
SELF-MAPS OF LOW RANK LIE GROUPS AT ODD PRIMES

JELENA GRBIĆ AND STEPHEN THERIAULT

Abstract. Let G be a simple, compact, simply-connected Lie group localized at an odd prime p.

We study the group of homotopy classes of self-maps [G, G] when the rank of G is low and in

certain cases describe the set of homotopy classes of multiplicative self-maps H[G, G]. The low

rank condition gives G certain structural properties which make calculations accessible. Several

examples and applications are given.

1. Introduction

When studying any mathematical object it is a natural to ask what its automorphisms are, as

this often reveals interesting structure. In homotopy theory the objects are topological spaces and

the automorphisms are homotopy classes of pointed, continuous self-maps. One collection of spaces

that is interesting to study is Lie groups, as they are fundamental to many areas of mathematics.

However, little is known about their homotopy classes of self-maps. It is classical that for SU(2) ' S3

the set of homotopy classes of self-maps is π3(S3) ∼= Z. Mimura and Oshima [MO] determined the

set of homotopy classes of SU(3) and Sp(2). But for higher rank Lie groups the calculations quickly

become overwhelming, largely due to an inability to control the 2-primary information.

In this paper we invert the prime 2 in order to get more information. To be precise, assume

that all spaces are pointed, connected, topological spaces with the homotopy types of finite type

CW -complexes. Assume that all spaces and maps have been localized at an odd prime p and

homology is taken with mod-p coefficients. For spaces X and Z, let [X, Z] be the set of homotopy

classes of pointed, continuous maps. If X and Z are H-spaces, a distinguished subset of [X, Z] is

the set H[X, Z] of homotopy classes of H-maps between X and Z. Let G be a simple, compact,

simply-connected Lie group. In this paper we study [G, G] when the rank of G is low and in certain

cases describe H[G, G]. For example, we consider [SU(n), SU(n)] when n ≤ (p − 1)2 + 1 and

H[SU(n), SU(n)] when 2n < p. The methods we use are also applicable in other cases, some of

which will be indicated as we proceed.

We begin with a general theorem which decomposes certain homotopy classes of maps.
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Theorem 1.1. Let Z be a homotopy associative H-space. Let X be a space such that ΣX '∨t
i=1 ΣXi. Then there is an isomorphism of sets

[X, Z] ∼=
t∏

i=1

[Xi, Z].

Further, if Z is also homotopy commutative then the isomorphism is of abelian groups.

Theorem 1.1 is most useful when Z is not known to be a loop space. For if Z = ΩZ ′, the set

isomorphism in Theorem 1.1 is a straightforward consequence of adjunction, although the group

isomorphism in the commutative case requires a bit more work. An example which is not a loop

space is S2n+1, which is both homotopy associative and homotopy commutative when localized at

p ≥ 5. More generally, families of p-local finite torsion free H-spaces are constructed in [CHZ, CN]

and work of the second author [Th1] gives conditions for when they are homotopy associative and

homotopy commutative. Many interesting spaces satisfy the suspension condition on the domain in

Theorem 1.1. For example, if X = Sg is a surface of genus g then ΣSg ' (
∨2g

i=1 ΣS2) ∨ ΣS3, or if

X = M is a simply-connected 4-manifold then (at odd primes) ΣM ' (
∨d

i=1 ΣS3) ∨ ΣS5 for some

nonnegative integer d.

The spaces of primary interest which satisfy the suspension condition in Theorem 1.1 are torsion-

free simple, compact, simply-connected Lie groups. The list of such groups and the relevant primes

is: Spin(n) for n ≥ 3 and p ≥ 3; SU(n) for n ≥ 2 and p ≥ 3; Sp(n) for n ≥ 1 and p ≥ 3; G2 for p ≥ 3;

F4, E6, and E7 for p ≥ 5, and E8 for p ≥ 7. In all such cases, we have H∗(G) ∼= Λ(x2n1+1, . . . , x2nt+1)

where n1 < n2 < · · · < nt, the degree of x2ni+1 is 2ni + 1 and t is the rank of G. Let q = 2(p− 1).

It is well known that there is an algebra decomposition

H∗(G) ∼= ⊗p−1
i=1 Λ(Vi)

where Vi consists of those generators in {x2n1+1, . . . , x2nt+1} whose degrees are of the form 2i+jq+1

for some j ≥ 0. Note that, depending on G, it may be the case that Vi = ∅ for some i. Mimura,

Nishida, and Toda [MNT2] realized this algebra decomposition geometrically by showing that there

is a homotopy equivalence G '
∏p−1

i=1 Bi where H∗(Bi) ∼= Λ(Vi). This can be pushed further. Let li

be the cardinality of Vi. For 0 ≤ k ≤ li, let Λk(Vi) be the submodule of Λ(Vi) consisting of the

elements of tensor length k. Then there is a module isomorphism

Λ(Vi) ∼= ⊕li
k=0Λk(Vi).

Thus there is a module isomorphism

H∗(G) ∼=
l1,...,lp−1⊕

k1,...,kp−1=0

Λk1(V1)⊗ · · · ⊗ Λkp−1(Vp−1).

We will show that in low rank this module decomposition can be realized geometrically in the

following sense.
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Theorem 1.2. Let G be one of the following: SU(n) if n ≤ (p − 1)2 + 1; Sp(n) if 2n ≤ (p − 1)2;

Spin(2n + 1) if 2n ≤ (p − 1)2; Spin(2n) if 2(n − 1) ≤ (p − 1)2; G2 if p ≥ 3; F4 or E6 if p ≥ 5;

E7 or E8 if p ≥ 7. Then for each 1 ≤ i ≤ p − 1 and 0 ≤ ki ≤ li there are spaces Ski
such that

H̃∗(Ski
) ∼= Λki

(Vi), and there is a homotopy decomposition

ΣG '
l1,...,lp−1∨

k1,...,kp−1=0

ΣSk1 ∧ · · · ∧ Skp−1 .

(Here, Λki(Vi) = {1} if ki = 0, in which case Ski = ∗, and then the smash product is interpreted as

excluding Ski
rather than smashing with a point.)

It should be emphasized that the new information contained in Theorem 1.2 is not the existence of

a wedge decomposition of ΣG which geometrically realizes the module decomposition of ΣH∗(G), it

is the fact that a decomposition can be chosen so that each of the wedge summands is a suspension.

This suspension property will be shown to be a consequence of the fact that the smash of a co-H-

space with itself is homotopy equivalent to a suspension [GTW].

Theorem 1.2 is reminiscient of a p-local stable decomposition of U(n) by Nishida and Yang [NY],

which is an odd primary refinement of Miller’s [Mil] integral stable decomposition of U(n). Nishida

and Yang show that the mod-p module decomposition for H∗(U(n)) can be geometrically realized

stably. So in this sense, after replacing U(n) with SU(n), Theorem 1.2 can be regarded as a maximal

desuspension of Nishida and Yang’s stable decomposition, at least in low rank.

Theorems 1.1 and 1.2 combine to give the following decomposition of [G, G] which is useful for

calculations.

Corollary 1.3. Let G be one of the Lie groups listed in Theorem 1.2. Then there is an isomorphism

of sets

[G, G] ∼=
l1,...,lp−1∏

k1,...,kp−1=0

[Sk1 ∧ · · · ∧ Skp−1 , G]

which is an isomorphism of abelian groups if the loop multiplication on G is homotopy commuta-

tive. �

The cases when the loop multiplication on G is (p-locally) homotopy commutative are known.

McGibbon [Mc] showed that homotopy commutativity holds in precisely the following cases:

(1)

SU(n) if 2n < p; G2 if p ≥ 13; G2 if p = 5;

Sp(n) if 4n < p; F4, E6 if p ≥ 29; Sp(2) if p = 3

Spin(2n + 1) if 4n < p; E7 if p ≥ 37;

Spin(2n) if 4(n− 1) < p; E8 if p ≥ 61;

(The second author would like to apologize for omitting the groups in the second column in [Th2],

to which the results in that paper also apply.)
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We now turn to H-maps. In general, it is difficult to determine when a self-map of G is an

H-map, so the set H[G, G] can be mysterious. However, when G is homotopy commutative, there

is a tractable description of H[G, G]. To state this, it is well known (see, for example [Th2]) that

when G is torsion free there is a space A such that H∗(G) ∼= Λ(H̃∗(A)) and a map A −→ G which

induces the inclusion of the generating set in homology. In [Th2] it was shown that if G is homotopy

commutative then there is an isomorphism of abelian groups

(2) H[G, G] ∼= [A,G].

Using this in combination with Corollary 1.3 gives interesting results. In particular, we prove the

following theorem, which identifies cases when every self-map of G is homotopic to an H-map.

Theorem 1.4. Let p be an odd prime and let G be a homotopy commutative Lie group. There is a

group isomorphism [G, G] ∼= H[G, G] in the following cases:

(a) G = SU(n) and n ≤ 7, 2n < p, and n2 − 1 < 2p;

(b) G = Sp(n) and n ≤ 13, 4n < p, and 2n2 + n < 2p;

(c) G = Spin(2n + 1) and n ≤ 13, 4n < p, and 2n2 + n < 2p;

(d) G = Spin(2n) and n ≤ 6, 4(n− 1) < p, and 2n2 − n < 2p;

(e) G = G2 and p = 5.

For example, the conditions on n and p in Theorem 1.4 (a) hold for n = 2 and p ≥ 5; n = 3 and

p ≥ 7; n = 4 and p ≥ 11; n = 5 and p ≥ 13; n = 6 and p ≥ 19; n = 7 and p ≥ 29. It should be

noted that there may be cases for which the conclusion of the theorem holds but which fall outside

the hypotheses, for example, when G = SU(n), n = 6, and p = 17. We go on in Section 6 to give

an explicit generating set of H[G2, G2].

This paper is organized as follows. Section 2 gives general results on H-maps. Section 3 proves

Theorem 1.1. Section 4 discusses low rank torsion free finite H-spaces, which establishes some of

the background for the following section on Lie groups, as well as providing interesting examples of

Theorem 1.1 in action. Section 5 discusses low rank Lie groups and proves Theorem 1.2. Section 6

gives examples and applications of the preceeding theorems, and in particular proves Theorem 1.4.

2. Preliminary results on H-maps

This section gives some general results on H-maps. To begin, let Z be an H-space. Recall that

we are assuming that all spaces have the homotopy type of a CW -complex. So by [J2], Z has a left

homotopy inverse and a right homotopy inverse. Further, these coincide if Z is homotopy associative

and there is a unique homotopy inverse. Thus if Z is homotopy associative then [A,Z] is a group

for any space A. If Z is homotopy commutative as well then [A,Z] is an abelian group.
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Now suppose X and Z are H-spaces and consider the subset H[X, Z] of [X, Z]. If Z is homotopy

associative then [X, Z] is a group but the restriction to H[X, Z] need not preserve the group structure.

To see this, let f, g : X −→ Z represent homotopy classes in H[X, Z]. The sum f + g is given by the

composite

f + g : X
∆−→ X ×X

f×g−→ Z × Z
µ−→ Z

where ∆ is the diagonal map and µ is the multiplication on Z. This sum, however, need not be an

H-map. For if f + g were an H-map, there would be a homotopy commutative diagram

X ×X
(f+g)×(f+g)

//

µ

��

Z × Z

µ

��
X

f+g
// Z.

But the definition of f + g implies that the upper direction around the diagram sends a pair

of points (a, b) to f(a)g(a)f(b)g(b) while the lower direction around the diagram sends (a, b) to

f(a)f(b)g(a)g(b). Thus to have the two directions around the diagram homotopic, some commu-

tativity condition is needed. The following lemma shows that if Z is homotopy associative and

homotopy commutative, then the restriction of [X, Z] to H[X, Z] does preserve the group structure.

Lemma 2.1. Let X be an H-space and let Z be a homotopy associative, homotopy commutative

H-space. Then the multiplication on Z gives H[X, Z] the structure of an abelian group and the

inclusion I : H[X, Z] −→ [X, Z] is a group homomorphism.

Proof. Consider H[X, Z] as a subset of [X, Z]. The assertions of the lemma follow if we show that

H[X, Z] is a subgroup of [X, Z]. The identity element in the group [X, Z] is the trivial map, which is

an H-map, and so is in H[X, Z]. It is well known (and easy to verify) that the homotopy associativity

and homotopy commutativity of Z implies that the multiplication Z × Z
µ−→ Z is an H-map, and

that the inverse Z
−1−→ Z is also an H-map. Thus if f, g : X −→ Z are H-maps then the composite

f + g : X
∆−→ X ×X

f×g−→ Z × Z
µ−→ Z is an H-map as each of ∆, f × g, and µ are. Thus H[X, Z]

is closed under addition. As well, the composite −f : X
f−→ Z

−1−→ Z is an H-map as each of f and

−1 are. Thus H[X, Z] is closed under inverses. Hence H[X, Z] is a subgroup of [X, Z]. �

In general, if X and Z are H-spaces then it is difficult to determine when a map X −→ Z is

an H-map. However, there are special cases when H-maps can be determined by using a certain

universal property. The best known case is due to James [J1]. For a space A, let E : A −→ ΩΣA be

the suspension map.

Theorem 2.2. Let A be a path-connected space, and let Z be a homotopy associative H-space. Let

f : A −→ Z be a map. Then there is a unique H-map f : ΩΣA −→ Z such that f ◦E ' f . Therefore,

the map

θ : [A,Z] −→ H[ΩΣA,Z]
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defined by θ(f) = f is a bijection. �

Thus Theorem 2.2 gives a means of determining the set H[ΩΣA,Z]. Assuming Z is also homotopy

commutative, the correspondence can be strengthened to one of abelian groups.

Lemma 2.3. Let A be a path-connected space, and let Z be a homotopy associative, homotopy

commutative H-space. Then the one-to-one correspondence

[A,Z] θ−→ H[ΩΣA,Z]

of Lemma 2.2 is an isomorphism of abelian groups.

Proof. First note that the H-structure on Z implies that [A,Z] is an abelian group and by Lemma 2.1

H[ΩΣA,Z] is also an abelian group. By Theorem 2.2, θ is a bijection, so it only remains to show

that θ is a group homomorphism. Suppose f, g : A −→ Z represent homotopy classes in [A,Z].

Then θ(f + g) = f + g has the property that it is the unique H-map such that (f + g) ◦E ' f + g.

On the other hand, θ(f) = f and θ(g) = g where f and g are H-maps such that f ◦ E ' f and

g ◦E ' g. Since Z is homotopy associative and homotopy commutative, Lemma 2.1 says that f + g

is an H-map. Moreover, (f + g) ◦ E ' (f ◦ E) + (g ◦ E) ' f + g. Thus f + g is another H-map

which precomposes with E to give f + g. The uniqueness property of f + g therefore implies that

f + g ' f + g. That is, θ(f + g) ' θ(f) + θ(g) and so θ is a group homomorphism. �

A similar notion of universality can be defined with respect to homotopy associative, homotopy

commutative H-spaces. A homotopy associative, homotopy commutative H-space B is universal

for a space A if there is a map i : A −→ B with the following property: whenever Z is a homotopy

associative, homotopy commutative H-space and f : A −→ Z is a map, then there is a unique H-map

f : B −→ Z such that f ◦ i ' f . There is no known functorial construction which starts with a space

A and produces its universal space B. However, there are many special cases of interesting spaces

whose universal spaces have been constructed by ad hoc methods [Gra, Grb1, Grb2, Th1, Th2]. The

analogue of Theorem 2.2 and Lemma 2.3 is the following.

Lemma 2.4. Let B be a homotopy associative, homotopy commutative H-space which is universal

for a space A. Let Z be a homotopy associative, homotopy commutative H-space. Then the map

Θ: [A,Z] −→ H[B,Z]

defined by Θ(f) = f is an isomorphism of abelian groups.

Proof. Since Z is homotopy associative and homotopy commutative, [A,Z] is an abelian group, and

by Lemma 2.1, H[B,Z] is also an abelian group. The bijectivity of Θ is built into the definition of

universality through the existence and uniqueness conditions on the H-map f . The proof that Θ is

a group homomorphism is exactly the same as in Lemma 2.3. �
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3. Homotopy classes of maps

The purpose of this section is to prove Theorem 1.1. To motivate this, suppose Z is a loop

space, Z = ΩZ ′. Suppose X has the property that ΣX ' ΣX1 ∨ · · · ∨ ΣXt. This decomposition

is only assumed to be a homotopy equivalence of spaces, not co-H-spaces. Consider the string of

isomorphisms

(3) [X, ΩZ ′] ∼= [ΣX, Z ′] ∼= [
t∨

i=1

ΣXi, Z
′] ∼=

t∏
i=1

[ΣXi, Z
′] ∼=

t∏
i=1

[Xi,ΩZ ′].

Numbering from left to right, the first and fourth isomorphisms are adjunctions, and so are group

isomorphisms. The third isomorphism is a categorical identification and so is a group isomorphism.

The second isomorphism is due to the homotopy decomposition ΣX '
∨t

i=1 Xi; as this is a homotopy

equivalence of spaces the isomorphism is as sets. Thus [X, ΩZ ′] is isomorphic to
∏t

i=1[Xi,ΩZ ′] as

sets.

This can be improved if Z is a double loop space, so that Z = Ω2Z ′′. Consider the string of

isomorphisms

(4) [X, Ω2Z ′′] ∼= [Σ2X, Z ′′] ∼= [
t∨

i=1

Σ2Xi, Z
′′] ∼=

t∏
i=1

[Σ2Xi, Z
′′] ∼=

t∏
i=1

[Xi,Ω2Z ′′].

Again, the first and fourth isomorphisms are adjunctions and so are group isomorphisms, while

the third isomorphism is a categorical identification and so is a group isomorphism. The second

isomorphism is now also an isomorphism of groups because it comes from the homotopy equivalence

of co-H-spaces Σ2X '
∨t

i=1 Σ2Xi. Thus [X, Ω2Z ′′] is isomorphic to
∏t

i=1[Xi,Ω2Z ′′], as groups.

Moreover, this is an isomorphism of abelian groups because Ω2Z ′′ is homotopy commutative.

Theorem 1.1 is a generalization of the isomorphism in (3) when Z is not a loop space but only

a homotopy associative H-space, and of the isomorphism in (4) when Z is not a double loop space

but only a homotopy associative, homotopy commutative H-space.

Proof of Theorem 1.1: We will regard
∏t

i=1[Xi, Z] equivalently as [
∨t

i=1 Xi, Z]. Let f : X −→ Z

represent a homotopy class in [X, Z]. Since Z is homotopy associative, Theorem 2.2 states that

there is a unique H-map f : ΩΣX −→ Z such that f ◦ E ' f . By hypothesis, there is a homotopy

equivalence e : ΣX −→ Σ(X1 ∨ · · · ∨Xt). Define

π : [X, Z] −→ [X1 ∨ · · · ∨Xt, Z]

by π(f) = f ◦ Ω(e−1) ◦ E. That is, π(f) is the composite

π(f) : X1 ∨ · · · ∨Xt
E−−−−→ ΩΣ(X1 ∨ · · · ∨Xt)

Ω(e−1)−−−−→ ΩΣX
f−−−−→ Z.

Similarly, let g : X1 ∨ · · · ∨Xt −→ Z represents a homotopy class in [X1 ∨ · · · ∨Xt, Z]. Since Z is

homotopy associative, Theorem 2.2 says that there is a unique H-map g : ΩΣ(X1 ∨ · · · ∨Xt) −→ Z
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such that g ◦ E ' g. Define

ρ : [X1 ∨ · · · ∨Xt, Z] −→ [X, Z]

by ρ(g) = g ◦ Ωe ◦ E. That is, ρ(g) is the composite

ρ(g) : X
E−→ ΩΣX

Ωe−→ ΩΣ(X1 ∨ · · · ∨Xt)
g−→ Z.

The asserted isomorphism of sets [X, Z] ∼= [
∨t

i=1 Xi, Z] will be proved by showing that π is a

bijection. This is equivalent to showing that ρ ◦ π and π ◦ ρ are the respective identity maps. Given

f : X −→ Z, let g = π(f) = f ◦ Ω(e−1) ◦ E. Then by definition we have

(ρ ◦ π)(f) = ρ(π(f)) = ρ(g) = g ◦ Ωe ◦ E

where g is the unique H-map such that g ◦ E ' g. On the other hand, f ◦ Ω(e−1) is an H-map as

it is the composite of H-maps, and by definition, g = π(f) = (f ◦ Ω(e−1)) ◦ E. Thus f ◦ Ω(e−1) is

another H-map such that (f ◦Ω(e−1)) ◦E ' g. The uniqueness property of g therefore implies that

g ' f ◦ Ω(e−1). Hence

(ρ ◦ π)(f) ' g ◦ Ωe ◦ E ' (f ◦ Ω(e−1)) ◦ Ωe ◦ E ' f ◦ E ' f

and so ρ ◦ π is the identity map on [X, Z]. Similarly, π ◦ ρ is the identity map on [X1 ∨ · · · ∨Xt, Z].

Thus π is a bijection.

Now suppose that Z is also homotopy commutative. To prove that there is a group isomorphism

[X, Z] ∼= [
∨t

i=1 Xi, Z] it remains to show that φ is a group homomorphism. Let f1, f2 : X −→ Z

represent homotopy classes in [X, Z]. Then, by definition, π(f1 +f2) = (f1 + f2)◦Ω(e−1)◦E, where

(f1 + f2) is the unique H-map such that (f1 + f2) ◦ E ' f1 + f2. On the other hand, since Z is

homotopy associative Theorem 2.2 applied to each of f1 and f2 individually gives H-maps f1 and

f2 such that f1 ◦ E ' f1 and f2 ◦ E ' f2. Since Z is also homotopy commutative, Lemma 2.1

implies that the sum f1 + f2 is also an H-map. As well, we have (f1 + f2) ◦E ' f1 ◦E + f2 ◦E '

f1 +f2. The uniqueness property of (f1 + f2) therefore implies that (f1 + f2) ' f1 +f2. Thus, with

t = Ω(e−1) ◦ E, we have

π(f1 + f2) ' (f1 + f2) ◦ t ' (f1 + f2) ◦ t ' (f1 ◦ t) + (f2 ◦ t) ' π(f1) + π(f2)

and so π is a group homomorphism. �

Example 3.1. By [J1], if A is a path-connected space then ΣΩΣA '
∨∞

i=1 ΣA(i), where A(i) is the

i-fold smash of A with itself. If Z is a homotopy associative H-space, then Theorem 1.1 says that

there is a bijection of sets

[ΩΣA,Z] ∼=
∞∏

i=1

[A(i), Z]
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which is a group isomorphism if Z is also homotopy commutative. In particular, if A = Sm there is

a bijection of sets

[ΩSm+1, Z] ∼=
∞∏

i=1

[(Sm)(i), Z] ∼=
∞⊕

i=1

πmi(Z)

which is a group isomorphism if Z is homotopy commutative.

Example 3.2. When localized at an odd prime p ≥ 5, S2n+1 is a homotopy associative, homotopy

commutative H-space. So Example 3.1 implies that there is a (p-local) group isomorphism

[ΩSm+1, S2n+1] ∼=
∞⊕

i=1

πmi(S2n+1).

A curious instance of this is when m = 1, in which case there is a (p-local) group isomorphism

[ΩS2, S2n+1] ∼=
∞⊕

i=1

πi(S2n+1).

Thus calculating [ΩS2, S2n+1] is equivalent to calculating the p-local homotopy groups of spheres.

4. Low rank torsion free finite H-spaces

We will see in Section 5 that if G is a low rank Lie group then it decomposes as a product of certain

torsion free finite H-spaces which have nice properties. The purpose of this section is to introduce

these finite H-spaces, and discuss their relevant properties. In particular, we will see that when they

are suspended they decompose as a wedge of suspensions, allowing us to apply Theorem 1.1.

In all that follows, we start with a space X which has l odd dimensional cells, and then localize

at a prime p. Homology is taken with mod-p coefficients. We consider p-local H-spaces Y such that

H∗(Y ) ∼= Λ(H̃∗(X)). The rank of Y is the number of generators it has in rational cohomology, so

in this case Y has rank l. For 1 ≤ k ≤ l, let Λk(H̃∗(X)) denote the submodule of length k tensor

elements in Λ(H̃∗(X)). The following theorem was proved in [CN].

Theorem 4.1. Let X be a CW -complex consisting of l odd dimensional cells, where l ≤ p − 1.

Suppose there is an H-space Y such that H∗(Y ) ∼= Λ(H̃∗(X)) and a map X −→ Y which induces

the inclusion of the generating set in homology. Then there is a homotopy equivalence

ΣY '
l∨

k=1

Rk(X)

where Rk(X) is a space such that H̃∗(Rk(X)) ∼= ΣΛk(H̃∗(X)), and R1(X) = ΣX. �

In [CN, CHZ] it was shown that if X has l odd dimensional cells, where l < p − 1, then it is

guaranteed that there is an H-space Y such that H∗(Y ) ∼= Λ(H̃∗(X)) and a map X −→ Y which

induces the inclusion of the generating set in homology. If X has p − 1 odd dimensional cells then

it may be the case that such an H-space Y exists, but there is no guarantee of it.
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We would like to apply Theorem 1.1 with one of the H-spaces Y in Theorem 4.1 as the domain.

This requires that each of the wedge summands Rk(X) be a suspension. So we wish to find conditions

on X which guarantee that Rk(X) is a suspension for each k. To do so we first have to consider

how Rk(X) was constructed in [CN].

Let Σk be the symmetric group on k letters, Z(p) be the p-local integers, and let Z(p)[Σk] be the

group ring. Let

s̄k =
∑

σ∈Σk

σ ∈ Z(p)[Σk].

It is a standard fact that s̄k ◦ s̄k = k!s̄k. If k < p, then k! is invertible in Z(p) and so sk = 1
k! s̄k is

an idempotent in Z(p)[Σk]. In terms of topology, let X(k) be the k-fold smash product of X with

itself. An element σ ∈ Σk gives a map σ : X(k) −→ X(k) defined by permuting the smash factors.

Suspending, we can add, giving a map sk : ΣX(k) −→ ΣX(k) corresponding to the idempotent

s̄k ∈ Z(p)[Σk]. The space Rk(X) in Theorem 4.1 is defined as the mapping telescope:

Rk(X) = hocolimsk
ΣX(k).

In homology, (sk)∗ is an idempotent and we have H̃∗(Rk(X)) ∼= Im (sk)∗ ∼= ΣΛk(V ). Moreover,

if R′
k(X) = hocolim1−sk

ΣX(k) then H∗(ΣX(k)) ∼= H∗(Rk(X)) ⊕ H∗(R′
k(X)) because (sk)∗ and

(1− sk)∗ are orthogonal idempotents. This homology decomposition can be realized geometrically.

Using the co-H structure on ΣX(k), we can add the telescope maps, giving a composite

ΣX(k) −→ ΣX(k) ∨ ΣX(k) −→ Rk(X) ∨R′
k(X)

which is an isomorphism in homology and so is a homotopy equivalence. (It does not play a role in

what follows, but it may be helpful to observe that what we have done is show that ΣY is a retract

of ΣΩΣX '
∨∞

k=1 ΣX(k), where for 1 ≤ k ≤ l, Rk(X) is a retract of ΣX(k) corresponding to the

suspension of the submodule of symmetric tensors of length k in H∗(ΩΣX) ∼= T (H̃∗(X)).)

We now consider conditions which guarantee that Rk(X) is a suspension for 1 ≤ k ≤ l. Note

that R1(X) = ΣX so the issue is for k > 1. First, suppose that X is a suspension, X = ΣX. Then

X(k) ' ΣkX
(k)

and the map ΣX(k) sk−→ ΣX(k) is essentially (up to shuffling suspension coordinates)

the k-fold suspension of the map ΣX
(k) sk−→ ΣX

(k)
. Thus there is a homotopy equivalence of mapping

telescopes Rk(X) ' ΣkRk(X). So in this case, the decomposition of ΣY becomes

ΣY '
l∨

k=1

ΣkRk(X).

More generally, suppose X is a co-H-space. Now X(k) is not apparently a suspension. However,

by [GTW] it is in fact a (k − 1)-fold suspension for k ≥ 2, and satisfies the appropriate properties.

Proposition 4.2. Let X be a co-H-space, and let V = Σ−1H̃∗(X). For k ≥ 2, there is a homotopy

equivalence

X(k) ' Σk−1Mk(X)
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where Mk(X) is a space such that H̃∗(Mk(X)) ∼= ΣV ⊗k. Further, there is a homotopy equivalence

Rk(X) ' ΣkMRk(X), where MRk(X) is a space such that H̃∗(MRk(X)) ∼= ΣΛk(V ). �

The space MRk(X) is defined as the mapping telescope of a map s̃k : Mk(X) −→ Mk(X) which

is, essentially, a (k−1)-fold desuspension of X(k) sk−→ X(k). To normalize the number of suspensions,

for k ≥ 2 let

Sk(X) = Σk−1MRk(X).

Then there is a homotopy equivalence

ΣY '
l∨

k=1

ΣSk(X)

where

H̃∗(Sk(X)) ∼= Σk−1H̃∗(MRk(X)) ∼= ΣkΛk(V ) ∼= Λk(H̃∗(X)).

Summarizing, we have the following.

Proposition 4.3. Let X be a CW -complex consisting of l odd dimensional cells, where l ≤ p − 1.

Suppose X is a co-H-space and there is an H-space Y such that H∗(Y ) ∼= Λ(H̃∗(X)), together with

a map X −→ Y which induces the inclusion of the generating set in homology. Then there is a

homotopy equivalence

ΣY '
l∨

k=1

ΣSk(X)

where Sk(X) is a space such that H̃∗(Sk(X)) ∼= Λk(H̃∗(X)), and S1(X) = X. �

Applying Theorem 1.1 immediately gives the following.

Corollary 4.4. Given X and Y as in Proposition 4.3. If Z is a homotopy associative H-space,

then there is an isomorphism of sets

[Y,Z] ∼=
l∏

k=1

[Sk(X), Z]

and if Z is also homotopy commutative, then this isomorphism is of abelian groups. �

We have already remarked that if X has l odd dimensional cells, where l < p − 1, then it is

known that there is an H-space Y with H∗(Y ) ∼= Λ(H̃∗(X)) and a map X −→ Y which induces the

inclusion of the generating set in homology. In [Th1] it was shown that if X is a suspension and

l < p − 2, then Y is homotopy associative and homotopy commutative. This was later generalized

to the case when X is a co-H-space and l < p− 2 in [Th2]. Thus Proposition 4.3 and Corollary 4.4

imply the following.
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Corollary 4.5. Let X be a co-H-space consisting of l odd dimensional cells, l < p− 2, and let Y be

the corresponding homotopy associative, homotopy commutative H-space with H∗(Y ) ∼= Λ(H̃∗(X)).

Then there is an isomorphism of abelian groups

[Y, Y ] ∼=
l∏

k=1

[Sk(X), Y ].

5. Lie groups

In this section we prove Theorem 1.2. The following Proposition is well known, although not

usually stated this way in the literature. An explicit proof can be found in [Th2], and is based on

work in [H, MT, MNT1, MNT2]. Let q = 2(p− 1).

Proposition 5.1. Let G be a torsion free, compact, simply-connected, simple Lie group. Then there

is a co-H-space A such that H∗(G) ∼= Λ(H̃∗(A)) and there is a map A −→ G which induces the

inclusion of the generating set in homology. Further, there is a homotopy decomposition A '
∨p−1

i=1 Ai

where H̃∗(Ai) consists of those elements in H̃∗(A) in degrees 2i + kq + 1 for some k ≥ 0. �

For example, if G = SU(n) then A = ΣCPn−1. In this case the space A and the map A −→ G

exist integrally, but in other cases the existence of the map A −→ G occurs only after localization

at p. Also note that for a given G it may be possible that there are no elements in H∗(A) in degrees

of the form 2i + kq + 1, in which case H̃∗(Ai) = 0 and so Ai ' ∗.

The decomposition A '
∨p−1

i=1 Ai in Proposition 5.1 results in a homology decomposition H∗(G) ∼=

⊗p−1
i=1 Λ(H̃∗(Ai)). This homology decomposition was realized geometrically by Mimura, Nishida,

and Toda [MT, MNT2], incorporating work of Harris [H]. They showed that there is a homotopy

decomposition

(5) G '
p−1∏
i=1

Bi

where H∗(Bi) ∼= Λ(H̃∗(Ai)), and each Bi is indecomposable. Let li be the number of cells in Ai.

Proof of Theorem 1.2: First consider ΣBi for each i. Observe that Bi is an H-space because it is a

retract of the H-space G. Theorem 5.1 and the decomposition in (5) give a map Ai −→ Bi which

induces the inclusion of the generating set in homology. All the homology generators of H∗(G), and

therefore of H∗(Bi), are in odd dimensions, so the cells of Ai are in odd dimensions. By [MNT2], the

hypotheses on the rank and the prime in the statement of the theorem guarantee that the number li

of cells in Ai satisfies li ≤ p− 1. Thus all the hypotheses of Proposition 4.3 are fulfilled with respect

to Ai and Bi, and so we obtain a homotopy decomposition

ΣBi '
li∨

ki=1

ΣSki
(Ai)

where Ski
(Ai) is a space such that H̃∗(Ski

(Ai)) ∼= Λki
(H̃∗(Ai)) ∼= Λki

(Vi), and S1(Ai) = Ai.
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In general, for any spaces X and Y there is a homotopy decomposition Σ(X × Y ) ' ΣX ∨ΣY ∨

(ΣX ∧ Y ). If ΣX ' ΣX1 ∨ ΣX2 and ΣY ' ΣY1 ∨ ΣY2, then this homotopy decomposition can be

refined to Σ(X ×Y ) '
∨2

i=0

∨2
j=1 ΣXi ∧Yj where X0 ∧Yj is regarded as Yj and Xi ∧Y0 is regarded

as Xi. Applied iteratively to ΣG ' Σ(
∏p−1

i=1 Bi) and each of the wedge decompositions of ΣBi gives

the decomposition in the statement of the Theorem. �

Theorem 1.2 is useful for calculations. Consider G = SU(n) as an example. There are homotopy

fibrations
SU(n− 1) −→ SU(n) −→ S2n−1

SU(n− 2) −→ SU(n− 1) −→ S2n−3

...

S3 −→ SU(3) −→ S5

which determine long exact sequences

[SU(n), S2m−1] −→ [SU(n), SU(m)] −→ [SU(n), SU(m− 1)] −→ [SU(n),ΩS2m−1] −→ · · ·

for 3 ≤ m ≤ n. This gives an inductive approach to calculating [SU(n), SU(n)] by first calculating

the cohomotopy groups [SU(n), S2m−1] and then assembling this information using the long exact

sequences. To calculate the cohomotopy groups, observe that if p ≥ 5 then S2m−1 is homotopy

associative and homotopy commutative, so the decomposition of ΣSU(n) in Theorem 1.2 together

with Theorem 1.1 gives an isomorphism

[SU(n), S2m−1] ∼=
l1,...,lp−1∏

k1,...,kp−1=0

[Sk1(A1) ∧ · · · ∧ Skp−1(Ap−1), S2m−1]

where A1 ∨ . . . ∨Ap−1 ' ΣCPn−1. The factors on the right are easier to calculate in the sense that

they determined by smaller spaces.

6. Examples

In this section we prove Theorem 1.4 and give several concrete calculations. As many of these

will involve calculations of specific homotopy groups, we give some preliminary information first,

together with two lemmas that will allow us to identify when certain sets of homotopy classes of

maps are zero.

Toda [To] calculated the low dimensional odd primary homotopy groups of spheres. They are as

follows.

Theorem 6.1. Let p be an odd prime and let q = 2(p − 1). Fix m ≥ 2 and let t ≤ 2m + pq − 4.

Then the following hold:

π2m−1+rq−1(S2m−1) = Z/pZ for 1 ≤ r ≤ p− 1;

π2m−1+rq−2(S2m−1) = Z/pZ for 2 ≤ r ≤ p− 1 and r ≥ m;

πt(S2m−1) = 0 otherwise.
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The elements in π2m−1+rq−1(S2m−1) for 1 ≤ r ≤ p − 1 are stable for all m ≥ 2. The remaining

elements are unstable. �

It is often useful in practise to know when homotopy groups of spheres are zero. Theorem 6.1 is

helpful as it shows that the odd primary low dimensional homotopy groups of spheres are relatively

sparse. The next two lemmas can be thought of as systematically taking advantage of homotopy

groups of spheres which are zero.

A space B is said to be spherically resolved by S2n1+1, . . . , S2nt+1 if there is a sequence of

homotopy fibrations

B2 −→ B1 −→ S2n1+1

B3 −→ B2 −→ S2n2+1

...

Bt −→ Bt−1 −→ S2nt−1+1

∗ −→ Bt −→ S2nt+1

where B1 = B. A standard example is SU(n) which is spherically resolved by S2n−1, S2n−3, . . . , S3.

Lemma 6.2. Let B be a space which is spherically resolved by S2n1+1, . . . , S2nt+1. Fix m ≥ 1. If

πm(S2nj+1) = 0 for each 1 ≤ j ≤ t, then πm(B) = 0.

Proof. Induct on t, the number of resolving spheres. If t = 1, then B = S2n1+1 and the hypothesis

πm(S2n1+1) = 0 equivalently says that πm(B) = 0. Suppose the lemma is true when B is resolved

by t − 1 spheres. Let f : Sm −→ B represent a homotopy class in πm(B). Consider the homotopy

fibration B2 −→ B −→ S2n1+1. As πm(S2n1+1) = 0, composing f to S2n1+1 is null homotopic, and

so f lifts to a map f ′ : Sm −→ B2. Since B2 is resolved by the t− 1 spheres S2n2+1, . . . , S2nt+1, the

inductive hypothesis says that πm(B2) = 0. Thus f ′ is null homotopic, and so f is null homotopic.

Hence πm(B) = 0. �

Lemma 6.3. Let X be a finite CW -complex with cells in dimensions m1 < m2 < · · · < ms. Let

B be a space which is spherically resolved by spheres S2n1+1, . . . , S2nt+1. If πmi
(S2nj+1) = 0 for

1 ≤ i ≤ s and 1 ≤ j ≤ t, then [X, B] = 0.

Proof. Induct on the number of dimensions for which X has cells. If s = 1 then X is a wedge of

copies of Sm1 . The hypothesis that πm1(S
2nj+1) = 0 for 1 ≤ j ≤ t lets us apply Lemma 6.2 to say

that πm1(B) = 0. Thus [X, B] = 0.

Suppose the lemma is true for finite CW -complexes with cells in s− 1 different dimensions. Let

X ′ be the m1-skeleton of X. So X ′ is a wedge of copies of Sm1 . Define a space X ′′ by the homotopy

cofibration

X ′ −→ X −→ X ′′.
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Observe that X ′′ is a finite CW -complex with cells in s − 1 different dimensions, m2 < . . . < ms.

Now let f : X −→ B represent a homotopy class in [X, B]. The composite f ′ : X ′ −→ X
f−→ B

represents a homotopy class in [X ′, B]. By the base case of the induction, this set is zero. Thus f ′ is

null homotopic, and so f extends along the cofiber to a map f ′′ : X ′′ −→ B. Since πmi
(S2nj+1) = 0

for 2 ≤ i ≤ s and 1 ≤ j ≤ t, the inductive hypothesis applied to X ′′ says that [X ′′, B] = 0. Thus f ′′

is null homotopic and therefore so is f . Hence [X, B] = 0. �

6.1. Cases when all self-maps are homotopic to H-maps. In this subsection we establish cases

of homotopy commutative Lie groups G for which every self-map of G is homotopic to an H-map.

Lemmas 6.4 through 6.11 will collectively prove Theorem 1.4.

Lemma 6.4. Let p be an odd prime. Suppose: (i) n ≤ 7, (ii) 2n < p, and (iii) n2 − 1 < 2p. Then

there is a group isomorphism [SU(n), SU(n)] ∼= H[SU(n), SU(n)].

Proof. The hypothesis 2n < p implies that SU(n) is homotopy commutative. So by (2) there is a

group isomorphism H[SU(n), SU(n)] ∼= [A,SU(n)] where A = ΣCPn−1. Thus, to prove the lemma,

it is equivalent to show that there is a group isomorphism [SU(n), SU(n)] ∼= [A,SU(n)].

The hypothesis 2n < p also implies that there is a homotopy equivalence SU(n) ' S3×· · ·×S2n−1.

Suspending therefore gives a homotopy equivalence

ΣSU(n) '
n∨

k=2

 ∨
2≤i1<···<ik≤n

ΣS2i1−1 ∧ · · · ∧ S2ik−1

 .

To compress notation, let I be an index set consisting of sequences α = (2i1− 1, 2i2− 1, . . . , 2ik − 1)

with 2 ≤ k ≤ n and 2 ≤ i1 < i2 < · · · < ik ≤ n. Let tα = Σk
s=2(2is−1). Then ΣSU(n) '

∨
α∈I ΣStα .

This decomposition, together with the fact that SU(n) is a homotopy associative, homotopy com-

mutative H-space, lets us apply Proposition 1.1 to show that there is a group isomorphism

[SU(n), SU(n)] ∼=
∏
α∈I

[Stα , SU(n)].

The multiplicative homotopy equivalence SU(n) ' S3 × · · · × S2n−1 lets us refine this to a group

isomorphism

(6) [SU(n), SU(n)] ∼=
n∏

j=2

∏
α∈I

[Stα , S2j−1].

Observe that the cell of highest dimension in SU(n) is in dimension 3 + 5 + · · · + 2n − 1 =

(2n+2)(n− 1)/2 = n2− 1. The hypothesis n2− 1 < 2p therefore implies that the cells of SU(n) are

of dimension less than 2p, and so tα < 2p for all α. For j ≥ 2, the least dimensional torsion homotopy

group of S2j−1 occurs in dimension (2j − 1) + (2p− 3) ≥ 2p. Thus [Stα , S2j−1] = πtα
(S2j−1) = 0 in

all cases except when tα = 2j − 1.
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We are left to consider the cases when a Z(p) summand may appear in (6). If α is the sequence

(2j − 1) of length 1, then Stα = S2j−1 and so [Stα , S2j−1] ∼= Z(p). If α is a sequence of even length,

then Stα has even dimension, so [Stα , S2j−1] 6= Z(p). If α is a sequence of odd length ≥ 3, there

are many possible ways that Stα can have odd dimension. The possibility of least dimension is

Stα = S3 ∧ S5 ∧ S7. Thus we have to avoid the possibility of having [S3 ∧ S5 ∧ S7, S15] in (6). The

hypothesis that n ≤ 7 does this as it implies that S15 cannot appear on the right.

Therefore every term [Stα , S2j−1] in (6) is zero except for the Z(p) summands which arise from

the length 1 sequences α = (2j − 1). Thus there is a group isomorphism

[SU(n), SU(n)] ∼=
n∏

j=2

[S2j−1, S2j−1].

Phrased differently, the summands which arise from the length 1 sequences α = (2j − 1) arise from

the inclusion A = S3 ∨ · · · ∨ S2n−1 −→ S3 × · · · × S2n−1 ' SU(n), and so [SU(n), SU(n)] ⊆

[A,SU(n)]. On the other hand, the same argument regarding torsion homotopy classes shows that

there is a group isomorphism [A,SU(n)] ∼=
∏n

j=2[S
2j−1, S2j−1]. Hence there is a group isomorphism

[SU(n), SU(n)] ∼= [A,SU(n)]. �

Remark 6.5. Observe that the three hypotheses on n in Lemma 6.4 are satisfied in the following

cases: n = 2 and p ≥ 5; n = 3 and p ≥ 7; n = 4 and p ≥ 11; n = 5 and p ≥ 13; n = 6 and

p ≥ 19; n = 7 and p ≥ 29. There is one additional case that falls outside the hypotheses. A direct

calculation shows that the conclusion of Lemma 6.4 also holds when n = 6 and p = 17.

Lemma 6.6. Let p be an odd prime. Suppose: (i) n ≤ 13, (ii) 4n < p, and (iii) 2n2 + n < 2p.

Then there is a group isomorphism [Sp(n), Sp(n)] ∼= H[Sp(n), Sp(n)].

Proof. Argue as in Lemma 6.4. The hypothesis 4n < p implies that Sp(n) ' S3 × · · · × S4n−1 and

Sp(n) is homotopy commutative. The cell of highest dimension is in dimension 3+7+ · · ·+4n−1 =

4(1+2+ · · ·+n)−n = 2n2 +n, which, when compared to torsion in the homotopy groups of spheres,

is the origin of the hypothesis 2n2 + n < 2p. Note that the analogous spheres Stα in the homotopy

decomposition of ΣSp(n) have dimensions tα = Σt
s=14is − 1. The least dimensional possibility of

a term [Stα , S4j−1] being Z(p) with α a sequence of length > 1 is [S3 ∧ S7 ∧ · · · ∧ S19, S55]. The

hypothesis n ≤ 13 avoids this possibility. �

Remark 6.7. The hypotheses on n in Lemma 6.6 for 1 ≤ n ≤ 7 are satisfied in the following cases:

n = 1 and p ≥ 5; n = 2 and p ≥ 11; n = 3 and p ≥ 13; n = 4 and p ≥ 19; n = 5 and p ≥ 23; n = 6

and p ≥ 41; n = 7 and p ≥ 53. Again, there may be cases that fall outside the hypotheses but for

which the conclusion of the Lemma holds. One example is when n = 4 and p = 17.

By [H] there is a homotopy equivalence Spin(2n + 1) ' Sp(n), and the list in (1) shows that

Spin(2n + 1) is homotopy commutative for the same values of n as Sp(n). Thus Lemma 6.6 implies

the following.
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Corollary 6.8. Let p be an odd prime. Suppose: (i) n ≤ 13, (ii) 4n < p, and (iii) 2n2 + n < 2p.

Then there is a group isomorphism [Spin(2n+1), Spin(2n+1)] ∼= H[Spin(2n+1), Spin(2n+1)]. �

The Spin(2n) cases are as follows.

Lemma 6.9. Let p be an odd prime. Suppose: (i) n ≤ 6, (ii) 4(n− 1) < p, and (iii) 2n2 − n < 2p.

Then there is a group isomorphism [Spin(2n), Spin(2n)] ∼= H[Spin(2n), Spin(2n)].

Proof. By [H], Spin(2n) ' Sp(n−1)×S2n−1. So what we do is modify the calculations in Lemma 6.6

to take into account the extra factor of S2n−1. As stated in (1), the hypothesis 4(n− 1) < p implies

that Spin(2n) is homotopy commutative. The cell of highest dimension in Spin(2n) is in dimension

(3 + 7 + · · · + 4n − 1) + 2n − 1 = 4(1 + · · · + n) − n + (2n − 1) = 2n2 − n, which, when compared

to torsion in the homotopy groups of spheres, is the origin of the hypothesis 2n2 − n < 2p. The

presence of S2n−1 as a factor of Spin(2n) means that when checking for Z(p) summands one has

to take into account more cases. The sequence α of length > 1 that gives the least dimensional

occurance of a Z(p) summand is [S3 ∧ S7 ∧ S13, S23] in [Spin(14), Spin(14)]. The hypothesis n ≤ 6

avoids this case. �

Remark 6.10. The hypotheses on n in Lemma 6.6 are satisfied in the following cases: n = 2 and

p ≥ 5; n = 3 and p ≥ 11; n = 4 and p ≥ 17; n = 5 and p ≥ 23; n = 6 and p ≥ 37. Again, it may be

possible that there are other cases where the conclusion of the Lemma hold which fall outside the

hypotheses.

Lemma 6.11. Let p = 5. Then there is a group isomorphism [G2, G2] ∼= H[G2, G2].

Proof. We assume throughout that homology is taken with mod-5 coefficients. It is well known that

H∗(G2) ∼= Λ(x3, x11) and P1
∗ (x11) = x3. By Theorem 5.1, there is a space A and a map A −→ G2

such that H∗(G) ∼= Λ(H̃∗(A)). In particular, A is a two cell complex with its cells attached by

a P1. By Theorem 1.2, ΣG2 ' ΣS1(A) ∨ ΣS2(A) where H̃∗(S2(A)) ∼= Λ2(H̃∗(A)), and S1(A) ' A.

Observe that Λ2(H̃∗(A)) ∼= {x14}, so S2(A) ' S14. As stated in (1), G2 is homotopy commutative

when p = 5, so by Corollary 1.3 there is a group isomorphism

[G2, G2] ∼= [A,G2]⊕ [S14, G2].

By [Mim], π14(G2) = 0 at 5 and so [G2, G2] ∼= [A,G2]. On the other hand, by (2) there is a group

isomorphism H[G2, G2] ∼= [A,G2]. Hence there is a group isomorphism [G2, G2] ∼= H[G2, G2]. �

6.2. Two-cell co-H-spaces. In this subsection we give an explicit calculation of H[B,B] when B

is a homotopy associative, homotopy commutative H-space which is universal for a certain two-cell

complex. In our case both cells are in odd dimensions, similar calculations were done in [Grb2] when

there is both an odd and even dimensional cell.
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Let A be a co-H-space with two odd dimensional cells. So there is a homotopy cofibration

sequence

S2n ε−→ S2m+1 j−→ A
q−→ S2n+1

where ε is the attaching map, j is the inclusion, and q is the pinch map onto the top cell. If p ≥ 5,

then by [Th1, 4.3] there is a homotopy associative, homotopy commutative H-space B which is

universal for A and has the property that H∗(B) ∼= Λ(H̃∗(A)). In this case the map i : A −→ B in

the definition of the universal property induces the inclusion of the generating set in homology. Let

ι : B −→ B

be the identity map on B. It is an H-map which extends i. In fact, since B is homotopy associative

and homotopy commutative, the universal property implies that ι is the unique H-map extending i.

Suppose ε has order pr. Then as in [Th2, §5], there is a factorization of the pr-power map on B as

B
pr

//

a×q

��

B

S2m+1 × S2n+1
j·c

// B

where all maps are H-maps. Here, q is an extension of the pinch map q, j ' i ◦ j, a and c are of

degree pr in Z(p) homology, and j · c is the product of j and c given by the multiplication on B.

Since B is homotopy associative and homotopy commutative, Lemma 2.1 implies that H[B,B] is an

abelian group. The homotopy commutativity of the diagram implies that in the group H[B,B] we

have pr = γ + δ where γ and δ are the homotopy classes of c ◦ q and j ◦ a respectively.

In Proposition 6.12 we give an explicit generating set for H[B,B], provided that π2n+1(B) ∼= Z(p)

is generated by the homotopy class of c. This is an easy condition to check in the applications we

have in mind.

Proposition 6.12. Let p ≥ 5. Let A be a two-cell co-H-space with cells in dimensions 2m + 1 and

2n + 1 for n > m. Let B be universal for A and suppose that π2n+1(B) ∼= Z(p) is generated by the

homotopy class of c. Then H[B,B] is isomorphic to the free abelian group over Z(p) generated by ι

and γ. Equivalently,

H[B,B] ∼= Z(p)〈ι, γ, δ | pr · ι = γ + δ〉.

Proof. We will show that H[B,B] ∼= Z(p)〈ι, γ〉. If so then the subsequent isomorphism H[B,B] ∼=

Z(p)〈ι, γ, δ | pr · ι = γ + δ〉 is immediate. We begin by using the universal property of B for A to

change the problem into an equivalent one.

Combining the universal property of B for A with the fact that B is homotopy associative and

homotopy commutative, Lemma 2.4 implies that there is a group isomorphism H[B,B]
∼=−→ [A,B]

which is given by precomposing each H-map B
f−→ B with A

i−→ B. By definition, ι ◦ i ' i. Let
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g be the composite g : A
i−→ B

γ−→ B. Note that the definition of γ implies that g is homotopic

to the composite A
q−→ S2n+1 c−→ B. Therefore, showing that H[B,B] ∼= Z(p)〈ι, γ〉 is equivalent

to showing that [A,B] ∼= Z(p)〈i, q〉. That is, it is equivalent to show that the homomorphism

Z(p)〈i, g〉 −→ [A,B] determined by sending i and g to themselves is an isomorphism.

The homotopy cofibration sequence

S2n ε−→ S2m+1 j−→ A
q−→ S2n+1 Σε−→ S2m+2 −→ · · ·

determines a long exact sequence

· · · −→ [S2m+2, B]
(Σε)∗−→ [S2n+1, B]

q∗−→ [A,B]
j∗−→ [S2m+1, B] ε∗−→ [S2n, B].

Observe that for dimensional reasons [S2m+2, B] ∼= [S2m+2, S2m+1] and the latter group is zero at

odd primes. So [S2m+2, B] = 0. Also, [S2m+1, B] ∼= [S2m+1, S2m+1] ∼= Z(p), and a generator is

determined by the inclusion S2m+1 j−→ B of the bottom cell. This inclusion extends over A to give

the map A
i−→ B. Thus j∗ is an epimorphism. Therefore the long exact sequence above reduces to

a short exact sequence

0 −→ [S2n+1, B]
q∗−→ [A,B]

j∗−→ [S2m+1, B] −→ 0.

By hypothesis, [S2n+1, B] ∼= Z(p) and a choice of the generator is c. We have already seen that

[S2m+1, B] ∼= Z(p) and a choice of generator is the inclusion j. Because q∗(c) = g and j∗(ι) = i,

there is a short exact sequence of groups

0 −→ [S2n+1, B]
q∗−→ Z(p)〈i, g〉

j∗−→ [S2m+1, B] −→ 0.

The Five-Lemma therefore implies that the homomorphism Z(p)〈i, g〉 −→ [A,B] determined by

sending i and g to themselves is an isomorphism. �

Proposition 6.12 has several applications. By Theorem 6.1, for 1 ≤ k ≤ p − 1 and m ≥ 1, we

have π2m+kq(S2m+1) ∼= Z/pZ, generated by a stable class commonly named αk. Each αk originates

on S3, so if m > 1 then αk is a suspension. When m = 1, it is also known that α1 and α2 are

co-H-maps. Let A2m+kq+1 be defined by the homotopy cofibration

S2m+kq αk−→ S2m+1 −→ A2m+kq+1.

Then A2m+kq+1 is a co-H-space if m > 1 or m = 1 and k = 1, 2. Let B2m+kq+1 be universal for

A2m+kq+1. Since S2m+kq+1 is homotopy associative and homotopy commutative, the pinch map

A2m+kq+1 −→ S2m+kq+1 extends to an H-map B2m+kq+1 −→ S2m+kq+1. A Serre spectral sequence

calculation shows that the homotopy fiber of this map has the homology of S2m+1 and so is homotopy

equivalent to S2m+1. Thus there is a homotopy fibration

S2m+1 −→ B2m+kq+1 −→ S2m+kq+1.
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By [MNT2, §6] or an easy calculation using Lemma 6.1, π2m+kq+1(B2m+kq+1) ∼= Z(p) and c is a

choice of generator. Thus Proposition 6.12 implies that there is a group isomorphism

H[B2m+kq+1, B2m+kq+1] ∼= Z(p)〈ι, γ, δ | p · ι = γ + δ〉.

More specific examples are as follows.

Example 6.13. By Lemma 6.11, when p = 5 there is a group isomorphism [G2, G2] ∼= H[G2, G2].

We can now complete the calculation. As noted in the proof of Lemma 6.11, G2 is universal for a

two cell complex A where H̃∗(A) ∼= {x3, x11} and P1
∗ (x11) = x3. The Steenrod operation P1

∗ detects

the homotopy class α1, so the space A is what was called A11 above. Therefore its universal space

G2 is what was called B11 above. Hence we have a group isomorphism

H[G2, G2] ∼= Z(5)〈ι, γ, δ | p · ι = γ + δ〉.

Example 6.14. Let p ≥ 5 and consider B2p+1. Note the corresponding homotopy fibration is

S3 −→ B2p+1 −→ S2p+1. This is an interesting space because it is homotopy equivalent to a Clark-

Ewing loop space determined by a reflection group. Note, though, that the homotopy equivalence

may only be as spaces rather than H-spaces. In terms of its homotopy associative, homotopy

commutative multiplication, Proposition 6.12 gives a group isomorphism

H[B2p+1, B2p+1] ∼= Z(p)〈ι, γ, δ | p · ι = γ + δ〉.

Moreover, an argument exactly as in Lemma 6.11 shows that there is a group isomorphism

[B2p+1, B2p+1] ∼= H[B2p+1, B2p+1].

That is, every self-map of B2p+1 is homotopic to an H-map, and the H-maps are described explicitly

by the group presentation above.
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[GTW] J. Grbić, S. Theriault and J. Wu, Suspension splittings for retracts of looped co-H-spaces, preprint.

[H] B. Harris, On the homotopy groups of the classical groups, Ann. of Math. 74 (1961), 407-413.



SELF-MAPS OF LOW RANK LIE GROUPS AT ODD PRIMES 21

[J1] I.M. James, Reduced product spaces, Ann. of Math. 62 (1955), 170-197.

[J2] I.M. James, On H-spaces and their homotopy groups, Quart. J. Math. 11 (1960), 161-179.

[Mc] C.A. McGibbon, Homotopy commutativity in localized groups, Amer. J. Math 106 (1984), 665-687.

[Mil] H.R. Miller, Stable splittings of Stiefel manifolds, Topology 24 (1985), 411-419.

[Mim] M. Mimura, The homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ. 6 (1967), 131-176.

[MNT1] M. Mimura, G. Nishida, and H. Toda, Localization of CW -complexes and its applications, J. Math. Soc.

Japan 23 (1971), 593-624.

[MNT2] M. Mimura, G. Nishida, and H. Toda, Mod-p decomposition of compact Lie groups, Publ. RIMS, Kyoto

Univ 13 (1977), 627-680.

[MO] M. Mimura and H. Oshima, Self homotopy groups of Hopf spaces with at most three cells, J. Math. Soc.

Japan 51 (1999), 71-92.

[MT] M. Mimura and H. Toda, Cohomology operations and the homotopy of compact Lie groups I, Topology 9

(1970), 317-336.

[NY] G. Nishida, Y.M. Yang, On a p-local stable splitting of U(n), J. Math. Kyoto Univ. 41 (2001), 387-401.

[Th1] S.D. Theriault, The H-structure of low rank torsion free H-spaces, Quart. J. Math. Oxford 56 (2005),

403-415.

[Th2] S.D. Theriault, The odd primary H-structure of low rank Lie groups and its application to exponents, Trans.

Amer. Math. Soc. 359 (2007), 4511-4535.

[To] H. Toda, On iterated suspensions I, J. Math. Kyoto Univ. 5 (1965), 87-142.

School of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom

E-mail address: Jelena.Grbic@manchester.ac.uk

Department of Mathematical Sciences, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom

E-mail address: s.theriault@maths.abdn.ac.uk


