm ◦D(α1) = 0 for m ≡ 0 (3). Therefore j ◦sm ◦D(α1) = 0 so Theorem 1.3 implies

that Bm(α1) is a 3-local H-space. �

Next, we consider the case when m = 2.

Proposition 7.11. If m = 2 and α = α1 or α = α1 ◦ γ where γ and β1 commute up to sign on S6,

then B2(α) is a 3-local H-space.

Proof. Here α2
1 ◦ D(α1) = α1β1 ◦ k, implying that j ◦ s2 ◦ D(α1) = j ◦ α2

1 ◦ D(α1) = 0. Therefore

Theorem 1.3 implies that B2(α1) is a 3-local H-space. As well, by Lemma 7.5 (b), α2
1 ◦D(α1 ◦ γ) =

α1 ◦β1 ◦γ(2) ◦k′ = 0, provided β1 and γ commute up to sign on S6. Therefore j ◦ s2 ◦D(α1 ◦γ) = 0,

so Theorem 1.3 implies that B2(α1 ◦ γ) is a 3-local H-space. �

Theorem 7.1 (f) and the remainder of Theorem 7.1 (e) are consequences of the proofs for α1.

Proposition 7.12. If α = α1 ◦ γ or α = β1 ◦ γ and m ≡ 0 (3), then Bm(α) is a 3-local H-space.

Proof. Suppose α = α1 ◦γ. The composition property D(α) = D(α1)◦Q(γ) along with the equation

sm ◦ D(α1) = 0 for m ≡ 0 (3) in the proof of Proposition 7.10 imply that sm ◦ D(α) = 0. Thus

Theorem 1.3 implies that Bm(α) is a 3-local H-space.

Suppose α = β1 ◦ γ. The fact that sm ◦ β1 ≡ 0 (3) follows from the details of the proof of

Proposition 7.8 where β1 is a birth certificate. By Lemma 7.5 (b), D(α) = Σ4m−2β1 ◦ Q(γ). Thus

sm ◦D(α) = 0. Theorem 1.3 therefore implies that Bm(α) is a 3-local H-space. �

The next few paragraphs are a digression from our calculations in order to discuss the best

known stable family {α̃s} as described in Toda’s memoir [T, p.34]. If ν3(s) denotes the highest

power of 3 that divides s, then α̃s generates a cyclic summand in the (4s − 1)-stem having order

3ν3(s)+1. For s ≥ 3, we cannot complete a calculation of sm ◦ D(α̃s) because a direct use of the

principal diagram (16) puts us out of range of Toda’s calculations, and we have not developed

suitable factorizations of α̃s for use in Lemma 7.5. Nevertheless, enough computation can be made

to suggest the following conjecture.

Conjecture 7.13. If ν3(m+ s) ≤ s− 1 and ν3(m+ s) + ν3(m+ 2s) ≤ 2s− 2, then sm ◦D(α̃s) = 0

for suitable α̃s on S2m−1, where m ≥ ν3(s) + 2.

To explain this formulation, we use information developed by Gray [Gr1]. In particular, for the

prime 3, certain elements

χm,s ∈ π6m+4s−1(S2m+1)
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are constructed provided ν3(m+ s) ≤ s− 1. Except for some anomolous behavior at extreme values

(of no concern here), we have

H(χm,s) = I(α̃s)

in the principal diagram (16) (assuming Toda’s “assertion A” in [T, p.38]) and hence that sm◦α̃s = 0.

If ν3(m+ s) = 0, it can be shown that

χm,s ◦ α̃s = sm+1 ◦ α̃2s−1

which is 0 if ν3(m+ 2s) ≤ 2s− 2. If ν3(m+ s) > 0, it can be shown that

χm,s ◦ α̃s = 0 if ν3(m+ s) ≤ s− 1.

The formulation in the conjecture is an interpolation between the extreme values of ν3(m+ s) such

that the first condition is met.

We now turn to the case s = 2, where Conjecture 7.13 holds.

Proposition 7.14. If m 6≡ 7 (9) and m 6≡ 23 (27), then Bm(α2) is a 3-local H-space.

Proof. The first condition on m shows that sm ◦ α2 = 0. Applying the principal diagram (16) with

α = α2, the middle square then shows that χm,2 exists and can be chosen to satisfy H(χm,2) = I(α̃2).

Case 1: ν3(m+ 2) = 0. Toda’s calculating diagram [T, p.37] yields

χm,2 = 〈sm+1, [3], α1〉.

Thus χm,2 ◦α2 = sm+1 ◦ α̃3, up to sign, with 0 indeterminacy. The second condition on m yields the

information that the map η in the principal diagram (16) satisfies η = P (z) for z ∈ π6m+11(ΩWm).

The only nonzero possibility is z = I(α4), but sm ◦ α4 = 0 since ν3(m + 4) ≤ 2. Thus η = P (z) =

PI(α4) = sm ◦α4 = 0, with the third equality from the middle right square in the principal diagram.

But the upper right square in the principal diagram then says that sm ◦D(α2) = k ◦ η] = 0. Hence

Theorem 1.3 implies that Bm(α2) is a 3-local H-space.

Case 2: ν3(m + 2) = 1. Now ν3(m + 2) = 1 implies that m ≡ 1 (3). So the double suspension of

χm,2 is sm+2, from Toda’s calculating diagram [T, p.40] (of course, all this is in [Gr1] as well). Since

ν3(m + 4) = 0 for m ≡ 1 (3), we have sm+2 ◦ α2 = 0. Thus we know two things about χm,2 ◦ α2.

It is in the image of P from Ω3Wm+1, say P (z) = χm,2 ◦ α2, and it has trivial Hopf invariant. We

claim that χm,2 ◦ α2 = 0. To see this, consider the exact sequence

(17) π6m+11(Ω5S6m+5)
I−→ π6m+11(Ω3Wm+1)

J−→ π6m+11(Ω6S6m+7)

with α̃3 generating the group on the left and β1 generating the group on the right. Since ν3(m+4) =

0, we have sm+1 ◦ α̃3 = 0. Thus z 6= I(α̃3), for if so then 0 6= P (z) = PI(α̃3) = sm ◦ α̃3 = 0, a

contradiction. On the other hand, the Hopf invariant of PJ−1(β1) satisfies

JHPJ−1(β1) = χα1β1



34 J. GRBIĆ, J. HARPER, M.MIMURA, S. THERIAULT, AND J. WU

with χ 6≡ 0 (3) for m ≡ 1 (3). Thus J(z) 6= β1, for if so then z = J−1β1 and χm,2 ◦ α2 =

P (z) = PJ−1β1 has nontrivial Hopf invariant, a contradiction. Hence exactness in (17) implies that

χm,2 ◦ α2 = 0. The proof is now completed by invoking the condition m 6≡ 23 (27) and arguing as

in Case 1. �

We consider what happens at the excluded values of m in Proposition 7.14. The condition

m 6≡ 7 (9) yields m = 7, 16, 25, . . .. If m ≥ 25 we are out of the known range. If m = 7 then

s7 ◦α2 = α1β
3
1 = α2β2, up to sign. It is easy to extend β2 to a suitable x so that s2 ◦D(α2) = α2 ◦x.

Thus Theorem 1.3 implies that B7(α2) is a 3-local H-space. If m = 16, s16 ◦α2 6= 0 and no equation

s16 ◦α2 = α2 ◦x is possible because the stable 62-stem is generated by β1β
2
2 and α2β1β

2
2 = 0 on S31

by inspection of the 69-stem in Toda’s table [T].

The condition m 6≡ 23 (27) yields m = 23, 50, . . .. We are now out of the known range for all

values of m. Moreover, for m = 23, we have χ23,2 ◦ α2 = s24 ◦ α̃3, the value of which could depend

on whether 3 divides s27.

The negative results in Theorem 7.1 (h) and (i) are based on our work for α1. For part (h) we

have the following.

Proposition 7.15. Suppose m ≡ 2 (3), m 6= 2, sm◦α1◦γ 6= 0, I(β1◦γ) 6= 0 and only elements from

the {α̃s} family are in stems (stem γ) + 6, (stem γ) + 7. Then Bm(α1 ◦ γ) is not a 3-local H-space.

Proof. First, the element ξ appearing in the proof of Proposition 7.8 satisfies the equations

sm ◦ Σ4m−2α1 = Eξ and H(ξ) = I(β1).

Hence

sm ◦ Σ4m−2(α1 ◦ γ) = E(ξ ◦ Σ4m−4γ) and H(ξ ◦ Σ4m−4γ) = I(β1 ◦ γ).

The hypotheses sm ◦ α1 ◦ γ 6= 0 and I(β1 ◦ γ) 6= 0 therefore imply that E(ξ ◦ Σ4m−4γ) 6= 0 and

H(ξ ◦ Σ4m−4γ) 6= 0. Second, consider the sequence

πc(Ω
2S6m−7)

I−→ πc(Wm−1)
J−→ πc(Ω

3S6m−5)

where c = 6m− 2 + stem γ. If sm ◦ Σ4m−2α1 ◦ γ = 0 then ξ ◦ Σ4m−4γ = P (z). By hypothesis, only

elements from the {α̃s} family are in stems (stem γ)+6, (stem γ)+7. So z lies in a group determined

only by the {α̃s} family, and HP on these elements are also in the {α̃s} family. From the first and

second observations we can rule out the existence of an equation sm ◦Σ4m−2(α1 ◦ γ) = α1 ◦ γ ◦ x by

arguing as in the proof of Proposition 7.8. Therefore Theorem 1.3 implies that Bm(α1 ◦ γ) is not a

3-local H-space. �

Examples meeting the hypotheses of Proposition 7.15 are β1, β2 and β2
2 .

What happens for γ = β2
1 and m ≡ 2 (3)? In the principal diagram (16) we have

H(〈sm−1, [3], β2〉) = 〈α, [3], β2〉 = β3
1 .
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In case m = 5, s5 ◦ α1β
2
1 = 0 and α1β

2
1 is the Hopf invariant for Toda’s element ε2 on S11. In

cases m = 8, 11, 14, sm ◦α1β
2
1 6= 0 from Toda’s tables [T] in the 53, 65 and 77 stems, but the sphere

of origin for sm ◦ α1β
2
1 is not part of a general pattern. In these cases, an equation of the form

sm ◦ α1β
2
1 = α1β

2
1 ◦ x can be ruled out. The stems involved are 30, 42, 54 with possible x values

β3
1 , ε2, 0. In each case, composition of x with α1β

2
1 gives 0. Thus Theorem 1.3 implies that Bm(α1β

3
1)

is not a 3-local H-space for m = 8, 11, 14, and the issue is unresolved for other cases of m ≡ 2 (3),

m 6= 2. It is true that on S3, B2(α1β
2
1) is a 3-local H-space.

For m ≡ 1 (3) the following proposition deals with the relevant statements in Theorem 7.1 (e)

and (i).

Proposition 7.16. If m ≡ 1 (3), α1 ◦ γ 6= 0 and γ(2) = 0, then Bm(α1 ◦ γ) is a 3-local H-space. If

α1 ◦ γ is in the image of the double suspension map, I(β1 ◦ γ(2)) 6= 0 and (stem γ) + 7 contains only

elements in the {α̃s} family with α̃s ◦ α1 = 0, then Bm(α1 ◦ γ) is not a 3-local H-space.

Proof. Since m ≡ 1 (3), as in the proof of Proposition 7.9 we have sm ◦ α1 = 0 and

sm ◦D(α1) = ξ] ◦ k

with H(ξ]) = I(β1). By Lemma 7.5, we have

sm ◦D(α1 ◦ γ) = ξ] ◦ γ(2) ◦ k′.

For the positive result, by hypothesis γ(2) = 0, so sm ◦ D(α1 ◦ γ) = 0. Theorem 1.3 therefore

implies that Bm(α1 ◦ γ) is a 3-local H-space.

By Theorem 1.3, the negative result holds if j ◦ sm ◦D(α1 ◦ γ) 6= 0. By the first paragraph, this

is equivalent to showing that j ◦ ξ] ◦ γ(2) ◦ k′ 6= 0. To see this, as in Proposition 7.9, it is equivalent

to show that there are no maps x and y satisfying an equation

ξ] ◦ γ(2) = α1 ◦ γ ◦ x+ y ◦ α1 ◦ γ.

If this equation were to hold, then taking Hopf invariant of both sides, we obtain I(β1 ◦ γ(2)) =

H(y) ◦ α1 ◦ γ. By hypothesis, the left side of this equation is nonzero, so the right side is also

nonzero. In particular, H(y) 6= 0. Since stemH(y) = stem γ + 7, by hypothesis on stem γ + 7, the

nonzero element H(y) must be a nontrivial member of the {α̃s} family. But we assume that such

elements compose trivially with α1. Hence the equation of Hopf invariants is impossible. �

A case where the condition is met for a positive result in Proposition 7.16 is γ = β2
1β2. For α1β

2
1β2

is stably nontrivial, while (β2
1β2)(2) = 0. To see the latter equality, note that β3

1β2 is in the 56-stem

which is stably trivial. One suspension of ξ] ◦ β3
1β2 in π6m+60(S2m−1) puts β3

1β2 in the stable range

if m ≥ 4.

Cases where the conditions are met for a negative result in Proposition 7.16 are γ = β1, β
2
1 , β2. It

is interesting to observe that in the case γ = β2
1 we have ξ] ◦β4

1 = sm ◦β1ε
′, so 0 ∈ 〈sm, α1β

2
1 , α1β

2
1〉.
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As in the discussion of the principal diagram, the map η] in that diagram is also a representative

of the bracket 〈sm, α1β
2
1 , α1β

2
1〉, and the diagram states that η] ◦ k = sm ◦D(α). So if η] = 0 then

sm◦D(α) = 0, implying by Theorem 1.3 that Bm(α) = Bm(α1β
2
1) is a 3-local H-space. Our negative

result for Bm(α1β
2
1) implies that η] 6= 0. That is, the choice of null homotopy used to construct η

in the principal diagram sometimes matters.

The cases for Theorem 7.1 (j) are covered by the following.

Proposition 7.17. If m 6≡ 0 (3), α on S2m−1 is in the image of the double suspension map, and

I(α1 ◦Σ4m−5α) 6= 0 in the m− 1 version of the principal diagram (16), then Bm(α) is not a 3-local

H-space.

Proof. If m 6≡ 0 (3), then H(sm) = I(α1) 6= 0. The naturality of H and I therefore implies that

H(sm ◦ Σ4m−2α) 6= 0 since, by hypothesis, I(α1 ◦ Σ4m−5α) 6= 0. Consequently, sm ◦ Σ4m−2α 6= 0

because it has a nontrivial Hopf invariant.

On the other hand, since α is in the image of the double suspension, its Hopf invariant is trivial.

Thus the equation sm◦Σ4m−2α = α◦x cannot hold since the left side has a nontrivial Hopf invariant

while the right side has a trivial Hopf invariant. By Remark 7.4, the nonexistence of such an equation

implies that Bm(α) is not a 3-local H-space. �

Cases where the hypotheses hold in Proposition 7.17 are ε′, β1ε
′ and µ.

Remark 7.18. If α is born on S3 and α2
1 ◦ Σ6α 6= 0, then B2(α) is not a 3-local H-space. No

examples of this phenomenon are known if α is in an odd stem.

Finally, observe that Propositions 7.7 through 7.17 collectively cover all the cases in Theorem 7.1.
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